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Semidefinite programming (SDP,LMIs)

A broad generalization of LP to symmetric matrices

minTrCX s.t. X ∈ L ∩ Sn
+

PSD cone

O

L

The intersection of an affine subspace L and the cone of positive

semidefinite matrices.

Lots of applications. A true“revolution” in computational methods for

engineering applications

Originated in control theory and combinatorial optimization. Nowadays,

applied everywhere.

Convex finite dimensional optimization. Nice duality theory.

Essentially, solvable in polynomial time (interior point, etc.)
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Semidefinite representations

A natural question in convex optimization:

What sets can be represented using semidefinite programming?

Representability issues (e.g., closedness under projection)

Polytopes are closed under projection

Basic semialgebraic and SDP-representable sets are not

BIRS 2006 - SDP and genus zero curves – p. 4/28
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A natural question in convex optimization:

What sets can be represented using semidefinite programming?

Representability issues (e.g., closedness under projection)

Polytopes are closed under projection

Basic semialgebraic and SDP-representable sets are not

In the LP case, well-understood question: finite number of extreme points

(polyhedral sets)
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Semidefinite representations

A natural question in convex optimization:

What sets can be represented using semidefinite programming?

Representability issues (e.g., closedness under projection)

Polytopes are closed under projection

Basic semialgebraic and SDP-representable sets are not

In the LP case, well-understood question: finite number of extreme points

(polyhedral sets)

Are there“obstructions” to SDP representability?

Open question: is every convex basic semialgebraic set SDP-representable?

(generalized Lax conjecture)
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Known SDP-representable sets

Many interesting sets are known to be

SDP-representable

Preserved by“natural”properties: affine

transformations, convex hull, polarity, etc.

Several known structural results (e.g., facial ex-

posedness)

Work of Nesterov-Nemirovski, Ramana, Tunçel, etc.
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Existing results

Necessary conditions: S must be convex and semialgebraic (defined by

polynomial inequalities).

Several versions of the problem:

Exact vs. approximate representations.

“Direct” (non-lifted) representations: no additional variables.

x ∈ S ⇔ A0 +
∑

i

xiAi � 0

“Lifted” representations: can use extra variables (projection)

x ∈ S ⇔ ∃y s.t. A0 +
∑

i

xiAi +
∑

yjBj � 0

Today we focus on the“exact”version.
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Direct representations

x ∈ S ⇔ A0 +
∑

i

xiAi � 0

Helton & Vinnikov (2004) fully characterized the sets S ⊂ R2 that admit a

non-lifted SDP representation.

A“rigid convexity” condition: every line through the set must intersect the

Zariski closure of the boundary a constant number of times (equal to the

degree of the curve).

Related to hyperbolic polynomials and the Lax conjecture (Renegar,

Lewis-Ramana-P. 2005)
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Lax conjecture

A homogeneous polynomial p(x) ∈ R[x1, . . . , xn] is hyperbolic with respect

to the direction e ∈n if t 7→ p(x − te) has only real roots for all x ∈ R
n.
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Lax conjecture

A homogeneous polynomial p(x) ∈ R[x1, . . . , xn] is hyperbolic with respect

to the direction e ∈n if t 7→ p(x − te) has only real roots for all x ∈ R
n.

Ex: Let A, B, C be symmetric matrices, with A � 0. The polynomial

p(x, y, z) = det(Ax + By + Cz)

is hyperbolic wrt e = (1, 0, 0) (eigenvalues of symm. matrices are real).
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Lax conjecture

A homogeneous polynomial p(x) ∈ R[x1, . . . , xn] is hyperbolic with respect

to the direction e ∈n if t 7→ p(x − te) has only real roots for all x ∈ R
n.

Ex: Let A, B, C be symmetric matrices, with A � 0. The polynomial

p(x, y, z) = det(Ax + By + Cz)

is hyperbolic wrt e = (1, 0, 0) (eigenvalues of symm. matrices are real).

Thm (Lax Conjecture): If p(x, y, z) is hyperbolic wrt e, then it has such

as determinantal representation.
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A“polar” viewpoint

Any convex set S is uniquely defined by its supporting hyperplanes.

Thus, if we can optimize a linear function over a set using SDP, we

effectively have an SDP representation.

