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Abstract. We consider the problem of computing the minimum value pmin

taken by a polynomial p(x) of degree d over the standard simplex ∆. This is an

NP-hard problem already for degree d = 2. For any integer k ≥ 1, by minimiz-
ing p(x) over the set of rational points in ∆ with denominator k, one obtains a
hierarchy of upper bounds p∆(k) converging to pmin as k −→ ∞. These upper
approximations are intimately linked to a hierarchy of lower bounds for pmin

constructed via Pólya’s theorem about representations of positive forms on the
simplex. Revisiting the proof of Pólya’s theorem allows us to give estimates on
the quality of these upper and lower approximations for pmin. Moreover, we
show that the bounds p∆(k) yield a polynomial time approximation scheme for
the minimization of polynomials of fixed degree d on the simplex, extending
an earlier result of Bomze and De Klerk for degree d = 2.

March 30, 2004

1. Introduction

1.1. A grid approximation. We consider the problem of minimizing a polynomial
p(x) of degree d on the standard simplex

∆ := {x ∈ IRn
+ |

n
∑

i=1

xi = 1};

that is, the problem of computing

(1.1) pmin := min
x∈∆

p(x).

One may assume w.l.o.g. that p(x) is a homogeneous polynomial (form). Indeed,

as observed in [5], if p(x) =
∑d

ℓ=0 pℓ(x), where pℓ(x) is homogeneous of degree
ℓ, then minimizing p(x) over ∆ is equivalent to minimizing the degree d form

p′(x) :=
∑d

ℓ=0 pℓ(x)(
∑n

i=1 xi)
d−ℓ. Problem (1.1) is an NP-hard problem, already

for forms of degree d = 2, as it contains the maximum stable set problem. Indeed,
for a graph G with adjacency matrix A, the maximum size α(G) of a stable set in
G can be expressed as

1

α(G)
= min

x∈∆
xT (I +A)x
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by the theorem of Motzkin and Straus [7]. Given an integer k ≥ 1, let

(1.2) ∆(k) := {x ∈ ∆ | kx ∈ Z
n}

denote the set of rational points in ∆ with denominator k and define

(1.3) p∆(k) := min p(x) s.t. x ∈ ∆(k).

Thus, pmin ≤ p∆(k) for any k ≥ 1. As |∆(k)| =
(

n+k−1
k

)

, one can compute the
bound p∆(k) in polynomial time for any fixed k. Set

(1.4) pmax := max
x∈∆

p(x).

When p(x) is a form of degree d = 2, Bomze and De Klerk [3] show that the
following inequality holds:

(1.5) p∆(k) − pmin ≤
1

k
(pmax − pmin)

for any k ≥ 1. Nesterov [9] subsequently showed:

(1.6) p∆(k) − pmin ≤
1

k
( max
i=1,...,n

p2ei
− pmin),

where e1, . . . , en denote the standard unit vectors. This inequality is stronger since,
by evaluating p(x) at ei, one finds that p(ei) = p2ei

≤ pmax. Bomze and De Klerk’s
result is based on an intimate link existing between the upper approximations p∆(k)

and a hierarchy of lower bounds for pmin constructed using a result of Pólya about
the representation of positive forms on the simplex. (This approach also permits,
in fact, to establish the stronger inequality (1.6).) Nesterov’s approach is different
and uses a probabilistic argument for justifying the estimation (1.6). We describe
both approaches in Section 2.1 below.

Using his probabilistic approach, Nesterov [9] proves the following result for
polynomials of higher degree. Assume that p(x) is a form of degree d which is
a sum of square-free monomials; that is, a monomial xα appears with a nonzero
coefficient in p(x) only if αi ≤ 1 for all i = 1, . . . , n. Then, for k ≥ d,

(1.7) p∆(k) − pmin ≤

(

1 −
k!

(k − d)!kd

)

(−pmin) ≤
d(d− 1)

2k
(−pmin).

In this paper, we prove some estimates for the approximation p∆(k) for general
degree d forms. For a polynomial p(x) =

∑

α pαx
α, define as in [13] the parameter:

(1.8) Lp := max
α

|pα|
α1! · · ·αn!

|α|!

and the following parameter, introduced in the next subsection:

(1.9) p(0)
max := max

α
pα

α1! · · ·αn!

|α|!
.

Then, pmax ≤ p
(0)
max ≤ Lp. We show the inequalities:

(1.10) p∆(k) − pmin ≤

(

1 −
k!

(k − d)!kd

)

(p(0)
max − pmin) ≤

d(d− 1)

2k
(p(0)

max − pmin),

(1.11) p(0)
max − pmin ≤

(

2d− 1

d

)

dd(pmax − pmin),
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which imply:

(1.12) p∆(k) − pmin ≤
dd

k

(

d

2

)(

2d− 1

d

)

(pmax − pmin).

Our argument for (1.10) follows closely the proof given by Powers and Reznick [13]
for Pólya’s theorem, and our proof for (1.11) uses some tools of Reznick [15] about
powers of linear forms. As an application of (1.12), the approximations p∆(k) yield
a polynomial time approximation scheme (PTAS) for the problem of minimizing a
form of degree d on the simplex, for any fixed d.

A more detailed analysis permits to show sharper estimates in some cases. For
instance, when d = 2, relations (1.5) and (1.6) hold and, in the case d = 3, we can
show that

(1.13) p∆(k) − pmin ≤
4

k
(pmax − pmin).

1.2. Pólya’s representation theorem for positive forms on the simplex.

We recall Pólya’s result about positive forms on the simplex.

Theorem 1.1. Let p be a form of degree d which is positive on the simplex ∆, i.e.,
pmin > 0. Then, the polynomial (

∑n
i=1 xi)

r
p(x) has nonnegative coefficients for all

r satisfying

(1.14) r ≥

(

d

2

)

p
(0)
max

pmin
− d.

