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We study the freely decaying weak turbulence of capillary waves by direct numerical
solution of the primitive Euler equations. By introducing a small amount of wave
dissipation, measured by the viscosity magnitude γ0, we are able to recover
phenomena observed in experiments that are not described by weak-turbulence theory
(WTT), including the exponential modal decay and time variation of the width and
power-law spectral slope α of the inertial range. In contrast to WTT, this problem
also involves non-constant inter-modal energy transfer across the inertial range, which
imposes a difficulty in quantifying and measuring the energy flux P associated with
a certain power-law spectrum. We propose an effective and novel way to evaluate
P in such cases by physically considering the unsteady effects of the spectrum
and variation of the inter-modal energy transfer. Our results show the fundamental
difference between the energy flux P and the total energy dissipation rate Γ , which is
due to significant energy dissipation within the inertial range. This settles the previous
debate on the measurement of P which assumes the equivalence of the two. Based
on our numerical data, we obtain a general form of the time-evolving inertial-range
spectrum, where the parameters involved are functions of γ0 only. The value of the
spectral slope α at each time moment in the decay, however, is found to be uniquely
related to the spectral magnitude at that time and irrespective of γ0, in the range we
consider. This physically reveals the dominant effect of nonlinear wave interaction
in forming the power-law spectrum within the inertial range. The evolutions of
the inertial-range energy are shown to be predicted by analytical integration of the
evolving spectra for different values of γ0.
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1. Introduction

First developed by Zakharov (e.g. Zakharov, L’vov & Falkovich 1992), weak-
turbulence theory (WTT) aims at describing the steady-state statistical property of an
ensemble of waves in weakly nonlinear interactions (see also Newell & Rumpf 2011).
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In the wavenumber k domain, the WTT steady-state analytical solution yields a
power-law inertial-range spectrum Iη ∼ kα with a constant energy flux P from large
forcing scales to small dissipative scales. Over the years, this result has found
applications in various physical contexts including plasma physics (e.g. Galtier et al.
2002), optics (e.g. Dyachenko et al. 1992), internal waves (e.g. Lvov, Polzin & Tabak
2004), surface gravity and capillary waves (e.g. Zakharov & Filonenko 1966, 1967).
As a representative physical system with three-wave resonant interactions, capillary
wave turbulence has been the subject of many investigations. In addition to the
fundamental interest of this problem, an accurate representation of capillary waves on
water surface is also important in understanding the air–sea interaction (e.g. Csanady
2001) and remote sensing of the ocean (e.g. Martin 2014).

Under stationary state, the inertial range of a capillary wave spectrum can be
obtained by solving the kinetic equation (Zakharov & Filonenko 1967; Stiassnie,
Agnon & Shemer 1991; Pushkarev & Zakharov 2000). Two of the inherent
assumptions in these works are that nonlinear wave interactions are not suppressed
by discreteness in wavenumber, i.e. the finite-box effect (e.g. Pushkarev & Zakharov
2000) is neglected, and, to make the equation solvable, the assumption that dissipation
does not exist within the inertial range. This yields a closed-form WTT solution:

Iη(k)= 2πC
P1/2ρ1/4

σ 3/4
k−19/4, (1.1)

where σ is the surface tension coefficient, ρ is the fluid density, C is a proportional
constant and P measures the (constant) energy flux from large to small scales. Here,
Iη(k) is defined as (e.g. Zakharov & Filonenko 1967)

〈η̂kη̂
∗
k′〉 = Iη(k)δ(k− k′), (1.2)

with the angle brackets denoting ensemble average and η̂k = 1/(2π)
∫∫∞
−∞ ηre−ik·r dr

being the Fourier transform of surface elevation ηr≡η(x, y). The term Iη(k), as defined
in (1.2), is shown in Pan & Yue (2014) to be (proportional to) the energy density
spectrum of η (e.g. Phillips 1985). For sufficiently high nonlinearity, (1.1) has been
confirmed experimentally in terms of the scalings Iη ∼ k−19/4 (e.g. Falcon, Laroche &
Fauve 2007; Xia, Shats & Punzmann 2010) and Iη ∼ P1/2 (Deike, Berhanu & Falcon
2014a). Numerically, the scaling of Iη∼ k−19/4 is recovered in a number of independent
studies (e.g. Pushkarev & Zakharov 1996, 2000; Deike et al. 2014b; Pan & Yue 2014).
Pan & Yue (2014) provide a detailed investigation of (1.1), extending the verification
of the Iη ∼ P1/2 scaling over a broad range of P.

