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A numerical model based on a boundary-element method is developed to predict the
performance of flapping foils for the general cases where vorticities are shed near the
leading edge as well as from the trailing edge. The shed vorticities are modelled as
desingularized thin shear layers which propagate with the local flow velocity. Special
treatments are developed to model the unsteady and alternating leading-edge separation
(LES), which is a main element of difficulty for theoretical and numerical analyses
of general flapping foils. The present method is compared with existing experiments
where it is shown that the inclusion of LES significantly improves the prediction of
thrust and efficiency, obtaining excellent agreement with measurements over a broad
range of flapping frequencies (Strouhal number) and motion amplitudes (maximum
angle of attack). It is found that the neglect of LES leads to substantial over-prediction
of the thrust (and efficiency). The effects of LES on thrust generation in terms of
the circulation around the foil, the steady and unsteady thrust components, and the
vortex-induced pressure on the foil are elucidated. The efficiency and robustness of
the method render it suitable for design optimization which generally requires large
numbers of performance evaluations. To illustrate this, we present a sample problem of
designing the flapping motion, with the inclusion of higher harmonic components, to
maximize the efficiency under specified thrust. When optimal higher harmonic motions
are included, the performance of the flapping foil is appreciably improved, mitigating
the adverse effects of LES vortex on the performance.
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1. Introduction
The superior swimming performance of many aquatic creatures employing flapping

(large-amplitude heaving and pitching) fins and appendages have attracted theoretical,
experimental and numerical investigations of the performance of flapping foils (e.g.
Theodorsen 1935; Anderson et al. 1998; Lewin & Haj-Hariri 2003; Read, Hover
& Triantafyllou 2003) and their potential marine applications (e.g. Licht, Hover &
Triantafyllou 2004).
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Much of the activity is experimental work, involving quantitative measurements of
the motion dynamics and flow visualization.

Recent measurements by Anderson et al. (1998) and Read et al. (2003) show that,
with properly selected motion parameters, flapping foils can achieve high efficiencies
even under large loadings, making it attractive relative to propellers. For example,
efficiency as high as 87 % (close to the theoretically achievable actuator disk value)
for a thrust coefficient of around 0.67 has been reported (Anderson et al. 1998).
In contrast, small high-loading propellers used in underwater vehicles are usually
typically no more than 40 % efficient (Triantafyllou & Triantafyllou 1995). Owing to
the large motion amplitudes involved, almost all of these high thrust production cases
involve substantial leading-edge separation (LES). The specific role of the LES is
however not elucidated.

Flow visualization around the foil offers useful but limited insight. Koochesfahani
(1989) observed the wake behind a pitching foil and showed that two vorticities of the
same sign are shed in each half-cycle of the oscillation, consistent with the presence
of LES, even for relatively small pitching motion (∼4◦ amplitude). For a flapping
foil, Anderson et al. (1998) showed that leading-edge (LE) vortices are formed when
the maximum angle of attack during the motion, αmax , exceeds a threshold value.
While the precise value of this threshold depends on the Strouhal number (St) and the
heaving amplitude-to-chord ratio (h0/c), it is clear that LES plays an important role in
flapping foil dynamics for all but very small motion amplitudes.

The lack of understanding of LES hampers theoretical and numerical investigations
of the flapping foil especially in the context of potential flow. In the absence of LES,
the classical theoretical solution is given by Theodorsen (1935) (and by Kármán &
Sears 1938) who solve the linearized potential flow around a flat plate undergoing
small oscillating motion. Streitlien & Triantafyllou (1995) extend this to arbitrary
unsteady motions, using conformal mapping, with point vortices shedding from the
trailing edge (TE) convected with the local flow. Within the same framework, solutions
for general geometries and motions are available numerically using a boundary-
element method (BEM) (e.g. Katz & Plotkin 1991; Zhu et al. 2002).

There are early successful attempts to include LES in the potential flow solution
of the foil problem. Many of these are for a plate wherein the LES point is
naturally fixed at the plate edge and is therefore prescribed. These include Sarpkaya
(1975), Kiya & Arie (1977) and Katz (1981) who consider the problem of unsteady
flow past stationary flat or cambered plates, modelling the shed LE/TE vorticity
as discrete vortices. With the separation points prescribed, reasonable flow patterns
are obtained, but the forces and strengths of the shedding vortices are generally
substantially over predicted compared with experiments. The solution to this problem
is appreciably improved by Jones (2003), Jones & Shelley (2005) and Shukla &
Eldredge (2007) by addressing the ill-posedness associated with discrete vorticity using
the desingularization scheme of Krasny (1987).

When the potential flow is coupled with a boundary-layer solution on the foil, the
LES can be predicted using empirical criterion (e.g. Stratford 1959). The original
formulation for such an approach was developed for the stationary foil with a finite-
curvature LE (e.g. Burns 1988; Robinson 1988), and a similar methodology has been
adopted to commercial applications for general 3D unsteady problems, for example,
USAERO (see e.g. Maskew 1993).

The solution of the LES problem and the need for empirical formula(e), are, in
principle, avoided in the context of full Navier–Stokes solution of the problem; and
there are many recent examples of these applied to flapping foils (e.g. Lewin &
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Haj-Hariri 2003; Wang 2000; Zhu & Peng 2009). The computational cost and efficacy
of these results for high Reynolds number remain of concern, and these methods are
still not as widely adopted for practical applications as could be expected in the future.