Pólya [12] proved that (
∑n

i=1 xi)
r
p(x) has nonnegative coefficients for r large

enough; Powers and Reznick [13] proved that this holds for any r ≥
(

d
2

) Lp

pmin
−d; we

observe here that this holds for any r satisfying the weaker condition (1.14) (with

Lp replaced by p
(0)
max). We review the proof of Theorem 1.1 in Section 2.1, as it

permits, moreover, to estimate the quality of the bound p∆(k) for pmin.

For now, let us indicate how Pólya’s result can be used for constructing an
asymptotically converging hierarchy of lower bounds for pmin. Observe first that
pmin can alternatively be formulated as the maximum scalar λ for which p(x)−λ ≥ 0
for all x ∈ ∆. Equivalently,

(1.15) pmin = max λ such that p(x) − λ

(

n
∑

i=1

xi

)d

≥ 0 ∀x ∈ IRn
+.

For any integer r ≥ 0, define the parameter:

(1.16)
p
(r)
min := max λ s.t. the polynomial (

∑n
i=1 xi)

r
(

p(x) − λ (
∑n

i=1 xi)
d
)

has nonnegative coefficients.

Obviously,

p
(r)
min ≤ p

(r+1)
min ≤ pmin.

Moreover, p
(r)
min ≥ 0 if and only if the polynomial (

∑n
i=1 xi)

rp(x) has nonnegative

coefficients. Hence, Theorem 1.1 asserts that p
(r)
min ≥ 0 for any r satisfying (1.14).

The bound p
(r)
min can be computed in polynomial time for any fixed r, as it can

be expressed as the minimum over the grid ∆(r + d) of a perturbation of the

polynomial p(x); see (2.3). As a consequence of Pólya’s theorem, the bounds p
(r)
min

converge asymptotically to pmin as r −→ ∞. This idea of using Pólya’s result for
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constructing converging approximations goes back to the work of Parrilo [10, 11],
who used it for constructing hierarchies of conic relaxations for the cone of copositive
matrices (corresponding to degree 2 positive semidefinite forms). The construction
was extended to general positive semidefinite forms by Faybusovich [5], Zuluaga et
al. [18].

For the problem (1.4) of maximizing p(x) over ∆, one can analogously define the
bounds:

(1.17)
p
(r)
max := min λ s.t. the polynomial (

∑n
i=1 xi)

r
(

λ (
∑n

i=1 xi)
d
− p(x)

)

has nonnegative coefficients,

satisfying:

pmax ≤ p(r+1)
max ≤ p(r)

max for r ≥ 0.

As we see in Section 2.1, the following holds:

(1.18) p
(0)
min = min

α
pα

α1! · · ·αn!

d!
, p(0)

max = max
α

pα

α1! · · ·αn!

d!
,

which justifies the definition of p
(0)
max given earlier in (1.9).

1.3. Quality of the upper and lower approximations. Let p be a form of

degree d and let p∆(k), pmax, Lp, p
(r)
min, and p

(r)
max, be as defined in (1.3), (1.4), (1.8),

(1.16), and (1.17). Therefore,

p
(r)
min ≤ pmin ≤ p∆(r+d) ≤ pmax ≤ p(r)

max.

Finally, define the parameter

(1.19) wr(d) :=
(r + d)!

r!(r + d)d
=

d−1
∏

i=1

(

1 −
i

r + d

)

.

One can verify that

(1.20) 1 −

(

d

2

)

1

r + d
≤ wr(d) ≤ 1,

which implies that limr→∞ wr(d) = 1. For this, note that
∏m

i=1(1−xi) ≥ 1−
∑m

i=1 xi

if 0 ≤ xi ≤ 1 for i = 1, . . . ,m. (Use induction on m ≥ 1.)

The following result estimates the quality of the approximations p
(r)
min and p∆(r+d)

for pmin. Faybusovich [5] proved the weaker version of the inequality (1.21) where

the parameter p
(0)
max is replaced by Lp; (1.22) coincides with (1.10) with k = r + d.

Theorem 1.2. Let p be a form of degree d and r ≥ 0 an integer. Then,

(1.21) pmin − p
(r)
min ≤ (p(0)

max − pmin)

(

1

wr(d)
− 1

)

,

(1.22) p∆(r+d) − pmin ≤ (p(0)
max − pmin)(1 − wr(d)).

The next two results give analogous inequalities involving the parameter pmax

instead of p
(0)
max in the case when d = 2, 3.
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Theorem 1.3. Let p be a form of degree d = 2 and r ≥ 0 an integer. Then,

(1.23) pmin − p
(r)
min ≤

1

r + 1

(

max
i=1,...,n

p2ei
− pmin

)

≤
1

r + 1
(pmax − pmin),

(1.24) p∆(r+2) − pmin ≤
1

r + 2

(

max
i=1,...,n

p2ei
− pmin

)

≤
1

r + 2
(pmax − pmin).

The upper bounds in (1.23), (1.24) involving pmax are proved by Bomze and De
Klerk [3] and the upper bound in (1.24) involving maxi p2ei

is proved by Nesterov
[9]. We show in Section 2.1 the following extension for forms of degree 3.

Theorem 1.4. Let p be a form of degree d = 3 and r ≥ 0 an integer. Then,

(1.25) pmin − p
(r)
min ≤

4(r + 3)

(r + 1)(r + 2)
(pmax − pmin),

(1.26) p∆(r+3) − pmin ≤
4

r + 3
(pmax − pmin).

The results from Theorems 1.2, 1.3 and 1.4 can be proved by a close inspection
of the proof of Pólya’s theorem; see Section 2.1. For forms of arbitrary degree d,
we can show the following result, whose proof needs an additional argument and
will be given in Section 2.2.

Theorem 1.5. The following holds for a form p(x) of degree d.

