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Abstract— The purpose of this paper is twofold. The first
is to make explicit the relationship between sum of squares
(SOS) decompositions of univariate polynomial matrices and
the Kalman-Yakubovich-Popov (KYP) lemma. The second is
to present an efficient algorithm for explicitly finding an SOS
decomposition of such matrices, inspired by the Hamiltonian-
type methods for the solution of Riccati equations.

I. INTRODUCTION

Methods based on sum of squares (SOS) decomposition

of multivariate polynomials have found numerous applica-

tions in systems, control, and optimization; see for instance

[14] and the edited volume [6]. Of particular interest with

regard to applications is the development of numerical and

computational methods that exploit the structure present in

SOS problems.

Besides nonnegative scalar polynomials, in many appli-

cations we are also faced with multivariate polynomial

matrices, that must be positive semidefinite for all values

of the indeterminates. Just like in the univariate case, it is

possible to define a computationally convenient relaxation,

using the concept of sum of squares matrices.

Although SOS matrices can be interpreted as a special

case of the standard SOS formulation for scalar polynomials,

they appear often enough in applications that a special study

of their properties is warranted. In the terminology of Choi,

Lam, and Reznick [1], univariate SOS matrices are equivalent

to (2, n;m, 2) biforms, which are homogeneous polynomials

in two distinct sets of variables, quadratic in the first set,

and bivariate in the second. SOS matrices were defined by

Gatermann and Parrilo in [4] in the context of SOS problems

invariant under the action of a finite group, and by Hol and

Scherer [19] and Kojima [10] for relaxations of polynomial

optimization problems.

An important result, rediscovered a number of times in

a variety of contexts, is the fact that a univariate positive

semidefinite matrix is necessarily an SOS matrix. This is a

natural simultaneous generalization of the two classical cases

(univariate and quadratic polynomials, respectively) where

nonnegativity and sum of squares conditions are known

to be equivalent. This statement was proved, in somewhat

different contexts, by Djoković [2], Yakubovich [23], Popov

[15], and Rosenblum-Rovnyak [18]. In particular, Choi, Lam
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and Reznick [1] give a constructive proof that any positive

semidefinite biform of bidegree (m, 2) is a sum of 2n squares

of biforms in [1]. This “assertion that an n-ary quadratic

form
∑

i,j fij(y, z)xixj (fij ∈ Hm(R2)) that is psd for

every fixed (y, z) is a sum of squares of forms that are

R[y, z]-linear in the xi’s” [17]. In the signal processing

and control context, this statement can be shown to be

essentially equivalent to the spectral factorization theorem

for vector-valued stochastic processes (see, e.g., [9]), or

the factorization corollary of the Kalman-Yakubovich-Popov

(KYP) lemma.

Our objective in this paper is partly expository, but also

includes original research contributions. For the first part,

we explore and explain some of the very interesting links

between SOS matrices and the KYP lemma in detail, which

based on our informal survey are not sufficiently well-known,

even among experts. For the second, we develop an efficient

algorithm to explicitly obtain an SOS decomposition of

a positive semidefinite univariate polynomial matrix, using

only standard matrix factorizations, with no need to solve

an optimization problem. This method is essentially the

analogue of the Hamiltonian approach to Riccati equations

([12]). To the best of our knowledge (and much to our

surprise), this method does not seem to have been explicitly

reported in the literature (see Section IV-A for a discussion

of related work).

The explicit algorithm we present to find the sum of

squares decomposition is much faster and reliable than

conventional methods that use semidefinite programs. An

interesting possibility, to be explored elsewhere, is whether

is it possible to use this technique as an efficient subroutine

for the much more complicated problems with multivariate

matrix inequalities.

The paper is organized as follows: In Section II we present

the basic notation and background material. In Section III we

describe a condition that is equivalent to the Hamiltonian

part of the KYP lemma. In Section IV we use that result

to prove that a univariate polynomial matrix is SOS if and

only if it is positive definite. In this section we also describe

our efficient algorithm for factorizing positive definite matrix

polynomials inspired by the Hamiltonian-based methods to

solve Riccati equations. These Hamiltonian-based methods

are often used to obtain spectral factors in the spectral

factorization corollary in the KYP Lemma. In Section VI

we present some examples, followed by concluding remarks

and a discussion of possibilities for future work.
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II. NOTATION AND PRELIMINARIES

In this section we describe the notation we use and present

some background material.