The present paper addresses the potential flow solution of the problem of flow
past an arbitrary foil undergoing general flapping motion for which LES cannot
be neglected. The physical problem involves LES from a LES point which is in
general unknown, moving, and alternates between the upper and lower foil surfaces
(depending on the phase of the flapping motion). Motivated by earlier computational
work for modelling separated flow as shear layers, and the experimental visualization
of Taneda (1977) which shows that the unsteady vorticity shedding come from a
localized region on the body, we propose a potential-flow BEM solution for the
finite thickness flapping foil with vorticity shedding from leading and trailing edges
represented by thin (desingularized) vortex sheets. The position of LES as a function
of time is not a priori known and a procedure is developed to obtain this as well as
the strength of the shed vorticity. The approach is general and robust, and does not
contain free parameters (or input from experiments) other than those associated with
the desingularization/fencing of the vortex sheets. The problem is cast in 2D, although
the methodology can be extended to 3D in a straightforward way.

One of the key objectives of this work is to establish the validity of the BEM
solution in direct quantitative comparisons to experiments. To achieve this, we test
the present method against the extensive measurements from Read et al. (2003) of
the thrust and efficiency over a broad range of motion and frequency parameters.
The comparisons are remarkably good, and significantly improve upon those obtained
without LES. This lends support to the validity of the present approach, despite the
simplifying assumptions inherent in the method. Comparing the BEM predictions with
and without LES, it is seen that LES corrects the general over-prediction of thrust
and efficiency by BEM without LES. We are able to identify the root mechanism in
terms of the reduction of circulation around the foil caused by LES, and the LES
vortex-induced pressure reduction on the pressure side of the foil.

The efficiency and accuracy of the method for predicting motion dynamics make it
useful for design optimization of flapping foil performance to obtain desired motion
parameters (or foil geometry), where large numbers of simulation evaluations may be
required. We illustrate this in a design application where we find optimal values of
third-harmonic motion components that can be introduced to appreciably improve the
thrust (and efficiency) of the foil.

2. Problem definition
We consider a two-dimensional (2D) foil, with chord length c, undergoing

prescribed harmonic heaving-pitching motion in a uniform inflow U (see figure 1
for the coordinate system and definitions). The heave motion h(t) and pitch motion
θ(t), about a point O distance b from the LE, are expressed as

h(t)= h0 sin(ωt), θ(t)= θ0 sin(ωt + ψ), (2.1)

where h0, θ0 are respectively the heave and pitch amplitudes, and ψ the phase lead of
pitch motion relative to the heave motion. An important parameter in this study is the
Strouhal number based on the heave amplitude:

St = h0ω

πU
. (2.2)
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FIGURE 1. Geometry and kinematics of a flapping foil.

The instantaneous angle of attack α(t) due to (2.1) has contributions from both
heaving and pitching motions:

α(t)= αh(t)+ θ(t). (2.3)

where αh(t)=−tan−1(ḣ(t)/U) is the effective angle of attack due to heave (only).
The foil is subject to oscillatory x and y direction forces Fx(t) and Fy(t), torque Q(t)

about point O, and input power Pin(t):

Pin(t)=−Fy(t)ḣ(t)− Q(t)θ̇(t). (2.4)

For periodic motion of period τ = 2π/ω, we define time-averaged quantities:

f ≡ 1
τ

∫ t0+τ

t0

f (t) dt, (2.5)

and coefficients of thrust, CT , and power, CP:

CT = T
1
2
ρU2c

, CP = Pin

1
2
ρU3c

, (2.6)

where T =−Fx and ρ is the fluid density. Finally, the propulsive (or Froude) efficiency
η is defined as the ratio of useful power over input power,

η = TU

Pin
= CT

CP
. (2.7)

For effective thrust generation, the phase between heave h(t) and pitch θ(t) is
generally ψ ≈ 90◦ (e.g. Isogai, Shinmoto & Watanabe 1999; Read et al. 2003),
so that θ and αh are approximately 180◦ out of phase for both the upward and
downward strokes, and the problem is symmetric with respect to thrust between the
upward/downward strokes. In these cases, it is convenient for later reference to define
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average quantities for each stroke:

f
u,d ≡ 2

τ

∫ tu,d+τ/2

tu,d

f (t) dt, (2.8)

where tu,d is the beginning of the upward, downward stroke, respectively.
It is known from experiments (e.g. Anderson et al. 1998) that, in addition to St, the

most important motion parameter governing the flapping dynamics is the maximum
angle of attack in an oscillation period, αmax ,

αmax ≡max
t
|α(t)| =max

t
|αh(t)+ θ(t)|. (2.9)

Thus it is often useful to specify αmax and solve for θ0 (given St), generally
numerically (see e.g. Read et al. 2003), rather than the (more natural) other way
around. For ψ = 90◦, sufficiently small St and αmax < αh

max ≡ max |αh(t)| = tan−1(Stπ),
equation (2.9) has two solutions for θ0, one associated with drag generation and the
other with thrust production (Read et al. 2003). At relatively low St, the double
solution corresponds to θ0 = αh

max ± αmax , i.e. α(t) having the opposite/same sign as
αh(t). Our interest is in the case of thrust production (plotted in figure 1), with α and
αh having the same sign when αmax obtains. In summary, the complete foil motion is
described by St, αmax , h0/c, ψ and b/c.