(1.27) p(0)
max − p

(0)
min ≤

(

2d− 1

d

)

dd(pmax − pmin).

Combined with Theorem 1.2, this implies:

Theorem 1.6. Let p(x) be a form of degree d and r ≥ 0 an integer. Then,

(1.28) pmin − p
(r)
min ≤

(

1

wr(d)
− 1

)(

2d− 1

d

)

dd(pmax − pmin),

(1.29) p∆(r+d) − pmin ≤ (1 − wr(d))

(

2d− 1

d

)

dd(pmax − pmin).

As an application, the grid approximations p∆(k) (k ≥ d) provide a polynomial
time approximation scheme for the problem of minimizing a form of degree d on
the simplex. See Section 3 for details.

2. Approximating Forms on the Simplex

2.1. Estimating the upper and lower approximations p∆(r+d) and p
(r)
min for

pmin via Pólya’s theorem. We will use the following notation. Given α ∈ N
n,

set

α! := α1! · · ·αn!

and, following [13], given scalars x, t and a nonnegative integer m, set

(x)m
t := x(x− t) · · · (x− (m− 1)t) =

m−1
∏

i=0

(x− it).
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Then, (1)d
1

r+d

= wr(d), the parameter defined in (1.19). Define

I(n,m) := {α ∈ N
n : |α| =

n
∑

i=1

αi = m}.

We use the multinomial identity:

(2.1)

(

n
∑

i=1

xi

)m

=
∑

α∈I(n,m)

m!

α!
xα

and its generalization, known as the Vandermonde-Chu identity:

(2.2)

(

n
∑

i=1

xi

)m

t

=
∑

α∈I(n,m)

m!

α!
(x1)

α1
t · · · (xn)αn

t .

(See [13] for a proof. Alternatively, use induction on m ≥ 1.)

In what follows, p(x) is a form of degree d and r ≥ 0 is an integer. By definition,

p
(r)
min is the maximum scalar λ for which the polynomial (

∑

i xi)
r
p(x)−λ (

∑

i xi)
r+d

has nonnegative coefficients. We begin with evaluating the coefficients of this poly-
nomial. We have:

(

n
∑

i=1

xi

)r+d

=
∑

β∈I(n,r+d)

(r + d)!

β!
xβ ,

p(x)

(

n
∑

i=1

xi

)r

=
∑

β∈I(n,r+d)

Aβx
β

where

Aβ :=
∑

α∈I(n,d), α≤β

r!

(β − α)!
pα =

r!(r + d)d

β!

∑

α∈I(n,d)

pα

n
∏

i=1

(

βi

r + d

)αi

1
r+d

.

Therefore, p
(r)
min is the maximum λ for which Aβ −λ

(r+d)!
β! ≥ 0 for all β ∈ I(n, r+d);

that is,

(2.3)

p
(r)
min = min

β∈I(n,r+d)

β!

(r + d)!
Aβ

= min
β∈I(n,r+d)

1

wr(d)

∑

α∈I(n,d)

pα

n
∏

i=1

(

βi

r + d

)αi

1
r+d

.

As the point x := β
r+d

belongs to ∆(r + d), it follows that

(2.4) p
(r)
min = min

x∈∆(r+d)

1

wr(d)

∑

α∈I(n,d)

pα(x1)
α1

1
r+d

· · · (xn)αn
1

r+d

.

As in [13], define the polynomial

(2.5)

φ(x) := p(x) −
∑

α∈I(n,d)

pα(x1)
α1

1
r+d

· · · (xn)αn
1

r+d

=
∑

α∈I(n,d)

pα

(

xα − (x1)
α1

1
r+d

· · · (xn)αn
1

r+d

)
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and set

φmax := max
x∈∆(r+d)

φ(x).

Then,

(2.6) p
(r)
min =

1

wr(d)
min

x∈∆(r+d)
(p(x) − φ(x)).

This implies:

p
(r)
min ≥

1

wr(d)
(p∆(r+d) − φmax)

and thus, as p∆(r+d) ≥ pmin ≥ p
(r)
min,

(2.7) p
(r)
min ≥

1

wr(d)
(pmin − φmax),

(2.8) p∆(r+d) ≤ wr(d)pmin + φmax.

Therefore,

(2.9) pmin − p
(r)
min ≤

(

1 −
1

wr(d)

)

pmin +
1

wr(d)
φmax,

(2.10) p∆(r+d) − pmin ≤ wr(d)

((

1 −
1

wr(d)

)

pmin +
1

wr(d)
φmax

)

.

We can now prove the results from Theorems 1.1, 1.2, 1.3, 1.4, and relation (1.7).

2.1.1. Proving Theorem 1.2. As xα ≥
∏n

i=1(xi)
αi

1
r+d

and pα ≤ p
(0)
max

d!
α! (by the defi-

nition (1.9) of p
(0)
max), we find that

φ(x) ≤ p(0)
max

∑

α∈I(n,d)

d!

α!

(

xα −
n
∏

i=1

(xi)
αi

1
r+d

)

.

In view of relations (2.1) and (2.2), the right hand side is equal to

p(0)
max





(

∑

i

xi

)d

−

(

∑

i

xi

)d

1
r+d



 = p(0)
max(1 − wr(d)).

Therefore,

(2.11) φmax ≤ p(0)
max(1 − wr(d)).

This inequality, combined with (2.9) and (2.10), gives the inequalities (1.21) and
(1.22) from Theorem 1.2.

