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Searching for Certificates

Given a feasibility problem

does there exist = such that f;(z) < Oforalli=1,....m

We would like to find certificates of infeasibility. Two important methods
include

e Optimization

e Automated inference, or constructive methods

In this section, we will describe some constructive methods for the special
case of linear equations and inequalities
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Polyhedra

A set S C R" is called a polyhedron if it is the intersection of a finite set
of closed halfspaces

S:{xERn\Axéb}

e A bounded polyhedron is called a polytope

e The dimension of a polyhedron is the dimension of its affine hull

afﬁne(S):{)\zE+uy])\+V:1, :IJ,yES}

e |f b =0 the polyhedron is a cone

e Every polyhedron is convex
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Faces of Polyhedra

given a € R", the corresponding face of polyhedron P is

face(a, P) = {iCEP al'z > aly for aIIyEP}

1 1]", P), dimension 1

o face( |
11

Tn— face([2 1|” , P), dimension 0
>

e Faces of dimension O are called vertices

1 edges
d—1 facets, where d = dim(P)

e Facets are also said to have codimension 1
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Projection of Polytopes

Suppose we have a polytope

S:{xERn|AI’§b}

We'd like to construct the projection
onto the hyperplane

{xERn\mle}

Call this projection P(.5) E

In particular, we would like to find the inequalities that define P(.S)
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Projection of Polytopes

We have

P(S) = {332 | there exists x1 such that [5131] € S}

L2

e Qur objective is to perform quantifier elimination to remove the exis-
tential quantifier and find a basic semialgebraic representation of P(S)

e Alternatively, we can interpret this as finding valid inequalities that do
not depend on x7; i.e., the intersection

cone{fi,...,fm} NRlzg, ..., zy

This is called the elimination cone of valid inequalities
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Projection of Polytopes

e Intuitively, P(S) is a polytope; what are its vertices?

Every face of P(.S) is the projection of a face of S

e Hence every vertex of P(.S) is the projection of some vertex of S

e What about the facets?

e So one algorithm is

e Find the vertices of S, and project them

e Find the convex hull of the projected points

But how do we do this?
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Example
e The polytope S has dimension 55, 2048 vertices, billions of facets

e The 3d projection P(S) has 92 vertices and 74 facets
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Simple Example

—dx1 —x9 <=9 (1) ’
—r1 — 219 < -4 (2)

—211+ 29 <0 (3) :
—x9 — bz < —6 (4)

v 20y <11  (5)

6y + 200 <17 (6)
r9 < 4 (7)
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Constructing Valid Inequalities

We can generate new valid inequalities from the given set; e.g., if
aflrx < b and agx < by

then
A1(by — aiFQE) + Ag(by — agaz) > ()

is a valid inequality for all A{, Ao > 0

Here we are applying the inference rule, for Ay, Ao > 0

f1,f2>0 — M1+ Xofo>0
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Constructing Valid Inequalities

For example, use inequalities (2) and

(6) above

—x1 + 209 < —4
6x1 — 229 < 17

Pick A\{ = 6 and Ao = 1 to give

6(—x1 — 2x9) + (61 — 2x9) < 6(—4) + 17
—2x9 < 1

e The corresponding vector is in the cone generated by a; and a9

e |f a; and a9 have opposite sign coefficients of z1, then we can pick
some element of the cone with x| coefficient zero.
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Fourier-Motzkin Elimination

Write the original inequalities as

ro 9)
4 +4
—2x9+ 4 — 2wy — 11
T » S < ro 17
7 _m I
9 3 0
—6:132—|—6}

along with o < 4

Hence every expression on the left hand side is less than every expression
on the right, for every (x1,x9) € P

Together with x9 < 4, this set of pairs specifies exactly P(5)
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The Projected Set

This gives the following system of inequalities for P(.5)

1
T2 <O —x2 <1 0<7 —$2§—§ $2§4%
r9 < 17 —Q?QS% —IQS—% r9 < 4

e There are many redundant inequalities

e P(S) is defined by the tightest pair

—mgg—% ro < 4

e When performing repeated projection, it is very important to eliminate
redundant inequalities
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Efficiency of Fourier-Motzkin elimination

If A has m rows, then after elimination of 21 we can have no more than

5
— | facets
4

e If m/2 inequalities have a positive coefficient of x, and m /2 have a
negative coefficient, then FM constructs exactly m? /4 new inequalities

e Repeating this, eliminating d dimensions gives
od
LgJ inequalities

e Key question: how many are redundant? i.e., does projection produce
exponentially more facets?
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Inequality Representation

Constructing such inequalities corresponds to multiplication of the original
constraint Ax < b by a positive matrix C

In this case

1000400
6000040 4 —1] =
0100100 —1 =2 —4
0600010 —2 1 0

C=10010200 A= |—-1 -6 b= |—6
0060020 1 2 11
0001100 6 —2 17
0006010 01 4]
0000001 j
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The resulting inequality system is C'Ax < C'b, since

