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Chapter 1

Getting Started with SOSTOOLS

SOSTOOLS is a free, third-party MATLAB1 toolbox for solving sum of squares programs. The
techniques behind it are based on the sum of squares decomposition for multivariate polynomi-
als [2], which can be efficiently computed using semidefinite programming [17]. SOSTOOLS is
developed as a consequence of the recent interest in sum of squares polynomials [9, 10] (see also
[15, 2, 14, 7, 6]), partly due to the fact that these techniques provide convex relaxations for many
hard problems such as global, constrained, and boolean optimization.

Besides the optimization problems mentioned above, sum of squares polynomials (and hence
SOSTOOLS) find applications in many other applications areas. This includes control theory prob-
lems, such as: search for Lyapunov functions to prove stability of a dynamical system, computation
of tight upper bounds for the structured singular value µ [9], and stabilization of nonlinear sys-
tems [12]. Some examples related to these problems, as well as several other optimization-related
examples, are provided and solved in the demo files that are distributed together with SOSTOOLS.

In the next two sections, we will provide a quick overview on sum of squares polynomials and
programs, and show the role of SOSTOOLS in sum of squares programming.

1.1 Sum of Squares Polynomials and Sum of Squares Programs

A multivariate polynomial p(x1, ..., xn) , p(x) is a sum of squares (SOS, for brevity), if there exist
polynomials f1(x), ..., fm(x) such that

p(x) =
m∑

i=1

f2
i (x). (1.1)

It is clear that f(x) being an SOS naturally implies f(x) ≥ 0 for all x ∈ Rn. For a (partial) converse
statement, we remind you of the equivalence, proven by Hilbert, between “nonnegativity” and “sum
of squares” in the following cases:

• Univariate polynomials, any (even) degree.

• Quadratic polynomials, in any number of variables.

• Quartic polynomials in two variables.

(see [14] and the references therein). In the general multivariate case, however, f(x) ≥ 0 in the
usual sense does not necessarily imply that f(x) is SOS. Notwithstanding this fact, the crucial

1A registered trademark of The MathWorks, Inc.
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8 CHAPTER 1. GETTING STARTED WITH SOSTOOLS

thing to keep in mind is that, while being stricter, the condition that f(x) is SOS is much more
computationally tractable than nonnegativity [9]. At the same time, practical experience indicates
that replacing nonnegativity with the SOS property in many cases leads nevertheless to the exact
solution.

The SOS condition (1.1) is equivalent to the existence of a positive semidefinite matrix Q, such
that

p(x) = ZT (x)QZ(x), (1.2)

where Z(x) is some properly chosen vector of monomials. Expressing an SOS polynomial using a
quadratic form as in (1.2) has also been referred to as the Gram matrix method [2, 11].

As hinted above, sums of squares techniques can be used to provide tractable relaxations for
many hard optimization problems. A very general and powerful relaxation methodology, intro-
duced in [9, 10], is based on the Positivstellensatz, a central result in real algebraic geometry. Most
examples in this manual can be interpreted as special cases of the practical application of this
general relaxation method. In this type of relaxations, we are interested in finding polynomials
pi(x), i = 1, 2, ..., N̂ and sums of squares pi(x) for i = (N̂ + 1), ..., N such that

a0,j(x) +
N∑

i=1

pi(x)ai,j(x) = 0, for j = 1, 2, ..., J,

where the ai,j(x)’s are some given constant coefficient polynomials. Problems of this type will be
termed “sum of squares programs” (SOSP). Solutions to SOSPs like the above provide certificates,
or Positivstellensatz refutations, which can be used to prove the nonexistence of real solutions of
systems of polynomial equalities and inequalities (see [10] for details).

The basic feasibility problem in SOS programming will be formulated as follows:

FEASIBILITY:

Find

polynomials pi(x), for i = 1, 2, ..., N̂
sums of squares pi(x), for i = (N̂ + 1), ..., N

such that

a0,j(x) +
N∑

i=1

pi(x)ai,j(x) = 0, for j = 1, 2, ..., Ĵ , (1.3)

a0,j(x) +
N∑

i=1

pi(x)ai,j(x) are sums of squares (≥ 0)2,

for j = (Ĵ + 1), (Ĵ + 2), ..., J. (1.4)

In this formulation, the ai,j(x) are given scalar constant coefficient polynomials. The pi(x)’s will be
termed SOSP variables, and the constraints (1.3)–(1.4) are termed SOSP constraints. The feasible
set of this problem is convex, and as a consequence SOS programming can in principle be solved
using the powerful tools of convex optimization.

It is obvious that the same program can be formulated in terms of constraints (1.3) only, by
introducing some extra sums of squares as slack program variables. However, we will keep this

2Whenever constraint f(x) ≥ 0 is encountered in an SOSP, it should always be interpreted as “f(x) is an SOS”.



1.2. WHAT SOSTOOLS DOES 9

more explicit notation for its added flexibility, since in most cases it will help make the problem
statement clearer.

Since many problems are more naturally formulated using inequalities, we will call the con-
straints (1.4) “inequality constraints”, and denote them by ≥ 0. It is important, however, to keep
in mind the (possible) gap between nonnegativity and SOS.

Besides pure feasibility, the other natural class of problems in convex SOS programming involves
optimization of an objective function that is linear in the coefficients of pi(x)’s. The general form
of such optimization problem is as follows:

OPTIMIZATION:

Minimize the linear objective function
wT c,

where c is a vector formed from the (unknown) coefficients of

polynomials pi(x), for i = 1, 2, ..., N̂
sums of squares pi(x), for i = (N̂ + 1), ..., N

such that

a0,j(x) +
N∑

i=1

pi(x)ai,j(x) = 0, for j = 1, 2, ..., Ĵ , (1.5)

a0,j(x) +
N∑

i=1

pi(x)ai,j(x) are sums of squares (≥ 0),

for j = (Ĵ + 1), (Ĵ + 2), ..., J, (1.6)

In this formulation, w is the vector of weighting coefficients for the linear objective function.
Both the feasibility and optimization problems as formulated above are quite general, and in

specific cases reduce to well-known problems. In particular, notice that if all the unknown poly-
nomials pi are restricted to be constants, and the ai,j , bi,j are quadratic forms, then we exactly
recover the standard linear matrix inequality (LMI) problem formulation. The extra degrees of
freedom in SOS programming are actually a bit illusory, as every SOSP can be exactly converted
to an equivalent semidefinite program [9]. Nevertheless, for several reasons, the problem specifica-
tion outlined above has definite practical and methodological advantages, and establishes a useful
framework within which many specific problems can be solved, as we will see later in Chapter 3.