2.1.2. Proving Theorem 1.1. Assume that pmin > 0 and r ≥
(

d
2

)p(0)
max

pmin
− d. Then,

relation (2.11) combined with the bound on wr(d) from (1.20) implies that φmax ≤

p
(0)
max

(

d
2

)

1
r+d

. Now, (2.7) implies that p
(r)
min ≥ 1

wr(d)

(

pmin − p
(0)
max

(

d
2

)

1
r+d

)

, which is

nonnegative by our assumption on r. This shows that p
(r)
min ≥ 0 for such r; that is,

Theorem 1.1 holds.
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2.1.3. Proving the inequality (1.7) for polynomials that are sums of square-free
monomials. Assume that pα = 0 whenever αi ≥ 2 for some i = 1, . . . , n. Then
the polynomial φ(x) from (2.5) is identically zero. Thus φmax = 0 and the estimate
(1.7) follows directly from (2.10) (with k = r + d and using (1.20)).

2.1.4. Proving Theorem 1.3 for degree 2 forms. By looking more closely at the form
of the function φ(x), one can give an upper bound for φmax depending on pmax and
pmin only. Indeed, when d = 2, one can verify that

φ(x) =
1

r + 2

∑

i

p2ei
xi.

Therefore,

(2.12) φmax =
1

r + 2
max

i=1,...,n
p2ei

≤
1

r + 2
pmax.

As wr(2) = r+1
r+2 , together with (2.9) and (2.10), this implies that the inequalities

(1.23) and (1.24) from Theorem 1.3 hold.

Moreover, p
(r)
min ≥ 0 for r ≥

maxi p2ei

pmin
− 2. That is, for degree 2 forms, Theorem

1.1 remains valid for such r (instead of (1.14)).

2.1.5. Proving Theorem 1.4 for degree 3 forms. When d = 3, one can verify that

(2.13) φ(x) =
n
∑

i=1

p3ei
(3tx2

i − 2t2xi) +
∑

1≤i<j≤n

(p2ei+ej
+ pei+2ej

)txixj ,

after setting t := 1
r+3 . Evaluating p at the simplex points ei and 1

2 (ei + ej) yields,
respectively, the relations:

(2.14) pmin ≤ p(ei) = p3ei
≤ pmax,

(2.15) p3ei
+ p3ej

+ p2ei+ej
+ pei+2ej

≤ 8pmax.

Using (2.15), we can bound the second sum in (2.13):
∑

i<j(p2ei+ej
+ pei+2ej

)xixj ≤
∑

i<j(8pmax − p3ei
− p3ej

)xixj

= 8pmax

∑

i<j xixj −
∑

i p3ei
xi(1 − xi).

Therefore,

φ(x) ≤ 8tpmax

∑

i<j

xixj + 4t
∑

i

p3ei
x2

i − t(1 + 2t)
∑

i

p3ei
xi.

Using the fact that p3ei
≤ pmax and

∑

i xi = 1, the sum of the first two terms can
be bounded by 4tpmax. Using the fact that −p3ei

≤ −pmin, the third term can be
bounded by −t(1 + 2t)pmin = − r+5

(r+3)2 pmin. This shows:

(2.16) φmax ≤
4

r + 3
pmax −

r + 5

(r + 3)2
pmin.

Together with (2.9), (2.10), and the fact that wr(3) = (r+1)(r+2)
(r+3)2 , this implies that

the relations (1.25) and (1.26) from Theorem 1.4 hold.

To conclude, let us mention that it is not clear whether this type of argument
for bounding φmax in terms of pmax and pmin extends for forms of degree 4. We use
in the next subsection a different argument for dealing with the general case d ≥ 4.
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2.2. Estimating the maximum coefficient range of a polynomial - Proof

of Theorem 1.5. In this section we prove the estimate of p
(0)
max − p

(0)
min in terms

of pmax − pmin given in Theorem 1.5. Following Reznick [15], let us introduce the
following definitions that will be useful for us.

Recall that I(n, d) = {α ∈ Z
n
+ : |α| = d} and let Fn,d denote the set of forms of

degree d in n variables. For p ∈ Fn,d, write

p(x) =
∑

α∈I(n,d)

pαx
α =

∑

α∈I(n,d)

a(p, α)
d!

α!
xα,

after setting

a(p, α) := pα

α!

d!
for α ∈ I(n, d).

For α ∈ R
n, define the degree d form:

Pα(x) := (αTx)d for x ∈ R
n.

Define the inner product on Fn,d:

〈p, q〉 :=
∑

α∈I(n,d)

a(p, α)a(q, α)
d!

α!
for p, q ∈ Fn,d.

As Pα(x) =
∑

β∈I(n,d)
d!
β!α

βxβ , it follows that, for any p ∈ Fn,d,

(2.17) 〈p, Pα〉 = p(α) for α ∈ R
n.

Moreover,

(2.18) 〈p, xα〉 = a(p, α) for α ∈ I(n, d).

Finally, given α ∈ I(n, d), define the polynomials:

(2.19) hα(x) :=
n
∏

j=1

αj−1
∏

ℓj=0

(dxj − ℓj(x1 + . . .+ xn)), h∗α(x) :=
1

α!dd
hα(x).

Lemma 2.1. [15] For α, α′ ∈ I(n, d), 〈h∗α, Pα′〉 = 1 if α = α′ and 0 otherwise.

Proof. Direct verification. �

Corollary 2.2. (Biermann’s theorem, see [15, §2])
The set {Pα | α ∈ I(n, d)} is a basis of the vector space Fn,d.

Let A be the |I(n, d)|×|I(n, d)| matrix permitting to express the monomial basis
{xα | α ∈ I(n, d)} in terms of the basis {Pβ | β ∈ I(n, d)}. That is,

(2.20) xα =
∑

β∈I(n,d)

A(α, β)Pβ(x).

For p ∈ Fn,d, by taking the inner product in (2.20) with p and using (2.17) and
(2.18), we find:

(2.21) a(p, α) =
∑

β∈I(n,d)

A(α, β)p(β) for α ∈ I(n, d).