Need to solve (or approximate)

min cT x s.t. x ∈ S

If S is defined by polynomial equations/inequalities, can use sum of squares

(SOS) techniques.
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SOS background

A multivariate polynomial p(x) is a sum of squares (SOS) if

p(x) =
∑

i

q2
i (x), qi(x) ∈ R[x].

If p(x) is SOS, then clearly p(x) ≥ 0 ∀x ∈ R
n.

For univariate or quadratic polynomials, the converse is also true.

Convex condition, can be reduced to SDP.
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A natural SOS approach

Let S = {x ∈ R
n | fi(x) ≥ 0}. Different conditions exist to certify

nonnegativity of cT x + d over S:

General Positivstellensatz type:

(1 + q)(cT x + d) ∈ conek+1(fi), q ∈ conek(fi).

Schmüdgen:

cT x + d ∈ conek(fi)

Putinar/Lasserre:

cT x + d ∈ preprimek(fi)

where preprimek ⊆ conek ⊆ Rk[x]. All these versions give convergent

families of SDP approximations.

Concretely, for Putinar/Lasserre, if

cT x + d = s0(x) +
∑

i

si(x)fi(x), s0, si are SOS.
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Example
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Consider the set described by x4 + y4 ≤ 1

Fails the rigid convexity condition.

The SOS construction is exact.
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Lemniscates
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A (Bernoulli) lemniscate is a plane curve, defined as the set of points such

that the product of the distances from two fixed points at distance 2d (the

foci) is constant and equal to d2.

In particular, if the points are (± 1√
2
, 0), then

x4 + y4 − x2 + 2x2y2 + y2 = 0.
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Half-lemniscate
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The lemniscate has two branches.

Each one is the boundary of a convex set.

Do these sets have semidefinite representations?
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Rigid convexity fails

x

y
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The lemniscate fails to satisfy the Helton-Vinnikov rigid convexity condition.

The number of intersections is not constant (sometimes 2, or 4).

Thus, no representation of the form A0 + A1x + A2y � 0 can exist. If an

SDP description exists, it must use additional variables.
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SOS fails

SOS schemes (Schmüdgen, Putinar/Lasserre) give outer approximations,

but in this example they are never exact.
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SOS fails

SOS schemes (Schmüdgen, Putinar/Lasserre) give outer approximations,

but in this example they are never exact.
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Can prove that this happens for all values of k.
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Proof

Consider the linear functional x + y, which is nonnegative over S.

Its minimum over the set {(x, y)|p(x, y) = 0, x ≥ 0} is zero. However, if

x + y = s0(x, y) + s1(x, y) · x + t(x, y) · p(x, y)

evaluating at x = 0 we have

y = s̃0(y) + t̃(y)(y2 + y4),

from which a contradiction easily follows. �
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Proof

Consider the linear functional x + y, which is nonnegative over S.

Its minimum over the set {(x, y)|p(x, y) = 0, x ≥ 0} is zero. However, if

x + y = s0(x, y) + s1(x, y) · x + t(x, y) · p(x, y)

evaluating at x = 0 we have

y = s̃0(y) + t̃(y)(y2 + y4),

from which a contradiction easily follows. �

Hmmm. Perhaps the lemniscate cannot be represented?
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SDP representation (I)

The (half) lemniscate is the intersection of a paraboloid and a circular cone:

S = {x2 + y2 ≤ z} ∩ {y2 + z2 ≤ x2}
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SDP representation (II)
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Thus, the set above can be represented as:









z x y

x 1 0

y 0 1









� 0,









x y z

y x 0

z 0 x









� 0.
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SDP representation (II)
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Thus, the set above can be represented as:









z x y

x 1 0

y 0 1









� 0,









x y z

y x 0

z 0 x









� 0.

Can we obtain this in an algorithmic way?
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Algebraic curves and genus

A plane curve is a set in R
2 defined by a polynomial equation p(x, y) = 0.

An important invariant of an algebraic curve is its genus. This can be

defined in several ways. Classically, in terms of the degree d and the

singularities σ: g(C) :=
(

d−1
2

)

−
∑

σ δσ.

Notice that in C
2, an algebraic curve is actually a surface (a Riemann

surface). The genus is associated with the topological genus (number of

holes) of its Riemann surface.

More importantly (for us), a curve with genus zero is birationally equivalent

to the real line.
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Rational parametrizations

Every genus zero curve can be rationally parametrized : there exist rational

functions r(t), s(t), such that

p(r(t), s(t)) = 0.