3. Solution formulation
We develop a BEM for this 2D unsteady flapping foil problem with LES, where

both LE and TE shed vorticities are modelled as desingularized thin vortex sheets.

3.1. Boundary-value problem
In the context of potential flow, we express the total velocity v(x, t) in term of the
perturbation potential φ(x, t):

v(x, t)= U∞ +∇φ(x, t), (3.1)

where U∞ = (U, 0). With (3.1), the hydrodynamic pressure p (with zero reference
pressure) is given by a Bernoulli equation

p(x, y, t)=−ρ ∂φ(x, y, t)

∂t
− 1

2
ρ(|∇φ(x, y, t)|2+2Uφ,x). (3.2)

In the fluid volume V ,

∇2φ(x, t)= 0. (3.3)

On the instantaneous foil surface B(t), we impose the kinematic condition

∂φ(x, t)

∂n
=−U∞ · n̂+ ufoil(x, t) · n̂, (3.4)

where ufoil(x, t) is the velocity of a point on B(t), determined by foil motion and
geometry.

We consider the general case where in addition to an evolving vortex sheet T (t)
(with potential jump 1φT (x, t)) shed from the TE, an evolving LE vortex sheet
L (t) (with potential jump 1φL (x, t)) is shed from some (time-varying) LES point
XLE(t) (yet to be determined). Let 1φ0

T and 1φ0
L be the potential jump across T (t)

and L (t) at TE and the LES point XLE(t), respectively. At the TE, 1φ0
T can be
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FIGURE 2. Boundary-value problem for a flapping foil with LE and TE shed vortex sheets.

determined from the Kutta condition (of finite velocity). Ignoring unsteady effects, this
can be obtained by, say, a Morino condition (Morino & Kuo 1974):

1φ0
T = φ+ − φ−, (3.5)

where φ+ and φ− are the values of φ on upper and lower TE; and the condition
ensures continuation of the quasi-steady pressure at the TE. The more precise Kutta
condition for the unsteady problem requires vanishing pressure jump across the TE
(e.g. Kinnas & Hsin 1992). The difference between this and (3.5) is found to be small
in predicting global averaged results (such as thrust and efficiency) (e.g. Hess 1990),
for all but very large St(&O(1)). For the latter, experimental evidence indicates that
the pressure loading at TE may in fact be non-zero (e.g. Satyanarayana & Davis 1978;
McCroskey 1982).

For the LES, we apply a similar Morino condition:

1φ0
L = φD − φU, (3.6)

where φU and φD are the values of φ upstream and downstream of XLE(t), respectively.
At the LE, equation (3.6) ensures the continuity of the (quasi-steady) pressure across
XLE. Similar Kutta conditions have been applied successfully at a separation point
located on a finite-curvature boundary (see, e.g. Katz 1981).

The boundary-value problem above (figure 2) is solved using the BEM. At any point
P on B(t), we have

φ(P, t)

2
=
∫

B(t)

[
−φ(q, t)

∂G(P; q)
∂nq

+ G(P; q)∂φ(q, t)

∂nq

]
d`q

−
∫

T (t)
1φT (q, t)

∂G(P; q)
∂nq

dsq −
∫

L (t)
1φL (q, t)

∂G(P; q)
∂nq

dsq,(3.7)

where G(P; q) = ln |R(P; q)|/(2π) is the 2D Green function, R ≡P − q, n̂ is the
unit vector normal to the integration surface; and, for clarity, `, s respectively the



452 Y. Pan, X. Dong, Q. Zhu and D. K. P. Yue

arclengths along B and T , L . Equation (3.7) expresses the potential φ(x, t) on
the foil surface as a combination induced by a source distribution ∂φ/∂n on B(t),
and dipole distributions φ, 1φT and 1φL on B(t), T (t) and L (t). Among these
variables, ∂φ/∂n on B(t) is prescribed by (3.4); 1φT and 1φL are known from
previous time, except the newly shedding dipole strength 1φ0

T and 1φ0
L which are

given by (3.5) and (3.6) (in terms of φ on B(t)). At a given time t, the boundary-
value problem ((3.7) with (3.4)–(3.6)) is solved for the (only) unknown φ on B(t).

3.2. Treatment of TE and LE vortex sheets
The choice of a single separation point XLE(t) to model LES is suggested by
observations of highly localized separation for flapping foils and related problems
(e.g. Taneda 1977; Degani, Li & Walker 1996). The precise location of XLE(t) (at any
time) near the LE region is however unknown. In the present work, we use a heuristic
criterion to determine XLE(t), arguing physically that XLE(t) should be near the LE
pressure suction peak, given by

∂p

∂`

∣∣∣∣
XLE(t)

= 0,
∂2p

∂`2

∣∣∣∣
XLE(t)

> 0. (3.8)

The choice of (3.8) can be motivated in terms of the vorticity flux (ωn ≡ ∇ω · n̂)
near the LE when LES occurs, which provides the vorticity ejected into the flow.
Evaluating the momentum equation along the body surface, ωn is directly related to
the wall pressure gradient, ωn ∼ ∂p/∂` (e.g. Reynolds & Carr 1985). For general
flapping foils, it has been observed (e.g. Visbal 1991; Acharya & Metwally 1992) that
ωn is concentrated in two small regions upstream and downstream of and very close
to the pressure suction peak. The use of a single LES and (3.8) represents a simple
approximation of the above physical picture wherein XLE is placed at the intermediate
maximum suction pressure point. The ultimate validity of the LES model and in
particular (3.8) for predicting the performance of flapping foils must be subsequently
supported by comparison with measurements, which is the main objective of this
work.