Taking the inner product in (2.20) with h∗β , we find:

(2.22) a(h∗β , α) = 〈h∗β , x
α〉 = A(α, β) for α, β ∈ I(n, d).
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In view of (1.18), our parameters p
(0)
max and p

(0)
min are given by:

p(0)
max = max

α∈I(n,d)
a(p, α), p

(0)
min = min

α∈I(n,d)
a(p, α).

Define the vectors x := (p(α))α∈I(n,d) and y := (a(p, α))α∈I(n,d). In view of (2.9),
they are related by the relation:

(2.23) y = Ax.

Denote by xmax (resp., xmin) the largest entry of x; similarly for y. Thus,

ymax − ymin = p(0)
max − p

(0)
min.

For α ∈ I(n, d), p(α) = p(α/d)dd. Thus,

(2.24) xmax − xmin ≤ dd(pmax − pmin).

Our strategy for proving Theorem 1.5 consists of showing the following two
results:

Proposition 2.3. Let A be an N ×N matrix satisfying Ae = µe for some scalar
µ, where e denotes the all-ones vector, and set

‖A‖∞ := max
i=1,...,N

N
∑

k=1

|A(i, k)|.

If y = Ax, then ymax − ymin ≤ ‖A‖∞(xmax − xmin).

Proposition 2.4. Let A be the matrix defined in (2.22); that is, A = (A(α, β) :=

a(h∗β , α))α,β∈I(n,d). Then, Ae = 1
dd e and ‖A‖∞ ≤

(

2d−1
d

)

.

2.2.1. Proof of Proposition 2.3. Assume y = Ax where A = (aik)N
i,k=1. At row i,

yi =
∑N

k=1 aikxk. Thus,

yi ≤





∑

k|aik≥0

aik



xmax −





∑

k|aik≤0

|aik|



xmin = r+i xmax − r−i xmin,

after setting

r+i :=
∑

k|aik≥0

aik, r
−
i :=

∑

k|aik≤0

|aik|.

Similarly,

yj ≥ r+j xmin − r−j xmax.

Therefore, for any i, j = 1, . . . , N ,

yi − yj ≤ (r+i + r−j )xmax − (r−i + r+j )xmin.

Note that axmax−bxmin ≤ a+b
2 (xmax−xmin) if and only if (b−a)(xmax +xmin) ≥ 0.

Here, a = r+i + r−j , b = r−i + r+j , b − a =
∑

k ajk −
∑

k aik = 0, and b + a =
∑

k |aik| + |ajk|. Therefore,

yi − yj ≤
1

2

(

N
∑

k=1

|aik| + |ajk|

)

(xmax − xmin)
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and

yj − yi ≤
1

2

(

N
∑

k=1

|aik| + |ajk|

)

(xmax − xmin).

This implies that, for any i, j,

|yi − yj | ≤
1

2

(

N
∑

k=1

|aik| + |ajk|

)

(xmax − xmin) ≤

(

max
i

∑

k

|aik|

)

(xmax − xmin);

that is,
ymax − ymin ≤ ‖A‖∞(xmax − xmin).

2.2.2. Proof of Proposition 2.4. Let us first prove that Ae = d−de. For this consider
the polynomial p(x) := (

∑n
i=1 xi)

d. Then, a(p, α) = 1 and p(α) = dd for all
α ∈ I(n, d). Thus, x := (p(α))α∈I(n,d) = dde and y := (a(p, α))α∈I(n,d) = e. As

y = Ax by (2.23), it follows that Ae = d−de.

Recall that A(α, β) = a(h∗β , α) = a(hβ , α) 1
β!dd . Thus, A(α, β) is equal to the

coefficient of xα in hβ(x) scaled by the factor α!
d!

1
β!dd . We proceed in two steps for

proving that

‖A‖∞ = max
α∈I(n,d)

∑

β∈I(n,d)

|A(α, β)| ≤

(

2d− 1

d

)

.

(1) First, we show that each entry of A is bounded in absolute value by 1.

(2) Second, we show that there are at most
(

2d−1
d

)

nonzero entries in any row of A.
Those two facts imply obviously the desired result.

Step (1). Bounding the entries of A. By definition, hβ(x) is defined as the product
of d linear forms: f1(x) =

∑n
i=1 f1ixi, . . . , fd(x) =

∑n
i=1 fdixi. Thus,

hβ(x) =
∑

i1=1,...,n

. . .
∑

id=1,...,n

f1i1 · · · fdid
xi1 · · ·xid

=:
∑

α∈I(n,d)

sαx
α,

where sα =
∑

f1i1 · · · fdid
and the summation is over all d-tuples (i1, . . . , id) ∈

{1, . . . , n}d containing 1 exactly α1 times, 2 exactly α2 times, . . ., n exactly αn

times.
First of all, each product f1i1 · · · fdid

is bounded in absolute value by dd. Indeed,
the linear forms fj(x) are of the form: (d−ℓ)x1−ℓx2 . . .−ℓxn; thus their coefficients
belong to {−d,−d+ 1, . . . , 0, 1, . . . , d}.

Let us now count the number of terms in the summation defining sα. It is equal
to
(

d
α1

)

·
(

d−α1

α2

)

· · ·
(

d−α1−...−αn−1

αn

)

, which is equal to d!
α! .

Summarizing, we find that |sα| ≤ dd d!
α! . Hence, |A(α, β)| = |sα|

α!
d!

1
β!dd ≤ 1

β! ≤ 1.

Step (2). Bounding the number of nonzero entries in a row of A. Write hβ(x) =
∏n

j=1 Pj(x), where

Pj(x) =

βj−1
∏

ℓj=0



(d− ℓj)xj −
∑

i=1,...,n, i 6=j

ℓjxi



 .

