An explicit construction of distinguished representations of
polynomials nonnegative over finite sets

Pablo A. Parrilo
Automatic Control Laboratory
Swiss Federal Institute of Technology
Physikstrasse 3 - ETL
CH-8092 Ziirich - Switzerland

IfA Technical Report AUT02-02
March 13, 2002

Abstract

We present a simple constructive proof of the existence of distinguished sum of squares
representations for polynomials nonnegative over finite sets described by polynomial equalities
and inequalities. A degree bound is directly obtained, as the cardinality of the support of the
summands equals the number of points in the variety. Only basic results from commutative
algebra are used in the construction.

1 Introduction

A recurring problem in combinatorial optimization concerns the minimization of a polynomial
function f(z) over basic semialgebraic sets of the form:

S={zxeR", gi(x)>0, i=0,...,7 hj(x) =0, j=1,...,t}, (1)

where f,g;,h; € Rlx1,...,x,]. A particular case, very important in applications, is that of 0-1
programming.

There has been recent research activity [Par00, Las01, Par01] concerning the combination of nu-
merical and algebraic techniques for problems in continuous and combinatorial optimization such as
the one described above. One of the main driving forces behind this effort is the concrete possibility
of applying convex optimization methods to the computation of sum of squares decompositions, a
technique pioneered by Shor [Sho87] (see also [Nes00]).

Distinguished representations: Let X be the set of polynomials that can be written as sums
of squares, i.e., L := {s € R[z] | s=>.q¢(x)% ¢ € Rlz]}. Recent work by Putinar [Put93],
Jacobi-Prestel [JP01], and others (see [PD01] for an up-to-date detailed treatment of most available



results), establish that if the polynomial f(x) is strictly positive over a set S as in (1) that is compact,
then under some mild additional assumptions, there exists an affine representation:

f(z) =so(z) + Z si(z)gi(z) + Z Ai(@)hi(z), (2)

where s; € ¥, \; € Rlz]. Notice that the positivity of f is a direct consequence of the existence of
such representation, as the right-hand side is obviously nonnegative on the feasible set. The main
objective of this note is to present a simple constructive derivation of this result, with corresponding
degree bounds, in the special but practically relevant case of zero dimensional varieties. The only
tools employed are some basic results from commutative algebra.

These representations can be understood as specific instances of Positivstellensatz refutations, a
general technique providing algebraic identities that certify certain properties (such as emptiness)
of basic semialgebraic sets. It has been shown in [Par00, Par0l] that the search for bounded
degree Positivstellensatz refutations can be efficiently done using semidefinite programming. A
detailed comparison between the Positivstellensatz and distinguished representations approaches
for certifying polynomial nonnegativity will be presented elsewhere [Par02].

An important result by Lasserre [Las02], based on earlier work by Curto and Fialkow, focuses
on the case when the feasible set is a grid of points in R”, and establishes the existence of identities
as in (2) with a priori bounded degree. Boolean programming is a particularly interesting special
case for which this result can be applied.

Our contribution in this paper extends those results in three different directions:

e The feasible set S is allowed to be an arbitrary finite set.
e Structural information on the support and degree of the polynomials s; is obtained.
e A very simple, explicit constructive solution is provided.

In particular, the methods are purely algebraic: no convexity-based techniques (duality, Hahn-
Banach, etc.) are employed.

The main idea in the paper boils down to recognizing that when the algebraic variety under-
lying the problem has only a finite number of elements, then nonnegativity can be established,
at least conceptually, by performing only a finite number of elementary tests. At heart, the con-
struction presented here formalizes the translation of this exhaustive enumeration approach into a
particular kind of algebraic certificate. For this reason, the results are not particularly helpful from
a computational viewpoint: a prerequisite for obtaining the representation is to completely solve
the problem. Nevertheless, the results are relevant, because they provide an a priori guarantee of
the existence and structure of the sought-after decomposition, as well as deeper insight into some
existing results.

2 Representations for nonnegative polynomials

In this section, we present the first step of the construction, dealing with the case where no in-
equalities are present in (1) (i.e., when » = 0). In Section 3 the full case will be treated, building
upon the results derived here.



In our setup, the standing assumption will be that the solution set V = {z € C", h;(xz) =0}
of the equality constraints is a zero-dimensional variety, i.e., that it consists only of a finite number
of points v;. Furthermore, we impose the restriction that the ideal I generated by the h; be radical
[CLO97, Chapter 4, §2]. This condition can be interpreted as requiring the solution points to have
single multiplicity.

Given a polynomial f(x) € R[z] nonnegative on the points v; € V NR"™, we are interested in
finding an identity as in (2) that certifies this property. Notice that we do not require all the points
v; € V to be real.

Remark 1 For a decomposition (2) to exist, the requirement on the ideal I to be radical (or a
suitable alternative) is necessary when f is nonnegative but not strictly positive. For instance, the
polynomial f = x is nonnegative over the variety defined by the (non-radical) ideal (x?), although
no decomposition of the form

r=0+\z?, oc€X¥

can possibly exist.

