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Motivation

@ Many decision-making problems are large-scale and complex.

@ Complexity, cost, physical constraints = Decentralization.

@ Fully distributed control is notoriously hard.

@ A common underlying theme: flow of information.

@ What are the right language and tools to think about flow of information?
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Motivation

@ Many decision-making problems are large-scale and complex.

@ Complexity, cost, physical constraints = Decentralization.

@ Fully distributed control is notoriously hard.

@ A common underlying theme: flow of information.

@ What are the right language and tools to think about flow of information?

Contributions
A framework to reason about information flow in terms of partially
ordered sets (posets).

An architecture for decentralized control, based on Mdébius inversion,
with provable optimality properties.
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Motivation

@ Many interesting examples can be unified in this framework.
@ Example: Nested Systems [Voulgaris00].

@ Emphasis: Flow of information. Can abstract away this flow of
information to picture on right.

@ Natural for problems of causal or hierarchical nature.
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Outline

@ Basic Machinery: Posets and Incidence Algebras.
@ Decentralized control problems and posets.

@ H, case: state-space solution

@ Zeta function, Mobius inversion

@ Controller architecture
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Partially ordered sets (posets)

Definition

A poset P = (P, =) is a set P along with a binary relation < which satisfies for
alla,b,c e P:

@ a =< a(reflexivity)
@ a=<bandb < aimplies a = b (antisymmetry)

@ a=<bandb =< cimplies a < c (transitivity).

@ Will deal initially with finite posets (i.e. |P| is finite).

@ Will relate posets to decentralized control.
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_________________________________
Incidence Algebras

Definition

The set of functions f : P x P — Q with the property that f(x,y) =0
whenever y £ x is called the incidence algebra 7.

@ Concept developed and studied in [Rota64] as a unifying concept in
combinatorics.

@ For finite posets, elements of the incidence algebra can be thought of as
matrices with a particular sparsity pattern.
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Example

@ Closure under addition and scalar multiplication.

@ What happens when you multiply two such matrices?
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Example

@ Closure under addition and scalar multiplication.

@ What happens when you multiply two such matrices?

* 0 0 *x 0 0 *x 0 0
x % 0 x x 0|=|x* = O
* 0 = * 0 x * 0 %

@ Not a coincidence!
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_________________________________
Incidence Algebras

@ Closure properties are true in general for all posets.

Lemma

LetP be a poset and T be its incidence algebra. Let A, B € T then:
Qc AczT
Q@ A+Bez
Q ABc1I.

Thus the incidence algebra is an associative algebra.
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Incidence Algebras

@ Closure properties are true in general for all posets.

Lemma

LetP be a poset and T be its incidence algebra. Let A, B € T then:
Qc AczT
Q@ A+Bez
Q ABc1I.

Thus the incidence algebra is an associative algebra.

@ A simple corollary: Since / is in every incidence algebra, if Ac Z
and invertible, A~ € .

@ Properties useful in Youla domain.
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Control problem

74— P11 P12 lew
y4+—P2; Pasieu

@ A given matrix P.
@ Design K.
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Control problem

74— P11 Pi2lew
y4+—P2; Payieu

@ A given matrix P.
@ Design K.
@ Interconnect P and K

f(P,K) = Py1 + PioK (I — PoaK) ™ Pyy.
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Control problem

74— P11 Pi2lew
y4+—P2; Payieu

@ A given matrix P.
@ Design K.
@ Interconnect P and K

f(P,K) = Py1 + PioK (I — PoaK) ™ Pyy.

@ Find “best” K.
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Modeling decentralized control problems using posets

@ All the action happens at P>, = G. Focus here.
@ @G (called the plant) interacts with the controller.
@ Plant divided into subsystems:

ll Ql Jl @ @

<Gy 0 0
<2_ G21 GQQ 0 \(J
S|LG1 0 Gy

Subsystem

Outputs
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Modeling decentralized control problems using posets

@ Let G be the transfer function matrix of the plant. We divide up the
plant into subsystems:

1l Ql Sl @ @

41— G] 1 0 0

|| Gu Gn 0

S| G 0 Gs
Subsystem t
Outputs
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Modeling decentralized control problems using posets

@ Let G be the transfer function matrix of the plant. We divide up the
plant into subsystems:

1l Ql Sl @ @

&) 41— G] 1 0 0

o€—|| Gu Gn 0

0oL G 0 G
Subsystem t
Outputs
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Modeling decentralized control problems using posets

) ]I Ql 31 . .

(SR ol Gll 0 0

o€—|| Gu G 0

oed_|l Ga 0 Gis
Subsystem t
Outputs
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Modeling decentralized control problems using posets

1A e e

(SR ol Gll 0 0

® <2_ Ggl ng 0

oed_|l Ga 0 Gis
Subsystem t
Outputs

@ Denotethisby 1 <2and 1 < 3.