1.2 What SOSTOOLS Does

Currently, sum of squares programs are solved by reformulating them as semidefinite programs
(SDPs), which in turn are solved efficiently e.g. using interior point methods. Several commercial
as well as non-commercial software packages are available for solving SDPs. While the conversion
from SOSPs to SDPs can be manually performed for small size instances or tailored for specific
problem classes, such a conversion can be quite cumbersome to perform in general. It is therefore
desirable to have a computational aid that automatically performs this conversion for general
SOSPs. This is exactly where SOSTOOLS comes to play. It automates the conversion from SOSP
to SDP, calls the SDP solver, and converts the SDP solution back to the solution of the original
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SOSP SDP

SOSP
Solution Solution

SDP

SeDuMi
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SOSTOOLS

Figure 1.1: Diagram depicting relations between sum of squares program (SOSP), semidefinite
program (SDP), SOSTOOLS, and SeDuMi.

SOSP. At present, it uses another free MATLAB add-on called SeDuMi [16] as the SDP solver.
This whole process is depicted in Figure 1.1.

All polynomials in SOSTOOLS are implemented as symbolic objects, making full use of the
capabilities of the MATLAB Symbolic Math Toolbox. This gives to the user the benefit of being
able to do all polynomial manipulations using the usual arithmetic operators: +, -, *, /, ^; as well
as operations such as differentiation, integration, point evaluation, etc. In addition, this provides
the possibility of interfacing with the Maple3 symbolic engine and the Maple library (which is very
advantageous).

The user interface has been designed to be as simple, as easy to use, and as transparent
as possible, while keeping a large degree of flexibility. You create an SOSP by declaring SOSP
variables (e.g., the pi(x)’s in Section 1.1), adding SOSP constraints, setting the objective function,
and so forth. After the program is created, you call one function to run the solver and finally
retrieve solutions to the SOSP using another function. These steps will be presented in more
details in Chapter 2.

Alternatively, “customized” functions for special problem classes (such as Lyapunov function
computation, etc.) can be directly used, with no user programming whatsoever required. These
are presented in the first three sections of Chapter 3.

1.3 System Requirements and Installation Instruction

To install and run SOSTOOLS, you need:

• MATLAB version 6.0 or later. Presumably, SOSTOOLS also works with MATLAB version
5, although this has not been tested yet.

• Symbolic Math Toolbox version 2.1.2.

3A registered trademark of Waterloo Maple Inc.
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• SeDuMi version 1.05. This software and its documentation can be downloaded from Jos
F. Sturm’s homepage at http://fewcal.kub.nl/sturm. For information on how to install
SeDuMi, you are referred to the installation instruction of the software.

SOSTOOLS can be easily run on a UNIX workstation or on a Windows PC desktop, or even a
laptop. It utilizes MATLAB sparse matrix representation for good performance and to reduce the
amount of memory needed. To give an illustrative figure of the computational load, all examples in
Chapter 3, except the µ upper bound example, are solved in less than 10 seconds by SOSTOOLS
running on a PC with Intel Celeron 700 MHz processor and 96 MBytes of RAM. Even the µ upper
bound example is solved in less than 25 seconds using the same system.

SOSTOOLS is available for free under the GNU General Public License. The software and its
user’s manual can be downloaded from http://www.cds.caltech.edu/sostools or
http://www.aut.ee.ethz.ch/~parrilo/sostools. Once you download the zip file, you should
extract its contents to the directory where you want to install SOSTOOLS. In UNIX, you may use

unzip -U SOSTOOLS.nnn.zip -d your_dir

where nnn is the version number, and your_dir should be replaced by the directory of your choice.
In Windows operating systems, you may use programs like Winzip to extract the files.

After this has been done, you must add the SOSTOOLS directory and its subdirectories to
the MATLAB path. This is done in MATLAB by choosing the menus File --> Set Path --> Add
with Subfolders ..., and then typing the name of SOSTOOLS main directory. This completes the
SOSTOOLS installation.

1.4 Other Things You Need to Know

The directory in which you install SOSTOOLS contains several subdirectories. Two of them are:

• sostools/docs : containing this user’s manual and license file

• sostools/demos : containing several demo files.

The demo files in the second subdirectory above implement the SOSPs corresponding to examples
in Chapter 3.

Throughout this user’s manual, we use the typewriter typeface to denote MATLAB variables
and functions, MATLAB commands that you should type, and results given by MATLAB. MAT-
LAB commands that you should type will also be denoted by the symbol >> before the commands.
For example,

>> x = sin(1)

x =

0.8415

In this case, x = sin(1) is the command that you type, and x = 0.8415 is the result given by
MATLAB.

Finally, you can send bug reports, comments, and suggestions to sostools@cds.caltech.edu.
Any feedback is greatly appreciated.
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Chapter 2

Solving Sum of Squares Programs

SOSTOOLS can solve two kinds of sum of squares programs: the feasibility and optimization
problems, as formulated in Chapter 1. To define and solve an SOSP using SOSTOOLS, you
simply need to follow these steps:

1. Initialize the SOSP.

2. Declare the SOSP variables.

3. Define the SOSP constraints.

4. Set objective function (for optimization problems).

5. Call solver.

6. Get solutions.

In the next sections, we will describe each of these steps in detail. But first, we will look at how
polynomials are represented and manipulated in SOSTOOLS.

2.1 Polynomial Representation and Manipulations

Polynomials in SOSTOOLS are represented as symbolic objects, using the MATLAB Symbolic
Toolbox. Typically, a polynomial is created by first declaring its independent variables and then
constructing it using the usual algebraic manipulations. For example, to create a polynomial
p(x, y) = 2x2 + 3xy + 4y4, you declare the independent variables x and y by typing

>> syms x y;

and then construct p(x, y) as follows:
>> p = 2*x^2 + 3*x*y + 4*y^4

p =

2*x^2+3*x*y+4*y^4

Polynomials such as the one created above can then be manipulated using the usual operators:
+, -, *, /, ^. Another operation which is particularly useful for control-related problems such

13



14 CHAPTER 2. SOLVING SUM OF SQUARES PROGRAMS

as Lyapunov function search is differentiation, which can be done using the function diff. For
instance, to find the partial derivative ∂p

∂x , you should type

>> dpdx = diff(p,x)

dpdx =

4*x+3*y

For other types of symbolic manipulations, we refer you to the manual and help comments of the
Symbolic Math Toolbox.

2.2 Initializing a Sum of Squares Program

A sum of squares program is initialized using the command sosprogram. A vector containing
independent variables in the program has to be given as an argument to this function. Thus, if
the polynomials in our program have x and y as the independent variables, then we initialize the
SOSP using

>> Program1 = sosprogram([x;y]);

The command above will initialize an empty SOSP called Program1.

2.3 Variable Declaration

After the program is initialized, the SOSP decision variables have to be declared. There are three
functions used for this purpose, corresponding to variables of these types:

• Scalar decision variables.

• Polynomial variables.

• Sum of squares variables.

