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Motivation

Many decision-making problems are large-scale and complex.
Complexity, cost, physical constraints⇒ Decentralization.
Fully distributed control is notoriously hard.
A common underlying theme: flow of information.
What are the right language and tools to think about flow of information?

Contributions
A framework to reason about information flow in terms of partially
ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion,
with provable optimality properties.
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Motivation

Many interesting examples can be unified in this framework.

Example: Nested Systems [Voulgaris00].

P1

P2

K2

K1

1

2

Emphasis: Flow of information. Can abstract away this flow of
information to picture on right.

Natural for problems of causal or hierarchical nature.
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Outline

Basic Machinery: Posets and Incidence Algebras.
Decentralized control problems and posets.
H2 case: state-space solution
Zeta function, Möbius inversion
Controller architecture
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Partially ordered sets (posets)

Definition

A poset P = (P,�) is a set P along with a binary relation � which satisfies for
all a,b, c ∈ P:

1 a � a (reflexivity)

2 a � b and b � a implies a = b (antisymmetry)

3 a � b and b � c implies a � c (transitivity).

Will deal initially with finite posets (i.e. |P| is finite).

Will relate posets to decentralized control.
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Incidence Algebras

Definition

The set of functions f : P × P → Q with the property that f (x , y) = 0
whenever y � x is called the incidence algebra I.

Concept developed and studied in [Rota64] as a unifying concept in
combinatorics.

For finite posets, elements of the incidence algebra can be thought of as
matrices with a particular sparsity pattern.
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Example

b

a

c

a b c
a
b
c



∗ 0 0
∗ ∗ 0
∗ 0 ∗



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Example

Closure under addition and scalar multiplication.

What happens when you multiply two such matrices?


∗ 0 0
∗ ∗ 0
∗ 0 ∗





∗ 0 0
∗ ∗ 0
∗ 0 ∗


 =



∗ 0 0
∗ ∗ 0
∗ 0 ∗




Not a coincidence!
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Incidence Algebras

Closure properties are true in general for all posets.

Lemma
Let P be a poset and I be its incidence algebra. Let A,B ∈ I then:

1 c · A ∈ I
2 A + B ∈ I
3 AB ∈ I.

Thus the incidence algebra is an associative algebra.

A simple corollary: Since I is in every incidence algebra, if A ∈ I
and invertible, A−1 ∈ I.
Properties useful in Youla domain.
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Control problem

w
u

z
y

P11 P12

P21 P22

K

A given matrix P.
Design K .
Interconnect P and K

f (P,K ) = P11 + P12K (I − P22K )−1P21.

Find “best” K .
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Modeling decentralized control problems using posets

All the action happens at P22 = G. Focus here.
G (called the plant) interacts with the controller.
Plant divided into subsystems:

Subsystem
Outputs




G11 0 0
G21 G22 0
G31 0 G33




1

1

1

2 3

2

2 3

3
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Modeling decentralized control problems using posets

Subsystem
Outputs




G11 0 0
G21 G22 0
G31 0 G33




1

1

1

2 3

2

2 3

3

Denote this by 1 � 2 and 1 � 3.
Subsystems 2 and 3 are in cone of influence of 1
This relationship is a causality relation between subsystems.
We call systems with G ∈ I poset-causal systems.
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Controller Structure

Given a poset causal plant G ∈ I.
Decentralization constraint: mirror the information structure of the
plant.
In other words we want poset-causal K ∈ I.
Similar causality interpretation.
Intuitively, i � j means subsystem j is more information rich.
The poset arranges the subsystems according to the amount of
information richness.
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Examples of poset systems

Independent subsystems

Nested systems

Closures of directed acyclic graphs

. . .1 2 n

...

1

2

n

12

3

4

5 6
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General framework

Goal is to capture what is essential about causal decision-making.
Elements of the poset do not necessarily have to represent only
subsystems.

“Standard” case discussed earlier corresponds to the product of the
spatial interaction poset (space) and a linear chain (time)
Posets model branching time, nondeterminism, etc.
Posets in space-time (e.g., distributed systems)

Controller structure does not necessarily have to mirror plant.
Generalizations via Galois connections
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Literature review

Classical work: Witsenhausen, Radner, Ho-Chu.

Mullans-Elliot (1973), linear systems on partially ordered time sets

Voulgaris (2000), showed that a wide class of distributed control
problems became convex through a Youla-type reparametrization.