A. Notation

We use the following standard notation. The set of n× n

real symmetric matrices is Sn. The set of polynomials in the

scalar variable x with real coefficients is denoted by R[x].
The p × n matrices with entries in R[x] will be denoted by

Rp×n[x].

B. Nonnegativity and Sum of Squares

A multivariate polynomial p(x) ∈ R[x], where x =
[x1, ..., xm], is nonnegative or positive semidefinite (PSD)

if

p(x) ≥ 0 for all x ∈ Rm. (1)

A multivariate polynomial p(x) ∈ R[x] is a sum of squares

(SOS) if there exist polynomials f1(x), ..., fs(x) ∈ R[x] such

that

p(x) =
s∑

i=1

f2
i (x). (2)

The existence of an SOS representation is a sufficient con-

dition for its global nonnegativity, i.e., equation (2) clearly

implies that (1) holds. In the univariate case, it is well-known

that the converse also holds, i.e., nonnegativity and SOS are

equivalent.

These definitions can be naturally extended from scalar

polynomials to symmetric polynomial matrices. A symmetric

polynomial matrix P (x) ∈ R[x]n×n is PSD if

P (x) � 0 for all x ∈ Rn, (3)

and it is positive definite (PD) if

P (x) ≻ 0 for all x ∈ Rn. (4)

Definition 1: A symmetric polynomial matrix P (x) ∈

R[x]n×n, x ∈ Rm is a sum of squares (SOS) matrix if the

scalar polynomial y⊤P (x)y is a sum of squares in R[x, y].
Equivalently, P (x) is an SOS matrix if there exists a factor-

ization P (x) = F⊤(x)F (x) where F (x) ∈ R[x]s×n.

Clearly, just like in the scalar case, P (x) being an SOS

matrix is a sufficient condition for a polynomial matrix to

be positive semidefinite for all values of the indeterminates.

C. The KYP lemma

The Kalman-Yakubovich-Popov (KYP) lemma is a cor-

nerstone in the analysis of control systems. It establishes

the equivalence between four distinct characterizations of

the nonnegativity of a rational function, each of independent

interest.

For simplicity of presentation, we state the results in

purely algebraic terms, without reference to their important

interpretations in the context of systems and control. For this,

and the corresponding proofs, we refer the reader to well-

known papers such as [22], [16], or any modern textbook

(e.g., [24], [3]). The version of the KYP lemma presented

below corresponds to the usual case where R ≻ 0, and

A has no imaginary axis eigenvalues (these conditions are

somewhat restrictive, and can be weakened).

Lemma 1 (Kalman-Yakubovich-Popov): Consider real

matrices A,B,C,Q, S,R, of compatible dimensions, where

A has no imaginary axis eigenvalues and R ≻ 0. The

following four statements are equivalent:

• Frequency domain inequality (FDI):

Π(jω) =

[

(jωI − A)−1B
I

]
∗
[

Q S

S⊤ R

] [

(jωI − A)−1B
I

]

≻ 0

(5)

for all ω ∈ R.

• Linear matrix inequality (LMI). There exists a symmet-

ric matrix X such that
[

Q S

S⊤ R

]

+

[
A⊤X + XA XB

B⊤X 0

]

≻ 0. (6)

• Hamiltonian: The infinitesimally symplectic matrix
[

A − BR−1S⊤ −BR−1B⊤

−Q + SR−1S⊤ −A⊤ + SR−1B⊤

]

(7)

has no eigenvalues on the imaginary axis.

• Riccati equation. There exists a symmetric X such that

Q+A⊤X+XA−(S+XB)R−1(S+XB)⊤ = 0. (8)

The spectral factorization corollary of the KYP lemma states

that if Π(jω) is positive definite on the imaginary axis it can

be factored as

Π(jω) = Ψ∗(jω)Ψ(jω), (9)

where

Ψ(jω) = R
1

2 [I + R−1(S⊤ + B⊤X)(jωI − A)−1B], (10)

and where R
1

2 is the matrix square-root of R.