@ Subsystems 2 and 3 are in cone of influence of 1

@ This relationship is a causality relation between subsystems.
@ We call systems with G € 7 poset-causal systems.
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Controller Structure

@ Given a poset causal plant G € 7.

@ Decentralization constraint: mirror the information structure of the
plant.

@ In other words we want poset-causal K € 7.
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Controller Structure

Given a poset causal plant G € 7.

Decentralization constraint: mirror the information structure of the
plant.

In other words we want poset-causal K € 7.
Similar causality interpretation.

Intuitively, i < j means subsystem j is more information rich.

The poset arranges the subsystems according to the amount of
information richness.
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_________________________________
Examples of poset systems

@ Independent subsystems

@ Nested systems

@ Closures of directed acyclic graphs
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General framework

Goal is to capture what is essential about causal decision-making.
@ Elements of the poset do not necessarily have to represent only
subsystems.

e “Standard” case discussed earlier corresponds to the product of the
spatial interaction poset (space) and a linear chain (time)
e Posets model branching time, nondeterminism, etc.
o Posets in space-time (e.g., distributed systems)
@ Controller structure does not necessarily have to mirror plant.
o Generalizations via Galois connections
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Literature review

@ Classical work: Witsenhausen, Radner, Ho-Chu.
@ Mullans-Elliot (1973), linear systems on partially ordered time sets

@ Voulgaris (2000), showed that a wide class of distributed control
problems became convex through a Youla-type reparametrization.

@ Rotkowitz-Lall (2002) introduced quadratic invariance (Ql) an important
unifying concept for convexity in decentralized control.

@ Poset framework introduced in Shah-P. (2008). Special case of Ql, with
richer and better understood algebraic structure.

@ Swigart-Lall (2010) gave a state-space solution for the two-controller
case, via a spectral factorization approach.

@ Shah-P. (2010), provided a full solution for all posets, with controller
degree bounds. Separability a key idea, which is missing in past work.
Introduced simple Mdbius-based architecture (in slightly different form).
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Optimal Control Problem

Given a system P with plant G, find a stabilizing controller K € 7.

minimizex  ||f(P, K)||

subjectto K stabilizes P H
Kel.

@ Here f(P,K) = Py1 + P12K(I — GK)~' P,y is the closed loop transfer
function.

@ Problem is nonconvex.

@ Standard approach: reparametrize the problem by getting rid of the
nonconvex part of the objective.
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|
Convex reparametrization

@ "Youla domain” technique: define R = K(/ — GK)~".

minimize  ||Py1 + P12 RPy|
subjectto R stable
Rel.

Algebraic structure of Z allows to rewrite a convex constraint in K into a
convex constraint in R.

@ Main difficulty: Infinite dimensional problem.
@ Can be approximated by various techniques, but there are drawbacks.
@ Desire state-space techniques. Advantages:

@ Computationally efficient
@ Degree bounds
@ Provide insight into structure of optimal controller.
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State-Space Setup

@ Have state feedback system:

x[t + 1] = Ax[t] + Bu[t] + w[f]
ylt] = x[t]
z[t] = Cx[t] + Du[t]

@ Wish to find controller u = Kx which is stabilizing and optimal.
Min|| P11 + P12K(l — PaaK) ™" P2

KeZ
K stabilizing.

@ Key property we exploit: separability of the H» norm.
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H> Optimal Control

@ Recall Frobenius norm:
|H||2 = Trace(HT H).

@ H, norm is its extension to operators.

@ Solution to optimal centralized problem standard.

@ Based on algebraic Riccati equations:
X=C'C+A™XA—-ATXB(D"D+ B"XB)"'B" XA
K = (D"D+ B"XB)~'BT XA.
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Decentralized Control Problem

@ System poset causal: A, B € Z(P).
@ Solve:

minimizex||Py1 + Pi2K (I — PaaK) ™' Pay||?
Kel
K stabilizing.

@ Due to state-feedback: Ppy = (zI — A)~".
o Define Q := K(I — GK)~Py;.
@ Problem reduces to:
minimizegl||Py1 + P12Q|?
QeZ
Q stabilizing.
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‘H> Decomposition Property

o Let G=[Gi,... Gyl

k
IGIZ = IGil>.
=1

@ This separability property is the key feature we exploit.

Example

min

s.t.

min.

s.t.

2

Quu O 0
Pi+Pa2| Qu Q2 O
Q3 0 Qs3

Q stabilizing. ‘ ‘

Qu |’
Q21 + [|1P11(2) + P12(2)Q22H2
Q31

+[1Pia(3) + Pra(3)Qasl|?
Q stabilizing.

