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based on the works

A nearly-tight sum-of-squares lower bound for the planted clique problem. 
[Barak-H.-Kelner-Kothari-Moitra-Potechin, FOCS 2016] 
The power of SoS for detecting hidden structures. 
[H.-Kothari-Potechin-Raghavendra-Schramm-Steurer] (available soon) 
Efficient Bayesian estimation from few samples: community detection and
related problems. 
[H.-Steurer] (available soon)

                



PLANTED PROBLEMS

nature samples , then  
see , try to recover 

Usually,  
 is a graph or matrix or CNF formula or …

This talk: 
simple low degree tests criterion determines algorithmic difficulty
of given planted problem 
Developing picture: (partly/largely conjectural) 
criterion satisfied → generic meta-algorithm solves efficiently
(“Bayesian SoS”) 
criterion not satisfied → SoS algorithms fail

x ∼ U y ∼ p(y|x)
y x

U = {±1 , ,…}n 𝐑n

y



CSP( ):  is a boolean predicate,  and  is an -
clause random instance of  satisfied by  

planted/hidden -clique:  has size  and 
conditioned on  a clique in . 

sparse PCA:  is a random -sparse unit vector and 
.

P P x ∈ {±1}n y m
P x

y = ( ∨ ∨¬ ) ∧ (¬ ∨ ∨¬ )x1 x10 x27 x19 x4 x12

k x ⊂ [n] k y ∼ 𝔾(n, )12
x y

x ∈ 𝐑n k
y = ,… , ∼ N(0, I + x )y1 ym x⊤





WHY STUDY PLANTED PROBLEMS?
natural average-case versions of combinatorial optimization
problems

(toy) models for fundamental statistics problems

source of interesting instances

where the hard instances are? where the easy instances are? 





TYPICAL ALGORITHMIC LANDSCAPE
Planted problems come with a parameter to vary hardness

CSP:  for -clause -variate CSP 
planted clique:  for -clique in -node graph 
sparse PCA:  samples from Gaussian with -sparse
spike

planted clique:  but  
HOWEVER  is always conjectural

m = m(n) m n
k = k(n) k n

m = m(k,n) k

(n) = 2 lognkstat (n) = Θ( )kalg n−−√
kalg



RIGOROUS EVIDENCE FOR COMPUTATIONAL
HARDNESS OF PLANTED PROBLEMS?

? 
unlikely: gadget reductions break specific distribution on
instances
Instead, prove unconditional results for restricted models. 

Examples: 
1. Efficient Markov-Chain Monte-Carlo algorithms, polynomial-size Lovasz-

Schrijver+ relaxations cannot find -size cliques -node in random graphs

[Jerrum 92, Feige-Krauthgamer 03] 
2. Basic SDP and degree-  SoS relaxations of sparse PCA cannot tolerate fewer

than  samples [Krauthgamer-Nadler-Vilenchik 15, Ma-Wigderson 15]

3SAT planted clique≤p

o( )n1/2 n

4
m = (sparsity)2



SOS IS THE FRONTIER
rule out stronger algorithms → better evidence for
computationally-hard region

for many problems, -time SoS succeeds against harder
parameters than other known algorithms.

e.g. tensor pca, dictionary learning, random tensor decomposition, sparse vector
in random subspace 
[Barak-Kelner-Steurer 15, Ge-Ma 15, Ma-Shi-Steurer 16, H.-Shi-Steurer 15]

understanding when SoS succeeds/fails is critical to
understanding  for planted problems:

nO(1)

kalg
≥kSoS kalg



“SoS is Optimal” conjecture: ≈kalg kSoS



TYPICAL QUESTION

For constant  and , is ? 
 is the degree-  SoS relaxation of

Canonical SoS relaxation for Max-Clique, natural SoS algorithm
for planted clique.

Resolved in line of work
[Meka-Potechin-Wigderson 15] 
[Deshpande-Montanari 15] 
[H.-Kothari-Potechin-Raghavendra-Schramm 16] 
[Barak-H.-Kelner-Kothari-Moitra-Potechin 16]

d G ∼ 𝔾(n, 1/2) So (G) ≥Sd n1/2−o(1)

So (G)Sd d

max  s.t.  =  and  = 0 if i ≁ j∑
i=1

n

xi x2i xi xixj



REST OF TALK
1. Study low-degree tests/estimators: simple and easily-analyzed

algorithms tailored to planted problems. 
(e.g. average degree)

2. Relate best low-degree estimator to SoS. 

Benefit A (if you like planted problems): enough to analyze low-
degree estimators to make excellent guess for 

Benefit B (if you like SoS/meta-algorithms): strong indication
that SoS performance  performance of low-degree estimators,
even though SoS not tailored to the setting.

kalg

≈



WHAT IS A LOW-DEGREE TEST?
Two hypotheses: 

 
-clique

A good low degree test is  with 
1.  
2.  
3. 