The KYP lemma is also equivalent to a number of other

important results in systems theory. Among them we mention

the exactness of the LMI upper bound for the structured

singular value µ in the case of one full and one scalar block

[13]. There have also been a number of interesting extensions

of the basic KYP lemma in a number of directions, such as

finite frequency ranges [7] or the behavioral setting [21].

D. Block Companion Matrices and Matrix Polynomials

We will represent our polynomial matrix P (x) ∈ Rn×n[x]
of degree 2d in the form:

P (x) =
2d∑

k=0

Pkxk, (11)

where Pk ∈ Sn, k = 0, . . . , 2d. For simplicity, we will

assume that the matrix P (x) is strictly positive definite at

infinity (i.e., P2d ≻ 0). This assumption can be relaxed,

at the expense of a slightly more complicated formulation

(e.g., eigenvalues of matrix pencils rather than standard

eigenvalues), as is usual in the Riccati case.

Under this assumption, by pre- and post-multiplying by

P
−1/2
2d , we can always normalize the matrix polynomial so

that it is monic, i.e., the leading term satisfies P2d = In. We

assume this for the rest of the paper.
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The block companion matrix of P (x) is the 2dn × 2dn

real matrix CP defined as:

CP :=








0 In ... 0
...

...
. . .

...

0 0 ... In

−P0 −P1 ... −P2d−1








. (12)

It is well-known, and easy to prove, that det(xI −CP ) =
det P (x). Since P2d = In, there are 2dn values of x

(counted with multiplicities) that make P (x) singular. These

values xi of x are called the latent roots of P (x), and the

vectors vi such that P (xi)vi = 0 are called the right latent

vectors; see e.g. [8].

III. COMPANION MATRIX EIGENVALUES OF POSITIVE

DEFINITE POLYNOMIALS

In this section we derive a condition for the positive defi-

niteness of a matrix P (x) that is similar to the Hamiltonian

condition in the KYP lemma.

Theorem 1: If P (x) is monic, the following two state-

ments are equivalent:

1) P (x) ≻ 0 for all x ∈ R.

2) CP has no eigenvalues on the real axis.

Proof: (1 ⇒ 2): If there is an x0 ∈ R that is an

eigenvalue of CP , then det(P (x0)) = det(x0I − CP ) = 0.

(2 ⇒ 1): Assume that there is an x0 in R such that

P (x0) ⊁ 0. At least one of the eigenvalues of P (x0) is

not positive, denote that eigenvalue σ(x0). If σ(x0) = 0,

then det(x0I − CP ) = 0 and x0 is a real eigenvalue of

CP . Otherwise σ(x0) < 0. Since P (x) is monic we have

limx→∞

P (x)
x2d = I ≻ 0, and thus limx→∞ σ(x) > 0. There-

fore, by the continuity of the eigenvalues of a polynomial

matrix, there is an x1 > x0 such that σ(x1) = 0. Therefore

det(x1I − CP ) = 0 and so x1 is a real eigenvalue of CP .

IV. FACTORIZATION OF UNIVARIATE PSD

POLYNOMIAL MATRICES

In this section we describe a simple and explicit algorithm

to efficiently factorize a given polynomial matrix P (x). The

method is inspired by the Hamiltonian-based methods to

solve Riccati equations (e.g., [12]). Despite the considerable

amount of earlier work in this area, we believe our method

has not been previously reported in the literature.

Algorithm 1: Given a polynomial matrix P (x), of the

form (11) with P2d = In:

1) Form the companion matrix CP ∈ R2dn×2dn, as

defined in (12).

2) If CP has any purely real eigenvalues, then stop: there

exists a real x ∈ R, v ∈ Rn such that P (x)v = 0, and

thus P (x) ⊁ 0.

3) Construct orthogonal bases of the invariant subspaces

of CP (e.g., using a complex Schur factorization),

CP =

[
U11 U12

U21 U22

] [
Λ1 Γ
0 Λ2

] [
U11 U12

U21 U22

]∗

(13)

where Λ1 and Λ2 have conjugate spectra (i.e., σ(Λ1) =
σ(Λ2)

∗).

4) Let Q := V U−1
11 , where V is the submatrix of U21

corresponding to its first n rows. This matrix has

dimensions n × dn. Let Qr and Qi be the real and

imaginary parts of Q, respectively.

5) The factor F (x) is then given by:

F (x) =

[
−Qr In

−Qi 0n

]








In

xIn

...

xdIn








.