Each of them will be described in the following subsections.

2.3.1 Scalar Decision Variables

Scalar decision variables in an SOSP are meant to be unknown scalar constants. The variable γ
in sosdemo3.m (see Section 3.3) is an example of such a variable. These variables can be declared
either by specifying them when an SOSP is initialized with sosprogram, or by declaring them later
using the function sosdecvar.

To declare decision variables, you must first create symbolic objects corresponding to your
decision variables. This is performed using the functions syms or sym from the Symbolic Math
Toolbox, in a way similar to the one you use to define independent variables in Section 2.1. As
explained earlier, you can declare the decision variables when you initialize an SOSP, by giving
them as a second argument to sosprogram. Thus, to declare variables named a and b, use the
following command:

>> syms x y a b;
>> Program2 = sosprogram([x;y],[a;b]);
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Alternatively, you may declare these variables after the SOSP is initialized, or add some other
decision variables to the program, using the function sosdecvar. For example, the sequence of
commands above is equivalent to

>> syms x y a b;
>> Program3 = sosprogram([x;y]);
>> Program3 = sosdecvar(Program3,[a;b]);

and also equivalent to
>> syms x y a b;
>> Program4 = sosprogram([x;y],a);
>> Program4 = sosdecvar(Program4,b);

2.3.2 Polynomial Variables

Polynomial variables in a sum of squares program are simply polynomials with unknown coefficients
(e.g. p1(x) in the feasibility problem formulated in Chapter 1). Polynomial variables can obviously
be created by declaring its unknown coefficients as decision variables, and then constructing the
polynomial itself via some algebraic manipulations. For example, to create a polynomial variable
v(x, y) = ax2+bxy+cy2, where a, b, and c are the unknowns, you can use the following commands:

>> Program5 = sosdecvar(Program5,[a;b;c]);
>> v = a*x^2 + b*x*y + c*y^2;

However, such an approach would be inefficient for polynomials with many coefficients. In such a
case, you should use the function sospolyvar to declare a polynomial variable:

>> [Program6,v] = sospolyvar(Program6,[x^2; x*y; y^2]);

In this case v will be
>> v

v =

coeff_1*x^2+coeff_2*x*y+coeff_3*y^2

We see that sospolyvar automatically creates decision variables corresponding to monomials in
the vector which is given as the second input argument to it, and then constructs a polynomial
variable from these coefficients and monomials. This polynomial variable is returned as the second
output argument of sospolyvar.

NOTE:
1. sospolyvar and sossosvar (see Section 2.3.4) name the unknown coefficients in a polyno-

mial/SOS variable by coeff_nnn, where nnn is a number. Names that begin with coeff_
are reserved for this purpose, and therefore must not be used elsewhere.

2. By default, the decision variables coeff_nnn created by sospolyvar or sossosvar will
only be available in the function workspace, and therefore cannot be manipulated in the
MATLAB workspace. Sometimes it is desirable to have these decision variables available in
the MATLAB workspace, such as when we want to set an objective function of an SOSP



16 CHAPTER 2. SOLVING SUM OF SQUARES PROGRAMS

that involves one or more of these variables. In this case, a third argument ’wscoeff’ has
to be given to sospolyvar or sossosvar. For example, using

>> [Program7,v] = sospolyvar(Program7,[x^2; x*y; y^2],’wscoeff’);
>> v

v =

coeff_1*x^2+coeff_2*x*y+coeff_3*y^2

you will be able to directly use coeff_1 and coeff_2 in the MATLAB workspace, as shown
below.

>> w = coeff_1+coeff_2

w =

coeff_1+coeff_2

3. SOSTOOLS requires monomials that are given as the second input argument to sospolyvar
and sossosvar to be unique, meaning that there are no repeated monomials.

2.3.3 An Aside: Constructing Vectors of Monomials

We have seen in the previous subsection that for declaring SOSP variables using sospolyvar we
need to construct a vector whose entries are monomials. While this can be done by creating the
individual monomials and arranging them as a vector, SOSTOOLS also provides a function, named
monomials, that can be used to construct a column vector of monomials with some pre-specified
degrees. This will be particularly useful when the vector contains a lot of monomials. The function
takes two arguments: the first argument is a vector containing all independent variables in the
monomials, and the second argument is a vector whose entries are the degrees of monomials that
you want to create. As an example, to construct a vector containing all monomials in x and y of
degree 1, 2, and 3, type the following command:

>> VEC = monomials([x; y],[1 2 3])

VEC =

[ x]
[ y]
[ x^2]
[ x*y]
[ y^2]
[ x^3]
[ x^2*y]
[ x*y^2]
[ y^3]

We clearly see that VEC contains all monomials in x and y of degree 1, 2, and 3.
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2.3.4 Sum of Squares Variables

Sum of squares variables are also polynomials with unknown coefficients, similar to polynomial
variables described in Section 2.3.2. The difference is, as its name suggests, that an SOS variable
is constrained to be an SOS. This is imposed by internally representing an SOS variable in the
Gram matrix form (cf. Section 1.1),

p(x) = ZT (x)QZ(x) (2.1)

and requiring the coefficient matrix Q to be positive semidefinite.
To declare an SOS variable, you must use the function sossosvar. The monomial vector

Z(x) in (2.1) has to be given as the second input argument to the function. Like sospolyvar,
this function will automatically declare all decision variables corresponding to the matrix Q. For
example, to declare an SOS variable

p(x, y) =
[
x
y

]T

Q

[
x
y

]
, (2.2)

type

>> [Program8,p] = sossosvar(Program8,[x; y]);

where the second output argument is the name of the variable. In this example, the coefficient
matrix

Q =
[
coeff_1 coeff_3
coeff_2 coeff_4

]
(2.3)

will be created by the function. When this matrix is substituted into the expression for p(x, y),
we obtain

p(x, y) = coeff_1x2 + (coeff_2 + coeff_3)xy + coeff_4y2, (2.4)

which is exactly what sossosvar returns:
>> p

p =

coeff_4*y^2+(coeff_2+coeff_3)*x*y+coeff_1*x^2

We would like to note that at first the coefficient matrix does not appear to be symmetric, especially
because the number of decision variables (which seem to be independent) is the same as the
number of entries in the coefficient matrix. However, some constraints are internally imposed by
the semidefinite programming solver SeDuMi (which is used by SOSTOOLS) on some of these
decision variables, such that the solution matrix obtained by the solver will be symmetric. The
primal formulation of a semidefinite program in SeDuMi uses n2 decision variables to represent
an n × n positive semidefinite matrix, which is the reason why SOSTOOLS also uses n2 decision
variables for its n× n coefficient matrices.