Example: .

: G ∼ 𝔾(n, 1/2)H0
: G ∼ 𝔾(n, 1/2) + kH1

α(G) : graphs → ℝ
deg(α) ≤ D

α(G) = 0𝔼G∼𝔾(n,1/2)
α(G = 1𝔼G∼𝔾(n,1/2) )2

α(G) ≥ δ = (1).𝔼G∼planted Ωn

α(G) = # of triangles in G



“Theorem” (Cauchy-Schwarz): optimal  is

(which can be computed with simple linear algebra/Fourier analysis).

graph problems: degree-  tests = -edge subgraph statistics 
CSPs: degree-  tests = bounded-width resolution refutations 
(or -hyperedge subgraphs of clause hypergraph)

For constant (or logarithmic) ,
planted clique:  iff  
sparse PCA:  iff 

δ

= ‖ ‖δbest ( )
(G)ℙplanted

(G)ℙ𝔾(n,1/2)

≤D

D D
D

D

D
≥ (1)δbest Ωn k ≥ n−−√

≥ (1)δbest Ωn m ≥ (sparsity)2



LOW DEGREE ESTIMATORS
 

-clique 
(applies also to sparse pca, tensor pca, stochastic blockmodels, etc.)

A good low degree estimator of , (normalized indicator that vertex 

 is in the clique), is 
1.  
2.  
3.  
and  (e.g. )

: 𝔾(n, 1/2)H0
: 𝔾(n, 1/2) + kH1

(G)x1
1
α(G) : graphs → ℝ
deg(α) ≤ D

α(G = 1𝔼𝔾(n,1/2) )2

α(G) ⋅ ≥ δ𝔼x,G∼planted x1 α(G) = deg(vertex 1)





[H.-Steurer]: low-degree estimators + SoS tensor decomposition
unify many planted problem algorithms with generic analysis. 
for numerous problems =kalg klow−deg



LOW-DEGREE ESTIMATORS AND SOS
Taking stock:  

Next:  (“pseudocalibration”)

< ≤kstat kalg klow−degree

≤klow−degree ksos



For constant  and , is ? 
 is the degree-  SoS relaxation of

Initial difficulty: how to define, for typical , a
pseudodistribution on “large cliques” in ? 
What should  be?

d G ∼ 𝔾(n, 1/2) So (G) ≥Sd n1/2−o(1)

So (G)Sd d

max  s.t.  =  and  = 0 if i ≁ j∑
i=1

n

xi x2i xi xixj

G ∼ 𝔾(n, 1/2)
G

Ẽ xixjxkxℓ



Idea 1: If -clique, then degree-  SoS is trying
to compute . 
Idea 2 (wild guess!!): SoS computes a low-degree estimate of 

.

Idea 3:  for best low-degree
estimator .

G ∼ 𝔾(n, 1/2) + k d
𝔼 |Gx⊗d

𝔼 |Gx⊗d

= (scaling) ⋅ (G)Ẽ xixjxkxℓ αijkℓ
α



Fourier analysis: Every low-degree  is fooled by this :

In particular, .

no low-degree estimator →  “small”

Theorem [many papers]: For planted clique, sparse PCA, random
CSPs, tensor PCA,  is a pseudodistribution whp.

f(G, x) Ẽ 

f(G, x) = f(G, x)𝔼x,G∼planted 𝔼𝔾(n,1/2)Ẽ 

∑ = kẼ  xi

Va ( )r𝔾(n,1/2) Ẽ xixjxkxℓ

Ẽ 



CLOSING REMARKS AND OPEN PROBLEMS
 

For many problems, .

Conjecture: : efficient algorithms tailored to
each individual planted problem ONLY compute low-degree
statistics

Conjecture: : SoS does as well as best
algorithm tailored to particular problem, but SoS is “generic”

More open problems: 
1. SoS lower bound for densest- -subgraph or other sparse problem 
2. Meta-theorem about SoS versus low-degree algorithms? 
3. Separate SoS and low-degree algorithms for some planted problem?

< ≤kstat kalg klow−degree
≤klow−degree kSoS

=kalg klow−degree

=klow−degree kSoS

k



THANK YOU!