A proof that this algorithm gives a correct SOS factoriza-

tion of P (x) is given in the Appendix.

A. Related work

Besides the references already cited, there have been

other approaches to the spectral factorization of polynomial

matrices. Generally speaking, these have focused on the

parahermitian case (i.e., P (s) = P⊤(−s), where s is a

complex variable), although it is not too difficult to adapt

some of the results from the imaginary axis to the real

line. In particular, we highlight the results of Kwakernaak

and Šebek [11] and Trentelman and Rapisarda [20]. In

[11], the authors present several algorithms for J-spectral

factorization. Of these, their “interpolation” based method

most closely resembles ours, except that the last three steps

of their method are replaced by a simple linear system

solving. The technique in [20] also has some similarities,

except they rely on the solution of LMIs rather than a direct

Hamiltonian approach.

V. SOS MATRICES AND KYP

The results described above allow us to formulate the

following theorem, which is the exact SOS polynomial

analogue of the KYP lemma.

Theorem 2: Consider a monic symmetric polynomial ma-

trix P (x) ∈ R[x]n×n of degree 2d, of the form (11). The

following statements are equivalent:

• Positive definiteness:

P (x) � 0, ∀x ∈ R (14)

• SOS factorization with bound on the number of squares:

P (x) = F (x)⊤F (x) (15)

for some F (x) ∈ R[x]s×n, with s ≤ 2n.

• “Gram matrix” SOS LMI (kernel version). There exists

a matrix G ∈ S(d+1)n such that G � 0 and

Pk =
∑

i+j=k

Gij , k = 0, . . . , 2d,

where G is partitioned in (d+1)2 square blocks of size

n × n, and the indices range from 0 to d.

• SOS LMI (image version). There exists a skew-

symmetric matrix S ∈ Rdn×dn (S = −S⊤) such that

Q +

[
0dn×n S

0n×n 0n×dn

]

+

[
0n×dn 0n×n

S 0dn×n

]

� 0, (16)
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where

Q :=
1

2










2P0 P1 · · · Pd−1 Pd

P1 0 · · · 0 Pd+1

...
...

. . .
...

...

Pd−1 0 · · · 0 P2d−1

Pd Pd+1 · · · P2d−1 2P2d










Furthermore, P (x) is strictly positive definite if and only if

the matrix CP defined in (12) has no real eigenvalues.

Proof: The proofs of these statements are omitted for

space reasons. They will appear in the full version of this

paper.

VI. EXAMPLES

In this section we present two examples demonstrating the

application of our algorithm. The first one considers a 2× 2
polynomial matrix, while the second example illustrates the

case of roots with higher multiplicities.

Example 1: The first example we present is the strictly

positive definite polynomial matrix

P (x) =

[
x2 − 2x + 2 x

x x2 + 1

]

.

The corresponding companion matrix is

CP =







0 0 1 0
0 0 0 1

−2 0 2 −1
0 −1 −1 0







.

The eigenvalues of CP are

1.1898 + 0.6028i,

1.1898 − 0.6028i

−0.1898 + 1.0432i

−0.1898 − 1.0432i

none of which are purely real. The matrix Q, calculated

according to the algorithm in Section IV, is

Q =

[
1.0000 + 0.7585i −0.3938 + 0.2393i

−0.6062 + 0.2393i −0.0000 + 0.8875i

]

.

From this, we construct the corresponding factor F (x) as:

F (x) =







x − 1 0.3938
0.6062 x

−0.7585 −0.2393
−0.2393 −0.8875







,

and

P (x) = F⊤(x)F (x).
Example 2: Our second example is the scalar univariate

positive definite polynomial given by

p(x) = x4 + 2x2 + 1.

The associated companion matrix is

Cp =







0 1 0 0
0 0 1 0
0 0 0 1
−1 0 −2 0







.

The eigenvalues of the companion matrix Cp, or equivalently

roots of the polynomial p(x) are

−i, −i, +i, +i.