2.4 Adding Constraints

Sum of squares program constraints such as (1.3)–(1.4) are added to a sum of squares program
using the functions soseq and sosineq.
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2.4.1 Equality Constraints

For adding an equality constraint to a sum of squares program, you must use the function soseq.
As an example, assume that p is an SOSP variable, then

>> Program9 = soseq(Program9,diff(p,x)-x^2);

will add the equality constraint
∂p

∂x
− x2 = 0 (2.5)

to Program9.

2.4.2 Inequality Constraints

Inequality constraints are declared using the function sosineq, whose basic syntax is similar to
soseq. For example, type

>> Program1 = sosineq(Program1,diff(p,x)-x^2);

to add the inequality constraint
∂p

∂x
− x2 ≥ 01. (2.6)

However, several differences do exist. In particular, a third argument can be given to sosineq to
handle the following cases:

• When there is only one independent variable in the SOSP (i.e., if the polynomials are uni-
variate), a third argument can be given to specify the range of independent variable for which
the inequality constraint has to be satisfied. For instance, assume that p and Program2 are
respectively univariate polynomial and univariate SOSP, then

>> Program2 = sosineq(Program2,diff(p,x)-x^2,[-1 2]);

will add the constraint
∂p

∂x
− x2 ≥ 0, for − 1 ≤ x ≤ 2 (2.7)

to the SOSP. See Sections 3.7 and 3.8 for application examples where this option is used.

• When the left side of the inequality is a high degree sparse polynomial (i.e., containing a
few nonzero terms), it is computationally more efficient to impose the SOS condition using
a reduced set of monomials (see [13]) in the Gram matrix form. This will result in a smaller
size semidefinite program, which is easier to solve. By default, SOSTOOLS does not try to
obtain this optimal reduced set of monomials, since this itself takes an additional amount
of computational effort (however, SOSTOOLS always does some reasonably efficient and
computationally cheap heuristics to reduce the set of monomials). The optimal reduced set
of monomials will be computed and used only if a third argument ’sparse’ is given to
sosineq, as illustrated by the following command,

>> Program3 = sosineq(Program3,x^16+2*x^8*y^2+y^4,’sparse’);

1We remind you that ∂p
∂x
− x2 ≥ 0 has to be interpreted as ∂p

∂x
− x2 being a sum of squares. See the discussion in

Section 1.1.
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which tests whether or not x16 + 2x8y2 + y4 is a sum of squares.

2.5 Setting Objective Function

The function sossetobj is used to set the objective function in an optimization problem. The
objective function has to be a linear function of the decision variables, and will be minimized by
the solver. For instance, if a and b are symbolic decision variables in an SOSP named Program4,
then

>> Program4 = sossetobj(Program4,a-b);

will set
minimize (a− b) (2.8)

as the objective of Program4.
Sometimes you may want to minimize an objective function that contains one or more re-

served variables coeff_nnn, which are created by sospolyvar or sossosvar. These variables are
not individually available in the MATLAB workspace by default. You must give the argument
’wscoeff’ to the corresponding sospolyvar or sossosvar call in order to have these variables
available in the MATLAB workspace. This has been described in Section 2.3.2.

2.6 Calling Solver

A sum of squares program that has been completely defined can be solved using sossolve.m. For
example, to solve Program5, the command is

>> Program5 = sossolve(Program5);

This function converts the SOSP into an equivalent SDP, calls SeDuMi, and converts the result
given by SeDuMi back into solutions to the original SOSP.

Typical output that you will get on your screen is shown in Figure 2.1. Several things deserve
some explanation:

• Size indicates the size of the resulting SDP.

• Residual norm is the norm of numerical error in the solution.

• pinf=1 or dinf=1 indicate primal or dual infeasibility.

• numerr=1 gives a warning of numerical inaccuracy. This is usually accompanied by large
Residual norm. On the other hand, numerr=2 is a sign of complete failure because of
numerical problem.

2.7 Getting Solutions

After your sum of squares program has been solved, you can get the solutions to the program
using sosgetsol.m. The function takes two arguments, where the first argument is the SOSP,
and the second is a symbolic expression, which typically will be an SOSP variable. All decision
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Size: 10 5

SeDuMi 1.05 by Jos F. Sturm, 1998, 2001.
Alg = 2: xz-corrector, Step-Differentiation, theta = 0.250, beta = 0.500
eqs m = 5, order n = 9, dim = 13, blocks = 3
nnz(A) = 13 + 0, nnz(ADA) = 11, nnz(L) = 8
it : b*y gap delta rate t/tP* t/tD* feas cg cg
0 : 7.00E+000 0.000
1 : -3.03E+000 1.21E+000 0.000 0.1734 0.9026 0.9000 0.64 1 1
2 : -4.00E+000 6.36E-003 0.000 0.0052 0.9990 0.9990 0.94 1 1
3 : -4.00E+000 2.19E-004 0.000 0.0344 0.9900 0.9786 1.00 1 1
4 : -4.00E+000 1.99E-005 0.234 0.0908 0.9459 0.9450 1.00 1 1
5 : -4.00E+000 2.37E-006 0.000 0.1194 0.9198 0.9000 0.91 1 2
6 : -4.00E+000 3.85E-007 0.000 0.1620 0.9095 0.9000 1.00 3 3
7 : -4.00E+000 6.43E-008 0.000 0.1673 0.9000 0.9034 1.00 4 4
8 : -4.00E+000 2.96E-009 0.103 0.0460 0.9900 0.9900 1.00 3 4
9 : -4.00E+000 5.16E-010 0.000 0.1743 0.9025 0.9000 1.00 5 5
10 : -4.00E+000 1.88E-011 0.327 0.0365 0.9900 0.9905 1.00 5 5

iter seconds digits c*x b*y
10 0.4 Inf -4.0000000000e+000 -4.0000000000e+000

|Ax-b| = 9.2e-011, [Ay-c]_+ = 1.1E-011, |x|= 9.2e+000, |y|= 6.8e+000
Max-norms: ||b||=2, ||c|| = 5,
Cholesky |add|=0, |skip| = 1, ||L.L|| = 2.00001.

Residual norm: 9.2143e-011

cpusec: 0.3900
iter: 10

feasratio: 1.0000
pinf: 0
dinf: 0

numerr: 0

Figure 2.1: Output of SOSTOOLS (some is generated by SeDuMi).
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variables in this expression will be substituted by the numerical values obtained as the solution to
the corresponding SDP. Typing

>> SOLp1 = sosgetsol(Program6,p1);

where p1 is an polynomial variable, for example, will return in SOLp1 a polynomial with some
numerical coefficients, which is obtained by substituting all decision variables in p1 by the numerical
solution to the SOSP Problem6, provided this SOSP has been solved beforehand.