Rotkowitz-Lall (2002) introduced quadratic invariance (QI) an important
unifying concept for convexity in decentralized control.

Poset framework introduced in Shah-P. (2008). Special case of QI, with
richer and better understood algebraic structure.

Swigart-Lall (2010) gave a state-space solution for the two-controller
case, via a spectral factorization approach.

Shah-P. (2010), provided a full solution for all posets, with controller
degree bounds. Separability a key idea, which is missing in past work.
Introduced simple Möbius-based architecture (in slightly different form).

Stanford ISL - March 2011 19 / 42



Optimal Control Problem

Given a system P with plant G, find a stabilizing controller K ∈ I.

minimizeK ||f (P,K )||
subject to K stabilizes P

K ∈ I.

P

K

Here f (P,K ) = P11 + P12K (I −GK )−1P21 is the closed loop transfer
function.

Problem is nonconvex.

Standard approach: reparametrize the problem by getting rid of the
nonconvex part of the objective.
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Convex reparametrization

"Youla domain” technique: define R = K (I −GK )−1.

minimize ||P̂11 + P̂12RP̂21||
subject to R stable

R ∈ I.

Algebraic structure of I allows to rewrite a convex constraint in K into a
convex constraint in R.

Main difficulty: Infinite dimensional problem.

Can be approximated by various techniques, but there are drawbacks.

Desire state-space techniques. Advantages:
1 Computationally efficient
2 Degree bounds
3 Provide insight into structure of optimal controller.
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State-Space Setup

Have state feedback system:

x [t + 1] = Ax [t ] + Bu[t ] + w [t ]
y [t ] = x [t ]
z[t ] = Cx [t ] + Du[t ]

Wish to find controller u = Kx which is stabilizing and optimal.

MinK‖P11 + P12K (I − P22K )−1P21‖2
K ∈ I
K stabilizing.

Key property we exploit: separability of the H2 norm.
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H2 Optimal Control

Recall Frobenius norm:

‖H‖2F = Trace(HT H).

H2 norm is its extension to operators.
Solution to optimal centralized problem standard.
Based on algebraic Riccati equations:

X = CT C + AT XA− AT XB(DT D + BT XB)−1BT XA

K = (DT D + BT XB)−1BT XA.
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Decentralized Control Problem

System poset causal: A,B ∈ I(P).
Solve:

minimizeK‖P11 + P12K (I − P22K )−1P21‖2
K ∈ I
K stabilizing.

Due to state-feedback: P21 = (zI − A)−1.
Define Q := K (I −GK )−1P21.
Problem reduces to:

minimizeQ‖P11 + P12Q‖2
Q ∈ I
Q stabilizing.
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H2 Decomposition Property

Let G = [G1, . . .Gk ].

‖G‖2 =
k∑

i=1

‖Gi‖2.

This separability property is the key feature we exploit.

Example

1

2 3

min

∥∥∥∥∥∥
P11 + P12




Q11 0 0
Q21 Q22 0
Q31 0 Q33



∥∥∥∥∥∥

2

s.t. Q stabilizing.

min.

∥∥∥∥∥∥
P11(1) + P12




Q11

Q21

Q31



∥∥∥∥∥∥

2

+ ‖P11(2) + P12(2)Q22‖2

+ ‖P11(3) + P12(3)Q33‖2

s.t. Q stabilizing.
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H2 State Space Solution

This decomposition idea extends to all posets.

Theorem (Shah-P., CDC2010)
Problem can be reduced to decoupled problems:

minimize ‖P11(j) + P12(↑j)Q↑j‖2
subject to Q↑j stabilizing

for all j ∈ P.

Optimal Q can be obtained by solving a set of decoupled
centralized sub-problems.
Each sub-problem requires solution of a Riccati equation.
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H2 State Space Solution

Can recover K from optimal Q.
Q and K are in bijection, K = QP−1

21 (I + P22QP−1
21 )−1.

Further analysis gives:
1 Explicit state-space formulae.
2 Controller degree bounds.
3 Insight into structure of optimal controller.
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General Controller Architecture

Great. We solved the problem for all posets! But, what is the structure here?

Swigart-Lall (2010) had a nice interpretation for the
two-controller case, in terms of the first controller
estimating the state of the second subsystem.

