5. Linear Inequalities and Elimination

- Searching for certificates
- Projection of polyhedra
- Quantifier elimination
- Constructing valid inequalities
- Fourier-Motzkin elimination
- Efficiency
- Certificates
- Farkas lemma
- Representations
- Polytopes and combinatorial optimization
- Efficient representations
Searching for Certificates

Given a feasibility problem

\[\text{does there exist } x \text{ such that } f_i(x) \leq 0 \text{ for all } i = 1, \ldots, m \]

We would like to find certificates of infeasibility. Two important methods include

- Optimization

- Automated inference, or constructive methods

In this section, we will describe some constructive methods for the special case of linear equations and inequalities
Polyhedra

A set $S \subseteq \mathbb{R}^n$ is called a polyhedron if it is the intersection of a finite set of closed halfspaces

$$ S = \left\{ x \in \mathbb{R}^n \mid Ax \leq b \right\} $$

- A bounded polyhedron is called a polytope
- The dimension of a polyhedron is the dimension of its affine hull

$$ \text{affine}(S) = \left\{ \lambda x + \nu y \mid \lambda + \nu = 1, \ x, y \in S \right\} $$

- If $b = 0$ the polyhedron is a cone
- Every polyhedron is convex
Faces of Polyhedra

given $a \in \mathbb{R}^n$, the corresponding face of polyhedron P is

$$\text{face}(a, P) = \left\{ x \in P \mid a^T x \geq a^T y \text{ for all } y \in P \right\}$$

- Faces of dimension 0 are called vertices
- 1 edges
- $d - 1$ facets, where $d = \text{dim}(P)$
- Facets are also said to have codimension 1
Projection of Polytopes

Suppose we have a polytope

\[S = \left\{ x \in \mathbb{R}^n \mid Ax \leq b \right\} \]

We’d like to construct the projection onto the hyperplane

\[\left\{ x \in \mathbb{R}^n \mid x_1 = 0 \right\} \]

Call this projection \(P(S) \)

In particular, we would like to find the inequalities that define \(P(S) \)
Projection of Polytopes

We have

\[P(S) = \left\{ x_2 \mid \text{there exists } x_1 \text{ such that } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in S \right\} \]

- Our objective is to perform quantifier elimination to remove the existential quantifier and find a basic semialgebraic representation of \(P(S) \)

- Alternatively, we can interpret this as finding valid inequalities that do not depend on \(x_1 \); i.e., the intersection

\[\text{cone}\{f_1, \ldots, f_m\} \cap \mathbb{R}[x_2, \ldots, x_n] \]

This is called the elimination cone of valid inequalities
Projection of Polytopes

- Intuitively, $P(S)$ is a polytope; what are its vertices?

 Every face of $P(S)$ is the projection of a face of S

- Hence every vertex of $P(S)$ is the projection of some vertex of S

- What about the facets?

 So one algorithm is
 - Find the vertices of S, and project them
 - Find the convex hull of the projected points

 But how do we do this?
Example

- The polytope S has dimension 55, 2048 vertices, billions of facets
- The 3d projection $P(S)$ has 92 vertices and 74 facets
Simple Example

\[-4x_1 - x_2 \leq -9\]
\[-x_1 - 2x_2 \leq -4\]
\[-2x_1 + x_2 \leq 0\]
\[-x_2 - 6x_2 \leq -6\]
\[x_1 + 2x_2 \leq 11\]
\[6x_1 + 2x_2 \leq 17\]
\[x_2 \leq 4\]
Constructing Valid Inequalities

We can generate new valid inequalities from the given set; e.g., if

\[a_1^T x \leq b_1 \quad \text{and} \quad a_2^T x \leq b_2 \]

then

\[\lambda_1 (b_1 - a_1^T x) + \lambda_2 (b_2 - a_2^T x) \geq 0 \]

is a valid inequality for all \(\lambda_1, \lambda_2 \geq 0 \)

Here we are applying the inference rule, for \(\lambda_1, \lambda_2 \geq 0 \)

\[f_1, f_2 \geq 0 \quad \Longrightarrow \quad \lambda_1 f_1 + \lambda_2 f_2 \geq 0 \]
Constructing Valid Inequalities

For example, use inequalities (2) and (6) above

\[-x_1 + 2x_2 \leq -4\]
\[6x_1 - 2x_2 \leq 17\]

Pick \(\lambda_1 = 6\) and \(\lambda_2 = 1\) to give

\[6(-x_1 - 2x_2) + (6x_1 - 2x_2) \leq 6(-4) + 17\]
\[-2x_2 \leq 1\]