By default, all the numerical values returned by sosgetsol will have a five-digit presentation.
If needed, this can be changed by giving the desired number of digits as the third argument to
sosgetsol, such as

>> SOLp1 = sosgetsol(Program7,p1,12);

which will return the numerical solution with twelve digits. Note however, that this does not
change the accuracy of the SDP solution, but only its presentation.
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Chapter 3

Applications of Sum of Squares Programming

In this chapter we present some problems that can be solved using SOSTOOLS. The majority of
the examples here are from [9], except when noted otherwise. Many more application examples
and customized files will be included in the near future.

Note: For some of the problems here (in particular, copositivity and equality-constrained ones
such as MAXCUT) the SDP formulations obtained by SOSTOOLS are not the most efficient
ones, as the special structure of the resulting polynomials is not fully exploited in the current
distribution. This will be incorporated in the next release of SOSTOOLS, whose development
is already in progress.

3.1 Sum of Squares Test

As mentioned in Chapter 1, testing if a polynomial p(x) is nonnegative for all x ∈ Rn is a hard
problem, but can be relaxed to the problem of checking if p(x) is an SOS. This can be solved using
SOSTOOLS, by casting it as a feasibility problem.

SOSDEMO1:

Given a polynomial p(x), determine if

p(x) ≥ 0 (3.1)

is feasible.

Notice that even though there are no explicit decision variables in this SOSP, we still need to
solve a semidefinite programming problem to decide if the program is feasible or not.

The MATLAB code for solving this SOSP can be found in sosdemo1.m, shown in Figure 3.1
where we consider p(x) = 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2. Since the program is feasible, it follows that
p(x) ≥ 0.

In addition, SOSTOOLS provides a function named findsos to find an SOS decomposition of
a polynomial p(x). This function returns the coefficient matrix Q and the monomial vector Z(x)
which are used in the Gram matrix form. For the same polynomial as above, we may as well type

>> [Q,Z] = findsos(p);

to find Q and Z(x) such that p(x) = ZT (x)QZ(x). If p(x) is not a sum of squares, the function
will return empty Q and Z.

23
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% SOSDEMO1 --- Sum of Squares Test
% Section 3.1 of SOSTOOLS User’s Manual
%

clear; maple clear; echo on;
syms x1 x2;
vartable = [x1, x2];
% =============================================
% First, initialize the sum of squares program
prog = sosprogram(vartable); % No decision variables.

% =============================================
% Next, define the inequality

% p(x1,x2) >= 0
p = 2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4;
prog = sosineq(prog,p);

% =============================================
% And call solver
prog = sossolve(prog);

% =============================================
% Program is feasible, thus p(x1,x2) is an SOS.
echo off;

Figure 3.1: Sum of squares test – sosdemo1.m
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3.2 Lyapunov Function Search

The Lyapunov stability theorem (see e.g. [5]) has been a cornerstone of nonlinear system analysis
for several decades. In principle, the theorem states that a system ẋ = f(x) with equilibrium at
the origin is stable if there exists a positive definite function V (x) such that the derivative of V
along the system trajectories is non-positive.

We will now show how to search for Lyapunov function using SOSTOOLS. Consider the system




ẋ1

ẋ2

ẋ3


 =




−x3
1 − x1x

2
3

−x2 − x2
1x2

−x3 − 3x3

x2
3+1

+ 3x2
1x3


 , (3.2)

with an equilibrium at the origin. Notice that the linearization of (3.2) has zero eigenvalue, and
therefore cannot be used to analyze local stability of the equilibrium. Now assume that we are
interested in a quadratic Lyapunov function V (x) for proving stability of the system. Then V (x)
must satisfy

V − ε(x2
1 + x2

2 + x2
3) ≥ 0,

− ∂V

∂x1
ẋ1 − ∂V

∂x2
ẋ2 − ∂V

∂x3
ẋ3 ≥ 0. (3.3)

The first inequality, with ε being any constant greater than zero, is needed to guarantee positive
definiteness of V (x). However, notice that ẋ3 is a rational function, and therefore (3.3) is not a
valid SOSP constraint. But since x2

3 + 1 > 0 for any x3, we can just reformulate (3.3) as

− ∂V

∂x1
(x2

3 + 1)ẋ1 − ∂V

∂x2
(x2

3 + 1)ẋ2 − ∂V

∂x3
(x2

3 + 1)ẋ3 ≥ 0.

Thus, we have the following SOSP (we choose ε = 1):

SOSDEMO2:

Find a polynomial V (x), such that

V − (x2
1 + x2

2 + x2
3) ≥ 0, (3.4)

− ∂V

∂x1
(x2

3 + 1)ẋ1 − ∂V

∂x2
(x2

3 + 1)ẋ2 − ∂V

∂x3
(x2

3 + 1)ẋ3 ≥ 0. (3.5)

The MATLAB code is available in sosdemo2.m, and is also shown in Figure 3.2. The result
given by SOSTOOLS is

V (x) = 5.5489x2
1 + 4.1068x2

2 + 1.7945x2
3.

The function findlyap is provided by SOSTOOLS and can be used to compute a polynomial
Lyapunov function for a dynamical system with polynomial vector field. This function take three
arguments, where the first argument is the vector field of the system, the second argument is
the ordering of the independent variables, and the third argument is the degree of the Lyapunov
function. Thus, for example, to compute a quadratic Lyapunov function V (x) for the system

ẋ1 = −x3
1 + x2,

ẋ2 = −x1 − x2,
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type
>> syms x1 x2;
>> V = findlyap([-x1^3+x2; -x1-x2],[x1; x2],2)

If no such Lyapunov function exists, the function will return an empty V.

3.3 Bound on Global Extremum

Consider the problem of finding a lower bound for the global minimum of a function f(x), x ∈ Rn.
This problem is addressed in [15], where an SOS-based approach was first used. A relaxation
method can be formulated as follows. Suppose that there exists a scalar γ such that

f(x)− γ ≥ 0 (is an SOS),

then we know that f(x) ≥ γ, for every x ∈ Rn.
In this example we will use the Goldstein-Price test function [4], which is given by

f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]...
... [30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)].

The SOSP for this problem is

SOSDEMO3:

Minimize −γ, such that
(f(x)− γ) ≥ 0. (3.6)

Figure 3.3 depicts the MATLAB code for this problem. The optimal value of γ, as given by
SOSTOOLS, is

γopt = 3.