In general, XLE(t) determined by (3.8) is not fixed in time, and our method captures
this by solving the pressure profile on B(t) at each time step and updating XLE(t)
according to (3.8). During the shedding, the LES at each time step is solved with a
newly determined XLE (and existing vortex sheets) in conjunction with the condition
(3.6) which provides the jump in φ at XLE. For flapping motions with limited αmax , the
movement of the minimum pressure point along the upper/lower surface turns out to
be relatively small, and not much influenced by the addition of a new vortex sheet.
This is known from experiments (e.g. Acharya & Metwally 1992) and also confirmed
in our simulations. It is then possible to assume a fixed position for XLE, which can
be determined from, say, the time of initial separation for a L (t). Subsequently, the
numerical procedure is considerably simplified, without an appreciable impact on the
results.

For flapping motion, the numerical solution requires switching of the LES between
the upper and lower foil surfaces during an oscillation cycle, depending on the phase
of the motion. To implement this, we apply a switching criterion wherein, at a given
instant, LES is specified to be from that foil surface whose shedding tendency is
greater. At every time step, we apply (3.6) on respectively only XLE on upper or lower
surface, and determine the side where LES occurs to be that for which the potential
jump |1φ0

L | is greater. Since |1φ0
L | for a given L (t) always increases from zero
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when the new vortex sheet is initiated, the switch occurs only when intensities of both
the old and new shedding are small. Thus, there is effectively no jump in the solution
φ on B during a switch. For the harmonic flapping motions we consider in § 5, the
switching typically occurs twice per oscillation cycle, as expected, consistent with
experimental visualization (see e.g. figures 7 and 8). After N cycles, 2N LE vortex
sheets are shed into the flow field.

The LE and TE vortex sheets L (t) and T (t) (and associated dipole strengths 1φ)
are advected by the local flow velocity over time. To avoid the singularity associated
with the induced velocity of a thin vortex sheet, we apply the desingularization method
of Krasny (1987). The desingularized local velocity at a point P on L (t) or T (t) is
expressed as

uδs(P, t)= U∞ + uB(P, t)+ 1
2π

∫
L (t),T (t)

[
∂1φ(q, t)

∂s

k̂ × R(P; q)
|R(P; q)|2+δ2

s

]
dsq, (3.9)

where 0 < δs � 1 is a desingularization parameter. In (3.9), uB(P, t) represents the
induced velocity due to the source and dipole distribution along the body B(t) (cf.
(3.7)) and can be evaluated by standard method (see e.g. Katz & Plotkin 1991).

An issue encountered in the propagation of L (t) is the vortex sheet–body
interaction problem. Depending on the foil geometry and motion (and computational
parameters), it is possible for L (t) to approach (and possibly cross) B(t) in the
simulation. For the periodic flapping problem we consider, this mainly occurs in two
situations: (i) L (t) approaches B(t) from outside due to motions of either or both of
them; (ii) when α(t) is small enough, the newly shed vortex moves onto (instead of
away from) B(t) (e.g. Jones 2003; Jones & Shelley 2005). In the present numerical
approach, the penetration of L (t) into B(t) is circumvented/prevented by introducing
two schemes: (a) we apply the desingularization (δs) also in the evolutions of uB(p, t);
and (b) we introduce a ‘fencing’ scheme associated with small parameter εb, so that
whenever a vortex comes within a distance εb of B(t), it is relocated and placed
on the nearest point on the fence (repulsive advection, e.g. Peace & Riley 1983, is
not modelled in the present approach). Provided that the normal advection velocity
of the vortex relative to the foil remains non-positive, L (t) will tend to remain
(re)attached to B(t) (+εb) (see e.g. the lower surface of B(t) in figure 7(a),(b) for
scenarios (ii) and (i) above, respectively). When the relative normal advection velocity
becomes positive, it is possible for L (t) to be detached (again) from B(t). Similar
fencing treatment has been used successfully, for example, in propeller vortex–blade
interaction problems (e.g. Yao & Liu 1998; He 2010).

For numerical implementation of the BEM solution, we discretize (3.7) and (3.9)
using constant panel method (piecewise linear geometry and constant singularity
strengths, e.g. Katz & Plotkin 1991). For B, we use N` cosine-spaced panels; while
for T , L , the segment size (distance between the vortex blobs) are determined by the
time step (and local velocity).

The overall initial-boundary-value problem (starting from quiescent initial state) is
solved as follows. (a) At any instant time, t, we check if a switch of XLE occurs by the
switching criterion. The position of XLE is updated according to (3.8) if switch occurs,
but otherwise fixed. (b) (3.7) with (3.4)–(3.6) is used to determine φ(x, t) on B, as
well as the newly-shedding dipole strengths 1φ0

T (t) and 1φ0
L (t). (c) The vortex sheet

positions T , L (as well as 1φT and 1φL ) are advected forward in time according
to (3.9) via an explicit Euler scheme, and B is updated according to the prescribed
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motion. The procedure (a)–(c) is repeated at t = t+1t until limit cycle is reached, and
the relevant quantities (2.6), (2.7) evaluated.

