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based on the works

A nearly-tight sum-of-squares lower bound for the planted clique problem. 
[Barak-H.-Kelner-Kothari-Moitra-Potechin, FOCS 2016] 
The power of SoS for detecting hidden structures. 
[H.-Kothari-Potechin-Raghavendra-Schramm-Steurer] (available soon) 
Efficient Bayesian estimation from few samples: community detection and
related problems. 
[H.-Steurer] (available soon)
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PLANTED PROBLEMS

nature samples , then  
see , try to recover 

Usually,  
 is a graph or matrix or CNF formula or …

This talk: 
simple low degree tests criterion determines algorithmic difficulty
of given planted problem 
Developing picture: (partly/largely conjectural) 
criterion satisfied → generic meta-algorithm solves efficiently
(“Bayesian SoS”) 
criterion not satisfied → SoS algorithms fail

x ∼ U y ∼ p(y|x)
y x

U = {±1 , ,…}n 𝐑n

y



CSP( ):  is a boolean predicate,  and  is an -
clause random instance of  satisfied by  

planted/hidden -clique:  has size  and 
conditioned on  a clique in . 

sparse PCA:  is a random -sparse unit vector and 
.

P P x ∈ {±1}n y m
P x

y = ( ∨ ∨¬ ) ∧ (¬ ∨ ∨¬ )x1 x10 x27 x19 x4 x12

k x ⊂ [n] k y ∼ 𝔾(n, )12
x y

x ∈ 𝐑n k
y = ,… , ∼ N(0, I + x )y1 ym x⊤





WHY STUDY PLANTED PROBLEMS?
natural average-case versions of combinatorial optimization
problems

(toy) models for fundamental statistics problems

source of interesting instances

where the hard instances are? where the easy instances are? 





TYPICAL ALGORITHMIC LANDSCAPE
Planted problems come with a parameter to vary hardness

CSP:  for -clause -variate CSP 
planted clique:  for -clique in -node graph 
sparse PCA:  samples from Gaussian with -sparse
spike

planted clique:  but  
HOWEVER  is always conjectural

m = m(n) m n
k = k(n) k n

m = m(k,n) k

(n) = 2 lognkstat (n) = Θ( )kalg n−−√
kalg



RIGOROUS EVIDENCE FOR COMPUTATIONAL
HARDNESS OF PLANTED PROBLEMS?

? 
unlikely: gadget reductions break specific distribution on
instances
Instead, prove unconditional results for restricted models. 

Examples: 
1. Efficient Markov-Chain Monte-Carlo algorithms, polynomial-size Lovasz-

Schrijver+ relaxations cannot find -size cliques -node in random graphs

[Jerrum 92, Feige-Krauthgamer 03] 
2. Basic SDP and degree-  SoS relaxations of sparse PCA cannot tolerate fewer

than  samples [Krauthgamer-Nadler-Vilenchik 15, Ma-Wigderson 15]

3SAT planted clique≤p

o( )n1/2 n

4
m = (sparsity)2



SOS IS THE FRONTIER
rule out stronger algorithms → better evidence for
computationally-hard region

for many problems, -time SoS succeeds against harder
parameters than other known algorithms.

e.g. tensor pca, dictionary learning, random tensor decomposition, sparse vector
in random subspace 
[Barak-Kelner-Steurer 15, Ge-Ma 15, Ma-Shi-Steurer 16, H.-Shi-Steurer 15]

understanding when SoS succeeds/fails is critical to
understanding  for planted problems:

nO(1)

kalg
≥kSoS kalg



“SoS is Optimal” conjecture: ≈kalg kSoS



TYPICAL QUESTION

For constant  and , is ? 
 is the degree-  SoS relaxation of

Canonical SoS relaxation for Max-Clique, natural SoS algorithm
for planted clique.

Resolved in line of work
[Meka-Potechin-Wigderson 15] 
[Deshpande-Montanari 15] 
[H.-Kothari-Potechin-Raghavendra-Schramm 16] 
[Barak-H.-Kelner-Kothari-Moitra-Potechin 16]

d G ∼ 𝔾(n, 1/2) So (G) ≥Sd n1/2−o(1)

So (G)Sd d

max  s.t.  =  and  = 0 if i ≁ j∑
i=1

n

xi x2i xi xixj



REST OF TALK
1. Study low-degree tests/estimators: simple and easily-analyzed

algorithms tailored to planted problems. 
(e.g. average degree)

2. Relate best low-degree estimator to SoS. 

Benefit A (if you like planted problems): enough to analyze low-
degree estimators to make excellent guess for 

Benefit B (if you like SoS/meta-algorithms): strong indication
that SoS performance  performance of low-degree estimators,
even though SoS not tailored to the setting.

kalg

≈



WHAT IS A LOW-DEGREE TEST?
Two hypotheses: 

 
-clique

A good low degree test is  with 
1.  
2.  
3. 

