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Abstract

We present an overview of the essential elements of semidefinite programming as a
computational tool for the analysis of systems and control problems. We make partic-
ular emphasis on general duality properties as providing suboptimality or infeasibility
certificates. Our focus is on the exciting developments occurred in the last few years,
including robust optimization, combinatorial optimization, and algebraic methods such
as sum-of-squares. These developments are illustrated with examples of applications
to control systems.
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1 Introduction

This paper, prepared as part of a mini-course to be given at the 2003 European Control
Conference, presents a self-contained treatment of the basics of semidefinite program-
ming, as well as an overview of some recent developments in convex optimization and
their application to control systems. There have been tremendous advances in theory,
numerical approaches, and applications in the past few years, with developments in-
cluding robust optimization, combinatorial optimization and integer programming, and
algebraic methods. Our objective in the course, and in this paper, is to highlight some of
these tremendously exciting developments, with an emphasis on control applications and
examples.

The roots of semidefinite programming can be traced back to both control theory
and combinatorial optimization, as well as the more classical research on optimization
of matrix eigenvalues. We are fortunate that many excellent works dealing with the
development and applications of SDP are available. In particular, we mention the well-
known work of Vandenberghe and Boyd [60] as a wonderful survey of the basic theory and
initial applications, and the handbook [64] for a comprehensive treatment of the many
aspects of the subject. Other survey works, covering different complementary aspects are
the early work by Alizadeh [1], Goemans [22], as well as the more recent ones due to
Todd [58], and Laurent and Rendl [33]. The upcoming book [11] presents a beautiful and



clear exposition of the theory, numerical approaches and broad applications of convex
programming. Other works dealing more specifically with semidefinite programming for
a control audience are the classical research monograph [10] and the subsequent [21].
Excellent available references that collect results at the different stages of the development
of SDPs from a control perspective are the review paper of Doyle, Packard, and Zhou [16]
and the lecture notes by Scherer and Weiland [53].

1.1 Notation

We make use of the following notation. The nonnegative orthant in R" is denoted by
R, defined by
R%} = {:CER" | 2; >0 for allizl,...,n},

and the positive orthant R, is
R, ={zeR"|z; >0foralli=1,...,n}.

The nonnegative orthant is a closed convex cone. It defines a partial ordering on R™ as
follows. For z,y € R" we write > y to mean x —y € R}. Similarly z > y means
x—y € R%} . The set of real symmetric n x n matrices is denoted S™. A matrix A € S™ is
called positive semidefinite if 27 Ax > 0 for all z € R", and is called positive definite
if 27 Az > 0 for all nonzero x € R™. The set of positive semidefinite matrices is denoted
S and the set of positive definite matrices is denoted by S ,. Both S} and S, are
convex cones. The closed convex cone S induces a partial order on S", and we write
A > Btomean A—B € S7. Similarly A >~ B means A— B € S . Both the inequality >
defined on R™ and the inequality = defined on S™ are called generalized inequalities.
We also use the notation A < 0 to mean —A > 0, and similarly for <, <, and <. A set
S C R" is called affine if A\x + (1 — \)y € S for all z,y € S and all A € R. It is called
convez if Az + (1 — ANy € S for all z,y € S and all XA € [0,1]. The ring of polynomials
in n variables with real coefficients is denoted R[z1, ..., zy].

2 Formulations for Optimization Problems

2.1 Optimization and Feasibility Problems

In this paper we consider two main types of problems; feasibility problems and optimiza-
tion problems. In a feasibility problem, we typically have a system of inequalities defined
by functions f; : R™ — R for i = 1,...,m. We are then interested in the set

P:{xER"|fi(x)SOforallizl,...,m}. (1)

Typically we would like to know if the set P is non-empty; that is, if there exists x € R"”
which simultaneously satisfies all of the inequalities. Such a point is called a feasible
point and the set P is then called feasible. If P is not feasible, it is called infeasible.
If P is known to be feasible, it is a further and typically more computationally difficult
question to find a feasible z. Feasibility problems may also be defined using generalized
inequalities, where the functions f; map into R™ or S™, and the inequalities are induced
by arbitrary proper cones.

In an optimization problem, we have an additional function fy : R® — R, and would
like to solve the following problem.

minimize fo(x)

subject to zxeP

(2)



There may also be additional linear equality constraints of the form Az = b. These can
be incorporated in the following development using minor additions, and we omit them
to simplify the presentation.

2.2 Semidefinite Programming

A semidefinite program is a generalization of a linear program (LP), where the inequality
constraints in the latter are replaced by generalized inequalities corresponding to the cone
of positive semidefinite matrices.

Concretely, a semidefinite program (SDP) in the pure primal form is defined as the
optimization problem

minimize trace(CX)
subject to trace(4;X) =0b; foralli=1,...,m (3)
X =0,
where X € S™ is the decision variable, b € R™ and C, Ay,..., A, € S™ are given symmet-

ric matrices. There are m affine constraints among the entries of the positive semidefinite
matrix X given by the equality relations. The crucial feature of semidefinite programs is
that the feasible set defined by the constraints above is always convex. This is therefore
a convex optimization problem, since the objective function is linear.

There are several alternative ways to write an SDP. We choose the above form since it
exactly parallels the standard form used for linear programming, and is currently the most
commonly used in the optimization community. Much of the literature on the use of SDPs
for control has used a slightly different form with free variables, corresponding either a
parametrization of the solution set (see below) or to the standard dual SDP discussed in
Section 3.3. We join here the strong trend towards this unification of terminology.