We find

CA=

r>0and C >0

0 7
0 —14
0 0
0 —14
0 5
0 2
0 —4
0 —38

0 1

—

Cb=

Cx >0

30
14

22
34

—19
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Feasibility
In the example above, we eliminated x{ to find

1
—1y < —3 zo < 4

We can now eliminate x5 to find

0 <

DO | I

which is obviously true; it's valid for every x € S, but happens to be
independent of x

If we had arrived instead at
0< =2

then we would have derived a contradiction, and the original system of
inequalities would therefore be infeasible
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Example

Consider the infeasible system

x1 > 0
xo > ()
1+ 190 < —2

Write this as —x1 < 0 r1+ 1o < —2 —x9 <0

Eliminating x1 gives
x9 < —2 —x9 < ()

Subsequently eliminating x5 gives the contradiction

0< =2
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Inequality Representation

—1 0 0 ]
The original systemis Ar <bwith A= |1 1| andb= |—-2
0 -1 0
To eliminate x1, multiply
110
_p <
[OO 1] (Ax —b) <0

Similarly to eliminate o9 we form

p]]ﬁégpﬂx—mgo
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Certificates of Infeasibility

The final elimination is

111 (Az—1b) <0

Hence we have found a vector A such that
e )\ > 0 (since its a product of positive matrices)

o M'A=0and M'b <0 (since it gives a contradiction)

Fourier-Motzkin constructs a certificate of infeasibility; the vector A
e Exactly decides feasibility of linear inequalities

e Hence this gives an extremely inefficient way to solve a linear program
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Farkas Lemma

Hence Fourier-Motzkin gives a proof of Farkas lemma

The primal problem is

dx Ax <b

The dual problem is a strong alternative

IA MAa=0 Mb<0, A>0

The beauty of this proof is that it is algebraic
e |t does not require any compactness or topology
e |t works over general fields, e.g. Q,

e |t is a syntactic proof, just requiring the axioms of positivity
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Gaussian Elimination

We can also view Gaussian elimination in the same way

e Constructing linear combination of rows is inference

Every such combination is a valid equality

e |f we find Ox = 1 then we have a proof of infeasibility

The corresponding strong duality result is
e Primal: dx Az =0
e Dual: I MA=0 b+£0

Of course, this is just the usual range-nullspace duality
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Computation
One feature of FM is that it allows exact rational arithmetic
e Just like Groebner basis methods

e Consequently very slow; the numerators and denominators in the ra-
tional numbers become large

e Even Gaussian elimination is slow in exact arithmetic (but still poly-
nomial)

Optimization Approach

e Solving the inequalities using interior-point methods is much faster
than testing feasibility using FM

e Allows floating-point arithmetic

e We will see similar methods for polynomial equations and inequalities
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Representation of Polytopes

We can represent a polytope in the following
ways |

e an intersection of halfspaces, called an
H-polytope

S:{xERn|A$Sb}

e the convex hull of its vertices, called a
V -polytope

S:co{al,...,am}
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Size of representations

In some cases, one representation is smaller than the other

e [he n-cube

Cn:{CEER”\ —1§$i§1foralli}

has 2n facets, and 2" vertices
e The polar of the cube is the n-dimensional crosspolytope
C’;'Z:{a:E]Rn| Z\xz\ §1}
1

=co{e,—e€1,....en,—€n}

which has 2n vertices and 2" facets

e Consequently projection is exponential.
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Problem Solving using Different Representations

It S is a V-polytope

T

e Optimization is easy; evaluate ¢* x at all vertices

e To check membership of a given y € S, we need to solve an LP;
duality will give certificate of infeasibility

If S is an H-polytope

e Membership is easy; simply evaluate Ay — b
The certificate of infeasibility is just the violated inequality

e Optimization is an LP
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Polytopes and Combinatorial Optimization

Recall the MAXCUT problem

maximize trace(QX)

subject to diag X =1
rank(X) =1
X >0

The cut polytope is the set

C:co{XGS”\X:va, ve{-1,1}"}
=co{ X € S" | rank(X) =1, diag(X)=1, X =0}

e Maximizing trace QX over X € (' gives exactly the MAXCUT value

e This is equivalent to a /inear program
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MAXCUT

Although we can formulate MAXCUT as an LP, both the V-representation
and the H-representation are exponential in the number of vertices

e e.g., forn =7, the cut polytope has 116, 764 facets
for n = 8, there are approx. 217, 000, 000 facets

e Exponential description is not necessarily fatal; we may still have a
polynomial-time separation oracle

e For MAXCUT, several families of valid inequalities are known, e.g.,
the triangle inequalities give LP relaxations of MAXCUT
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Efficient Representation

e Projecting a polytope can dramatically change the number of facets

e Fundamental question: are polyhedral feasible sets the projection of
higher dimensional polytope with fewer facets?

e |f so, the problem is solvable by a simpler LP in higher dimensions

The projection is performed implicitly

Convex Relaxation

e For any optimization problem, we can always construct an equivalent
problem with a /inear cost function

e Then, replacing the feasible set with its convex hull does not change
the optimal value

e Fundamental question: how to efficiently construct convex hulls?