Pi1(1) + Pia
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‘H. State Space Solution

This decomposition idea extends to all posets.

Theorem (Shah-P., CDC2010)
Problem can be reduced to decoupled problems:
minimize ||Py1(j) + P12(1/) QY2

subjectto QU stabilizing
forallj € P.

@ Optimal Q can be obtained by solving a set of decoupled
centralized sub-problems.

@ Each sub-problem requires solution of a Riccati equation.
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‘H. State Space Solution

@ Can recover K from optimal Q.
@ Qand K are in bijection, K = QP,,' (I + P2, QP5")~".
@ Further analysis gives:

@ Explicit state-space formulae.
@ Controller degree bounds.
@ Insight into structure of optimal controller.
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General Controller Architecture

Great. We solved the problem for all posets! But, what is the structure here?

@ Swigart-Lall (2010) had a nice interpretation for the
two-controller case, in terms of the first controller
estimating the state of the second subsystem.

@ No “obvious” generalizations:

@ In general, do not have enough information to predict upstream
states. Also, there may be incomparable states.

e More importantly, too many predictions from downstream! How to
combine them?
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General Controller Architecture

@ What is the “right” architecture?
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N
General Controller Architecture

@ What is the “right” architecture?
@ Ingredients:

@ Lower sets and upper sets
@ Local variables (partial state predictions)
© Zeta function and Mébius function.

@ Simple separation principle
@ Optimality of architecture for Hs.
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Lower sets and upper sets

@ Each “node” in P is a subsystem with state x; and input vu;.

@ Lowerset: [p={q| g =p}.
@ Corresponds to “downstream” known information.

0)

+2

@ Upper set: tp = {q | p =< q}.
@ Corresponds to “upstream” unknown information.

Stanford ISL - March 2011 30/42



|
Lower sets and upper sets

@ Each “node” in P is a subsystem with state x; and input vu;.

@ Lowerset: [p={q| g =p}.
@ Corresponds to “downstream” known information.

0

+2

@ Upper set: tp = {q | p =< q}.
@ Corresponds to “upstream” unknown information.

@ u; has access to x; for j € |i (downstream).
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Local Variables

Bk

@ Overall state x and input u are global variables. }2{ .

@ Subsystems carry local copies.

x

Zj
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Local Variables

@ Overall state x and input u are global variables. é‘ }2(
i, @ unrelated

,

@ Subsystems carry local copies.

Q" 1}
@ Local variable X; : 1i — R. ‘{ }J 5 X_[ } X:[J;;U Aot
«2) =@ 11?83 ) ) o

@ Can think of it as a vector in RIP!
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|
Local Variables

@ Overall state x and input u are global variables. (é‘ 382 o
@ Subsystems carry local copies. \@
K

0
@ Local variable X; : 1/ — R. o] J
@ Can think of it as a vector in RI”! a2 \@

@ Two local variables of interest:

@ X: Xj = x(j) is the (partial) prediction of state x; at subsystem j.
Q U: Uj = ui(j) is the (partial) prediction of input u; at subsystem j.
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Local Products

@ Local gain: G(i) : 1i x 1i — R. Think of it as zero-padded matrix:

J\}b

@ Define G = {G(1) G(s)}
@ Local Product: G o X defmed columnwise via:

0 0 0 0

0 Gpn 0 Gu

(J U 00
0 Gu

(G o X)i = G(I)Xi.

@ If Y = Go X, then local variables (X;, Y;) decoupled.
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Zeta and Mobius

For any poset P, two distinguished elements of its incidence algebra:
@ The Zeta matrix is

1, ify=<x
0, otherwise

C’P(me) = {
@ lIts inverse is the Mdbius matrix of the poset:

pp =Cp'
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Zeta and Mobius

For any poset P, two distinguished elements of its incidence algebra:
@ The Zeta matrix is

1, ify=<x
0, otherwise

C’P(me) = {
@ lIts inverse is the Mdbius matrix of the poset:
pp =Cp'

E.g., for the poset below, we have:

ORNO 100 1 00
=110, wp=|-110
&) 10 1 10 1
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Mobius inversion

Given f : P — Q, we can define

(CHX) =D _cOanfy),  (uh)x) =D ulx, ).
y

y

These operations are obviously inverses of each other.
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Mobius inversion

Given f : P — Q, we can define

(CHX) =D _cOanfy),  (uh)x) =D ulx, ).
y

y

These operations are obviously inverses of each other.
For our example:

¢(ar1, a2, a) = (a1,a1 + a, a1 + as), w(by, b2, b3) = (by, b2 — by, b3 — by).
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N
Mobius inversion

Given f : P — QQ, we can define
(CH) =D _COLNY),  (uh)X) =D ux, YY)
y y

These operations are obviously inverses of each other.