This is in fact the global minimum of f(x), which is achieved at x1 = 0, x2 = −1.
The function findbound is provided by SOSTOOLS and can be used to find a global lower

bound for a polynomial. This function takes just one argument, the polynomial to be minimized.
The function will return a lower bound (which may be possibly be −∞), a vector with the variables
of the polynomial, and, if an additional condition is satisfied (the dual solution has rank one), also
a point where the bound is achieved. Thus, for example, to compute a global minimum for the
polynomial:

F = (a4 + 1)(b4 + 1)(c4 + 1)(d4 + 1) + 2a + 3b + 4c + 5d,

you would type:
>> syms a b c d;
>> F = (a^4+1)*(b^4+1)*(c^4+1)*(d^4+1) + 2*a + 3*b + 4*c + 5*d;
>> [bnd,vars,xopt] = findbound(F)

For this problem (a polynomial of total degree 16 in four variables), SOSTOOLS returns a certified
lower bound (bnd=-7.759027) and also the corresponding optimal point in less than thirty seconds.
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% SOSDEMO2 --- Lyapunov Function Search
% Section 3.2 of SOSTOOLS User’s Manual
%

clear; maple clear; echo on;
syms x1 x2 x3;
vars = [x1; x2; x3];

% Constructing the vector field dx/dt = f
f = [-x1^3-x1*x3^2;

-x2-x1^2*x2;
-x3+3*x1^2*x3-3*x3/(x3^2+1)];

% =============================================
% First, initialize the sum of squares program
prog = sosprogram(vars);

% =============================================
% The Lyapunov function V(x):
[prog,V] = sospolyvar(prog,[x1^2; x2^2; x3^2],’wscoeff’);

% =============================================
% Next, define SOSP constraints

% Constraint 1 : V(x) - (x1^2 + x2^2 + x3^2) >= 0
prog = sosineq(prog,V-(x1^2+x2^2+x3^2));

% Constraint 2: -dV/dx*(x3^2+1)*f >= 0
expr = -(diff(V,x1)*f(1)+diff(V,x2)*f(2)+diff(V,x3)*f(3))*(x3^2+1);
prog = sosineq(prog,expr);

% =============================================
% And call solver
prog = sossolve(prog);

% =============================================
% Finally, get solution
SOLV = sosgetsol(prog,V)

echo off;

Figure 3.2: Lyapunov function search – sosdemo2.m
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% SOSDEMO3 --- Bound on Global Extremum
% Section 3.3 of SOSTOOLS User’s Manual
%

clear; maple clear; echo on;
syms x1 x2 gam;
vartable = [x1, x2];

% =============================================
% First, initialize the sum of squares program
prog = sosprogram(vartable);

% =============================================
% Declare decision variable gam
prog = sosdecvar(prog,gam);

% =============================================
% Next, define SOSP constraints

% Constraint : r(x)*(f(x) - gam) >= 0
% f(x) is the Goldstein-Price function
f1 = x1+x2+1;
f2 = 19-14*x1+3*x1^2-14*x2+6*x1*x2+3*x2^2;
f3 = 2*x1-3*x2;
f4 = 18-32*x1+12*x1^2+48*x2-36*x1*x2+27*x2^2;

f = (1+f1^2*f2)*(30+f3^2*f4);

prog = sosineq(prog,(f-gam));

% =============================================
% Set objective : maximize gam
prog = sossetobj(prog,-gam);

% =============================================
% And call solver
prog = sossolve(prog);

% =============================================
% Finally, get solution
SOLgamma = sosgetsol(prog,gam)
echo off

Figure 3.3: Bound on global extremum – sosdemo3.m
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3.4 Matrix Copositivity

The matrix copositivity problem can be stated as follows:

Given a matrix J ∈ Rn×n, check if it is copositive, i.e. if yT Jy ≥ 0 for all y ∈ Rn,
yi ≥ 0.

It is known that checking copositivity of a matrix is a co-NP complete problem. However, there ex-
ist computationally tractable relaxations for copositivity checking. One relaxation [9] is performed
by writing yi = x2

i , and checking if

(
n∑

i=1

x2
i

)m



x2
1
...

x2
n




T

J




x2
1
...

x2
n


 , R(x) (3.7)

is an SOS.
Now consider the matrix

J =




1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1




.

It is known that the matrix above is copositive. This will be proven using SOSTOOLS. For this
purpose, we have the following SOSP.

SOSDEMO4:

Determine if
R(x) ≥ 0, (3.8)

is feasible, where R(x) is as in (3.7).

Choosing m = 0 does not prove that J is copositive. However, DEMO4 is feasible for m = 1,
and therefore it proves that J is copositive. The MATLAB code that implements this is given in
sosdemo4.m and shown in Figure 3.4.

3.5 Upper Bound of Structured Singular Value

Now we will show how SOSTOOLS can be used for computing upper bound of structured singular
value µ, a crucial object in robust control theory (see e.g. [3, 8]). The following conditions can
be derived from Proposition 8.25 of [3] and Theorem 6.1 of [9]. Given a matrix M ∈ Cn×n and
structured scalar uncertainties

∆ = diag(δ1, δ2, ..., δn), δi ∈ C,

the structured singular value µ(M, ∆) is less than γ, if there exists solutions Qi ≥ 0 ∈ R2n×2n, Ti ∈
R2n×2n and rij ≥ 0 such that

−
n∑

i=1

Qi(x)Ai(x)−
∑

1≤i<j≤n

rijAi(x)Aj(x) + I(x) ≥ 0, (3.9)
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% SOSDEMO4 --- Matrix Copositivity
% Section 3.4 of SOSTOOLS User’s Manual
%

clear; maple clear; echo on;
syms x1 x2 x3 x4 x5;
vartable = [x1; x2; x3; x4; x5];

% The matrix under consideration
J = [1 -1 1 1 -1;

-1 1 -1 1 1;
1 -1 1 -1 1;
1 1 -1 1 -1;

-1 1 1 -1 1];

% =============================================
% First, initialize the sum of squares program
prog = sosprogram(vartable); % No decision variables.

% =============================================
% Next, define SOSP constraints

% Constraint : r(x)*J(x) - p(x) = 0
J = [x1^2 x2^2 x3^2 x4^2 x5^2]*J*[x1^2; x2^2; x3^2; x4^2; x5^2];
r = x1^2 + x2^2 + x3^2 + x4^2 + x5^2;

prog = sosineq(prog,r*J);

% =============================================
% And call solver
prog = sossolve(prog,[],1e-7);

% =============================================
% Program is feasible. The matrix J is copositive.

echo off

Figure 3.4: Matrix copositivity – sosdemo4.m
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where x ∈ R2n,

Qi(x) = xT Qix, (3.10)

I(x) = −
2n∑

i=1

x2
i , (3.11)

Ai(x) = xT Aix, (3.12)

Ai =
[

Re(Hi) −Im(Hi)
Im(Hi) Re(Hi)

]
, (3.13)

Hi = M∗e∗i eiM − γ2e∗i ei, (3.14)

and ei is the i-th unit vector in Cn.
Thus, the SOSP for this problem can be formulated as follows.

SOSDEMO5:

Choose a fixed value of γ. For I(x) and Ai(x) as described in (3.11) – (3.14), find sums of
squares

Qi(x) = xT Qix, for i = 1, ..., 2n,

rij ≥ 0 (zero order SOS), for 1 ≤ i < j ≤ 2n,

such that (3.9) is satisfied.