We can understand the geometry of semidefinite programs in the following way. For a
square matrix X, let X be the k x k submatrix consisting of the first k& rows and columns
of X. Then

X >0 if and only if det(Xy) >0forall k=1,...,n.

That is, in principle we can replace the positivity condition in (3) by a set of polynomial
inequalities in the entries of X. Note that, in the case of non-strict inequalities, the
condition must be modified to include all minors, not just the principal ones. Sets defined
by polynomial inequalities and equations are called semialgebraic sets. We therefore see
that the feasible set defined by an SDP is a semialgebraic set. This construction is not
too useful practically; however we shall see later that the reverse construction (converting
a semialgebraic set to an SDP) is very useful. Unlike the LP case where the feasible
sets are polyhedra, the feasible sets of SDPs (called spectrahedra in [48]) can have curved
faces, together with sharp corners where faces intersect. For this reason, or equivalently,
because of nondifferentiability of the eigenvalues, the problem (3), while convex, is not
smooth.

An example is as follows. Consider the feasible set defined by X > 0 and the equality
constraints

X1 — X2+ Xo0=7, X33—-Xpp+Xop=4, Xi3=1, Xo3=0.

These four affine constraints define a two-dimensional matrix subspace, since dim(S?) = 6,
and 6 — 4 = 2. For easier visualization, we find a parametrization of this two-dimensional



Figure 1: Example feasible set for an SDP

subspace in terms of the free variables (z,y), obtaining that the feasible set is

3—z  —(z+y) 1
XeS" | X=|—-(z+y) 44—y 0|,X=0,z,yeR (4)
1 0 —x

This set may readily be expressed as a semidefinite program of the form (3). By looking
at the determinants of its principal submatrices, we have X satisfies (4) if and only if the
parameters x and y simultaneously satisfy the polynomial inequalities

3—x>0 (O)
B-x)d-y)—(z+y°>0 (4)
—2((3-z)d-y)~(z+y)*)~(4-y) >0 (B)

The feasible set of x and y is shown in Figure 1.

We have seen that the feasible sets of SDPs are convex and semialgebraic. A natural
question is therefore whether every convex semialgebraic set is representable by an SDP.
Without using additional variables this is not always possible, as there are nontrivial
obstructions that must be avoided. We refer the reader to the recent result by Helton
and Vinnikov [27] for a complete answer in the two-dimensional case. The results in
Section 7 can be used to constructively build arbitrarily close approximations.

2.3 Other Classes of Optimization Problems

Semidefinite programs define a fairly wide class of optimization problems. However,
it is sometimes convenient to further refine the classification. This leads to significant
computational benefits, since some subclasses of SDP possess highly efficient specialized
algorithms. This also provides analytical benefits, since in this case further algebraic
or geometric properties may provide additional insight (for instance, the polyhedrality
of LP).

The language of conic programming [39] provides a convenient framework to analyze
these issues. By posing an abstract optimization problem of the form

minimize (C, X)
subject to AX =0,
X ek,



where X is an element of a vector space V, and A : V' — R is a linear operator and K is a
given proper cone, a whole collection of different problems can be analyzed simultaneously.
Among the classes of problems that can be interpreted as particular cases of the general
conic formulation we have linear programs, second-order cone programs (SOCP), and SDP,
when we take the cone K to be the nonnegative orthant R’ , the second order cone in n
variables, or the PSD cone S?. We have then the following natural inclusion relationship
among the different optimization classes.

Lp C SOCP <C SDP.

For numerical efficiency reasons, we want to formulate and solve a given problem in as
simplified a setting as possible.

Second-order cone programs partially enjoy the expressive modeling power that non-
polyhedral cones such as the PSD cone have, but at the same time share with LP the
scalability properties necessary for solving large-scale instances (of the order of tens of
thousands of variables), that are currently out of reach for SDP. More details on the
theory and applications of second-order cone programming can be found in [39, 34, 2].

We are confident that the application areas where SOCP techniques are used will
increase dramatically in the future, either as the natural modeling framework, or as a
computational efficient device to approximate an underlying more complicated set, such
as the SDP cone.

The case of optimization problems on the cone of sum of squares (SOS) polynomials,
to be discussed in Section 7, has attracted lately the attention of several researchers.
From a strictly mathematical viewpoint it is equivalent to SDP; SDP corresponds to
nonnegativity conditions on quadratic forms, which coincide with the SOS forms, and
conversely, we can reformulate SOS programs as SDPs. Even though the possibilities of
numerically exploiting the structure of SOS programs is not yet fully understood, there
are at least a couple of reasons why it is convenient to think of them as a distinguished
category of problems; the richness of the underlying algebraic structure, as well their
convenient modeling flexibility.

Yet another interesting class, that only in the last few years has begun to be explored,
is that of optimization problems involving hyperbolic polynomials and their associated
cones [24, 5], which are of great theoretical interest. Research in this area is still at its early
stage, with some open fundamental mathematical questions, and practical applications
still under investigation.

