
Multivariate Polynomial Toolbox

Pete Seiler

1 Installation

• The toolbox was tested with MATLAB version 6.5 and, to a lesser degree, versions 6.0 and
6.1.

• Download the zip file and extract the contents to the directory where you want to install the
toolbox.

• Add the mulitpoly directory and all subdirectories to the path. Note that the toolbox will not
work if you are currently in the @polynomial directory. This is due to MATLAB’s handling
of class methods.

• Currently no mex functions exist.

2 Basic Manipulations

• Use the pvar command to create polynomial variables. For example, the following command
creates three variables:

>> pvar x1 x2 x3

• Polynomial objects can now be created from these variables using addition, multiplication,
and exponentiation:

>> p = x3^4+5*x2+x1^2

p =

x3^4 + 5*x2 + x1^2

• Matrices of polynomials can be created from polynomials using horizontal/vertical concate-
nation and block diagonal augmentation:

>> M1=[p 2*x2]

M1 =

[ x3^4 + 5*x2 + x1^2 , 2*x2 ]

>> M2=[p; 2*x2]

M2 =

[ x3^4 + 5*x2 + x1^2 ]

[ 2*x2 ]

>> M3 = blkdiag(p,2*x2)

1



M3 =

[ x3^4 + 5*x2 + x1^2 , 0 ]

[ 0 , 2*x2 ]

• Elements of a polynomial matrix can be referenced and assigned using the standard MATLAB
referencing scheme:

>> M3

M3 =

[ x3^4 + 5*x2 + x1^2 , 0 ]

[ 0 , 2*x2 ]

>> M3(2,2)

ans =

2*x2

>> M3(1,1:2)

ans =

[ x3^4 + 5*x2 + x1^2 , 0 ]

>> M3(1,2)=x1*x2

M3 =

[ x3^4 + 5*x2 + x1^2 , x1*x2 ]

[ 0 , 2*x2 ]

2



• Let p denote an N × M polynomial in V variables consisting of T terms. This polynomial is
stored as an T ×NM sparse coefficient matrix, a T ×V degree matrix, and a V × 1 cell array
of variable names. This information can be easily accessed:

>> p

p =

x3^4 + 5*x2 + x1^2

>> pcoef = p.coefficient

pcoef =

(1,1) 1

(2,1) 5

(3,1) 1

>> full(pcoef)

ans =

1

5

1

>> full(p.degmat)

ans =

0 0 4

0 1 0

2 0 0

>> p.varname

ans =

’x1’

’x2’

’x3’

3



• Below is an example showing the ’.’-reference for a matrix. It probably seems more natural
to represent the coefficient matrix as an NxMxT array of coefficients. However, MATLAB
does not support 3D sparse arrays. To exploit sparsity, the coefficient matrix is stored as an
TxNM array.

>> M3

M3 =

[ x3^4 + 5*x2 + x1^2 , x1*x2 ]

[ 0 , 2*x2 ]

>> N=2;M=2;T=4;V=3;

>> M3coef = M3.coefficient;

>> size(M3coef)

ans =

4 4

>> temp = full(M3coef);

>> shiftdim(reshape(temp,T,N,M),1)

ans(:,:,1) =

1 0

0 0

ans(:,:,2) =

5 0

0 2

ans(:,:,3) =

0 1

0 0

ans(:,:,4) =

1 0

0 0

>> full(M3.degmat)

ans =

0 0 4

0 1 0

1 1 0

2 0 0

>> M3.varname

ans =

’x1’

’x2’

’x3’

4



• The access to fields uses a case insensitive, partial-match. As shown below abbreviations can
also be used to obtain the coefficients, degrees, and variable names. Finally, tab completion
exists for accessing the field names.

>> p

p =

x3^4 + 5*x2 + x1^2

>> full(p.c)

ans =

1

5

1

>> full(p.d)

ans =

0 0 4

0 1 0

2 0 0

>> p.v’

ans =

’x1’ ’x2’ ’x3’

5



• A few additional operations exist in this initial version of the toolbox. Shown below are trace,
transpose, determinant, differentiation, logical equal and logical not equal:

>> M3

M3 =

[ x3^4 + 5*x2 + x1^2 , x1*x2 ]

[ 0 , 2*x2 ]

>> trace(M3)

ans =

x3^4 + 7*x2 + x1^2

>> M3’

ans =

[ x3^4 + 5*x2 + x1^2 , 0 ]

[ x1*x2 , 2*x2 ]

>> M3=M3+[0 0; 1 0]

M3 =

[ x3^4 + 5*x2 + x1^2 , x1*x2 ]

[ 1 , 2*x2 ]

>> det(M3)

ans =

2*x2*x3^4 + 10*x2^2 - x1*x2 + 2*x1^2*x2

>> diff(M3,x1)

ans =

[ 2*x1 , x2 ]

[ 0 , 0 ]

>> M3==x1*x2

ans =

0 1

0 0

>> M3~=(x3^4+5*x2+x1^2)

ans =

0 1

1 1

6