For our example:

¢(ar1, a2, a) = (a1,a1 + a, a1 + as), w(by, b2, b3) = (by, b2 — by, b3 — by).

Mobius inversion formula

gy)=> hx) &  hy)=)_ ux.y)g(x)

XXy X3y
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Mobius inversion: examples

@ If P is a chain: then ( is “integration”, ;1 := ¢~ is “differentiation”.
@ If P is the subset lattice, then  is inclusion-exclusion

@ If P is the divisibility integer lattice, then p is the number-theoretic
M@obius function.

@ Many others: vector spaces, faces of polytopes, graphs/circuits, ...
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Mobius inversion is local

@ Key insight: MObius inversion respects the poset structure.
@ No additional communication requirements to compute them.
@ Thus, can view as operators on local variables: ¢(X), u(X).

4 + x4(2) + 24(3) + 24(1) wy — w4(2) — aq(3)+ a4(1)

®) ,2\@/ (8) =i @/ 0
4(3) “i‘ T e4(3)  aa(l)
1) \@ x4(1) x4(2)  wa(1)
x4(1)

x4(1)
¢ I
T * * 1 T * * *
. | owa(l) aa4ae(1) * * (1) wa —wa(1) * *
)= o) « g+ (1) . nx)=| ey PR = (1) .
24(1) 2a(2) +2a(1) 2a(3) +2a(l) g+ za(1) + 24(2) + 24(3) | 24(1) 2a(2) —24(1) 2a(3) — 24(1) @+ 2a(1) — 24(2) — 24(3)
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Controller Architecture

@ Let the system dynamics be x[t + 1] = Ax[t] + Bult], where A, B € Z(P)
@ Define controller state variables Xj for j < i, where Xj = x;.
@ Propose a control law:
U =¢(Go pu(X)).
where G = {G(1),...,G(S)}.
@ Can compactly write closed-loop dynamics as matrix equations:

X[t + 1] = AX[t] + BC(G o u(X[H])).

Each column corresponds to a different subsystem
Equations have structure of Z, only need entries with j </
Diagonal is the plant, off-diagonal is the controller

Since ¢ and . are local, so is the closed-loop
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Controller Architecture: U = ((G o (X))
@ “Local errors” computed by 1 (X) (differentiation)

@ Compute “local corrections”
@ Aggregate them via ((-) (integration)
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_________________________________
Separation Principle

@ Closed-loop equations:

X[t + 1] = AX[1] + BS(G o u(X[1])).
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Separation Principle

@ Closed-loop equations:

X[t + 1] = AX[1] + BS(G o u(X[1])).

@ Apply i, and use the fact that ¢ and ¢ are inverses:

w(X)[t + 1] = Au(X)[t] + B(G o u(X)[t])
= (A +BG) o u(X).

where (A + BG); = A(t, i) + B(1i, 1) G(i).
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Separation Principle

@ Closed-loop equations:

X[t + 1] = AX[1] + BS(G o u(X[1])).

@ Apply i, and use the fact that ¢ and ¢ are inverses:

w(X)[t + 1] = Au(X)[t] + B(G o u(X)[t])
= (A +BG) o u(X).

where (A + BG); = A(1i, M) + B(1i, 1) G(J).
@ “Innovation” dynamics at subsystems decoupled!
@ Stabilization easy: simply pick G(/) to stabilize A(1i, i), B(1i, ).
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_________________________________
Optimality

Theorem (Shah-P., CDC2010)
‘Ho-optimal controllers have the described architecture. J

@ Gains G(/) obtained by solving decoupled Riccati equations.
@ States in the controller are precisely predictions Xj; for j < i.
@ Controller order is number of intervals in the poset.
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Controller architecture

Mobius-inversion controller
U = ¢(Go u(X)). J

Simple and natural structure, for any locally finite poset.
@ Can exploit further restrictions (e.g., distributive lattices)
@ For product posets, well-understood composition rules for p

@ Generalizes many concepts (Youla parameterization, “purified outputs”,

etc)
@ Extensions to output feedback, different plant/controller posets (Galois
connections), ...
Input Poset Output Poset
P Q

(h)————13) 0))
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Conclusions

@ Posets provide useful framework to reason about decentralized
decision-making on causal or hierarchical structures.
@ Conceptually nice, computationally tractable.
o Simple controller structure, based on Mébius inversion.
o Ho-optimal controllers have this structure.
@ Want to know more? — www.mit.edu/ pari
o “A partial order approach to decentralized control”, CDC 2008.
o “Ho-optimal decentralized control over posets: a state-space
solution for state-feedback”, CDC 2010.
e “An optimal architecture for decentralized control over posets”,
online soon!
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@ Conceptually nice, computationally tractable.
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o Ho-optimal controllers have this structure.
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Thanks for your attention!
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