3 Certificates and duality

3.1 Duality for Optimization Problems

If we have an optimization in the form (2), there is a useful and important duality theory.
Define the Lagrangian function L :R" x R™ — R by

L(z,\) = fo(z) + Z i fi(x) for all z € R", A € R™.
i=1
and define the set D by
D= {)\ ER™ [ AZ0, inf L(w,\)is ﬁnite}.
zeR™
Then define the Lagrange dual function g: D — R by

g(\) = inﬂ{ Lz, \) for all A € D,
:EG n



and the dual problem as
maximize  g(})
subject to AeD.

(5)

A point A € D is called dual feasible. The importance of the dual problem is that, given
any dual feasible A, we have a lower bound on the set of achievable values of the primal
problem. That is, if  is primal feasible, and A is dual feasible, we have

g(A) < fo(x).
This is known as weak duality, and follows because, for any A € D and = € P, we have

g(\) < Lz, \)
= fo() +Z)\z‘fz‘($)
< fo(z).

There are also important cases under which the optimal value of the dual problem (5) is
equal to the optimal value of the primal problem (2), called strong duality. This holds
if the functions fy,..., f; are convex, and further standard conditions, called constraint
qualifications hold. An example of a typical constraint qualification is that if there exists
x € R™ which is strictly feasible, that is, f;(z) < 0 for allé = 1,..., m, then strong duality
holds. Note that we assume that the functions f; are defined on all R".

3.2 Duality for Feasibility Problems

For feasibility problems, the Lagrange dual function is

g(A) = mleﬂan ; Aifi(z)  forall X € R™,

and the function g is assigned the value —oo if the minimization above is unbounded
below. We define the set

D:{/\eRm}/\ZO,g(/\)>O}. (6)

This gives the theorem of alternatives, which states that at most one of P and D is feasible.
To show this, suppose P is non-empty, and x € P. Then we have, for all A € R™,

and so D is empty. The primal and dual feasibility problems defined by P and D are called
weak alternatives. Note that it may happen that both P and D are infeasible. Again, if
the functions fi, ..., fi, are convex, then under suitable constraint qualifications the sets
P and D are strong alternatives; exactly one of P or D is non-empty.

Certificates of infeasibility. The theorem of alternatives above, and its generaliza-
tions discussed below, are of great importance. For many practical problems, one would
like to develop an algorithm to find a feasible point . Once such an z is found, verifying



that it satisfies the desired conditions is straightforward, since one may evaluate the func-
tions f1,..., fm at x and check that they are all negative. However, if a feasible point
x cannot be found, one would like to demonstrate that no solution exists, and that the
problem specification must be altered. The dual feasibility problem gives precisely this; if
instead one can find a dual feasible point, then this provides a certificate that no solution
to the primal system of inequalities exists. We emphasize that duality is a property by
which infeasibility (or suboptimality) can be concisely certified.

3.3 Duality in Semidefinite Programming

While we will not delve into the details here, it is possible to extend the duality theory
described in the previous subsection to the case of generalized inequalities. Since SDP
naturally falls within this framework, it is not surprising then that semidefinite programs,
being convex optimization problems, enjoy a rich duality structure.
The standard dual associated with the primal program (3) is also a semidefinite pro-
gram, given by
maximize bly

U 7
subject to ZyiAi =< C, @
i=1

where the dual variable y € R™. As above we have weak duality; any feasible solution
of the dual provides a lower bound on the achievable values of the primal; conversely,
feasible primal solutions give upper bounds on dual solutions. For SDPs, this may be
shown directly, since for any primal feasible X and dual feasible y we have that the
difference between the two objective functions satisfies

trace(CX) — bTy = trace(CX) — Z y; trace(A; X)

i=1

= trace((C - éyiAi)X)

>0

9

with the last inequality being true because of self-duality of the PSD cone. The following
result expresses a strong duality property possessed by semidefinite programs.

Theorem 1. Consider the primal-dual SDP pair (3) and (7). If either feasible set has
has a nonempty interior, then for every e > 0, there exist feasible X,y such that

trace(CTX) — by < e.

Furthermore, if both feasible sets have nonempty interiors, then the optimal solutions are
achieved by some Xy, Y.

4 Semidefinite Programming and Control

There has been extensive application of SDP techniques for analysis and synthesis for
control systems, and the field is still experiencing a continuous growth. Significant changes
have resulted from this, one of the most important being a radical change in what it means
to have solved a control problem. Historically, control problems have been considered
solved when they have been reduced to methods computable with the technology of the
time; at various points in history, this has meant a reduction to equations soluble via



graphical plots (such as root-locus), and a reduction to linear algebraic systems, such as
Riccati equations. Nowadays it is almost universally accepted that the reduction of a
question to an easily tractable convex optimization problem (in particular, a semidefinite
program) constitutes a solution.

It is also widely accepted that matrix inequalities and duality are inextricably linked
with the study of linear control systems; this is witnessed by the fundamental role played
by the Lyapunov and Riccati inequalities [63, 4]. Very significant work by many re-
searchers has continuously expanded these boundaries; robustness analysis techniques
based on quadratic stability, multipliers, structured singular values, or integral quadratic
constraints (IQCs), as well as the corresponding synthesis methodologies, have dealt with
uncertainties and nonlinearities, and can all be cast under the convenient computational
machinery of matrix inequalities. Given our purposes, we will not go here into a detailed
survey of the many available results, but instead refer the reader to the extensive available
literature, a good start being the general reference works mentioned in the introduction.
Also, as a representative example that illustrates several of the now standard techniques
available, we present next a simple case of multiobjective design.