Fix α ∈ I(n, d) and consider the α-th row of A. We want to bound the number of
β’s for which A(α, β) 6= 0; that is, the number of β’s for which xα occurs with a
nonzero coefficient in hβ(x).
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Consider some β for which A(α, β) 6= 0. Say, supp(β) = {1, . . . , t}; that is,
β1 ≥ 1, . . . , βt ≥ 1, βt+1 = . . . = βn = 0. Then, Pj(x) = 1 for j = t+ 1, . . . , n and

Pj(x) = dxj

βj−1
∏

ℓj=1



(d− ℓj)xj −
∑

i=1,...,n, i 6=j

ℓjxi





for j = 1, . . . , t. Therefore,

hβ(x) = dt

t
∏

j=1

xj

t
∏

j=1

βj−1
∏

ℓj=1



(d− ℓj)xj −
∑

i=1,...,n, i 6=j

ℓjxi



 .

Hence, if xα has a nonzero coefficient in hβ(x), then necessarily α1 ≥ 1, . . . , αt ≥ 1;
that is, the support of β is contained in the support of α.

Therefore, the number of β’s for which A(α, β) 6= 0 is bounded by the number of

sequences β ∈ I(n, d) with supp(β) ⊆ supp(α), which is equal to
(

s+d−1
d

)

, setting

s := |supp(α)|. As |α| = d, s ≤ d and thus
(

s+d−1
d

)

≤
(

2d−1
d

)

.

3. A PTAS for the minimization of forms on the simplex

Consider the generic optimization problem:

φmax := max {f(x) : x ∈ S} ,

for some continuous f : IRn 7→ IR and compact convex set S, and let

φmin := min {f(x) : x ∈ S} .

Definition 3.1 (Nesterov et al. [8]). A value ψµ approximates φmin with relative
accuracy µ ∈ (0, 1] if

|ψµ − φmin| ≤ µ(φmax − φmin).

Then one also says that ψµ is a µ-approximation of pmin. The approximation is
called implementable if ψµ = f(x) for some x ∈ S.

Definition 3.2 (PTAS). If a problem allows an implementable approximation
ψµ = f(xµ) for each µ ∈ (0, 1], such that xµ ∈ S can be computed in time polyno-
mial in n and the bit size required to represent f , we say that the problem allows
a polynomial time approximation scheme (PTAS).

For the problem of minimizing a form over the simplex, this definition may be
summarized as follows.

Definition 3.3. Consider the problem (1.1) of minimizing a degree d form p on
the standard simplex. A PTAS for this problem exists if, for every ǫ > 0, there is
an algorithm that returns a solution x ∈ ∆ satisfying

(3.1) p(x) − pmin ≤ (pmax − pmin)ǫ

in time polynomial in n and the bit size of the coefficients of p.

Note that the approximation results in Theorem 1.2 do not constitute a PTAS,

since it is not clear how to bound p
(0)
max−pmin in terms of pmax−pmin. One reason for

adopting Definition 3.3 is that, in general, nothing is known about the signs of pmin

and pmax. Let us mention a variation of this definition that could be considered as
well.
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Definition 3.4. A PTAS (of type 2) for the problem (1.1) of minimizing a form
p(x) on the standard simplex exists if, for every ǫ > 0, there is an algorithm that
returns a solution x ∈ ∆ satisfying

(3.2) p(x) − pmin ≤ ǫ|pmin|, i.e., p(x) ≤ pmin(1 + ǫ · sign(pmin)).

in time polynomial in n and the bit size of the coefficients of p.

This new definition is stronger, i.e., relation (3.2) implies relation (3.1), when
pmin ≤ 0 ≤ pmax and when 0 ≤ 2pmin ≤ pmax. Note that Definition 3.4 corresponds
to the classic definition used, e.g., for combinatorial optimization problems, where
the signs of the minimum and maximum are often known in advance. Consider, for
instance, the (unweighted) max-cut problem:

(3.3) mc(G) := max
x∈{±1}n

p0(x) :=
1

2

∑

ij∈E

(1 − xixj)

for a graph G = (V,E) (|V | = n). Then, a PTAS for the max-cut problem should,
for every ǫ > 0, return a point x ∈ {±1}n for which

(3.4) p(x) ≥ (1 − ǫ)mc(G)

in time polynomial in n. Similarly, a PTAS for the maximum stable set problem
should, for every ǫ > 0, return a stable set S satisfying |S| ≥ (1 − ǫ)α(G).

As an application of Theorem 1.5 (or Theorems 1.3 and 1.4 in the case d = 2, 3),
we find:

Theorem 3.5. There is a PTAS (using Definition 3.3) for the problem of mini-
mizing a form of degree d ≥ 2 over the simplex ∆. �

On the other hand, if we use Definition 3.4 instead of Definition 3.3, the above
result does not remain valid.

Theorem 3.6. There is no PTAS of type 2 (using Definition 3.4) for the problem
of minimizing a form of degree d ≥ 2 over the simplex ∆.

Proof. It suffices to show the result for degree d = 2. The proof is based on a
reduction from the maximum stable set problem. Given a graph G = (V,E) with
adjacency matrix A, consider the quadratic polynomial p(x) := xT (I + A)x. By
Motzkin-Straus theorem, the minimum of p(x) over ∆ is 1

α(G) , where α(G) is the

maximum cardinality of a stable set in G. Thus, pmin = 1
α(G) > 0 and pmax ≥ 2pmin

if α(G) ≥ 2, since pmax ≥ 1 = p(ei).

Lemma 3.7. Given x∗ ∈ ∆, one can construct a stable set S for which 1
|S| ≤ p(x∗)

in time polynomial in n.