Notice that we can group the eigenvalues in two different

ways to satisfy the condition that if xi ∈ Λ1, then x∗

i ∈

Λ2. Specifically, we can group them as −i,−i ∈ Λ1 and

+i,+i ∈ Λ2, or we can group them as −i,+i ∈ Λ1 and

+i,−i ∈ Λ2. We will see that these different groupings give

rise to different factorizations. For the first case, we have

that the matrix Q is

Q =
[

1 2i
]
,

and thus we obtain the factor

F1(x) =

[
−1 0 1
0 −2 0

]




1
x

x2



 =

[
x2 − 1
−2x

]

.

For the second grouping, we have

Q =
[
−1 0

]
,

and

F2(x) =

[
1 0 1
0 0 0

]




1
x

x2



 =

[
x2 + 1

0

]

.

We have then two different SOS decompositions

p(x) = F⊤

1 (x)F1(x) = F⊤

2 (x)F2(x),

or equivalently,

x4 + 2x2 + 1 = (x2 − 1)2 + (−2x)2 = (x2 + 1)2.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a theorem for polynomial matrices that is

the analogue of the KYP lemma, and presented an efficient

algorithm to find an explicit SOS decomposition of univariate

positive definite matrices.

One area for possible future work is to explore the

possibility of using our procedure as an efficient subroutine

in optimization problems involving multivariate polynomial

matrix inequalities. Also of interest would be to explore

the possibilities of computing the central solution of the

inequality (the analytic center of the feasible set), an issue

originally suggested by Genin, Nesterov, and van Dooren in

the context of Riccati inequalities in [5].
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APPENDIX

A. Proof of Factorization Algorithm in Section IV

In this appendix we will prove that the factorization algo-

rithm given in Section IV works. For simplicity of notation,

we assume that the companion matrix CP is diagonalizable,

although this proof can be extended to the non-diagonalizable

case. The algorithm in the diagonalizable case is as follows:

Algorithm 2: Given a monic positive definite polynomial

matrix P (x):

1) Diagonalize the block companion matrix CP into the
form:
[

B1 B2

B1Λ
d B2(Λ

∗)d

] [
Λ 0
0 Λ∗

]

︸ ︷︷ ︸

D

[
B1 B2

B1Λ
d B2(Λ

∗)d

]
−1

(17)

where Λ and Λ∗ are diagonal matrices containing the

eigenvalues of CP . If

Λ = diag(
[

λ1 λ2 · · · λnd

]
),

then

B1 =








b1 b2 · · · bnd

λ1b1 λ2b2 · · · λndbnd

...
...

...
...

λd−1
1 b1 λd−1

2 b2 · · · λd−1
nd bnd








, (18)

B2 = B̄1, (19)

where bi ∈ Rn×1, and B̄1 denotes the conjugation of

the entries of B1.

2) Define CQ := B1ΛB−1
1 , and Let Q denote the last

block row (n × dn) of CQ, and let Qr and Qi be the

real and imaginary parts of Q, respectively. Note that

this is equivalent to the V U−1
11 in the formulation in

section IV.

3) The factor F (x) such that P (x) = F⊤(x)F (x) is then

given by:

F (x) =

[
−Qr In

−Qi 0n

]








In

xIn

...

xdIn








. (20)

Proof: The proof is divided in two parts. In the first,

we will show that the (complex) polynomial matrix Q(s) :=
det(sI − CQ) satisfies P (s) = Q∗(s)Q(s). We will do this

by proving P−1(s) = Q−1(s)Q−∗(s). In the second part

we will show that the real factor F (x) satisfies P (x) =
F⊤(x)F (x).

To prove P−1(s) = Q−1(s)Q−∗(s), consider the follow-

ing two state-space representations:

A = CP

B =
[

0 · · · 0 In

]⊤

C =
[

In · · · 0 0
]
, (21)

and

Ã =

[
CQ E

0 CQ∗

]

B̃ =
[

0 · · · 0 In

]⊤

C̃ =
[

In · · · 0 0
]
, (22)

where E is a matrix with all zeros except the lower left

n × n block which is the identity matrix. The matrix CQ

is the companion matrix defined in Step 2 of the algorithm

above, and CQ∗ is the companion matrix of Q∗(s).

It can be easily verified that the n × n transfer function

associated to the system (A,B,C) is P−1(s) and that the

transfer function associated to (Ã, B̃, C̃) is Q−1(s)Q−∗(s).
We will show next that the two state-space representations

are equivalent up to a linear state transformation, and thus

they have the same transfer function.