Consider the linear system

x(t) = Ax(t) + B,z(t) + Byul(t)
w(t) = Cz(t).

We are interested in designing a state-feedback controller ©u = Kx that minimizes the Ho
norm of the transfer function T, from the input z to the output w. Additionally, we
would like the poles of the closed-loop system to be located in a specific region of the
complex plane, described by the feasible set of the linear matrix inequality

P={z|P+Rz+R"2-0}, PeSF ReR

where the inequality should be interpreted as forcing the Hermitian matrix on the left-
hand side to be positive semidefinite. It is well known [10, 15, 53] that the two desired
design specifications ||T,yll2 < v and o(A + B, K) C P can be expressed as the SDP
conditions

=<0

— )

T T
trace(Z) < 72, AaXy +X1Acl X,C ]

X, B.
CX, I [ ] =3

BT z|="

and
PR Xo+R®AqXe+RT @ XoAL =0, Xy >0,

respectively, where A, = A+ B, K is the closed-loop state matrix, and ® is the Kronecker
product.

The conditions here are not yet affine in the decision variables, since there are bilinear
terms such as KX,. To convert this into a tractable synthesis problem, a (possibly
conservative) approach is to assume X; = Xo = X, and then introduce the variable
Y =KX, s0 Ay X, = AuXs = AX + B,Y. The system to be solved reduces now to

minimize trace(Z)
: (AX + B,Y) + (AX + B,Y)T XxcC7T
subject to 0> [ cxX 7
X B,
=[5 7]
0<P®X+R®(AX + B,Y) + RT ® (AX 4+ B,Y)T
0<X



which is a bona-fide semidefinite program. After solving it numerically, the controller can
be recovered from the solution using K = Y X 1.

As a simple illustration, assume the numerical data

[ ) mefl ) e

and the region in the complex plane defined by |z + 2| < 1, i.e.,

1 2 0 1
Pl i) -]
Ignoring the constraint on the closed-loop pole locations, the optimal controller achieves
a value of (trace Z)2 = ||Tyy||2 arbitrarily close to v/10 ~ 3.16, but the gains K grow
unboundedly, as does the magnitude of one of the poles. Imposing now the left-over
constraint, the optimal solution achieves a value of (trace Z )% ~ 21.26. This is only an
upper bound on the Hs norm; the actual achieved value is ||Ty,||2 = 7.57, with the final
controller being K = [—9.92, 35], and closed-loop poles at —1.96 + 0.66;.

Several improved modifications of these methods are also available, including better
ways of handling the requirement on a common Lyapunov function, and extensions to
multiobjective output feedback; once again, we refer the reader to the cited bibliography
for the details.

5 Combinatorial Optimization

Many well-known problems in linear control theory have the property that they can
be exactly reformulated in terms of semidefinite programs, although in some cases the
required transformations can be far from obvious. When attempting to extend convexity-
based methods to larger classes of problems, a complete characterization of the solution set
via a simple SDP may no longer be possible. The difficulties arise in two different (though
related) fronts. On the one hand, it may be computationally difficult to find feasible
points, that show that the problem indeed has a solution; on the other hand, there may
not exist a concise way of demonstrating infeasibility. There is a clear interdependence
of these two issues, since if the first question were always easy, then the second would
follow, but they are not equivalent. For the case of feasibility problems defined by convex
functions, the first property is satisfied since we can efficiently search for solutions. As we
have seen, convex duality gives us a useful way of certifying the nonexistence of solutions.
After introducing the formal machinery of a computational model and polynomial-time
algorithms to make their meaning more precise, these questions play an essential role in
some of the central issues in computational complexity; whether P=NP and NP=co-NP,
respectively [20].

Note also that convexity properties by themselves do not automatically imply
polynomial-time solvability. The specific representation of the feasible set plays a crucial
role here, and the existing results require the availability of either subgradients [55], or a
self-concordant barrier function [39]. There are many examples of optimization problems
over (possibly implicitly given) convex sets, where all these operations, or even checking
membership, are computationally hard.

Computational hardness arises in many cases as a direct consequence of the combi-
natorial nature of the problem. When this happens, a class of approximate methods,
usually called convex relazations, are typically used to either bound the achievable opti-
mal values, or obtain reasonably good candidate solutions. While relaxations based on
linear programming have been and still are extensively used in many application areas

10



such as integer programming, in the last few years a vast collection of new and powerful
SDP-based relaxations have attracted the attention of many researchers.

An important and well-known example where these SDP relaxations are extensively
used is boolean programming. Consider the NP-hard problem of minimizing a quadratic
form over the discrete set given by the vertices of a hypercube, i.e.,

minimize =T Qux

subject to x; € {+1,-1} foralli=1,...,n

(8)

where @ € S™. Notice that the feasible set is discrete and has 2™ points, so convexity-
based techniques would seem not to be applicable. However, a lower bound on the optimal
solution can be found by solving the primal-dual pair of SDPs given by

minimize trace(QX)
subject to X>0 9)
Xi=1 foralli=1,...,n

and its dual

maximize trace(A)
subject to A diagonal (10)
QO—A+=0

This pair of SDPs have several possible interpretations, extensively discussed in the liter-
ature. First notice, that, on the primal side, letting X = xz”, we can equivalently rewrite
the original objective function as 7 Qz = trace(Qzz’) = trace @X. The feasible set is
given now by X = 0, X;; = 1, rank(X) = 1. Dropping the rank constraint, we obtain
directly the SDP (9).