Proof. The proof is based on the same argument used for proving Motzkin-Straus
theorem. Let T denote the support of x∗. First we construct another point x ∈ ∆
whose support is stable and such that p(x) ≤ p(x∗). If T is stable, let x := x∗.
Suppose that T contains two adjacent nodes, say, nodes 1 and 2. Consider the
function f(x1, x2) := p(x1, x2, x

∗
3, . . . , x

∗
n) in two variables x1, x2. For any point

(x1, x2) ∈ ∆0 := {(x1, x2) | x1, x2 ≥ 0, x1 + x2 = 1 −
∑

i≥3 x
∗
i }, f(x1, x2) has

the form ax1 + bx2 + c where a, b, c are constants depending on x∗3, . . . , x
∗
n. As f

is linear, it attains its minimum on the segment ∆0 at one of its extremities, i.e.,
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at (x1, x2) with x1 = 0 or x2 = 0. Thus one can construct a new point x ∈ ∆
such that p(x) ≤ p(x∗), whose support is contained in T and does not contain
{1, 2}. Iterating, we find a point x ∈ ∆ whose support S is stable and such that
p(x) ≤ p(x∗). Now, p(x) =

∑

i∈S x
2
i which, using Cauchy-Schwartz inequality,

implies that p(x) ≥ 1
|S| . �

Assume that there is a PTAS of type 2, using Definition 3.4, for the problem of
minimizing a quadratic form on the simplex. Let ǫ be given such that 0 < ǫ < 1 and
set ǫ′ := ǫ

1−ǫ
. Then one can construct in polynomial time a point x ∈ ∆ satisfying

(3.2), i.e., p(x) ≤ 1
α(G) (1+ǫ′). By Lemma 3.7, one can construct in polynomial time

a stable set S such that 1
|S| ≤ p(x) ≤ 1

α(G) (1+ ǫ′), which implies |S| ≥ α(G)(1− ǫ).

This shows therefore the existence of a PTAS for the maximum stable set problem,
contradicting the inapproximability result of Arora et al. [1]. �

4. Concluding Remarks

4.1. A probabilistic approach for estimating the grid bounds p∆(k). Nes-
terov [9] proposes an alternative probabilistic argument for estimating the quality
of the bounds p∆(k). He introduces a random walk on the simplex ∆, which gen-
erates a sequence of random points xk (k ≥ 0) in the simplex with the property
that xk ∈ ∆(k). Thus the expected value E(p(xk)) of the evaluation of the poly-
nomial p(x) at xk satisfies: E(p(xk)) ≥ p∆(k). Hence upper bounds for p∆(k) can
be obtained by bounding E(p(xk)).

Fix a point q ∈ ∆ (to be chosen later as a global minimizer of the polynomial p(x)
over ∆). Let ζ be a discrete random variable with values in {1, . . . , n} distributed
as follows:

(4.1) Prob(ζ = i) = qi (i = 1, . . . , n).

Consider the random process:

y0 = 0 ∈ IRn, yk+1 = yk + eζk
(k ≥ 0)

where ζk are random independent variables distributed according to (4.1). In other
words, yk+1 is yk + ei with probability qi. Finally, define

xk =
1

k
yk (k ≥ 1).

Thus all xk lie in the set ∆(k).

In order to evaluate E(p(xk)), one needs to compute E(xβ
k) for any monomial

with |β| = d. One can verify that E(xβ
k) = 1

kdE(yβ
k ), with

E(yβ
k ) =

∑

α∈Nn, |α|=k

Prob(yk(1) = α1, . . . , yk(n) = αn)αβ =
∑

|α|=k

k!

α!
qααβ .

(Here, yk(i) is the i-th coordinate of yk and recall that qα = qα1
1 · · · qαn

n and αβ =

αβ1

1 · · ·αβn
n .) The following computations are given in [9]:

E(xk(i)) = qi, E(xk(i)2) =
1

k
qi +

(

1 −
1

k

)

q2i ,

E(xk(i)xk(j)) =

(

1 −
1

k

)

qiqj (i 6= j),
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E(xβ
k) =

k!

(k − d)!kd
qβ if β ∈ {0, 1}n with |β| = d.

Assume now that q is a global minimizer of p(x) over ∆. If p(x) is a sum of
square-free monomials of degree d, then

E(p(xk)) =
∑

|β|=d

pβE(xβ
k) = p(q)

k!

(k − d)!kd
= pminwr(d),

with k = r + d. This gives the estimate (1.7) ([9], Lemma 3). If p(x) is a form of
degree 2, then

E(p(xk)) =
1

k

∑

i

p2ei
qi +

(

1 −
1

k

)

p(q) = wr(2)pmin +
1

r + 2

n
∑

i=1

p2ei
qi,

which gives the estimate (1.6) ([9], Theorem 2).

Remark 4.1. In these two cases (sum of square-free monomials, or degree 2), it
turns out that E(p(xk)) = wr(d)pmin + φ(q). Hence, the upper bound wr(d)pmin +
φmax for p∆(r+d) (recall (2.8)) remains an upper bound for E(p(xk)). The identity
E(p(xk)) = wr(d)pmin + φ(q) is not true when d = 3. When d = 3, one can verify
that E(p(xk)) = wr(3)pmin + φ(q) + φ′(q), where

φ′(q) :=

(

1

r + 3

)2


3
∑

i

p3ei
qi(1 − qi) −

∑

i<j

(p2ei+ej
+ pei+2ej

)qiqj



 .

One can verify that φ′(q) ≤ 4
(r+3)2 (pmax−pmin). Combined with (2.16), this implies

that

E(p(xk)) ≤ pmin +

(

4

r + 3
+

4

(r + 3)2

)

(pmax − pmin).

4.2. Approximating polynomials over polytopes. As observed by Nesterov
[9], some results for the simplex can be extended to the problem of minimizing a
degree d form p(x) over a polytope

P := conv(u1, . . . , uN )

where u1, . . . , uN ∈ IRn. Indeed, if U denote the n × N matrix with columns
u1, . . . , uN , then minimizing the polynomial (in n variables) p(x) over P is equiva-
lent to minimizing the polynomial (in N variables) p̃(x) := p(Ux) over the standard

simplex ∆ in IRN . Thus,

pmin,P := min
x∈P

p(x) = min
x∈∆

p̃(x)

and, for an integer k ≥ 1, one can define the grid approximation:

pP (k) := p̃∆(k) = min
x∈∆(k)

p

(

N
∑

i=1

xiui

)

.