- The corresponding vector is in the cone generated by \(a_1\) and \(a_2\)
- If \(a_1\) and \(a_2\) have opposite sign coefficients of \(x_1\), then we can pick some element of the cone with \(x_1\) coefficient zero.
Fourier-Motzkin Elimination

Write the original inequalities as

\[
\begin{align*}
\frac{x_2}{4} + \frac{9}{4} \\
-2x_2 + 4 \\
\frac{x_2}{2} \\
-6x_2 + 6
\end{align*}
\]

along with \(x_2 \leq 4 \)

Hence every expression on the left hand side is less than every expression on the right, for every \((x_1, x_2) \in P\)

Together with \(x_2 \leq 4 \), this set of pairs specifies exactly \(P(S) \)
The Projected Set

This gives the following system of inequalities for $P(S)$

\[
\begin{align*}
& x_2 \leq 5 & -x_2 \leq 1 & 0 \leq 7 & -x_2 \leq -\frac{1}{2} & x_2 \leq \frac{4}{5} \\
& x_2 \leq 17 & -x_2 \leq \frac{4}{5} & -x_2 \leq -\frac{1}{2} & x_2 \leq 4
\end{align*}
\]

- There are many redundant inequalities
- $P(S)$ is defined by the tightest pair

\[
-x_2 \leq -\frac{1}{2} \quad x_2 \leq 4
\]

- When performing repeated projection, it is very important to eliminate redundant inequalities
Efficiency of Fourier-Motzkin elimination

If A has m rows, then after elimination of x_1 we can have no more than

$$\left\lfloor \frac{m^2}{4} \right\rfloor$$

facets

- If $m/2$ inequalities have a positive coefficient of x_1, and $m/2$ have a negative coefficient, then FM constructs exactly $m^2/4$ new inequalities
- Repeating this, eliminating d dimensions gives
 $$\left\lfloor \frac{m}{2} \right\rfloor^{2d}$$
 inequalities
- Key question: how many are redundant? i.e., does projection produce exponentially more facets?
Inequality Representation

Constructing such inequalities corresponds to multiplication of the original constraint $Ax \leq b$ by a positive matrix C

In this case

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 & 4 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -4 & -1 \\ -1 & -2 \\ -2 & 1 \\ -1 & -6 \\ 1 & 2 \\ 6 & -2 \\ 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} -9 \\ -4 \\ 0 \\ -6 \\ 11 \\ 17 \\ 4 \end{bmatrix}$$
Inequality Representation

The resulting inequality system is $CAx \leq Cb$, since

$$x \geq 0 \text{ and } C \geq 0 \implies Cx \geq 0$$

We find

$$CA = \begin{bmatrix} 0 & 7 \\ 0 & -14 \\ 0 & 0 \\ 0 & -14 \\ 0 & 5 \\ 0 & 2 \\ 0 & -4 \\ 0 & -38 \\ 0 & 1 \end{bmatrix} \quad \quad Cb = \begin{bmatrix} 35 \\ 14 \\ 7 \\ -7 \\ 22 \\ 34 \\ 5 \\ -19 \\ 4 \end{bmatrix}$$
Feasibility

In the example above, we eliminated x_1 to find

$$-x_2 \leq -\frac{1}{2} \quad x_2 \leq 4$$

We can now eliminate x_2 to find

$$0 \leq \frac{7}{2}$$

which is obviously true; it’s valid for every $x \in S$, but happens to be independent of x

If we had arrived instead at

$$0 \leq -2$$

then we would have derived a contradiction, and the original system of inequalities would therefore be infeasible
Example

Consider the infeasible system

\[
\begin{align*}
x_1 &\geq 0 \\
x_2 &\geq 0 \\
x_1 + x_2 &\leq -2
\end{align*}
\]

Write this as \(-x_1 \leq 0\) \(\quad x_1 + x_2 \leq -2\) \(-x_2 \leq 0\)

Eliminating \(x_1\) gives

\[
\begin{align*}
x_2 &\leq -2 \\
&\quad -x_2 \leq 0
\end{align*}
\]

Subsequently eliminating \(x_2\) gives the contradiction

\[
0 \leq -2
\]
Inequality Representation

The original system is $Ax \leq b$ with $A = \begin{bmatrix} -1 & 0 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$ and $b = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$

To eliminate x_1, multiply

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (Ax - b) \leq 0$$

Similarly to eliminate x_2 we form

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} (Ax - b) \leq 0$$
Certificates of Infeasibility

The final elimination is

\[[1 \ 1 \ 1] (Ax - b) \leq 0 \]

Hence we have found a vector \(\lambda \) such that

- \(\lambda \geq 0 \) (since its a product of positive matrices)
- \(\lambda^T A = 0 \) and \(\lambda^T b < 0 \) (since it gives a contradiction)