Another interpretation is given from the dual SDP; an argument based on Lagrangian
duality applied to the constraints ? — 1 = 0 is enough. We have

L(z,\) = 27 Qx — Z (2?2 — 1) = 27(Q — D)z + trace A.

For L to be bounded below, the condition Q — D > 0 is required, and therefore the SDP
(10) directly follows.

This relaxation can also be interpreted as a specific case of the so-called S-procedure;
see [10] and the references therein. Several important results are available regarding
the performance of these relaxations; the celebrated Goemans-Williamson approximation
scheme for MAXCUT [23] relies exactly on this relaxation, followed by a randomized
rounding step. For many other related problems, it has been possible to prove a priori
approximation guarantees.

Combinatorial Optimization and Control. An example of combinatorial optimiza-
tion techniques applied to control is as follows. Consider the problem of designing an
optimal open-loop input for the single-input discrete-time system

z(t +1) = Az(t) + Bu(t)

y(t) = Ca(t)
for t = 0,...,N, where the one would like to minimize the ¢y criterion g(u) =
lly(t) — yr(t)||?, with y,. being the desired reference output trajectory, and the input wu(t)
constrained by |u(t)] = 1 for all ¢ = 0,..., N. In other words, we have an open-loop

LQR-type problem, but where the input is bang-bang, taking only two possible values.

11



It is clear that a simple lower bound on the optimal value can be obtained from the
solution of an associated unconstrained LQR problem. We are interested in computing
better, less conservative lower bounds on the achievable value of ¢(u). We can formulate
the search for such a lower bound as an SDP. For notational simplicity, let ¢(u) = u? Qu+
2rTu+ s, where the expressions of @, r, s can be easily obtained from those of A4, B, C' and
yr. We are thus interested in bounding the value of the following optimization problem.

T
C U Q r|lu
minimize L} LT S} L]
subject to  wu; € {+1,—1} for all 4

Let ¢* denote the optimal value of this problem. Similar to the one described earlier, a
simple SDP bound on the optimal value can be obtained as follows. Let ¢, be the optimal

value of
maximize trace(D)

. -D r
—
subject to [ T s} =0,
where D is a diagonal matrix. Clearly ¢. < ¢*, as can easily be seen by multiplying the
matrix inequality left and right by [uT 1} and its transpose. Notice also that ¢, > 0,
since D = 0 is always a feasible point.

6 Robust Optimization

An important development in recent years in the field of robust optimization has been
robust semidefinite programming. Here one has a parametrized family of linear matrix
inequalities, and one would like to find a point which is simultaneously feasible for the
whole family.

We give here an example from finite-horizon control, which may be used, for example,
in receding horizon control. We have a linear dynamical system

(11)

x(t+ 1) = Ax(t) + Byw(t) + Byu(t)
y(t) = Cx(t)
where z(t) € R”, u(t) € R™ and w(t) € R™ for all ¢t = 0,..., N, and the system
evolves on the discrete-time interval [0, N]. We would like to design an input signal
u(0),...,u(N — 1) so that the system output y tracks a desired signal yqes. Define
u(0) w(0) y(0) Yaes(0)
u=| w=| v=| | wme=|

u(N —1) w(N —1) y(N) Yaes (V)

Suppose the set of disturbances w is given by

W:{weRN"w | w(®)]l2 < whnax forallt:O,...,N—l}.

In this way the disturbances are specified so that at each time ¢ the vector w(t) lies within
a Euclidean ball. Such sets, and generalizations thereof, are called ellipsoidal uncertainty
in [6].

We would like to find an input sequence u which solves

min max ||y — yaes|2

12



As standard, one may construct block-Toeplitz matrices T' and S such that y = Tu + Sw
for all u, y satisfying the dynamics (11), and so we can write this problem as

i Tu+ Sw — Ydes 12

min max ITu~+ Sw — ydes||2 (12)

This problem is therefore a robust least-squares problem; recent work [17] in this area has

produced solutions using semidefinite programming for this and more general versions,

and certain classes of this problem may be solved using second-order cone program-
ming [34].

Let s1,...,58Nn, be the columns of S, and define
_ t (T — Yaes)” , _ 10 SzT .
Fy(u) = TU — Yo I Fi(u) = s 0 foralli=1,..., Nny.

Then problem (12) is equivalent to the robust semidefinite program
minimize t

Nnw (13)
subject to Fo(u) + Z w; Fi(u) = 0 for all w € W,
i=1

where w; is the i’th (scalar) element of w. An upper bound on the solution of this robust
SDP, along with an input u that achieves it, may be found by solving the following SDP
in the variables t,u, Py,..., Pn,Q1,...,QN.

minimize t
B Fo-tnp+r -+ Fing,—1
Fif n [
subject to ( 1') wtl @ =0foralli=1,...,N
: . (14)
L Finw—l Qz
N
t (Tu — Yaes) ™ 1 _ _
_TU‘ — Ydes 1 B 5 Z(R + QZ) = 0.

Given a feasible solution, we have

max ||Tu+ Sw — yaes||2 < t2.
weW

The particular problem shown above is of course just an example of the application of
the robust SDP approach to control. Many other problems for which one has synthesis
conditions in terms of linear matrix inequalities may be similarly generalized to construct
robust synthesis conditions.