While there are many investigations of the weak turbulence in the stationary regime
where energy input is balanced by energy dissipation, freely decaying capillary wave
turbulence is much less studied. A notable exception is the theoretical work of
Falkovich, Shapiro & Shtilman (1995), where the decaying spectrum is considered
in the framework of the kinetic equation. Under the WTT assumptions, the unsteady
solution of the kinetic equation yields a time-varying spectral amplitude inversely
proportional to time, and a power-law spectrum within an inertial range of fixed
width that decays with constant spectral slope α =−19/4:

Iη(k, t)∼ k−19/4t−1, for t> t0, (1.3)

where t0 is the initial time of the evolution of the power-law spectrum. The total
energy is obtained in Falkovich et al. (1995) by analytical integration of (1.3) in k,
to yield E(t)∼ t−1.
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In physically realistic situations, finite-box effect is always present, and dissipation
exists over broad scales. The validity of (1.3) under these effects must be checked by
experimental and numerical studies. While there is no numerical investigation of this
problem, experimental investigations show that, during the decay, the inertial range
varies, with the cutoff wavenumber kc moving towards lower k as time increases
(Kolmakov et al. 2004; Deike, Berhanu & Falcon 2012; Deike, Bacri & Falcon
2013). The spectral slope α is, in general, found to be time-varying (e.g. Miquel
& Mordant 2011; Deike et al. 2013, 2014a), depending on the nonlinearity level
and viscosity of the fluid. The time decay of the modal amplitudes obtained in all
experiments is exponential, rather than t−1. In terms of the total energy E(t), the only
direct measurement is that of Deike et al. (2012), which also shows an exponential
decay, in disagreement with the theory (notwithstanding possible effects of gravity
waves on the energy measurement which may affect the direct comparison). It is
postulated that at least some of these apparent discrepancies can be attributed to the
inherent assumptions underlying (1.3) (e.g. Kolmakov et al. 2004; Miquel & Mordant
2011; Deike et al. 2013). This leaves the modification of (1.3) under finite-box effect
and broad-scale dissipation an open issue.

The broad-scale dissipation present in the actual physics is especially important for
decaying turbulence, as it enhances unsteadiness by allowing a faster spectral energy
variation at broad scales. Yet it introduces an extra dynamics into the weak-turbulence
problem. Deike et al. (2014a) show, for stationary turbulence, that dissipation within
the inertial range results in a non-constant inter-modal energy transfer. This is in
contrast to WTT which postulates and obtains a constant energy flux P transferring
energy across k from large to small scales. The variation of energy transfer in k affects
the experimental (or numerical) quantification of P. For the case of stationary-state
forced turbulence, earlier measurements of P (e.g. Falcon et al. 2007; Xia et al. 2010)
rely on the assumption that P is equal to the total energy input rate, or equivalently
the total rate of dissipation Γ . The obtained results are in apparent disagreement with
the WTT scaling of Iη∼P1/2. This controversy is later shown to be resolvable (Deike
et al. 2014a), in a limited range of nonlinearity, by defining P as the average of
the inter-modal energy transfer over the entire inertial range. In decaying turbulence
with broad-scale dissipation, the inter-modal energy transfer is further affected by the
unsteadiness of the spectrum, and an effective way to evaluate P is not available.

The complexities associated with the unsteadiness in the decaying turbulence,
broad-scale dissipation and finite-box effect, inevitably present in realistic physical
experiments, are closely coupled. The general problem is difficult, and there is still
not a clear elucidation, especially in the context of direct numerical investigation, of
the underlying dynamics. In particular, it would be desirable to obtain a modified
form of (1.3) (or (1.1)) for the spectral evolution, as well as that for E(t), applicable
to the general physical problem of decaying capillary wave turbulence. Physically, the
role of unsteadiness in the spectrum evolution and dynamics, the time dependence
of the spectral slope α(t), as well as its inherent connection to the wave field and
dissipation magnitude, remain unknown. These are the focus of the present work.