We remark that the numerical method above, especially (3.8), is somewhat specific
to problems such as flapping foils, for which LES is confined in a relatively small
region near the LE. While it might be tempting to extend this inviscid BEM approach
to more general geometries (say a circular cylinder, see e.g. Sarpkaya & Shoaff 1979),
additional issues associated with, for example, the motion of the unsteady separation
points (e.g. Haller 2004), the synchronicity between/among the vortex shedding at
different points, and the effective modelling of the complex wake with discrete vortex
sheets, must be addressed. Indeed, the objective of the present work is to show that the
relative simple approach we describe (with the simplifying assumptions and modelling)
can be effective for the specific problem of predicting the performance characteristics
of foil-like geometries in flapping motion. This is the purpose of § 5.

4. Numerical convergence
The key computational parameters of the present method (LES BEM) are δs, εb,

N` and 1t. For given N` and 1t (which determine average body panel size 1`0

and average vortex sheet segment length 1s0), the numerical method converges for
desingularization/fencing parameters δs, εb greater than some minimum threshold
values δs,min, εb,min. Figure 3(a) shows that the predictions on the two performance
quantities of interest, CT and η, are relatively insensitive to the values of δs > δs,min.
For numerics, we fix δs,min as the value above which the performance predictions
change by less than some specified tolerance. The specific value of δs,min is found to
depend on the physical flapping parameters, in particular the maximum angle of attack
αmax . The dependence δs,min(αmax) is closely linear (see figure 4), which provides a
simple fit for the choice of the desingularization parameter. Note that the actual value
of δs(=O(0.1 ∼ 0.3) from figure 4) depends on the specifics of the numerics (and not
on actual real fluid effects), and is not as small as might be expected based on the
latter considerations.

Similar behaviours also hold for εb (shown in figure 3b). In general, εb,min is not
sensitive to the motion parameters, and therefore is chosen to be 0.02c for all of the
cases, which provides stable numerical results.

Fixing δs, εb (>δs,min, εb,min), the numerical method converges approximately linearly
with body panel size 1`0 for smooth foils (e.g. Bellamy-Knights et al. 1989). The
convergence with time step 1t (which also controls 1s0) is limited from above by
the instability of the Euler integration, and from below by the instability of the vortex
sheets, as discussed in Krasny (1987). This is shown in figure 3(b).

Based on extensive convergence/sensitivity tests similar to the above, in all
subsequent results, we use N` = 250,1t/(c/U) = 0.01, δs = δs,min ≈ (0.005αmax +
0.09)c, and εb = εb,min ≈ 0.02c. In our simulations (of harmonic flapping starting
from rest), limit cycle of the performance metrics are typically reached after 1∼2
periods (independent of the initial motion phase), and averaged coefficients such as
(2.6) are obtained with t0 & 2τ . With these choices of numerical parameters, all of the
predictions of CT and η are convergent to less than O(5 %).

The typical computational time for each case is O(5) minutes, running on a PC
with a single-core Intel Pentium CPU (3.4 GHz). The addition of LES increases the
overall computational effort by ∼50 %, compared with that with just the TE vortex
sheet. These computational efforts are several orders of magnitude smaller than typical
Navier–Stokes simulations of such problems.
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FIGURE 3. LES BEM predictions of CT (—) and η (– – –) with varying: (a) desingularization
parameter δs/c (the value of the desingularization parameter used in the simulations, δs,min,
is identified); (b) fencing parameter εb/c (the value of the fencing parameter used in the
simulations, εb,min, is identified); and (c) time step 1t/(c/U). The motion parameters are
h0/c= 1.0, St = 0.3, αmax = 15◦.

5. Numerical results
Our main objective is to show that the present LES BEM method obtains

(sufficiently improved) predictions of flapping performance that compares well with
experiments. Motivated by the extensive measurements of Read et al. (2003), we use
their foil and flapping geometry (NACA0012 foil and b/c = 1/3). In the experiments,
the foil has relatively high aspect ratio (span = 6c), fitted with endplates, which
justifies the use of our 2D model. Before we show the LES predictions compared with
those without LES, we first present selected results of the latter.

5.1. Results for flapping foil without LES
The instantaneous lift L(t) obtained from our model without LES is first compared
with analytical result of Theodorsen (1935) in figure 5. The comparison is satisfactory,
with small discrepancies at the extremal values likely due to the assumptions in the
theory, of linearized motion and foil geometry, and the use of the inflow velocity for
wake convection.

Another solution of this problem is Streitlien & Triantafyllou (1995) who use
conformal mapping (of a Joukowski foil) and discrete TE shed vortices advected
by local flow. Figure 6 shows a comparison of the present method, Streitlien &
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FIGURE 4. Minimum desingularization parameter δs,min as a function of αmax : results from
LES BEM (◦); linear regression given by δs,min/c≈ 0.005αmax + 0.09 (—).
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FIGURE 5. Time-dependent lift on a flapping foil without LES: (—) BEM prediction; and
(– – –) (linearized) analytical results from Theodorsen (1935). Flapping motion parameters
are: h0/c= 0.01, θ0 = 0.01, ω = 1.0 and ψ = 0◦.