7 Sum of Squares Methods

Many optimization problems have feasible sets specified by polynomial equations and
inequalities. This includes the feasible set of a semidefinite program, as well as many
more general classes. Finite integer constraints can be easily expressed as polynomial
equations; for example, 2 € {0, 1} is equivalent to the constraint equation z(x — 1) = 0.
Specifically, a (basic) semialgebraic set is a subset of R defined by finite number of
polynomial equations and inequalities. For example, the subset of R? defined by

{(z1,22) ER? |27+ 23 <1, 2} —22 <0}
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is a semialgebraic set. Given a set of polynomials specifying such a set, one would like
to find either a feasible point or a certificate of infeasibility. Clearly, a semialgebraic set
need not be convex, and in general, testing feasibility of such sets is intractable.

Recent developments have led to an approach using semidefinite programming to test
feasibility of semialgebraic sets [43, 44, 45] (see also [32] for a dual approach, and [14]). By
solving a semidefinite program, one may obtain a certificate of infeasibility for an infeasible
semialgebraic set. The size of this certificate (i.e., the size of the SDP to be solved) may
depend on the specific set. One of the appealing features of this approach is that there is
a hierarchy of such certificates, allowing one to solve a sequence of semidefinite programs
in an attempt to prove infeasibility of a semialgebraic set.

The simplest case is when we are concerned with a set defined by a single polynomial
inequality, as follows. Given f € R[zi,...,x,], we would like to know if there exists
x € R™ such that f(x) < 0. If there does not exist such an x, we have f(z) > 0 for all
and f is called positive semidefinite, or PSD.

An example is as follows. Suppose f is given by
f(z) = 4ot + 4x3xy — 72223 — 22123 4 1023,
and we would like to determine the feasibility of the set
P={zeR*| f(z)<0}.

Assume now that there exists a matrix @ € S* such that

22 T 2
1 qi1 412 413 xy
fl@)=| 23 qi2 q22  q23 3 (15)
12 q13 g23 Q33 T1T2
= 2" (2)Qz(x),

In general, there are many such @, since this is just a system of linear equations in the
entries of @), as can be seen by matching coefficients on the right- and the left-hand sides.
However, an important consequence is the following; if we can find a PSD @ that satisfies
(15), then f(x) would have to take only nonnegative values, so one immediately has a
proof that there cannot exist a real x € P and the matrix ) is then a certificate of
infeasibility of the semialgebraic set P.

In the example above, we can parametrize the set of possible @ by

x% r 4 =\ 2 x%

flz)=| 3 -\ 10 -1 3
T1T2 2 -1 =742\ X129

for all A € R, and therefore if there exists A € R such that

4 =) 2
~X 10 -1 |»=o,
2 —1 —T+2\

then P is infeasible. This is a semidefinite program. In this case, picking A = 6 gives a
positive semidefinite matrix, and therefore a valid proof of the infeasibility of the set P.

This approach is quite general. For every polynomial of degree d in n variables f €
Rlx1,...,2n], we form the vector of monomials z(x) which has as elements all monomials
of degree d/2 or less. In fact, fewer monomials may be included, which gives a reduced-
size SDP, depending on the particular polynomial f. The set of matrices @) for which
f(x) = 2(x)TQz(x) for all x is an affine set, and is simple to construct.
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The above condition can be interpreted as follows. If there exists a positive semidef-
inite matrix @ such that f(z) = 2(z)7Qz(z), then we may factorize Q. Every positive
semidefinite matrix  may be factorized as Q = VV7T, where V € R"*" is a real matrix,
and r is the rank of Q. With vq,..., v, the columns of V', we have

f(@) = 2(2)" Qx(x)
= (vl =(2))”
i=1

and in this case we may choose a factorization with

0 2
V=11 -3|,
2 1

giving
f(z) = (23 + 22122)% + (223 — 323 + 2120)2

which is a sum-of-squares (SOS) decomposition of f ([46, 51]). From this decomposition,
it is immediately clear that there cannot exist a feasible x, and the decomposition (char-
acterized by @) is clearly a certificate of infeasibility. Hence we may decide whether a
polynomial is a sum-of-squares by solving a semidefinite program.

The natural question to ask, when P infeasible, is whether there always exists such
a certificate of infeasibility. Expressed another way, is every PSD polynomial a sum of
squares? It was shown by Hilbert in 1888 that in general this is not the case; there exist
polynomials which are PSD but not SOS. This is to be expected, since it is known that
testing feasibility of a semialgebraic set (even if it is defined by just one polynomial) is
intractable; but if every PSD polynomial was SOS then feasibility would be testable using
a simple semidefinite program. An example of a polynomial which is PSD, but not SOS,
is the well-known Motzkin form

M(z,y,2) = xty? + 22y + 20 — 3229?22,

Besides the more general methods in the next section, there is a further result that
gives a method for bridging the gap between SOS and PSD polynomials. It was shown
by Reznick [50] that if f(x) > 0 for all x € R™, then there exists some r such that

n T
oY)
i=1
is a sum-of-squares. The coefficients of this polynomial are affine functions of the coef-
ficients of f, and so for each r one may test whether this product is SOS by solving a
semidefinite program. This gives a sequence of semidefinite programs, of growing dimen-
sion, which may be used to test whether a given polynomial is positive definite.