Let

T := T2T
−1
1 ,
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where

T1 =

[
B1 B2

B1Λ
d B2(Λ

∗)d

]

, (23)

T2 =

[
B1 B2

0 B3

]

, (24)

and

B3 =








v1 v2 · · · vnd

λ∗

1
v1 λ∗

2
v2 · · · λ∗

nd
vnd

.

.

.
.
.
.

.

.

.
.
.
.

(λ∗

1
)d−1v1 (λ∗

2
)d−1v2 · · · (λ∗

nd
)d−1vnd








,(25)

with vi := Q(λ∗

i )b̄i. Notice that the vectors vi satisfy

Q∗(λ∗

i )vi = 0.

To prove that T is a similarity transformation between

systems (21) and (22) we need to show that Ã = TAT−1,

T−1B̃ = B and C̃ = CT−1. Notice first that:

ÃT2 =

[
CQ E

0 CQ∗

] [
B1 B2

0 B3

]

=

[
CQB1 CQB2 + EB3

0 CQ∗B3

]

=

[
B1Λ B2Λ

∗

0 B3Λ
∗

]

(26)

= T2D.

Equality holds for the top-left block of equation (26)

since we constructed CQ as CQ = B1ΛB−1
1 . It is also

straightforward to show the lower-right block equality (since

Q∗(λ∗

i )vi = 0). For the top-right block we have:

CQB2 =








λ∗

1
b̄1 · · · λ∗

nd
b̄nd

.

.

.
. . .

.

.

.

(λ∗

1
)d−1b̄1 · · · (λ∗

nd
)d−1b̄nd

−Q(λ∗

1
)b̄1 + (λ∗

1
)db̄1 · · · −Q(λ∗

nd
)b̄nd + (λ∗

nd
)db̄nd








EB3 =








0 · · · 0
...

. . .
...

0 · · · 0
v1 · · · vnd








. (27)

Using the fact that vi = Q(λ∗

i )b̄i,

CQB2 + EB3 =








λ∗
1b̄1 · · · λ∗

ndb̄nd

...
. . .

...

(λ∗
1)

d−1b̄1 · · · (λ∗

nd)
d−1b̄nd

(λ∗
1)

db̄1 · · · (λ∗

nd)
db̄nd








= B2Λ
∗.

Since ÃT2 = T2D, we have

Ã = T2DT−1
2 = T2T

−1
1 T1DT−1

1 T1T
−1
2 = TAT−1.

We now show that T also satisfies T−1B̃ = B and C̃ =
CT−1:

T−1 = T1T
−1
2

=

[
B1 B2

B1Λ
d B2(Λ

∗)d

] [
B−1

1 −B−1
1 B2B

−1
3

0 B−1
3

]

=

[
I 0

B1Λ
dB−1

1 L

]

, (28)

where L is given by

L = −B1Λ
dB−1

1 B2B
−1
3 + B2(Λ

∗)dB−1
3 . (29)

It can be shown that L is a lower triangular matrix with n×n

block identity matrices on the diagonal. Hence T−1B̃ = B

and C̃ = CT−1, since

B̃ = B =
[

0 · · · 0 In

]⊤

C̃ = C =
[

In · · · 0 0
]
.

With this we have shown that a similarity transformation

exists between systems (21) and (22), and therefore that

P−1(s) = Q−1(s)Q−∗(s). It follows immediately that

P (s) = Q∗(s)Q(s).
We now prove that a factor F (x) with real coefficients

and satisfying P (x) = F⊤(x)F (x) can be constructed from

Q(x) according to equation (20). For this, first note that if

Q(x) = Qr(x) + iQi(x), and if we construct F (x) as

F (x) =

[
Qr(x)
Qi(x)

]

, (30)

then we have

P (x) = Q⊤

r (x)Qr(x) + Q⊤

i (x)Qi(x)

+ i[Q⊤

r (x)Qi(x) − Q⊤

i (x)Qr(x)]

= F⊤(x)F (x).

Since the last block row of the companion matrix CQ is the

matrix Q, we have

Q(x) =
[
−Q In

]








In

xIn

...

xdIn








.

From equation (30), this is equivalent to

F (x) =

[
−Qr In

−Qi 0n

]








In

xIn

...

xdIn








.
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