Triantafyllou (1995), and experimental data from Read et al. (2003), for CT and η.
As expected, the BEM and conformal mapping predictions are reasonably close. The
notable difference is in η for increasing values of St. This is due to the difference
in the foil geometries (NACA versus Joukowski) to which η is found to be sensitive
for large St. The more significant and notable difference in figure 6 is that between
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FIGURE 6. Comparison of (a) thrust coefficient CT and (b) efficiency η from: (—) BEM
without LES; (– – –) numerical results using conformal mapping (Streitlien & Triantafyllou
1995); and (•) experimental measurements (Read et al. 2003). Flapping motion parameters
are h0/c= 0.75, αmax = 15◦, ψ = 90◦.

the two numerical predictions (without LES) and the experimental measurements, the
former substantially over-predict CT as well as η over the entire St range.

5.2. Results for flapping foil with LES

5.2.1. Vortex structure prediction
Before showing the force and efficiency predicted by LES BEM, we illustrate the

predicted vortex structure and present a comparison with other methods.
The vortex sheets shedding from both trailing and leading edges in a downstroke of

the foil are plotted in figure 7. Figure 7(a) shows the vortex structure when the foil
first heaves to the top position, wherein a vortex sheet shed from the lower side rolls
up beneath the foil. The switching criterion comes into effect some time before the
foil heaves down to the mean position, figure 7(b), which originates a new vortex sheet
shed from the upper side. In figure 7(b), the earlier shed LE vortex below the foil
is shown to be nearly ‘attached’ along the underside of the foil where evidently the
‘fencing’ model is now invoked. As the foil heaves down to the bottom of the stroke
(figure 7c), the near-body vortex configuration resembles that at the top of the stroke
in figure 7(a). The vortex sheet evolution depicted in figure 7(a–c) (with new LE and
TE vorticity shed and the entire structure advected downstream) is repeated in each
subsequent (half) cycle. The modelling of the vortex evolution with the implementation
of desingularization, LES criterion, and the switching and fencing models, resulting in
multiple LE vortex sheets over time, is found to be robust and allows simulation over
long time.

The configuration and salient features of the predicted vortex sheet evolution can
be compared with experimental flow visualization and a Navier–Stokes solution of the
problem. Figure 8 compares, for two cases with different motion parameters, the LES
BEM results with digital particle image velocimetry (DPIV) images from Anderson
et al. (1998) and the Navier–Stokes solution from Zhu & Peng (2009) (both for a
relatively low Reynolds number of O(102∼3)). The qualitative corroborations among
the three are quite satisfactory.
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FIGURE 7. Positions of the LE and TE shed vortex sheets L (t) (– – –) and T (t) (—) at three
instants during the downward stroke of a flapping foil: (a) (t− td)/T = 0; (b) (t− td)/T = 1/4;
(c) (t − td)/T = 1/2. Flapping motion parameters are St = 0.3, αmax = 30◦, h0/c = 1.0 and
ψ = 90◦.
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FIGURE 8. Snapshots of LE and TE shed vortex structures from (left) prediction by the
LES BEM; (middle) DPIV measurement from Anderson et al. (1998); (right) Navier–Stokes
simulation from Zhu & Peng (2009), for two cases with (a) St = 0.36, h0/c = 0.75,
αmax = 20.4◦, ψ = 75◦ and (b) St = 0.3, h0/c = 0.25, αmax = 28.3◦, ψ = 90◦, when the foil
heaves to the top position.

5.2.2. Performance prediction
We perform LES BEM simulations for the same geometry and motion parameters

for (all) the test cases reported in Read et al. (2003). In the experiments, the phase lag
between the heave and pitch motion is specified with ψ = 90◦. For harmonic motions
with fixed pitch pivot point, the performance coefficients CT and η are functions only
of St, αmax and h0/c.

The comparison between experimental measurements and LES BEM numerical
predictions for CT and η is presented for varying St and different values of αmax
in figures 9 and 10 for the two values of heave amplitudes h0/c considered in
Read et al. (2003). For the numerical results, we also include for comparison BEM
predictions without LES. The performance predictions from LES BEM compares very
well with experimental measurements, while those from BEM without LES clearly do
not (and, as expected, increasingly poorly with increasing αmax). This clearly shows the
importance of LES effect in flapping foil performance, which the present numerical
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FIGURE 9. Comparison of thrust coefficient CT (a–f ) and efficiency η (g–l) from (—) LES
BEM, (– – –) BEM without LES and (•) experiments of Read et al. (2003) at h0/c = 1.0: (a)
αmax = 15◦; (b) αmax = 20◦; (c) αmax = 25◦; (d) αmax = 30◦; (e) αmax = 35◦; (f ) αmax = 40◦; (g)
αmax = 15◦; (h) αmax = 20◦; (i) αmax = 25◦; (j) αmax = 30◦; (k) αmax = 35◦; (l) αmax = 40◦.

approach evidently captures (see figure 8). The excellent quantitative predictions over
the broad ranges of St and αmax is remarkable considering the inherent assumptions
and modelling simplifications in the present approach. This also suggests that many
physical effects not accounted for here, associated say with viscosity and turbulence,
must play a relatively minor role in these cases (the experimental Reynolds number is
O(104)).