An important remaining question is how to find feasible points  when P is feasible.
This is a distinct question from finding a certificate of infeasibility; however the dual
problem to the above SDP can be used in certain cases to do this.

7.1 Generalized Duality and the Positivstellensatz

We would now like to consider how to certify infeasibility for semialgebraic sets defined
by multiple polynomial inequalities, that is sets P of the form

P:{xER”|fi(x)ZOforallizl,...,m}, (16)
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where the functions f; are polynomials on R™. For convex feasibility problems which
satisfy a constraint qualification, the theorem of alternatives provides a necessary and
sufficient condition for feasibility of the primal. However, for semialgebraic sets, the
feasibility problems are defined by non-convex functions f1,..., f,,. In this case, the
following stronger result is very useful. Define the set of SOS polynomials on R™ by P&
by

Phs = { s € R[z1,...,2n] | s is a sum-of-squares }

Define the functional G : P

SOS

— R by

G(S1,.-.,8m) = sup si(z) fi(x) for all sq,...,sm € Pag
xER™ i—1

Then define the dual set of functions

Dlz{(sh...,sm) | si € P, G(sl,...,sm)<0}

Then P and D; are weak alternatives; at most one of P and D; is non-empty. To see
this, suppose that P is feasible, and x € P. Then, for all sy, ..., s, € Pis, we have

G(s1,...,5m) si(x) fi(x)

1

Y

and hence D; is empty. This refutation is a simple form of weak duality.

The Positivstellensatz. A slight modification of this result is as follows. If there exist
sum-of-squares polynomials sg, s1, ..., Sp, such that

si(z) fi(x) + so(x) +1=0 (17)
1

n

3

then the set P is infeasible. This sufficient condition for infeasibility of P may be tested
using semidefinite programming. One picks a fixed degree d over which to search for
SOS polynomials s1, ..., Sy, satisfying this condition. The decision variables are the
coefficients of the polynomials and the constraints that the s; be SOS are imposed as
positive semidefiniteness constraints. Clearly, if we can find a set of functions s1,..., s
satisfying (17) then the set P is infeasible. A similar, but stronger condition is

si(@)filw) + D> tij(@) fi(@) fi (@) + so(z) +1=0 (18)
i=1 i=1 j=1
which again may be tested via SDP. Refutations of this form have very strong duality
properties. It can be shown that, by allowing for unrestricted degrees of the polynomials s;
and t;;, and arbitrary products of f;, one may always construct a refutation for any given
infeasible semialgebraic set P using SOS polynomials [8]. No assumptions whatsoever on
the polynomials f; are required. This result is called the Positivstellensatz. Software for
testing feasibility of semialgebraic sets using the above methods is available in the form
of a Matlab toolbox, called SOSTOOLS [47].
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Applications. Testing feasibility of semialgebraic sets has important applications in
control and combinatorial optimization. For example, the integer program of (8) can be
formulated as

minimize t
subject to eTQr <t (19)
:v?—lefor alli=1,...,n

hence we check feasibility for a fixed ¢ using the above Positivstellensatz approach. In
fact, the relaxation discussed in that section exactly coincides with that obtained using
the first level of the general approach just presented.

SOS and Lyapunov functions. The possibility of reformulating conditions for a poly-
nomial to be a sum-of-squares as an SDP is very useful, since we can use the SOS property
in a control context as a convenient sufficient condition for polynomial nonnegativity. Re-
cent work has applied the sum-of-squares approach to the problem of finding a Lyapunov
function for nonlinear systems [43, 41, 57]. This approach allows one to search over affinely
parametrized polynomial or rational Lyapunov functions for systems with dynamics of
the form
z;(t) = fi(z(t)) foralli=1,...,n

where the functions f; are polynomials or rational functions. Then the condition that
the Lyapunov function be positive, and that its Lie derivative be negative, are both
directly imposed as sum-of-squares constraints in terms of the coefficients of the Lyapunov
function.

As an example, we consider the following system, suggested by M. Krstié.
t=-c+(1+a)y
y=—(14+2x)z.

Using SOSTOOLS [47] we easily find a quartic polynomial Lyapunov function, which
after rounding (for purely cosmetic reasons) is given by

V(z,y) = 62 — 2zy + 8y° — 2° + 3z* + 62%y® 4 3y™.

It can be readily verified that both V(z,y) and (—V(z,y)) are SOS, since

T
x 6 -1 0 0 0| |=z 217 T 10 1 1 1 -
Y -1 8 0 0 -1 Y . 1 9 1 _o
V = |22 0 0 3 0 0 x? , —V= y2 y2 )
x -1 1 12 0] (=
Ty 0 0 0 6 0] |xy N 1 _o 0 ol 1o
y? 0 -1 0 0 3| |y Y Y

and the matrices in the expression above are positive definite. Similar approaches may
also be used for finding Lyapunov functionals for certain classes of hybrid systems.

8 Exploiting Control-Specific Structure

The SDP problems that arise from the analysis and synthesis of linear control systems,
usually have a very specific structure, that should be exploited to achieve the best possible
computational efficiency. In particular, the ubiquity of Lyapunov-style terms of the form
ATP + PA (or ATPA — P, in the discrete case) suggest that generic implementations
using the SDP standard forms described in (3) and (7) will not be optimal, unless the
extra structure is somehow taken into account.
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An important subclass for which several customized algorithms are already available
is that of optimization problems with an structure induced by the Kalman-Yakubovich-
Popov lemma (see [63, 49] and the references therein). This fundamental result establishes
the equivalence between a frequency domain inequality and the feasibility of a particu-
lar SDP. It is an important generalization of classical linear control results, such as the
bounded real and positive real lemmas, and the cornerstone of several analysis and syn-
thesis results.