Fourier-Motzkin constructs a \textit{certificate} of infeasibility; the vector \(\lambda \)

- Exactly decides feasibility of linear inequalities
- Hence this gives an extremely inefficient way to solve a linear program
Farkas Lemma

Hence Fourier-Motzkin gives a proof of Farkas lemma

The primal problem is

\[\exists x \ A x \leq b \]

The dual problem is a strong alternative

\[\exists \lambda \ \lambda^T A = 0, \ \lambda^T b < 0, \ \lambda \geq 0 \]

The beauty of this proof is that it is *algebraic*

- It does not require any compactness or topology
- It works over general fields, e.g. \mathbb{Q},
- It is a *syntactic proof*, just requiring the axioms of positivity
Gaussian Elimination

We can also view Gaussian elimination in the same way

- Constructing linear combination of rows is *inference*
 Every such combination is a valid equality

- If we find $0x = 1$ then we have a proof of infeasibility

The corresponding strong duality result is

- Primal: $\exists x \ Ax = b$
- Dual: $\exists \lambda \ \lambda^T A = 0, \lambda^T b \neq 0$

Of course, this is just the usual range-nullspace duality
Computation

One feature of FM is that it allows *exact rational arithmetic*

- Just like Groebner basis methods
- Consequently very slow; the numerators and denominators in the rational numbers become large
- Even Gaussian elimination is slow in exact arithmetic (but still polynomial)

Optimization Approach

- Solving the inequalities using interior-point methods is much faster than testing feasibility using FM
- Allows floating-point arithmetic
- We will see similar methods for polynomial equations and inequalities
Representation of Polytopes

We can represent a polytope in the following ways

- an intersection of halfspaces, called an H-polytope

$$S = \left\{ x \in \mathbb{R}^n \mid Ax \leq b \right\}$$

- the convex hull of its vertices, called a V-polytope

$$S = \text{co}\{ a_1, \ldots, a_m \}$$
Size of representations

In some cases, one representation is smaller than the other

- The n-cube
 \[
 C_n = \left\{ x \in \mathbb{R}^n \mid -1 \leq x_i \leq 1 \text{ for all } i \right\}
 \]
 has $2n$ facets, and 2^n vertices

- The polar of the cube is the n-dimensional crosspolytope
 \[
 C_n^* = \left\{ x \in \mathbb{R}^n \mid \sum_{i} |x_i| \leq 1 \right\}
 \]
 \[
 = \text{co} \left\{ e_1, -e_1, \ldots, e_n, -e_n \right\}
 \]
 which has $2n$ vertices and 2^n facets

- Consequently, projection is exponential.
Problem Solving using Different Representations

If S is a V-polytope

- **Optimization** is easy; evaluate $c^T x$ at all vertices
- To check membership of a given $y \in S$, we need to solve an LP; duality will give certificate of infeasibility

If S is an H-polytope

- **Membership** is easy; simply evaluate $Ay - b$
 The certificate of infeasibility is just the violated inequality
- **Optimization** is an LP
Polytopes and Combinatorial Optimization

Recall the MAXCUT problem

\[
\begin{align*}
\text{maximize} & \quad \text{trace}(QX) \\
\text{subject to} & \quad \text{diag } X = 1 \\
& \quad \text{rank}(X) = 1 \\
& \quad X \succeq 0
\end{align*}
\]

The cut polytope is the set

\[
C = \text{co}\{ X \in \mathbb{S}^n \mid X = vv^T, \ v \in \{-1, 1\}^n \}
= \text{co}\{ X \in \mathbb{S}^n \mid \text{rank}(X) = 1, \ \text{diag}(X) = 1, \ X \succeq 0 \}
\]

- Maximizing \(\text{trace} QX\) over \(X \in C\) gives exactly the MAXCUT value
- This is equivalent to a linear program
MAXCUT

Although we can formulate MAXCUT as an LP, both the V-representation and the H-representation are exponential in the number of vertices

- e.g., for $n = 7$, the cut polytope has 116,764 facets
 for $n = 8$, there are approx. 217,000,000 facets

- Exponential description is not necessarily fatal; we may still have a polynomial-time separation oracle

- For MAXCUT, several families of valid inequalities are known, e.g., the triangle inequalities give LP relaxations of MAXCUT
Efficient Representation

- Projecting a polytope can dramatically change the number of facets
- Fundamental question: are polyhedral feasible sets the projection of higher dimensional polytope with fewer facets?
- If so, the problem is solvable by a simpler LP in higher dimensions
 The projection is performed *implicitly*

Convex Relaxation

- For any optimization problem, we can always construct an equivalent problem with a *linear* cost function
- Then, replacing the feasible set with its convex hull does not change the optimal value
- Fundamental question: how to efficiently construct convex hulls?