We perform direct numerical simulation of decaying capillary wave turbulence
implementing the nonlinear primitive Euler equations. We consider low Bond number
such that the influence of gravity is neglected. The problem we solve is a substantial
generalization of Pan & Yue (2014), where realistic broad-scale dissipation is included
in the context of decaying turbulence. In contrast to Pan & Yue (2014), we also
simulate the evolving spectrum for a long enough time scale to investigate the
time-varying dynamics. Our results replicate those from experiments on a power-law
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spectrum with exponential modal decay, as well as monochromatic decrease of kc and
variation of α during the decay. Along with the evolution of the spectrum (∂Iη/∂t 6= 0),
the broad-scale dissipation results in variation of the energy transfer, J (k, t), along k.
This substantially complicates the evaluation of the energy flux P. We propose
a novel and effective way to obtain P, by integrating the modal energy balance
equation along k, thus incorporating both effects of unsteadiness and non-constant
inter-model energy transfer J . The obtained results on P are shown to be consistent
with the framework of Pushkarev & Zakharov (2000) and Pan & Yue (2014) in terms
of the scaling Iη ∼ P1/2. By considering energy dissipated at broad scales, we also
show that the total energy dissipation rate Γ can be significantly higher than P, which
settles the previous debate on the measurement of P by assuming the equivalence of
the two (Falcon et al. 2007; Xia et al. 2010).

Based on our simulations, we are able to describe the time-dependent power-law
spectrum within the inertial range [kb, kc(t)] in an explicit general form:

Iη(k, t)= I0kα
0−A(t−t0)e−B(t−t0), for kb < k< kc(t) and t> t0, (1.4)

where I0 and α0 are respectively the spectral amplitude and slope at t= t0, kb is the
(almost) constant wavenumber above which the power-law spectrum is established and
kc(t) is the spectral location where the spectrum departs from the power law (1.4); A
and B are functions of γ0 only.

Equation (1.4) is shown to fit our numerical data obtained over the ranges of
dissipation magnitude, spectral amplitude (nonlinearity) and evolution time that can
be obtained by our simulation. For sufficiently high initial nonlinearity, α0 ≈−19/4.
While A(γ0) represents the time-varying rate of the spectral slope α(t)=α0−A(t− t0),
we show that the value of α at a given t can be solely related to the nonlinearity
level of the spectrum at that time, irrespective of γ0. The evolution of energy EI(t)
within the inertial range is shown to be well predicted by the analytical integration
of (1.4).

2. Numerical formulation

We consider isotropic decaying capillary wave turbulence in the context of potential
flow (velocity potential φ(x, y, z, t)), in terms of the primitive Euler evolution equations
(e.g. Zakharov 1968) for the surface elevation η(x, y, t) and surface velocity potential
ψ(x, y, t)≡ φ(x, y, η, t):

ηt =−∇η · ∇ψ + (1+∇η · ∇η)φz|η + F−1[γkηk], (2.1)

ψt =−1
2
∇ψ · ∇ψ + 1

2
(1+∇η · ∇η)φz|2η +

σ

ρ
∇ ·

∇η√
1+ |∇η|2 + F−1[γkψk], (2.2)

where F−1 is the inverse Fourier transform and γk ≡ γ (k) = −γ0k2 is applied on all
k, modelling the broad-scale viscous dissipation at the free surface (e.g. Deike et al.
2014a).

We numerically integrate (2.1) and (2.2) in time with the high-order spectral (HOS)
method (refer to Pan & Yue (2014) for a validation of the method). The simulation
starts from an initial isotropic wave field with arbitrary spectral energy distribution.
After sufficient time, an inertial-range power-law spectrum forms due to nonlinear
wave interactions. Our objective is to study the decay of this spectrum until the
physics reaches a purely dissipative regime, i.e. we focus on the spectrum with an
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FIGURE 1. A typical decay of the power-law spectrum for γ̂0 = 1.6× 10−5. The spectra
from top to bottom are realized at t/Tp = 600 ( ) with α = −4.8, t/Tp = 2100 ( )
with α =−5.7, t/Tp = 3600 ( ) with α =−6.7 and t/Tp = 5100 ( ) with α =−7.5,
where Tp= 2π/ωp. For reference, the power-law (——) and exponential (– – –) fits of the
spectra within [kb, kc] and [kc, kmax] respectively, as well as values of kc (@) are indicated.
Inset: variation of kc (@) with t, and the linear fit (——) with R2 = 0.96.

inertial range longer than a critical value (in practice, &0.3 decade). To obtain a
broad range of energy variation, we choose an initial state specified by a JONSWAP
spectrum (the inertial-range results are not sensitive to the specific choice of the
initial spectrum), with effective steepness β = kpHs/2= 0.25 (with kp being the peak
wavenumber and Hs the significant wave height), which is the highest nonlinearity
that can be modelled by the HOS method.