The bounds obtained earlier for p̃∆(k) translate into bounds for pP (k). For instance,
when p(x) has degree 2,

pP (k) − pmin,P ≤
1

k

(

max
i=1,...,N

p(ui) − pmin,P

)

.
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When p(x) is a sum of square-free monomials,

pP (k) − pmin,P ≤
d(d− 1)

2k
(−pmin,P ).

Let us point out, however, that the complexity of computing the parameter pP (k)

depends on the number N of vertices, which can be exponentially large in terms of
the number n of variables.

Observe that the problem of maximizing a quadratic form over the cube [−1, 1]n

is NP-hard and no PTAS can exist, since it contains the max-cut problem. Indeed,
given a graph G = (V,E), define its Laplacian matrix L as the V × V matrix with
entries Lii := −deg(i) (i ∈ V ) and Lij := 1 if i 6= j are adjacent, Lij := 0 otherwise.
Then,

mc(G) = max
x∈{±1}n

1

4
xTLx = max

x∈[−1,1]n

1

4
xTLx,

where the last equality follows from the fact that L � 0.

4.3. Semidefinite approximations. Stronger semidefinite bounds can be defined
for the minimum pmin of a degree d form p(x) over the standard simplex ∆. For
this, if p(x) =

∑

α pαx
α, consider the (even) polynomial

p̃(x) :=
∑

α

pαx
2α.

The problem of minimizing p(x) over the simplex ∆ is equivalent to the problem
of minimizing p̃(x) over the unit sphere S := {x ∈ IRn |

∑n
i=1 x

2
i = 1}; that is,

pmin = min
x∈S

p̃(x).

Let Σ2 denote the set of polynomials in IR[x1, . . . , xn] that can written as a sum of
squares of polynomials. Given an integer r ≥ 0, define the parameter:

(4.2) p
(r)
min,sos := max λ for which

(

n
∑

i=1

x2
i

)r


p̃(x) − λ

(

n
∑

i=1

x2
i

)d


 ∈ Σ2.

If the polynomial (
∑

i xi)
r(p(x) − λ (

∑n
i=1 xi)

d
) has nonnegative coefficients, then

the polynomial (
∑

i x
2
i )

r(p̃(x)−λ
(
∑n

i=1 x
2
i

)d
) is obviously a sum of squares. There-

fore,

p
(r)
min ≤ p

(r)
min,sos ≤ pmin for all r ≥ 0.

The bound p
(r)
min,sos can be computed in polynomial time with an arbitrary precision

for any fixed r. This follows from the well known fact (see, e.g., [14]) that testing
whether a polynomial can be written as a sum of squares of polynomials can be
formulated as a semidefinite program. As a consequence of Pólya’s theorem, the

semidefinite bounds p
(r)
min,sos converge to pmin as r → ∞.

Schmüdgen [17] proved (in a more general context) that every polynomial which
is positive on the unit sphere S has a representation of the form s0(x) + (1 −
∑

i x
2
i )s1(x), where s0(x) ∈ Σ2 and s1(x) ∈ IR[x1, . . . , xn]. This fact motivates the

definition of the following alternative semidefinite lower bound for pmin, for any
integer r ≥ 0:

(4.3)
max λ such that p̃(x) − λ = s0(x) + (1 −

∑n
i=1 x

2
i )s1(x)

where s0 ∈ Σ2, s1 ∈ IR[x1, . . . , xn], deg(s0) ≤ 2(r + d)
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It follows from Schmüdgen’s theorem that these bounds also converge to pmin as
r → ∞. In fact, De Klerk et al. [4] show that the bounds (4.3) coincide with the

semidefinite bounds p
(r)
min,sos. That is, both approaches based on Pólya’s result and

on Schmüdgen’s result yield the same hierarchies of semidefinite bounds for the
problem of minimizing a form on the simplex.

4.4. Optimizing polynomials over the unit sphere. We group here a few
observations about the complexity of optimizing a form over the sphere.

As is well-known, minimizing a quadratic form over the unit sphere is an easy
problem, as it amounts to computing the minimum eigenvalue of a matrix, a prob-
lem for which efficient algorithms exist.

As we saw in the previous subsection, the problem of minimizing an even form
on the unit sphere can be reformulated as the problem of minimizing an associated
form on the simplex. Hence upper and lower bounds are available as well as good
estimates on their quality.

On the other hand, Nesterov [9] shows that maximizing a cubic form on the
unit sphere is a NP-hard problem, using a reduction from the maximum stable set
problem.

Let us finally mention a result of Faybusovich [5] about the quality of the semidef-
inite bounds for the optimization of forms on the unit sphere. Let p(x) be a form
of even degree 2d, let S denote the unit sphere, and set pmin,S := minx∈S p(x),
pmax,S := maxx∈S p(x). For an integer r ≥ 0, define the parameter

p
(r)
S := max λ s.t.

(

n
∑

i=1

x2
i

)r


p(x) − λ

(

n
∑

i=1

x2
i

)d


 ∈ Σ2.

Thus, p
(r)
S ≤ pmin,S for all r ≥ 0. Using a result of Reznick [16], Faybusovich [5]

shows that, for r ≥ 2nd(2d−1)
4 ln 2 − n

2 − d,

pmin,S − p
(r)
S ≤

2nd(2d− 1)

2 ln 2(2r + n+ 2d) − 2nd(2d− 1)
(pmax,S − pmin,S).

This does not yield a PTAS, since this estimate holds only for r = O(n). It remains
an open problem whether optimization of a fixed degree form over the unit sphere
allows a PTAS.
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