P1

P2

K2

K1

1

2

No “obvious” generalizations:

In general, do not have enough information to predict upstream
states. Also, there may be incomparable states.
More importantly, too many predictions from downstream! How to
combine them?
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General Controller Architecture

What is the “right” architecture?
Ingredients:

1 Lower sets and upper sets
2 Local variables (partial state predictions)
3 Zeta function and Möbius function.

Simple separation principle
Optimality of architecture for H2.
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Lower sets and upper sets

Each “node” in P is a subsystem with state xi and input ui .
Lower set: ↓p = {q | q � p}.
Corresponds to “downstream” known information.

1

2 3

4

1

2 3

4

↑ 2 ↓ 2

Upper set: ↑p = {q | p � q}.
Corresponds to “upstream” unknown information.
ui has access to xj for j ∈ ↓i (downstream).
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Local Variables

Overall state x and input u are global variables.

Subsystems carry local copies.
i

j

k

x̂k

xj

xi
xl

known

unknown

unrelatedl

Local variable Xi : ↑i → R.

Can think of it as a vector in R|P|
1

2 3

4




∗
x2

∗
x4(2)







∗
∗
∗
x4







∗
∗
x3

x4(3)


 X =




x1 ∗ ∗ ∗
x2(1) x2 ∗ ∗
x3(1) ∗ x3 ∗
x4(1) x4(2) x4(3) x4


X2 = X3 =

X4 =

X1 =




x1

x2(1)
x3(1)
x4(1)




Two local variables of interest:
1 X : Xij = xi(j) is the (partial) prediction of state xi at subsystem j .
2 U: Uij = ui(j) is the (partial) prediction of input ui at subsystem j .
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Local Products

Local gain: G(i) : ↑i × ↑i → R. Think of it as zero-padded matrix:

1

2

4

3 G(2) =




0 0 0 0
0 G22 0 G24

0 0 0 0
0 G42 0 G44




Define G = {G(1), . . . ,G(s)}.
Local Product: G ◦ X defined columnwise via:

(G ◦ X )i = G(i)Xi .

If Y = G ◦ X , then local variables (Xi ,Yi) decoupled.
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Zeta and Möbius

For any poset P, two distinguished elements of its incidence algebra:
The Zeta matrix is

ζP(x , y) =
{

1, if y � x
0, otherwise

Its inverse is the Möbius matrix of the poset:

µP = ζ−1
P .

E.g., for the poset below, we have:

b

a

c

ζP =




1 0 0
1 1 0
1 0 1


 , µP =




1 0 0
−1 1 0
−1 0 1



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Möbius inversion

Given f : P → Q, we can define

(ζf )(x) =
∑

y

ζ(x , y)f (y), (µf )(x) =
∑

y

µ(x , y)f (y).

These operations are obviously inverses of each other.

For our example:

ζ(a1,a2,a3) = (a1,a1 + a2,a1 + a3), µ(b1,b2,b3) = (b1,b2 − b1,b3 − b1).

Möbius inversion formula

g(y) =
∑

x�y

h(x) ⇔ h(y) =
∑

x�y

µ(x , y)g(x)
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Möbius inversion: examples

If P is a chain: then ζ is “integration”, µ := ζ−1 is “differentiation”.
If P is the subset lattice, then µ is inclusion-exclusion
If P is the divisibility integer lattice, then µ is the number-theoretic
Möbius function.
Many others: vector spaces, faces of polytopes, graphs/circuits, ...
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Möbius inversion is local

Key insight: Möbius inversion respects the poset structure.
No additional communication requirements to compute them.
Thus, can view as operators on local variables: ζ(X ), µ(X ).

1

2 3

4

ζ(X) =




x1 ∗ ∗ ∗
x2(1) x2 + x2(1) ∗ ∗
x3(1) ∗ x3 + x3(1) ∗
x4(1) x4(2) + x4(1) x4(3) + x4(1) x4 + x4(1) + x4(2) + x4(3)


 µ(X) =




x1 ∗ ∗ ∗
x2(1) x2 − x2(1) ∗ ∗
x3(1) ∗ x3 − x3(1) ∗
x4(1) x4(2) − x4(1) x4(3) − x4(1) x4 + x4(1) − x4(2) − x4(3)




1

2 3

4

1

2 3

4

ζ µ

x4(1)

x4(2)

x4(3)

x4

x4(1)

x4(2)
x4(3)