Simulations are carried out on a periodic domain with 256× 256 grid points (kmax=
256) with a 2/3 dealiasing rule. The peak wavenumber kp = 10k0, with k0 being the
fundamental wavenumber of the domain. Up to third-order nonlinearity is included to
allow interactions of both three and four waves (cf. Pushkarev & Zakharov 1996; Pan
& Yue 2014). We define the normalized dissipation coefficient γ̂0 ≡ γ0k2

p/ωp, where

ωp=
√
σk3

p/ρ is the angular frequency corresponding to kp. A power-law spectrum can

be obtained in our simulation for γ̂0 ∈ (0.5× 10−5, 3.0× 10−5). This range is limited
above by the dominance of dissipation over nonlinear interaction and below by the
inherent numerical instability associated with the growth of short waves. Results for
selected values of γ̂0 = 0.8× 10−5, 1.6× 10−5 and 2.4× 10−5 are presented.

3. Results

Figure 1 shows a typical decay of the spectrum Iη after the power-law inertial
range is established. This plot is a representative of all our results, where the
evolving spectrum features a power-law range within [kb, kc(t)] (with kb ≈ 1.5kp)
and an exponential range within [kc(t), kmax]. In practice (with sufficiently wide
[kb, kc]), kc is obtained from the intersection of the power-law Iη∼ kα and exponential
Iη ∼ exp(βk) fits of the numerical data. Physically, kc corresponds to the spectral
location at which the time scales of nonlinear interaction and viscous dissipation
are balanced (Kolmakov et al. 2004; Deike et al. 2014b). As the spectrum decays,
kc decreases monotonically (cf. Kolmakov et al. 2004). This decrease is found to
be approximately linear with t for all our cases (see figure 1 inset). Within the
power-law range, it is clear that Iη ∼ kα where α = α(t). As the spectrum evolves,
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FIGURE 2. Evolution of Iη(t; kj) for four select modes kj/k0= 16 (E), 24 (@), 32 (A) and
45 (C). For reference, linear curve fits for kj less (——) or greater (– – –) than kc(t) are
plotted.

α decreases as the negative power-law spectral slope steepens. This phenomenon,
also observed in the simulation without dissipation in the inertial range (Pan & Yue
2014), is concluded to be due to the finite-box effect. This is a phenomenon where
nonlinear wave interactions are suppressed due to the discreteness in k (and nonlinear
resonance broadening is insufficient to overcome it) (e.g. Pushkarev & Zakharov
2000). It results in a steeper spectrum at lower nonlinearity, as evidenced also from
gravity wave turbulence (e.g. Denissenko, Lukaschuk & Nazarenko 2007).

Figure 2 plots Iη(kj, t) as a function of time for different values of kj ∈ [kb, kmax].
Regardless of whether kj is in the power-law range, Iη(t; kj) decays exponentially (cf.
Deike et al. 2012, 2013) with Iη(k, t)∼ exp(−ξ t), where ξ = ξ(k). As a fixed kj goes
from below to above kc(t) (due to the time variation of kc(t)), ξ decreases slightly, as
evidenced by the change of slope of Iη(t; kj) beyond t when kc(t) becomes smaller
than kj (for example the kj/k0 = 24, 32 curves in the figure, while ξ is constant for
kj = 16k0 < kc(t) and kj = 45k0 > kc(t) for the time range plotted).

The modal decay rate ξ(k) as a function of k is plotted in figure 3. For comparison,
the modal dissipation rate γν(k) = 2|γ (k)| is also shown. In general, ξ(k) 6= γν(k)
due to the inter-modal energy transfer. For a given γ0, there is a wavenumber kγ
above which ξ(k) < γν(k), indicating a transition to a regime where more energy is
dissipated by γ0 than can be explained by the decrease in Iη. This can be elucidated
by considering the modal energy balance:

∂E

∂t
+ ∂J
∂k
=−γνE , (3.1)

where E (k, t)= σk3Iη(k)/(2π) is the modal energy density. As ∂E /∂t=−ξE , ∂J /∂k
can be explicitly evaluated as ∂J /∂k= (ξ − γν)E . In the subregime k< kγ , we have
ξ ≈ γν and ∂J /∂k ≈ 0 (see figure 3), and the energy flux can be approximated by
a constant, say, Pγ ≡ J |k=kγ . In this wavenumber regime, the framework of WTT is
recovered with (constant) energy flux P = Pγ . For k > kγ , ξ < γν and ∂J /∂k < 0,
showing that the energy transferred by Pγ is absorbed in this regime. Using this
physical argument, Pγ can be evaluated by

Pγ =
∫ kmax

kγ

(γν − ξ)E (k) dk. (3.2)
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FIGURE 3. Normalized modal decay rate ξ̂ (k) ≡ ξ(k)/γν,p ( ), modal dissipation rate
γ̂ν(k) = 2|γ (k)|/γν,p (——) and variation of energy transfer (∂J /∂k)/(E γν,p) ( ) as
functions of k at a certain time t/Tp= 2100, where γν,p≡ γν(kp). The linear fit within the
inertial range ξ =A ln k+B (– – –), and locations of kγ (u) and kc (@) are indicated. Inset:
values of |R| = |B/A| (@) and A/γν,p (E) for different values of γ̂0.

Figure 4 shows the variation of P1/2
γ as a function of the spectral evolution

characterized by the spectral amplitude at the reference wavenumber kb, Iη(t; kb)/
Iη(t0; kb). We observe that the dependence of Iη∼P1/2

γ resembles closely that obtained
in Pan & Yue (2014) for P in the context of WTT. The deviations from the WTT
theoretical scaling for decreasing amplitude in both cases reflect the presence of the
finite-box effect. Since Iη(t; kb) ∼ exp(−ξ t), we obtain Pγ ∼ exp(−2ξ t). The total
energy dissipation rate, calculated as

Γ =
∫ kmax

0
γνE dk, (3.3)

is also plotted in figure 4, showing that in general Γ > Pγ . This explains the
significant overprediction of P using Γ (or equivalently by using energy input in
forcing turbulence) in previous work (Falcon et al. 2007; Xia et al. 2010).

The impact of the unsteady effect on the evaluation of Pγ can be seen from (3.2); it
tends to reduce Pγ . The relative importance of the unsteady effect can be characterized
by a parameter Z:

Z ≡

∫
k>kγ

ξE dk∫
k>kγ

γνE dk
. (3.4)

The parameter Z is plotted in figure 4, showing that Z = 0.6–0.7 (in general, also
a function of γ0). This illustrates the significant unsteady effect for this problem, in
contrast to our previous work for quasi-stationary turbulence (Pan & Yue 2014) where,
in theory, Z = 0 (in the actual numerics, Z = 0.1–0.2 (Pan & Yue 2014)).

Equation (1.4) is equivalent to

Iη(k, t)= I0kα
0

exp(−ξ(k)(t− t0)), (3.5)

where ξ = A ln k + B, which describes the exponential modal decay with rate ξ(k)
from an initial power-law spectrum I0kα

0 , as evidenced from figures 1 and 2. The
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FIGURE 4. Normalized energy flux P̂γ ≡ Pγ /(σωp) ( ), total energy dissipation rate
Γ̂ ≡ Γ/(σωp) ( ) and unsteady parameter Z ( ) as functions of spectral decay
characterized by Iη(t; kb)/Iη(t0; kb). The WTT scaling Iη ∼ P1/2 is indicated (– – –).

linear dependence of ξ and ln k is confirmed in figure 3. Indeed, this is an algebraic
requirement for the spectrum to maintain power-law form in the evolution. Since ξ is
not a function of time in the power-law range (cf. figure 2), A and B are constants
(and functions of γ0 only).

The explicit time dependence of the spectral slope α(t) can be factored out in (1.4)
to obtain

α = 1
ln k+ R

(
ln

Iη(k)
I0
+ Rα0

)
, R≡ B/A. (3.6)