Remark 2 The important case of boolean or 0-1 minimization is included in the class of problems
treated here. As is well-known, the 0-1 constraints on n variables x; can be described by n equalities
{x? —x; = 0}. It is easy to verify that the generated ideal is indeed radical. The same comments
apply, mutatis mutandis, for the more general grid problem considered in [Las02].

Translating certificates If f(z) is nonnegative on all the real points v;, then in some sense
there is already available a finite proof of that fact, namely the value of f at the real points in the
variety. What needs to be done, therefore, is to “translate” that proof (f(v;) > 0) into the required
algebraic identity.

For this, we rely on two simple observations:

e In a sum of squares Y ¢;(x)?, the polynomials ¢;(x) can always be replaced by their remain-
ders modulo the ideal, incorporating the corresponding quotient terms into the A;(x) in (2).
Equivalently, we can interpret all polynomials in the representation

f(x) = so(x) + si(x)gi(x), (3)
as elements in the quotient ring R[z]/I.

o If the variety V is a finite set then R[z]/I is finite dimensional [CLO97, Chapter 5, §3,
Theorem 3]. Furthermore, there exists a linear isomorphism between the quotient ring and the
coordinate ring C[V] of complex-valued polynomials on the solution set (subject to complex-
conjugate symmetry).

Provided with the two facts above, our main result can be stated:

Theorem 1 Let the ideal I = (h;(x)) be zero dimensional and radical. If f(x) is nonnegative on
S, then there exists a representation as in (2), constructed by Algorithms 1 and 2 presented below.
The monomials appearing on each ¢; belong to a fixed subset of cardinality less than or equal to |V|.



The proof of the theorem is a consequence of the constructions in Algorithm 1 below for the equality
only case, and Algorithm 2 in the next section for the full case.

Algorithm 1 Given f(z), with v; € (V NR") = f(v;) > 0, compute an affine representation
certifying nonnegativity.

1. Find |V| polynomials p;(x), that satisfy p;(v;) = di;, where 6;; is the Kronecker delta function.
The polynomials p; are essentially the “indicator function” of the point v;, taking there the
value one and vanishing at the remaining points. They can be easily found using Lagrange
interpolation, or given a basis for the quotient ring, by solving a |V| x |V| system of linear
equations.

2. For every point v; € R™, or pair of complex conjugate solutions v;,v; € C" (v; = v;‘), define

qi(z) = v pi, or ¢i(x) = vpi + 7" pj,

respectively, where v = \/ f(v;). Notice that q;(z) € Rlx]: in the first case, because v; is real
and v > 0, and in the second, as a consequence of the complex-conjugate symmetry.

With these definitions, it holds that f(z) =Y,q?(z) Yz € V, where only one term per pair
of complex conjugate roots appears in the sum.

Since the ideal I is radical, it follows that

fz) = Z ¢(z)  mod I.

Notice that f is then a sum of squares in the quotient ring.

3. To put the expression in the standard form (2), choose a basis for the quotient, and reduce
the q; modulo the ideal, to obtain:

fz) = Z G + Xi(2)hi(z). (4)

g

In the representation, only standard monomials [CLO97] (i.e., monomials not in the ideal of leading
terms (LT(]))) appear in §;, directly providing a degree bound. In the general case, the degree bound
may depend on the specific basis chosen for R[x]/I (equivalently, on the specific Grobner basis for
I), though of course the number of distinct monomials in the basis will always be the same, and
equal to |V|.

For the boolean programming case mentioned in Remark 2, the defining polynomials are already
a Grobner basis with respect to any term ordering, as the leading terms xf are relatively prime.
Therefore, a complete basis for the quotient ring are the 2" monomials of the form [, i, where
e; € {0, 1}, providing the upper bound n on the degree. This corresponds to the case analyzed in
[Las01].



Remark 3 In general, the coefficients of the constructed polynomials do not necessarily belong to
the same field as those of the input polynomial, but rather to some finite algebraic extension.

We present next two simple examples of the application of the proposed method.
Example 1 Consider the polynomial and constraints:

hy =2y—2=0
f=x+y?>—22+1, hy =yz—ax=0
hs : =zx—y=0

The zero-dimensional ideal generated by the constraints g; is radical, with the corresponding variety
having five isolated real points, namely:

v; =(0,0,0), wvo=(1,1,1), wv3=(1,-1,-1), v4=(-1,1,-1), ws=(-1,-1,1).

