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5. Linear Inequalities and Elimination

• Searching for certificates

• Projection of polyhedra

• Quantifier elimination

• Constructing valid inequalities

• Fourier-Motzkin elimination

• Efficiency

• Certificates

• Farkas lemma

• Representations

• Polytopes and combinatorial optimization

• Efficient representations
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Searching for Certificates

Given a feasibility problem

does there exist x such that fi(x) ≤ 0 for all i = 1, . . . ,m

We would like to find certificates of infeasibility. Two important methods
include

• Optimization

• Automated inference, or constructive methods

In this section, we will describe some constructive methods for the special
case of linear equations and inequalities
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Polyhedra

A set S ⊂ Rn is called a polyhedron if it is the intersection of a finite set
of closed halfspaces

S =
{
x ∈ Rn | Ax ≤ b

}

• A bounded polyhedron is called a polytope

• The dimension of a polyhedron is the dimension of its affine hull

affine(S) =
{
λx + νy | λ + ν = 1, x, y ∈ S

}

• If b = 0 the polyhedron is a cone

• Every polyhedron is convex



5 - 4 Linear Inequalities and Elimination P. Parrilo and S. Lall, CDC 2003 2003.12.07.02

Faces of Polyhedra

given a ∈ Rn, the corresponding face of polyhedron P is

face(a, P ) =
{
x ∈ P | aTx ≥ aTy for all y ∈ P

}

face(
[
1 1
]T
, P ), dimension 1

face(
[
2 1
]T
, P ), dimension 0

• Faces of dimension 0 are called vertices
1 edges
d− 1 facets, where d = dim(P )

• Facets are also said to have codimension 1
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Projection of Polytopes

Suppose we have a polytope

S =
{
x ∈ Rn | Ax ≤ b

}

We’d like to construct the projection
onto the hyperplane

{
x ∈ Rn | x1 = 0

}

Call this projection P (S)

In particular, we would like to find the inequalities that define P (S)
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Projection of Polytopes

We have

P (S) =

{
x2 | there exists x1 such that

[
x1
x2

]
∈ S

}

• Our objective is to perform quantifier elimination to remove the exis-
tential quantifier and find a basic semialgebraic representation of P (S)

• Alternatively, we can interpret this as finding valid inequalities that do
not depend on x1; i.e., the intersection

cone{f1, . . . , fm} ∩ R[x2, . . . , xn]

This is called the elimination cone of valid inequalities
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Projection of Polytopes

• Intuitively, P (S) is a polytope; what are its vertices?

Every face of P (S) is the projection of a face of S

• Hence every vertex of P (S) is the projection of some vertex of S

• What about the facets?

• So one algorithm is

• Find the vertices of S, and project them

• Find the convex hull of the projected points

But how do we do this?
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Example

• The polytope S has dimension 55, 2048 vertices, billions of facets

• The 3d projection P (S) has 92 vertices and 74 facets
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Simple Example

−4x1 − x2 ≤ −9 (1)

−x1 − 2x2 ≤ −4 (2)

−2x1 + x2 ≤ 0 (3)

−x2 − 6x2 ≤ −6 (4)

x1 + 2x2 ≤ 11 (5)

6x1 + 2x2 ≤ 17 (6)

x2 ≤ 4 (7)
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Constructing Valid Inequalities

We can generate new valid inequalities from the given set; e.g., if

aT1 x ≤ b1 and aT2 x ≤ b2

then
λ1(b1 − aT1 x) + λ2(b2 − aT2 x) ≥ 0

is a valid inequality for all λ1, λ2 ≥ 0

Here we are applying the inference rule, for λ1, λ2 ≥ 0

f1, f2 ≥ 0 =⇒ λ1f1 + λ2f2 ≥ 0
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Constructing Valid Inequalities

For example, use inequalities (2) and
(6) above

−x1 + 2x2 ≤ −4

6x1 − 2x2 ≤ 17

Pick λ1 = 6 and λ2 = 1 to give

6(−x1 − 2x2) + (6x1 − 2x2) ≤ 6(−4) + 17

−2x2 ≤ 1

• The corresponding vector is in the cone generated by a1 and a2

• If a1 and a2 have opposite sign coefficients of x1, then we can pick
some element of the cone with x1 coefficient zero.
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Fourier-Motzkin Elimination