Figures 9 and 10 show that the presence of LES in the flapping foil causes both
the thrust and efficiency to be lower than would be expected if LES is ignored. For
CT , the difference between these, 1CT , generally increases with αmax and St. For
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η(=CT/CP), the difference is however more dramatic for small St. This is due mainly
to the fact that, for (almost) constant 1CT , CP diminishes with decreasing St, and
the difference in η predictions is amplified (for CP not significantly changed by LES,
which we find to be the case).

The reduction of CT relative to BEM prediction without LES, 1CT , is of practical
interest since many existing theoretical/numerical predictions neglect LES. From
figures 9 and 10, we see that generally 1CT = 1CT(αmax, St), with 1CT increasing
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FIGURE 11. Variations of 1CT with αd: (◦) all numerical data from figure 9; (—) fitting
curve for all data from figure 9; (�) all numerical data from figure 10; (– – –) fitting curve for
all data from figure 10.

monotonically with αmax and St. Through heuristic reasoning, we find that 1CT in, say,
the downward stroke can be approximated by αd, which is a good measure of the
average angle of attack experienced by the foil, and hence the intensity of LES, over
this downward stroke. Figure 11 is a plot of 1CT(α

d), showing the collapse of all of
the data in figures 9 and 10 for the two values of h0/c.

The thrust reduction 1CT can be explained physically in terms of total circulation
Γ around the foil. As expected, the presence of LES results in total circulation
reduction 1Γ due to the shedding of LE vorticity opposite to the TE vorticity.
The circulation reduction, 1Γ , has a different effect on the quasi-steady TS and
unsteady TU components of the total thrust T , associated with the quadratic and inertia
terms of the Bernoulli pressure (3.2), respectively, T = TS + TU:

TS ≡−1
2
ρ

∫
B(t)
(|∇φ(x, y, t)|2+2Uφ,x)nx d`; TU ≡−ρ

∫
B(t)

∂φ(x, y, t)

∂t
nx d`. (5.1)

In general, the decrease in total circulation, 1Γ , due to LES shedding, results in a
decrease in TS and increase in TU, respectively the former is due to a decrease in the
difference of |U∞ +∇φ|2 as in the steady problem, and the latter is due to an increase
in the difference of φ between the upper and lower surfaces of the foil (the picture is
qualitatively the same as in the linearized problem; e.g. Katz & Plotkin 1991).

For clarity, we define the unsteady and quasi-steady thrust coefficients CS
T and CU

T

corresponding to TS and TU, respectively. Figure 12 plots CS
T , CU

T and Γ
u
(= −Γ d

)

as functions of αmax , comparing the results with and without LES. It is seen that the
presence of LES significantly reduces Γ

u
, which in fact becomes negative, indicating

stronger LE shedding than that from the TE. This circulation reduction results in
a reduction in CS

T , accompanied by an increase in CU
T , consistent with our general

analysis above. In general, we find that the reduction in CS
T is greater than the

increase in CU
T , which leads to the net thrust reduction 1CT observed. Reflecting

the negative Γ
u
, CS

T is also negative, and the total (positive) thrust is dominated by
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T without LES.

unsteady effect from CU
T when LES is present. In contrast, when LES is neglected,

the dynamical picture is qualitatively different, with CS
T and CU

T both positive and
contributing approximately equally to CT throughout the αmax range. The important
role of the unsteady component of the thrust is a distinctive feature of flapping foils
with LES.

The significance of LES and the roles of the quasi-steady and unsteady contributions
can be seen directly from (5.1). Figure 13 plots the instantaneous distributions of the
quasi-steady, pS, and unsteady, pU, components of the Bernoulli pressure p on the foil
approximately one-third into a downward stroke. The appreciable difference due to
LES occurs on the pressure (lower) side of the foil where over most of the surface
there is a general elevation of pU and reduction of pS (both associated with the overall
reduction of Γ

u
), and the net contribution of the former to CT is somewhat mitigated

by the latter. Both pS and pU experience a significant reduction near a certain point
(marked ‘A’ in the figure), which we find is due to the presence of strong vorticity in
the shed L near that point (see the inset). The net effect of pS and pU is shown in
figure 13(c) with a uniformly reduced total pressure along the pressure (lower) side
and a concentrated low pressure valley, resulting in a reduction of CT .

6. Application of LES BEM to design
The accuracy of LES BEM in predicting overall performance over broad ranges

of the motion parameters, coupled with the robustness and efficiency of the method
makes it a useful tool for (preliminary) design of flapping foil motion (and geometry).