While A and B are functions of γ0, we find that the value of R (see figure 3 inset)
remains almost constant over the range of γ0 we consider. Equation (3.6) thus shows
that, even though the evolutional rates of α(t) and Iη(t; k) depend on the magnitude
of dissipation, the instantaneous α is uniquely related to the spectral magnitude
(nonlinearity), independent of γ0. Physically, this states that the development of the
spectral slope within the inertial range is governed by nonlinear wave interactions
(only), i.e. local effects of dissipation are removed by faster nonlinear interactions. To
further validate this, we plot in figure 5 the spectral slope α as a function of Iη(kb)

for all values of γ0 that we consider. Indeed, all of the data collapse to the curve
described by (3.6). The value of α ≈ −19/4, corresponding to WTT (see (1.1)), is
achieved at the highest nonlinearity (Iη(kb)) that can be modelled by the HOS method.
In a recent experiment with a much broader range of dissipation magnitude (varying
over a factor of 100) (Deike et al. 2014a), α is found to be different between the
regimes of high and low dissipation. The result may also depend on the specific form
of dissipation considered (cf. Deike et al. 2012; Miquel, Alexakis & Mordant 2014).
The underlying physics for broader ranges of dissipation magnitude and nonlinearity
level requires further investigation.

If dissipation is absent in the power-law range (and Z→ 0), the decay of the total
energy E can be related to the (constant) nonlinear energy flux P to obtain E ∼ t−1

(Falkovich et al. 1995). Indeed, this relation can be derived by direct integration of
the equation dE/dt = −Γ = −P ∼ −E2 (since Iη ∼ P1/2), where the assumption of
P = Γ is needed. In the present context of broad-scale dissipation, Γ > Pγ ∼ P and
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FIGURE 5. Spectral slope |α| as a function of Iη(kb) for γ0 = 0.8× 10−5 (E), 1.6× 10−5

(@) and 2.4 × 10−5 (A). Scatter of the data is caused by the fluctuations of the spectra.
Equation (3.6) is indicated (– – –).
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FIGURE 6. Variations of energy EI/E0
I (where E0

I is the inertial-range spectral energy at
t= t0) with time from predictions of (3.7) (——) and numerical data for γ0 = 0.8× 10−5

(@), 1.6× 10−5 (E) and 2.4× 10−5 (C).

the t−1 scaling does not hold. We focus on the power-law range and define EI ∼∫∫ kc

kb
k2Iη(k) dk. Substitution of (1.4) (or equivalently (3.5)) gives

EI(t)∼ exp(−B(t− t0))

4+ α(t) (kc(t)4+α(t) − k4+α(t)
b ). (3.7)

Figure 6 plots the evolution of EI with time, comparing the numerical data with (3.7).
Agreement is achieved over two decades of EI for the range of γ0 we consider. This
consolidates the effectiveness of (1.4) in representing the decaying spectrum, and
provides a simple form in approximating EI(t).

4. Conclusion

We present a direct numerical investigation of freely decaying capillary wave
turbulence with broad-scale dissipation of magnitude γ0. The problem we consider
is an extension of WTT (Zakharov & Filonenko 1967; Falkovich et al. 1995) where
the turbulence is allowed to evolve freely in the presence of physically realistic
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dissipation and finite-box effect. Our simulation results are consistent with evidence
from physical experiments, in terms of the shortening of the power-law range and
the steepening of the spectral slope α during the decay (e.g. Kolmakov et al. 2004;
Miquel & Mordant 2011; Deike et al. 2012, 2013). Based on our numerical findings,
we obtain a simple model, (1.4), describing the evolution of the power-law spectrum
in the form of exponential modal decay from an initial spectrum. The rate of modal
decrease in time, ξ(k), is shown to be given by ξ(k) = A ln k + B, with A and B
depending only on γ0. Over the range of dissipation magnitude that can be obtained
using our direct simulation, the instantaneous spectral slope α during the evolution is
found to depend only on the nonlinearity of the spectrum at that time, irrespective of
γ0. The decay of energy within the inertial range obtained from (1.4) is also shown
to approximate well those obtained from simulations. These findings are in contrast
to the theoretical result (Falkovich et al. 1995) without broad-scale dissipation and
finite-box effect, underscoring the importance of these effects in the actual physical
problem. Relative to WTT, broad-scale dissipation and unsteadiness here result in
a non-constant inter-modal energy transfer J in the inertial range, which requires
an alternative quantification of the energy flux P. Within a subrange k < kγ of our
inertial range, we find that ∂J /∂k≈ 0, so that the energy flux can be approximated
by a constant P= Pγ =J |k=kγ . In this subrange, the framework of (stationary) WTT
is obtained, and we recover the WTT scaling Iη ∼ P1/2

γ (e.g. Pushkarev & Zakharov
2000; Pan & Yue 2014). The present results describing decaying capillary wave
turbulence are expected to hold in other weak-turbulence systems with broad-scale
dissipation.
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