Write the original inequalities as

x2

4
+

9

4

−2x2 + 4
x2

2

−6x2 + 6





≤ x1 ≤




− 2x2 − 11

− x2

3
+

17

6

along with x2 ≤ 4

Hence every expression on the left hand side is less than every expression
on the right, for every (x1, x2) ∈ P

Together with x2 ≤ 4, this set of pairs specifies exactly P (S)



5 - 13 Linear Inequalities and Elimination P. Parrilo and S. Lall, CDC 2003 2003.12.07.02

The Projected Set

This gives the following system of inequalities for P (S)

x2 ≤ 5 −x2 ≤ 1 0 ≤ 7 −x2 ≤ −
1

2
x2 ≤ 42

5

x2 ≤ 17 −x2 ≤ 4
5 −x2 ≤ −1

2 x2 ≤ 4

• There are many redundant inequalities

• P (S) is defined by the tightest pair

−x2 ≤ −1
2 x2 ≤ 4

• When performing repeated projection, it is very important to eliminate
redundant inequalities
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Efficiency of Fourier-Motzkin elimination

If A has m rows, then after elimination of x1 we can have no more than
⌊
m2

4

⌋
facets

• If m/2 inequalities have a positive coefficient of x1, and m/2 have a
negative coefficient, then FM constructs exactly m2/4 new inequalities

• Repeating this, eliminating d dimensions gives

⌊
m

2

⌋2d

inequalities

• Key question: how many are redundant? i.e., does projection produce
exponentially more facets?
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Inequality Representation

Constructing such inequalities corresponds to multiplication of the original
constraint Ax ≤ b by a positive matrix C

In this case

C =




1 0 0 0 4 0 0
6 0 0 0 0 4 0
0 1 0 0 1 0 0
0 6 0 0 0 1 0
0 0 1 0 2 0 0
0 0 6 0 0 2 0
0 0 0 1 1 0 0
0 0 0 6 0 1 0
0 0 0 0 0 0 1




A =




−4 −1
−1 −2
−2 1
−1 −6

1 2
6 −2
0 1




b =




−9
−4

0
−6
11
17
4



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Inequality Representation

The resulting inequality system is CAx ≤ Cb, since

x ≥ 0 and C ≥ 0 =⇒ Cx ≥ 0

We find

CA =




0 7
0 −14
0 0
0 −14
0 5
0 2
0 −4
0 −38
0 1




Cb =




35
14
7
−7
22
34
5

−19
4



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Feasibility

In the example above, we eliminated x1 to find

−x2 ≤ −
1

2
x2 ≤ 4

We can now eliminate x2 to find

0 ≤ 7

2

which is obviously true; it’s valid for every x ∈ S, but happens to be
independent of x

If we had arrived instead at
0 ≤ −2

then we would have derived a contradiction, and the original system of
inequalities would therefore be infeasible
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Example

Consider the infeasible system

x1 ≥ 0

x2 ≥ 0

x1 + x2 ≤− 2

Write this as −x1 ≤ 0 x1 + x2 ≤ −2 − x2 ≤ 0

Eliminating x1 gives
x2 ≤ −2 − x2 ≤ 0

Subsequently eliminating x2 gives the contradiction

0 ≤ −2
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Inequality Representation

The original system is Ax ≤ b with A =



−1 0
1 1
0 −1


 and b =




0
−2
0




To eliminate x1, multiply
[

1 1 0
0 0 1

]
(Ax− b) ≤ 0

Similarly to eliminate x2 we form

[
1 1
] [1 1 0

0 0 1

]
(Ax− b) ≤ 0
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Certificates of Infeasibility

The final elimination is
[
1 1 1

]
(Ax− b) ≤ 0

Hence we have found a vector λ such that

• λ ≥ 0 (since its a product of positive matrices)

• λTA = 0 and λT b < 0 (since it gives a contradiction)