The harder direction of the KYP lemma, that the frequency domain inequality implies
the existence of a storage function, can be interpreted as a lossless property of an asso-
ciated SDP relaxation, much in the style of the ones presented in Section 5. Yet another
related reformulation of the KYP lemma is given by the equivalence of the structured
singular value p and its upper bound in the case where there is a full block and one scalar
block [40].

In the case of systems with large state dimension n, the KYP approach is not very
efficient, since the matrix variable representing the storage function that appears in the
LMI has (n? +n)/2 components, and therefore the computational requirements are quite
large, even for medium sized problems.

Several different methods have been proposed recently for the efficient solution of this
and related kind of problems. The approaches by Kao et al. in [29, 30], Parrilo [42] and
Varga and Parrilo [62] all rely on outer approximation methods based on a discretization
of the frequency axis, with the former using linear programming and the latter using
SDP cuts. The scheme by Hansson and Vandenberghe [25] is based on the interior point
machinery, but cleverly exploits the Lyapunov structure at each iteration at the linear
algebra level. Rotea and D’Amato exploit several properties of the u SDP upper bound
to obtain significant speed-ups in the computation of the worst-case frequency response
[52]. Additionally, methods for taking advantage of autocorrelation structure have also
been developed by Alkire and Vandenberghe in [3].

9 Available Implementations

Despite the impressive advances on the theoretical and modeling aspects of SDP, much
of its impact in applications has undoubtedly been a direct consequence of the efforts
of many researchers in producing and making available good quality software. In this
section we give pointers to and discuss briefly some of the current computational tools
for effectively formulating and solving SDPs.

9.1 Solvers

From a computational viewpoint, semidefinite programs can be efficiently solved, both
in theory and in practice. In the last few years, research on SDP has experienced an
explosive growth, particularly in the areas of algorithms and applications. Two of the
main reasons for this practical impact are the versatility of the problem formulation, and
the availability of high-quality software,

For applications of semidefinite programming to control, the pioneering codes were
the MATLAB LMI toolbox [19] and SP [61]. Today there is a wide variety of excellent
SDP solvers to choose from. For general-purpose small- and medium-scale problems,
interior-point based solvers are probably the best choice, combining good performance
and accuracy, primal and dual solutions, as well as reasonable speed-ups depending on the
problem sparsity. We mention a few of the best-known ones: SeDuMi [56], SDPT3 [59],
SDPA [18], CSDP [9], DSDP [7], among others. Other good pointers to the available
SDP solvers are the SDP webpages of C. Helmberg and H. Wolkowicz.
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Several approaches other than interior-point methods have also been investigated, a
few of them being bundle methods [26, 37], or nonlinear approaches based on special
factorizations [13]. This research has increased steadily in the last few years. The codes
based on these new developments are the only ones achieving satisfactory performance for
some of the very large and structured problems arising from combinatorial optimization,
with MAXCUT and the Lovéasz theta function being prime examples.

A comprehensive benchmarking effort of the performance of several solvers in a repre-
sentative collection of problems (including some arising from control) has been recently
reported by Hans Mittelmann in [38]; an up-to-date version of the results is available at
the web page http://plato.la.asu.edu/bench.html.

The consensus and experience among researchers, backed up by the hard data men-
tioned, seems to be indicate that there is no algorithm or code that uniformly outperforms
all others. While most software packages will work satisfactorily on different problems,
there may be (sometimes significant) differences in the computation times. It is therefore
good advice to try different codes at the initial stages of solving a large-scale problem;
not only we benefit of the possible speed differences, but can also validate the solutions
against each other. The availability of SDP parsers such as the ones described in the
following subsection can notably help during this migration process.

9.2 Parsers

The solvers described in the previous subsections usually take as inputs either text files
containing a problem description, or directly the matrices (A4;,b,c) corresponding to the
standard primal/dual formulation. Needless to say, this is often inconvenient at the
initial modeling and solution stages. A natural solution is therefore to formulate the
problem in a more neutral description, that can later be automatically translated to fit
the requirements of each solver. For generic optimization problems, this has indeed been
the approach of much of the operations research community, which has developed some
well-known standard file formats, such as MPS, or optimization modeling languages like
AMPL and GAMS. An important remark to keep in mind, much more critical in the SDP
case than in LP, is the extent to which the problem structure can be signaled to the solver.
There is a growing push within the optimization community towards the possibility of
adding SDP-oriented extensions to the standard modeling languages mentioned.

In the meantime, however, enterprising researchers in control and related areas have
written specific parsers that partially or fully automate the conversion tasks, when used
within a problem-solving environment such as MATLAB. Among them we mention the
early effort SDPSOL [12], as well as the more recent ones YALMIP [35], SeDuMi Inter-
face [31], and LMILab translator [54], dealing with general SDPs, as well as the more
domain-specific IQCbeta [36], Gloptipoly [28], and SOSTOOLS [47].

Any of these parsers can make the task of posing and solving a specific problem a
much simpler and enjoyable procedure than manual, error-prone methods. We strongly
encourage the reader to take them for a test drive.
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