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based on the works

A nearly-tight sum-of-squares lower bound for the planted clique problem.
[Barak-H.-Kelner-Kothari-Moitra-Potechin, FOCS 2016]
The power of SoS for detecting hidden structures.

[H.-Kothari-Potechin-Raghavendra-Schramm-Steurer] (available soon)

Efficient Bayesian estimation from few samples: community detection and
related problems.

[H.-Steurer] (available soon)



PLANTED PROBLEMS

nature samples x ~ L, theny ~ p(y|x)
see y, try to recover x

Usually, U = {+1}", R"™, ...
y is a graph or matrix or CNF formula or ...

This talk:

simple low degree tests criterion determines algorithmic difficulty
of given planted problem

Developing picture: (partly/largely conjectural)

criterion satisfied > generic meta-algorithm solves efficiently
(“Bayesian SoS”)

criterion not satisfied > SoS algorithms fail



CSP(P): Pis a boolean predicate, x € {+1}" and y isan m-
clause random instance of P satisfied by x
Yy = (x1 Vxi0 V—x27) A (—x19 V X4 V —X13)

planted/hidden k-clique: x C [n]| hassize kandy ~ G(n, %)
conditioned on x a clique in y.

sparse PCA: x ¢ R™ isarandom k-sparse unit vector and
Y =Yi,.,Ym ~ N(O, T +xx").






WHY STUDY PLANTED PROBLEMS?

natural average-case versions of combinatorial optimization
problems

(toy) models for fundamental statistics problems

source of interesting instances

where the hard instances are? where the easy instances are?




TYPICAL ALGORITHMIC LANDSCAPE

Planted problems come with a parameter to vary hardness

CSP: m = m(n) for m-clause n-variate CSP

planted clique: k = k(n ) for k-clique in n-node graph

sparse PCA: m = m/(k, n) samples from Gaussian with k-sparse
spike

statistically computationally efficient

hard hard(??) algorithm

k(”):ksfat (”) k(n):km!g (”)

planted clique: kot (n) = 2logn but kqig(n) = (/1)
HOWEVER Kq14 is always conjectural



RIGOROUS EVIDENCE FOR COMPUTATIONAL
HARDNESS OF PLANTED PROBLEMS?

3SAT <, planted clique?
unlikely: gadget reductions break specific distribution on
Instances

Instead, prove unconditional results for restricted models.

Examples:

1. Efficient Markov-Chain Monte-Carlo algorithms, polynomial-size Lovasz-
Schrijver+ relaxations cannot find o(n'/?)-size cliques n-node in random graphs
[Jerrum 92, Feige-Krauthgamer 03]

2. Basic SDP and degree-4 SoS relaxations of sparse PCA cannot tolerate fewer

than m = (Spa rSity)z Samples [Krauthgamer-Nadler-Vilenchik 15, Ma-Wigderson 15]



SOS IS THE FRONTIER

rule out stronger algorithms > better evidence for
computationally-hard region

for many problems, n°'"-time SoS succeeds against harder
parameters than other known algorithms.

e.g. tensor pca, dictionary learning, random tensor decomposition, sparse vector
in random subspace

[Barak-Kelner-Steurer 15, Ge-Ma 15, Ma-Shi-Steurer 16, H.-Shi-Steurer 15]

understanding when SoS succeeds/fails is critical to
understanding k14 for planted problems:

kSoS = kalg



“SoS is Optimal” conjecture: kq1q ~ Ksos



TYPICAL QUESTION

For constant d and G ~ G(n, 1/2),is S0S4(G) > n'/Z°)3
So0S4(G) isthe degree-d SoS relaxation of
n
max X; S.t. xiz =x; and xix; = 0ifi~+j

1=1

Canonical SoS relaxation for Max-Clique, natural SoS algorithm
for planted clique.