The optimal value of γ can be found for example by bisection. In sosdemo5.m (Figures 3.5–
3.6), we consider the following M (from [8]):

M = UV ∗, U =




a 0
b b
c jc
d f


 , V =




0 a
b −b
c −jc

−jf −d


 ,

with a =
√

2/α, b = c = 1/
√

α, d = −
√

β/α, f = (1 + j)
√

1/(αβ), α = 3 +
√

3, β =
√

3− 1. It is
known that µ(M, ∆) ≈ 0.8723. Using sosdemo5.m, we can prove that µ(M, ∆) < 0.8724.

3.6 MAX CUT

We will next consider the MAX CUT problem. MAX CUT is the problem of partitioning nodes
in a graph into two disjoint sets V1 and V2, such that the weighted number of nodes that have an
endpoint in V1 and the other in V2 is maximized. This can be formulated as a boolean optimization
problem

max
xi∈{−1,1}

1
2

∑

i,j

wij(1− xixj),

or equivalently as a constrained optimization

max
x2

i =1
f(x) , max

x2
i =1

1
2

∑

i,j

wij(1− xixj).
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% SOSDEMO5 --- Upper bound for the structured singular value mu
% Section 3.5 of SOSTOOLS User’s Manual
%

clear; maple clear; echo on;
syms x1 x2 x3 x4 x5 x6 x7 x8;
vartable = [x1; x2; x3; x4; x5; x6; x7; x8];

% The matrix under consideration
alpha = 3 + sqrt(3);
beta = sqrt(3) - 1;
a = sqrt(2/alpha);
b = 1/sqrt(alpha);
c = b;
d = -sqrt(beta/alpha);
f = (1 + i)*sqrt(1/(alpha*beta));
U = [a 0; b b; c i*c; d f];
V = [0 a; b -b; c -i*c; -i*f -d];
M = U*V’;

% Constructing A(x)’s
gam = 0.8724;
Z = monomials(vartable,1);
for i = 1:4

H = M(i,:)’*M(i,:) - (gam^2)*sparse(i,i,1,4,4,1);
H = [real(H) -imag(H); imag(H) real(H)];
A{i} = (Z.’)*H*Z;

end;

% =============================================
% Initialize the sum of squares program
prog = sosprogram(vartable);

% =============================================
% Define SOSP variables

% -- Q(x)’s -- : sums of squares
% Monomial vector: [x1; ... x8]
for i = 1:4

[prog,Q{i}] = sossosvar(prog,Z);
end;

Figure 3.5: Upper bound of structured singular value – sosdemo5.m, part 1 of 2.
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% -- r’s -- : constant sum of squares
Z = monomials(vartable,0);
r = cell(4,4);
for i = 1:4

for j = (i+1):4
[prog,r{i,j}] = sossosvar(prog,Z,’wscoeff’);

end;
end;

% =============================================
% Next, define SOSP constraints

% Constraint : -sum(Qi(x)*Ai(x)) - sum(rij*Ai(x)*Aj(x)) + I(x) >= 0
expr = 0;
% Adding term
for i = 1:4

expr = expr - A{i}*Q{i};
end;
for i = 1:4

for j = (i+1):4
expr = expr - A{i}*A{j}*r{i,j};

end;
end;
% Constant term: I(x) = -(x1^4 + ... + x8^4)
I = -sum(vartable.^4);
expr = expr + I;

prog = sosineq(prog,expr);

% =============================================
% And call solver
prog = sossolve(prog);

% =============================================
% Program is feasible, thus 0.8724 is an upper bound for mu.

echo off

Figure 3.6: Upper bound of structured singular value – sosdemo5.m, part 2 of 2.
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Here wij is the weight of edge connecting nodes i and j. For example we can take wij = 0 if nodes
i and j are not connected, and wij = 1 if they are connected. If node i belongs to V1, then xi = 1,
and conversely xi = −1 if node i is in V2.

A sufficient condition for maxx2
i =1 f(x) ≤ γ is as follows. Assume that our graph contains

n nodes. Given f(x) and γ, then maxx2
i =1 f(x) ≤ γ if there exists sum of squares p1(x) and

polynomials p2(x), ..., pn+1(x) such that

p1(x)(γ − f(x)) +
n∑

i=1

(
pi+1(x)(x2

i − 1)
)− (γ − f(x))2 ≥ 0. (3.15)

This can be proved by a contradiction. Suppose there exists x ∈ {−1, 1}n such that f(x) > γ.
Then the first term in (3.15) will be negative, the terms under summation will be zero, and the
last term will be negative. Thus we have a contradiction.

For sosdemo6.m (see Figure 3.7), we consider the 5-cycle, i.e., a graph with 5 nodes and 5 edges
forming a closed chain. The number of cut is given by

f(x) = 2.5− 0.5x1x2 − 0.5x2x3 − 0.5x3x4 − 0.5x4x5 − 0.5x5x1. (3.16)

Our SOSP is as follows.

SOSDEMO6:

Choose a fixed value of γ. For f(x) given in (3.16), find

sum of squares p1(x) =
[
1
x

]T

Q

[
1
x

]

polynomials pi+1(x) of degree 2, for i = 1, ..., n

such that (3.15) is satisfied.

Using sosdemo6.m, we can show that f(x) ≤ 4. Four is indeed the maximum cut for 5-cycle.

3.7 Chebyshev Polynomials

This example illustrates the sosineq range-specification option for univariate polynomials (see
Section 2.4.2), and is based on a well-known extremal property of the Chebyshev polynomials.
Consider the optimization problem:

SOSDEMO7:

Let pn(x) be a univariate polynomial of degree n, with γ being the coefficient of xn.

Maximize γ, subject to:

|pn(x)| ≤ 1, ∀x ∈ [−1, 1].

The absolute value constraint can be easily rewritten using two inequalities, namely:

1 + pn(x) ≥ 0
1− pn(x) ≥ 0

, ∀x ∈ [−1, 1].
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% SOSDEMO6 --- MAX CUT
% Section 3.6 of SOSTOOLS User’s Manual

clear; maple clear; echo on
syms x1 x2 x3 x4 x5;
vartable = [x1; x2; x3; x4; x5];

% Number of cuts
f = 2.5 - 0.5*x1*x2 - 0.5*x2*x3 - 0.5*x3*x4 - 0.5*x4*x5 - 0.5*x5*x1;

% Boolean constraints
bc{1} = x1^2 - 1 ;
bc{2} = x2^2 - 1 ;
bc{3} = x3^2 - 1 ;
bc{4} = x4^2 - 1 ;
bc{5} = x5^2 - 1 ;

% =============================================
% First, initialize the sum of squares program
prog = sosprogram(vartable);

% Then define SOSP variables

% -- p1(x) -- : sum of squares
% Monomial vector: 5 independent variables, degree <= 1
Z = monomials(vartable,[0 1]);
[prog,p{1}] = sossosvar(prog,Z);