Fourier-Motzkin constructs a certificate of infeasibility; the vector λ

• Exactly decides feasibility of linear inequalities

• Hence this gives an extremely inefficient way to solve a linear program
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Farkas Lemma

Hence Fourier-Motzkin gives a proof of Farkas lemma

The primal problem is

∃x Ax ≤ b

The dual problem is a strong alternative

∃λ λTA = 0, λT b < 0, λ ≥ 0

The beauty of this proof is that it is algebraic

• It does not require any compactness or topology

• It works over general fields, e.g. Q,

• It is a syntactic proof, just requiring the axioms of positivity



5 - 22 Linear Inequalities and Elimination P. Parrilo and S. Lall, CDC 2003 2003.12.07.02

Gaussian Elimination

We can also view Gaussian elimination in the same way

• Constructing linear combination of rows is inference

Every such combination is a valid equality

• If we find 0x = 1 then we have a proof of infeasibility

The corresponding strong duality result is

• Primal: ∃x Ax = b

• Dual: ∃λ λTA = 0, λT b 6= 0

Of course, this is just the usual range-nullspace duality
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Computation

One feature of FM is that it allows exact rational arithmetic

• Just like Groebner basis methods

• Consequently very slow; the numerators and denominators in the ra-
tional numbers become large

• Even Gaussian elimination is slow in exact arithmetic (but still poly-
nomial)

Optimization Approach

• Solving the inequalities using interior-point methods is much faster
than testing feasibility using FM

• Allows floating-point arithmetic

• We will see similar methods for polynomial equations and inequalities
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Representation of Polytopes

We can represent a polytope in the following
ways

• an intersection of halfspaces, called an
H-polytope

S =
{
x ∈ Rn | Ax ≤ b

}

• the convex hull of its vertices, called a
V -polytope

S = co
{
a1, . . . , am

}
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Size of representations

In some cases, one representation is smaller than the other

• The n-cube

Cn =
{
x ∈ Rn | − 1 ≤ xi ≤ 1 for all i

}

has 2n facets, and 2n vertices

• The polar of the cube is the n-dimensional crosspolytope

C∗n =
{
x ∈ Rn

∣∣ ∑

i

|xi| ≤ 1
}

= co { e1,−e1, . . . , en,−en }

which has 2n vertices and 2n facets

• Consequently projection is exponential.
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Problem Solving using Different Representations

If S is a V -polytope

• Optimization is easy; evaluate cTx at all vertices

• To check membership of a given y ∈ S, we need to solve an LP;
duality will give certificate of infeasibility

If S is an H-polytope

• Membership is easy; simply evaluate Ay − b
The certificate of infeasibility is just the violated inequality

• Optimization is an LP
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Polytopes and Combinatorial Optimization

Recall the MAXCUT problem

maximize trace(QX)

subject to diagX = 1

rank(X) = 1

X º 0

The cut polytope is the set

C = co
{
X ∈ Sn | X = vvT , v ∈ {−1, 1}n

}

= co
{
X ∈ Sn | rank(X) = 1, diag(X) = 1, X º 0

}

• Maximizing traceQX over X ∈ C gives exactly the MAXCUT value

• This is equivalent to a linear program
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MAXCUT

Although we can formulate MAXCUT as an LP, both the V -representation
and the H-representation are exponential in the number of vertices

• e.g., for n = 7, the cut polytope has 116, 764 facets
for n = 8, there are approx. 217, 000, 000 facets

• Exponential description is not necessarily fatal; we may still have a
polynomial-time separation oracle

• For MAXCUT, several families of valid inequalities are known, e.g.,
the triangle inequalities give LP relaxations of MAXCUT
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Efficient Representation

• Projecting a polytope can dramatically change the number of facets

• Fundamental question: are polyhedral feasible sets the projection of
higher dimensional polytope with fewer facets?

• If so, the problem is solvable by a simpler LP in higher dimensions

The projection is performed implicitly

Convex Relaxation

• For any optimization problem, we can always construct an equivalent
problem with a linear cost function

• Then, replacing the feasible set with its convex hull does not change
the optimal value

• Fundamental question: how to efficiently construct convex hulls?