Resolved in line of work
[Meka-Potechin-Wigderson 15]
[Deshpande-Montanari 15]
[H.-Kothari-Potechin-Raghavendra-Schramm 16]
[Barak-H.-Kelner-Kothari-Moitra-Potechin 16]



REST OF TALK

1. Study low-degree tests/estimators: simple and easily-analyzed
algorithms tailored to planted problems.
(e.g. average degree)

2. Relate best low-degree estimator to SoS.

Benefit A (if you like planted problems): enough to analyze low-
degree estimators to make excellent guess for k4

Benefit B (if you like SoS/meta-algorithms): strong indication
that SoS performance ~ performance of low-degree estimators,
even though SoS not tailored to the setting.



WHAT IS A LOW-DEGREE TEST?

Two hypotheses:

Ho: G~ G(n,1/2)

H;: G ~ G(n,1/2) + k-clique

A good low degree testis o¢(G ) : graphs — R with
l.deg(x) < D

2.Egg(n,1/2%(G) =0

3. Egg(n,1/2%(G)* =1

IE:G~planted (X(G) >0 = Qn(”-

Example: «(G) = # of triangles in G.



“Theorem” (Cauchy-Schwarz): optimal 6 is

<D
Pplanted (G)
6bes‘c —
Pg(n,1/2) (G)

(which can be computed with simple linear algebra/Fourier analysis).

graph problems: degree-D tests = D-edge subgraph statistics
CSPs: degree-D) tests = bounded-width resolution refutations

(or D-hyperedge subgraphs of clause hypergraph)

For constant (or logarithmic) D,
planted clique: dpest > O (1)iffk > /M
sparse PCA: Opest > O, (1)iff m > (sparsity)?



LOW DEGREE ESTIMATORS

Ho: G(n,1/2)
H; : G(n,1/2) + k-clique

(applies also to sparse pca, tensor pca, stochastic blockmodels, etc.)

A good low degree estimator of x1 (G), (normalized indicator that vertex

1 isin the clique), IS

1. x(G) : graphs — R
2.deg(x) <D

3. Egn,1/2)%(G)* =1
and [y G~planted x(G) - x1

WV

O (e.g. x(G) = deg(vertex 1))







[H.-Steurer]: low-degree estimators + SoS tensor decomposition
unify many planted problem algorithms with generic analysis.
for numerous problems k1, = Kioy—deq



LOW-DEGREE ESTIMATORS AND SOS

Taking stock: Kt < Kalg < Kiow—degree

Kstat Kaig Kiow-degree k increasing,
easier problem

Next: klow—degree < Keos (“pseudocalibration”)



For constant d and G ~ G(n, 1/2),is S0S4(G) > n'/Z°)7
So0S,4(G) is the degree-d SoS relaxation of

n
max E xi  St.xf =xandxix; = 0if i+ ]

1=1

Initial difficulty: how to define, for typical G ~ G(n, 1/2), a
pseudodistribution on “large cliques” in G?
What should Exixj X X be?



Idea 1: If G ~ G(n, 1/2) + k-clique, then degree-d SoS is trying
to compute Ex®4|G.
Idea 2 (wild guess!!): SoS computes a low-degree estimate of

Ex®4|G.

Idea 3: Exix;xix; = (scaling) - oijie(G) for best low-degree
estimator «.



Fourier analysis: Every low-degree f(G, x) is fooled by this E:
IE:x,G~planted f(G,x) = EG(n,]/Z)Ef(G>X)

In particular, £ >~ x; = k.
no low-degree estimator > Varg,, ;2 (Exixjxixe) “small”

Theorem [many papers]: For planted clique, sparse PCA, random
CSPs, tensor PCA, L is a pseudodistribution whp.



CLOSING REMARKS AND OPEN PROBLEMS

kstat < kalg < klow—degree
For many problems, Kiow—degree < Ksos.

Conjecture: Kq1g = Kiow—degree: efficient algorithms tailored to

each individual planted problem ONLY compute low-degree
statistics

Conjecture: Kioydegree = Ksos: SOS does as well as best
algorithm tailored to particular problem, but SoS is “generic”

More open problems:

1. SoS lower bound for densest-k-subgraph or other sparse problem

2. Meta-theorem about SoS versus low-degree algorithms?

3. Separate SoS and low-degree algorithms for some planted problem?



THANK YOU!