We construct the interpolating polynomials, already reduced with respect to the quotient basis {1, .y, z, 2°},
and the corresponding functional values:

pr=1—22 f(v1) =1
pr= (2 +z+x+7y)/4, f(vg) =2
p3= (22 —2+x—y)/4, flvg) =2
pi= (22 —z—x+vy)/4, flvg) =0
pi= (P +z—z—y)/4 f(vs) =0

And from this the representation:
f =0+ 2p% 4+ 2p2 + h(52° — 32) /4 + ho(x — baz? — 4)/4 + h3(—3y — 22 — 5zx) /4
is directly obtained. O

It should be noticed that much more concise representations of the nonnegativity of f may conceiv-
ably exist. This is exactly the reason why the convex optimization approaches in [Par00, Las01]
work well in practice, as these search directly for “short proofs” of a priori bounded support. For
this particular example, for instance, it is possible to restrict the support of the squares to just
three monomials, rather than the full set of five, as can be seen from the representation:

f=0+az+ (a—1)2%)%+ Mh1 + Aaho + A3hs,

where o = % and:
M o= (1+a?—-2a)2%+ (2a —2a2)z
Ao = 2a—2a%+a’r+ (2a—1-a?)2%x
A3 = —y+(2a—1-a?)zr+ (20 — 2a?)z.

Example 2 In this example, we show how the proposed method can be used to construct algebraic
certificates of the nonexistence of real solutions of polynomial equations (as always in this paper,
only for the case of zero dimensional systems). Consider the equations:

hi=a2y+224+1=0

hy:=yz+22+1=0
hy:=zx+9y>+1=0



The equations define a zero-dimensional radical ideal, with eight purely imaginary solutions:
+—, F—,+—).

VG ARNGAR

A good approach to proving that all the solutions are complex, is to show that the polynomial —1 is

nonnegative over the set of real solutions. As this would be clearly absurd, it follows directly that
no real solutions can exist. Applying the method, using the quotient basis {x,y, z, 23}, we have:

(0,44, +4),  (£4,0,44),  (£4,44,0)

q=(—z+y—2z—22%/2
@=(—-y—z—22%)/2
3= (v+y—32—22%))2
q4 :2\/§z—|—2\/§z3

and defining
AN = (T4 92z 4 9yz + 4022 + 442* — 229222 — 9xy) /4
Ao = (3—9yz+ 922+ 22y%22% 4+ 9y?) /4
A3 = (=6—132%2 — 9zz — 22y23 — 9yz)/4

we obtain the desired proof:

—1 =g} + 5+ a5 + a5 + hid1 + hado + ha)s.

3 Adding inequalities

The constructive methodology outlined in the previous section can be easily extended to the
case where inequalities are included in the problem definition. In other words, here we ex-
plicitly construct representations of the nonnegativity of f over the semialgebraic set given by
{gi(z) > 0, h;(x) = 0}, under the same radicality assumptions on the ideal generated by the h;.

Again, the key insight here is understanding the linear isomorphism between the values of a
polynomial at the variety points and its coefficients in the coordinate ring. In a parallel fashion to
our earlier construction, we design the polynomials in this transformed domain first, and then map
them back into the conventional monomial basis.

The procedure is as follows:

Algorithm 2 Given the functional values at the variety points f(v;), gi(v;), construct polynomials
S0, i that satisfy (2).

For every v; € V construct values s;(v;) as follows:
1. If v € R™ or f(v;) > 0, then choose:

SO(Uj):f(Uj)a Si(vj):O? 1= 1,...,77’L



2. If f(vj) < 0, then there is at least one i such that g;(v;) < 0. Pick any such i, say i = i*,
and set: e
SO(Uj) = 07 Si(’l)j) = { f(vj)/gl(vj) Zf 1=1

0 otherwise

By construction, the values s;i(v;) are always nonnegative if v; is real. Furthermore, they satisfy
the identity:

m
Fwg) = s0(vj) + D silv)gi(vy). (5)

i=1
Now, using Algorithm 1, we can convert by interpolation the nonnegative functional values s; into
sums of squares polynomials. This way, a decomposition as in (2) is finally obtained. is obtained,
where the s; are sums of squares. O

The specific rules for choosing s; in the algorithm above are just a particular choice out of many
possible valid ones. It would be interesting to further explore the possibilities of exploiting the
many degrees of freedom that seem to be available.

Example 3 We return to the setup of Example 1, but now we add the inequality
g1 = 20+ 1 > 0.

This has the effect of “cutting off” the two points v4, vs where the minimum was previously achieved.
Instead, the smallest value of f over the remaining points is now equal to 1, or equivalently, f* =
f — 1 is nonnegative over the feasible set.

To construct an algebraic certificate of this fact, we choose the values of sg,s1 according to the
procedure described in the previous section. The functional values are:

Ur V2 U3 VU4 Up
10 1 1 -1 -1
g 1 3 3 -1 -1
so| 0 1 1 0 0
s1| 0 0 O 1 1

Interpolating, and reducing modulo the ideal, we obtain:

f=1=p3+p5+ (pi+p2)g1 + Ath1 + Aahg + Ashs,

where
AN o= (bz—y—zx+23)/4
Ao = (—4—22+22+2-2%)/4
A3 = (=3y—3z+zx—23)/4
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