Constructive procedures exist (e.g., Maple’s algcurves package).
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Rational parametrizations

Every genus zero curve can be rationally parametrized : there exist rational

functions r(t), s(t), such that

p(r(t), s(t)) = 0.

Constructive procedures exist (e.g., Maple’s algcurves package).

For our lemniscate, for instance, we have the bijective parametrization

t 7→

(

t(1 + t2)

1 + t4
,
t(1 − t2)

1 + t4

)

,

for t ∈ (−∞,∞).
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Examples:

Many interesting curves have genus zero:

Ellipses, Parabolas, Hyperbolas, Astroids, Cardioids, Descartes Folium, etc.
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Examples:

Many interesting curves have genus zero:

Ellipses, Parabolas, Hyperbolas, Astroids, Cardioids, Descartes Folium, etc.

Not every plane curve has genus zero (e.g, elliptic

curves, of genus 1). -6 -5 -4 -3 -2 -1 1 2
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Why is this good news?

When optimizing a linear function on the set, need to optimize

min
(x,y)∈C

ax + by ⇔ min
t∈I

ax(t) + by(t) = min
t∈I

r(t),

where r(t) = r1(t)
r2(t)

is a univariate rational function.
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Why is this good news?

When optimizing a linear function on the set, need to optimize

min
(x,y)∈C

ax + by ⇔ min
t∈I

ax(t) + by(t) = min
t∈I

r(t),

where r(t) = r1(t)
r2(t)

is a univariate rational function.

For univariate polynomials, we have PSD=SOS.

This means that, by clearing denominators, we can write an SDP relaxation

that is exact!

r(t) ≥ γ ⇔ r1(t) − γr2(t) ≥ 0 ⇔ r1(t) − γr2(t) is SOS

Same thing if t is contrained to (finite unions of) intervals.
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SDP representations

Thm: (P.) Let p(x, y) have genus zero. Consider the set S, defined as the

convex hull of a finite collection of closed segments of the curve. Then, S

has an exact SDP representation.
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SDP representations

Thm: (P.) Let p(x, y) have genus zero. Consider the set S, defined as the

convex hull of a finite collection of closed segments of the curve. Then, S

has an exact SDP representation.

x

y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

max d s.t. c1t(1 + t2) + c2t(1 − t2) − d(1 + t4) is SOS
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A dual interpretation

Writing the dual, we have that the set can be written as the pairs

(η1 + η3, η1 − η3), where (η0, η1, η2, η3, η4) satisfy









η0 η1 η2

η1 η2 η3

η2 η3 η4









� 0,





η1 η2

η2 η3



 � 0, η0 + η4 = 1.

The variables ηi can be interpreted as“generalized moments”with respect

to the weight function 1/(1 + x4), i.e.,

ηα =

∫

xα

1 + x4
dµ,

The LMI constraints impose

∫

q2(x)

1 + x4
dµ ≥ 0,

∫

xq2(x)

1 + x4
dµ ≥ 0.
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Extensions to higher dimensions

Natural extensions to rational curves/surfaces in higher dimension.

Consider O(3), the group of 3 × 3 orthogonal matrices of determinant one.

This has two connected components.

There is a well-known double-cover of SO(3) from SU(2) (or S3, the

four-dimensional sphere), that yields a rational parametrization of 3 × 3 real

orthogonal matrices (the quaternions).

We can use this to provide an SDP representation of the convex hull of
SO(3):








Z11 + Z22 − Z33 − Z44 2Z23 − 2Z14 2Z24 + 2Z13

2Z23 + 2Z14 Z11 − Z22 + Z33 − Z44 2Z34 − 2Z12

2Z24 − 2Z13 2Z34 + 2Z12 Z11 − Z22 − Z33 + Z44









, Z � 0, Tr Z = 1.

This is a convex set in R9.
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Representable sets

Two good families of SDP-representable plane curves: “rigidly convex”

(Helton-Vinnikov) and genus zero.

Are there others? Unifications?

Relations with earlier work of Scheiderer (and others)?
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Summary

A new class of SDP-representable sets.

A constructive procedure, interesting examples.

Appealing interpretations.

What is the role of singularities?

Extensions to higher genus?

How to obtain the“right”denominators in the Psatz?
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