+++

+
+

x4(1)

x4(2)

x4(1)

x4 x4(3) x4(1)

x4(1)x4(2)
x4(3) x4(1)

x4(2) +x4 x4(3) x4(1)

−
−

− −
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Controller Architecture

Let the system dynamics be x [t + 1] = Ax [t ] + Bu[t ], where A,B ∈ I(P)
Define controller state variables Xij for j � i , where Xii = xi .
Propose a control law:

U = ζ(G ◦ µ(X )).

where G = {G(1), . . . ,G(s)}.
Can compactly write closed-loop dynamics as matrix equations:

X [t + 1] = AX [t ] + Bζ(G ◦ µ(X [t ])).

Each column corresponds to a different subsystem
Equations have structure of I, only need entries with j � i
Diagonal is the plant, off-diagonal is the controller
Since ζ and µ are local, so is the closed-loop
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Controller Architecture: U = ζ(G ◦ µ(X ))

“Local errors” computed by µ(X ) (differentiation)
Compute “local corrections”
Aggregate them via ζ(·) (integration)

1

2 3

4
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
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u2(1)
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
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
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
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

∗
x2 − x2(1)

∗
x4(2) − x4(1)



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Separation Principle

Closed-loop equations:

X [t + 1] = AX [t ] + Bζ(G ◦ µ(X [t ])).

Apply µ, and use the fact that µ and ζ are inverses:

µ(X )[t + 1] = Aµ(X )[t ] + B(G ◦ µ(X )[t ])
= (A + BG) ◦ µ(X ).

where (A + BG)i = A(↑i , ↑i) + B(↑i , ↑i)G(i).

“Innovation” dynamics at subsystems decoupled!

Stabilization easy: simply pick G(i) to stabilize A(↑i , ↑i),B(↑i , ↑i).

Stanford ISL - March 2011 39 / 42



Separation Principle

Closed-loop equations:

X [t + 1] = AX [t ] + Bζ(G ◦ µ(X [t ])).

Apply µ, and use the fact that µ and ζ are inverses:

µ(X )[t + 1] = Aµ(X )[t ] + B(G ◦ µ(X )[t ])
= (A + BG) ◦ µ(X ).

where (A + BG)i = A(↑i , ↑i) + B(↑i , ↑i)G(i).

“Innovation” dynamics at subsystems decoupled!

Stabilization easy: simply pick G(i) to stabilize A(↑i , ↑i),B(↑i , ↑i).

Stanford ISL - March 2011 39 / 42



Separation Principle

Closed-loop equations:

X [t + 1] = AX [t ] + Bζ(G ◦ µ(X [t ])).

Apply µ, and use the fact that µ and ζ are inverses:

µ(X )[t + 1] = Aµ(X )[t ] + B(G ◦ µ(X )[t ])
= (A + BG) ◦ µ(X ).

where (A + BG)i = A(↑i , ↑i) + B(↑i , ↑i)G(i).

“Innovation” dynamics at subsystems decoupled!

Stabilization easy: simply pick G(i) to stabilize A(↑i , ↑i),B(↑i , ↑i).

Stanford ISL - March 2011 39 / 42



Optimality

Theorem (Shah-P., CDC2010)
H2-optimal controllers have the described architecture.

Gains G(i) obtained by solving decoupled Riccati equations.
States in the controller are precisely predictions Xij for j ≺ i .
Controller order is number of intervals in the poset.
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Controller architecture

Möbius-inversion controller

U = ζ(G ◦ µ(X )).

Simple and natural structure, for any locally finite poset.

Can exploit further restrictions (e.g., distributive lattices)

For product posets, well-understood composition rules for µ

Generalizes many concepts (Youla parameterization, “purified outputs”,
etc)

Extensions to output feedback, different plant/controller posets (Galois
connections), . . .

a

b

1

23

Input Poset Output Poset

P Q
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Conclusions

Posets provide useful framework to reason about decentralized
decision-making on causal or hierarchical structures.

Conceptually nice, computationally tractable.
Simple controller structure, based on Möbius inversion.
H2-optimal controllers have this structure.

Want to know more? → www.mit.edu/˜pari
“A partial order approach to decentralized control”, CDC 2008.
“H2-optimal decentralized control over posets: a state-space
solution for state-feedback”, CDC 2010.
“An optimal architecture for decentralized control over posets”,
online soon!

Thanks for your attention!
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