Example: .

: G ∼ 𝔾(n, 1/2)H0
: G ∼ 𝔾(n, 1/2) + kH1

α(G) : graphs → ℝ
deg(α) ≤ D

α(G) = 0𝔼G∼𝔾(n,1/2)
α(G = 1𝔼G∼𝔾(n,1/2) )2

α(G) ≥ δ = (1).𝔼G∼planted Ωn

α(G) = # of triangles in G



“Theorem” (Cauchy-Schwarz): optimal  is

(which can be computed with simple linear algebra/Fourier analysis).

graph problems: degree-  tests = -edge subgraph statistics 
CSPs: degree-  tests = bounded-width resolution refutations 
(or -hyperedge subgraphs of clause hypergraph)

For constant (or logarithmic) ,
planted clique:  iff  
sparse PCA:  iff 

δ

= ‖ ‖δbest ( )
(G)ℙplanted

(G)ℙ𝔾(n,1/2)

≤D

D D
D

D

D
≥ (1)δbest Ωn k ≥ n−−√

≥ (1)δbest Ωn m ≥ (sparsity)2



LOW DEGREE ESTIMATORS
 

-clique 
(applies also to sparse pca, tensor pca, stochastic blockmodels, etc.)

A good low degree estimator of , (normalized indicator that vertex 

 is in the clique), is 
1.  
2.  
3.  
and  (e.g. )

: 𝔾(n, 1/2)H0
: 𝔾(n, 1/2) + kH1

(G)x1
1
α(G) : graphs → ℝ
deg(α) ≤ D

α(G = 1𝔼𝔾(n,1/2) )2

α(G) ⋅ ≥ δ𝔼x,G∼planted x1 α(G) = deg(vertex 1)





[H.-Steurer]: low-degree estimators + SoS tensor decomposition
unify many planted problem algorithms with generic analysis. 
for numerous problems =kalg klow−deg



LOW-DEGREE ESTIMATORS AND SOS
Taking stock:  

Next:  (“pseudocalibration”)

< ≤kstat kalg klow−degree

≤klow−degree ksos



For constant  and , is ? 
 is the degree-  SoS relaxation of

Initial difficulty: how to define, for typical , a
pseudodistribution on “large cliques” in ? 
What should  be?

d G ∼ 𝔾(n, 1/2) So (G) ≥Sd n1/2−o(1)

So (G)Sd d

max  s.t.  =  and  = 0 if i ≁ j∑
i=1

n

xi x2i xi xixj

G ∼ 𝔾(n, 1/2)
G

Ẽ xixjxkxℓ



Idea 1: If -clique, then degree-  SoS is trying
to compute . 
Idea 2 (wild guess!!): SoS computes a low-degree estimate of 

.

Idea 3:  for best low-degree
estimator .

G ∼ 𝔾(n, 1/2) + k d
𝔼 |Gx⊗d

𝔼 |Gx⊗d

= (scaling) ⋅ (G)Ẽ xixjxkxℓ αijkℓ
α



Fourier analysis: Every low-degree  is fooled by this :

In particular, .

no low-degree estimator →  “small”

Theorem [many papers]: For planted clique, sparse PCA, random
CSPs, tensor PCA,  is a pseudodistribution whp.

f(G, x) Ẽ 

f(G, x) = f(G, x)𝔼x,G∼planted 𝔼𝔾(n,1/2)Ẽ 

∑ = kẼ  xi

Va ( )r𝔾(n,1/2) Ẽ xixjxkxℓ

Ẽ 



CLOSING REMARKS AND OPEN PROBLEMS
 

For many problems, .

Conjecture: : efficient algorithms tailored to
each individual planted problem ONLY compute low-degree
statistics

Conjecture: : SoS does as well as best
algorithm tailored to particular problem, but SoS is “generic”

More open problems: 
1. SoS lower bound for densest- -subgraph or other sparse problem 
2. Meta-theorem about SoS versus low-degree algorithms? 
3. Separate SoS and low-degree algorithms for some planted problem?

< ≤kstat kalg klow−degree
≤klow−degree kSoS

=kalg klow−degree

=klow−degree kSoS

k



THANK YOU!