To illustrate this, we consider an example problem involving the introduction of
higher harmonics into the flapping motion. The addition of higher motion harmonics
to improve the performance of flapping foils is suggested by Read et al. (2003)
who obtained increased average thrust by adding third-harmonic components to the
heave motion. For specificity, we consider the problem of maximizing the efficiency
of a NACA0012 foil that produces a specified thrust CT = C∗T by designing the
flapping motion parameters with (versus without) third-harmonic components (clearly
odd harmonics are of greater interest on top of the original vertically antisymmetric
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FIGURE 13. Distributions of steady part pS (a) and unsteady part pU (b) of Bernoulli pressure
p (c) on foil surface approximately one-third into a downstroke: (– – –) pressure (lower) side
without LES; (—) pressure (lower) side with LES; ( ) suction (upper) side without
LES; ( ) suction (upper) side with LES . The low-pressure valley is marked by ‘A’. Inset:
Instantaneous positions of flapping foil and vortex sheets. The close proximity of the shed
vortex sheet and the (lower) foil surface is associated with the fencing model. The motion
parameters are h0/c= 1, St = 0.5 and αmax = 20◦.

flapping problem) in the heave:

h(t)= h0 sin(ωt)+ h3(t), h3(t)= λ sin(3ωt + β), (6.1)

where λ and β are amplitude and phase of the third-harmonic component to be
determined. For simplicity, we fix h0/c = 1, ψ = 90◦, so that η = η(St, αmax, λ/h0, β),
and constrain the variable parameters over practically realistic ranges: 0.2 < St < 0.5,
αmax < 40◦, 0< λ/h0 < 0.1 and −10◦ < β < 10◦. The objective is to obtain the optimal
efficiency ηmax , varying the four free parameters St, αmax , λ/h0 and β, for different
specified values C∗T . For comparison, we also solve the design problem without h3.
This constrained nonlinear optimization problem is solved using database interpolation
and a penalty method (see e.g, Mishima 1996; Luenberger & Ye 2008). With four free
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FIGURE 14. Maximum efficiency ηmax at a range of C∗T : (—) LES BEM, without h3; (– – –)
LES BEM, with optimized h3; (– · –) BEM without LES, without h3; (◦) BEM without LES,
with optimized h3.

parameters, the number of evaluations (simulations) involved is large, ∼O(103∼4), but
manageable using LES BEM.

The maximum efficiency ηmax achieved after optimization is shown in figure 14 (the
corresponding optimized motion parameters are not shown) for a range of C∗T . The
maximum efficiency with h3 is appreciably higher than that without h3 across the C∗T
range, with ηmax & 60 % for C∗T up to ∼1.1 (for this case with fixed h0/c, ψ , and
bounds on St and β). We also include in figure 14 the corresponding optimization
results using BEM without LES. In the absence of LES, the addition of higher-
harmonic motions yields no benefit, in fact, λ ≈ 0 for optimal efficiency for the full
range of C∗T we consider.

The difference in the effects of h3 with and without LES suggests that the
improvement of flapping foil performance with h3 is due to its effect on LES. Analysis
of our simulation results with LES shows that the inclusion of (optimal) h3 relative
to the problem without h3 (but with other motion parameters the same) results in
an increase of CT (and η). Figure 15 shows instantaneous pressure distributions on
the foil approximately one-third into a downward stroke, comparing the case with
optimized h3 and with h3 = 0. With the addition of optimal h3 motion, the low-
pressure valley at ‘A’ seen here and earlier in the lower side pressure distribution when
h3 is not used (cf. figure 13) is almost completely removed. The detailed mechanism
obtainable from LES BEM is somewhat involved but the resultant effects on L is
clearly seen in the simulations: qualitatively, the introduction of optimal h3 results in
a weaker and smoother LE vorticity shedding and distribution along L , effectively
removing the L -induced low-pressure valley on the pressure side.

7. Conclusions
We develop a numerical method based on a BEM to predict the performance of

flapping foil under general motion conditions where LES may occur. The vorticity
shed from the LE and TE are treated similarly using desingularized thin vortex sheets,
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FIGURE 15. Pressure distributions on foil surface approximately one-third into a downstroke:
( ) pressure (lower) side with h3 = 0; ( ) pressure (lower) side with optimized
h3; (—) suction (upper) side with h3 = 0; (– – –) suction (upper) side with optimized h3.
Inset: instantaneous positions of flapping foil and vortex sheets in the presence of h3. The
low-pressure valley is marked by ‘A’ in the figures. The motion parameters are St = 0.46,
αmax = 18.86◦, with optimized λ= 0.0663, β = 9.77◦.

with the LE vorticity emanating from a single point determined by a simple criteria
based on the location of the LE suction peak. The method is developed for 2D,
although the extension to 3D is, in principle, direct.

The prediction of the LES BEM method and experimental measurements of the
average thrust and efficiency of the flapping foil compare quantitatively well over
broad ranges of motion parameters, in sharp contrast to predictions without LES. This
is remarkable considering the theoretical assumptions and modelling simplifications
inherent in the present approach. Comparison of the method with and without LES
shows that the latter substantially over-predicts the performance of the foil. In the
presence of LES, the total circulation is considerably reduced and, under large
flapping motions, changes sign. The thrust generation of flapping foil with LES is
thus substantially dominated by unsteady effects.

The efficacy of the LES BEM method in predicting flapping performance and its
computational robustness and efficiency make it useful for designing the motion and
geometry of flapping foils. We illustrate this with an example application of finding
the optimal motion parameters including third-harmonic components, say, to maximize
efficiency for a specified thrust. The efficiency achieved with optimized third-harmonic
motion is appreciably higher than that where only the fundamental harmonic is used.
This performance improvement is found to be directly a result of LES wherein the
presence of optimized third-harmonic motion is shown to eliminate the vortex-induced
low-pressure valley on the pressure side of the foil.
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