% -- p2(x) ... p6(x) : polynomials
% Monomial vector: 5 independent variables, degree <= 2
Z = monomials(vartable,0:2);
for i = 1:5

[prog,p{1+i}] = sospolyvar(prog,Z);
end;

% Next, define SOSP constraints

% Constraint : p1(x)*(gamma - f(x)) + p2(x)*bc1(x)
% + ... + p6(x)*bc5(x) - (gamma-f(x))^2 >= 0
gamma = 4;
expr = p{1}*(gamma-f);
for i = 2:6

expr = expr + p{i}*bc{i-1};
end;
expr = expr - (gamma-f)^2;

prog = sosineq(prog,expr);

% And call solver
prog = sossolve(prog);

% Program is feasible, thus 4 is an upper bound for the cut.
echo off

Figure 3.7: MAX CUT – sosdemo6.m.
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The optimal solution is γ∗ = 2n−1, with p∗n(x) = arccos(cosnx) being the n-th Chebyshev polyno-
mial of the first kind.

Using sosdemo7.m (shown in Figure 3.8), the problem can be easily solved for small values of
n (say n ≤ 13), with SeDuMi aborting with numerical errors for larger values of n. This is due to
the ill-conditioning of the problem (at least, when using the standard monomial basis).

3.8 Bounds in Probability

In this example we illustrate how the sums of squares programming machinery can be used to
obtain bounds on the worst-case probability of an event, given some moment information on the
distribution. We refer the reader to the work of Bertsimas and Popescu [1] for a detailed discussion
of the general case, as well as references to earlier related work.

Consider an unknown arbitrary probability distribution q(x), with support in x ∈ [0, 5]. We
know that its mean µ is equal to 1, and its standard deviation σ is equal to 1/2. The question is:
what is the worst-case probability, over all feasible distributions, of a sample having x ≥ 4?

Using the tools in [1], it can be shown that a bound on (or in this case, the optimal) worst case
value can be found by solving the optimization problem:

SOSDEMO8:

Minimize am0 + bm1 + cm2, subject to
{

a + bx + cx2 ≥ 0, ∀x ∈ [0, 5]
a + bx + cx2 ≥ 1, ∀x ∈ [4, 5],

where m0 = 1, m1 = µ, and m2 = µ2 + σ2.

The optimization problem above is clearly an SOSP, and is implemented in sosdemo8.m (shown
in Figure 3.9).

The optimal bound, computed from the optimization problem, is equal to 1/37, with the
optimal polynomial being a + bx + cx2 =

(
12x−11

37

)2. The worst case probability distribution is
atomic:

q∗(x) =
36
37

δ(x− 11
12) +

1
37

δ(x− 4).

All these values (actually, their floating point approximations) can be obtained from the numerical
solution obtained using SOSTOOLS.
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% SOSDEMO7 --- Chebyshev polynomials
% Section 3.7 of SOSTOOLS User’s Manual

clear; maple clear; echo on;

ndeg = 8; % Degree of Chebyshev polynomial

syms x gam;

% =============================================
% First, initialize the sum of squares program
prog = sosprogram([x],[gam]);

% =============================================
% Create the polynomial P
Z = monomials(x,[0:ndeg-1]);
[prog,P1] = sospolyvar(prog,Z);
P = P1 + gam * x^ndeg; % The leading coeff of P is gam

% =============================================
% Next, impose the inequalities
prog = sosineq(prog, 1 - P, [-1, 1]);
prog = sosineq(prog, 1 + P, [-1, 1]);

% =============================================
% And set the objective
prog = sossetobj(prog, -gam);

% =============================================
% Then solve the program
prog = sossolve(prog);

% =============================================
% Finally, get solution
SOLV = sosgetsol(prog, P)
GAM = sosgetsol(prog, gam)

echo off

Figure 3.8: Chebyshev polynomials – sosdemo7.m.
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% SOSDEMO8 --- Bounds in Probability
% Section 3.8 of SOSTOOLS User’s Manual

clear; maple clear; echo on;
syms x a b c;

% The probability adds up to one.
m0 = 1 ;

% Mean
m1 = 1 ;

% Variance
sig = 1/2 ;

% E(x^2)
m2 = sig^2+m1^2;

% Support of the random variable
R = [0,5];

% Event whose probability we want to bound
E = [4,5];

% =============================================
% Constructing and solving the SOS program
prog = sosprogram([x],[a,b,c]);

P = a + b*x + c*x^2 ;

% Nonnegative on the support
prog = sosineq(prog, P ,R);

% Greater than one on the event
prog = sosineq(prog,P-1,E);

% The bound
bnd = a * m0 + b * m1 + c * m2 ;

% Objective: minimize the bound
prog = sossetobj(prog, bnd) ;

prog = sossolve(prog);

% =============================================
% Get solution
BND = sosgetsol(prog,bnd,16)
PP = sosgetsol(prog,P);
echo off;

Figure 3.9: Bounds in probability – sosdemo8.m.
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List of Functions

For the moment, refer to the help comments of each Matlab function. They can be displayed using
help (function name). We plan to add more information to this chapter in the future.

% SOSTOOLS --- Sum of Squares Toolbox
% Version 1.00, 11 April 2002.
%
% Monomial vectors construction:
% MONOMIALS --- Construct a vector of monomials with
% prespecified degrees.
%
% General purpose sum of squares program (SOSP) solver:
% SOSPROGRAM --- Initialize a new SOSP.
% SOSDECVAR --- Declare new decision variables in an SOSP.
% SOSPOLYVAR --- Declare a new polynomial variable in an SOSP.
% SOSSOSVAR --- Declare a new sum of squares variable in an SOSP.
% SOSEQ --- Add a new equality constraint to an SOSP.
% SOSINEQ --- Add a new inequality constraint to an SOSP.
% SOSSETOBJ --- Set the objective function of an SOSP.
% SOSSOLVE --- Solve an SOSP.
% SOSGETSOL --- Get the solution from a solved SOSP.
%
% Customized functions:
% FINDSOS --- Find a sum of squares decomposition of a given polynomial.
% FINDLYAP --- Find a Lyapunov function for a dynamical system.
% FINDBOUND --- Find a global lower bound (Shor) for a polynomial.
%
% Demos:
% SOSDEMO1 --- Sum of squares test.
% SOSDEMO2 --- Lyapunov function search.
% SOSDEMO3 --- Bound on global extremum.
% SOSDEMO4 --- Matrix copositivity.
% SOSDEMO5 --- Upper bound for the structured singular value mu.
% SOSDEMO6 --- MAX CUT.
% SOSDEMO7 --- Chebyshev polynomials.

39



40 CHAPTER 4. LIST OF FUNCTIONS

% SOSDEMO8 --- Bound in probability.
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