Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

Or Ordentlich Joint work with Uri Erez

September 11th, 2013 ITW, Seville, Spain

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{z}$

• $\mathbf{H} \in \mathbb{C}^{N \times M}$, $\mathbf{x} \in \mathbb{C}^{M \times 1}$ and $\mathbf{z} \sim \mathcal{CN}(0, \mathbf{I}_N)$. • Power constraint is $\mathbb{E} \|\mathbf{x}\|^2 \le M \cdot \text{SNR}$.

4 3 k

Closed-loop

$$C = \max_{\mathbf{Q} \succ \mathbf{0} : \text{ trace } \mathbf{Q} \le M \cdot \text{SNR}} \log \det \left(\mathbf{I} + \mathbf{Q} \mathbf{H}^{\dagger} \mathbf{H} \right)$$

Or Ordentlich and Uri Erez Precoded Integer-Forcing Equalization

- 4 回 2 - 4 注 2 - 4 注 2 - 4

æ

Closed-loop

$$C = \max_{\mathbf{Q} \succ 0 : \text{ trace } \mathbf{Q} \le M \cdot \text{SNR}} \log \det \left(\mathbf{I} + \mathbf{Q} \mathbf{H}^{\dagger} \mathbf{H} \right)$$

Open-loop

Optimizing ${\bm Q}$ is impossible. Isotropic transmission ${\bm Q}={\sf SNR}\cdot{\bm I}$ is a reasonable idea and gives

$$C_{\mathsf{WI}} = \mathsf{log}\,\mathsf{det}\left(\mathbf{I} + \mathsf{SNR}\mathbf{H}^{\dagger}\mathbf{H}\right)$$

(本間) (本語)

▲ 프 ▶ 문

Closed-loop

$$C = \max_{\mathbf{Q} \succ \mathbf{0} : \text{ trace } \mathbf{Q} \le M \cdot \text{SNR}} \log \det \left(\mathbf{I} + \mathbf{Q} \mathbf{H}^{\dagger} \mathbf{H} \right)$$

Open-loop

Optimizing ${\bm Q}$ is impossible. Isotropic transmission ${\bm Q}={\sf SNR}\cdot{\bm I}$ is a reasonable idea and gives

$$C_{\mathsf{WI}} = \mathsf{log}\,\mathsf{det}\left(\mathbf{I} + \mathsf{SNR}\mathbf{H}^{\dagger}\mathbf{H}\right)$$

Definition: Compound channel

The compound MIMO channel with capacity $C_{\rm WI}$ consists of the set of all channel matrices

$$\mathbb{H}(\mathit{C}_{\mathsf{WI}}) = \left\{ \mathbf{H} \in \mathbb{C}^{\mathit{N} \times \mathit{M}} \; : \; \log \det \left(\mathbf{I} + \mathsf{SNR} \mathbf{H}^{\dagger} \mathbf{H} \right) = \mathit{C}_{\mathsf{WI}} \right\}$$

How can we approach the compound channel capacity in practice*?

*practice = scalar AWGN coding & decoding + linear pre/post processing

Decoupling Decoding from Equalization

포 🛌 포

Decoupling Decoding from Equalization

Split **w** to *M* messages $\mathbf{w}_1, \cdots \mathbf{w}_M$ encode each message separately equalize channel and decode each message separately

Closed-loop

Can transform the channel to a set of parallel SISO channels via SVD or $\ensuremath{\mathsf{QR}}$

- Use standard AWGN encoders and decoders (e.g., turbo, LDPC) for the SISO channels
- Gap to capacity is the same as that of the AWGN codes

Much less is known ...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Much less is known ...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Finding schemes with adequate performance guarantees for the compound channel is difficult

Much less is known ...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Finding schemes with adequate performance guarantees for the compound channel is difficult

Less restricting benchmarks became common

Much less is known ...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Finding schemes with adequate performance guarantees for the compound channel is difficult

Less restricting benchmarks became common Statistical approach

Much less is known ...

- Can still apply QR at the receiver, but how should the transmitter allocate rates to the different streams?
- Can also apply linear equalization (ZF or MMSE), but loss can be large

Finding schemes with adequate performance guarantees for the compound channel is difficult

Less restricting benchmarks became common

$$\mathbb{E}_{\mathsf{H}}(P_{e}) = \mathbb{E}_{C_{\mathsf{WI}}}(\mathbb{E}_{\mathsf{H}}(P_{e}|C_{\mathsf{WI}}))$$

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:

Weakness #1 - (lack of) robustness to channel statistics

- DMT optimality of a scheme does not translate to performance guarantees for specific channel realizations
 - \Longrightarrow Can design a scheme to work well only for typical channels

A (1) > (1) > (2)

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:

Weakness #1 - (lack of) robustness to channel statistics

- DMT optimality of a scheme does not translate to performance guarantees for specific channel realizations
 - \implies Can design a scheme to work well only for typical channels

Solution: approximately universal codes

- Introduced by Tavildar and Vishwanath (IT06)
- DMT optimal regardless of the channel statistics

イロン イビン イヨン イヨン

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:

Weakness #2 - crude measure of error probability

 For "good" channel realizations, the error probability is only required to be smaller than the outage probability
 A scheme with short block length (essentially "uncoded") can be DMT optimal

A (1) > (1) > (2)

- Introduced as a physical characterization of the channel
- Has become a benchmark for assessing practical coding schemes

As a benchmark, DMT is powerful, but has two weaknesses:

Weakness #2 - crude measure of error probability

 For "good" channel realizations, the error probability is only required to be smaller than the outage probability
 A scheme with short block length (essentially "uncoded") can be DMT optimal

When not in outage, we want communication to be reliable

・同・ ・ヨ・ ・ヨ・

This Work

A low-complexity scheme that achieves the compound MIMO ${\mbox{\bf capacity}}$ to within a constant gap

∃ >

This Work

A low-complexity scheme that achieves the compound MIMO ${\mbox{\bf capacity}}$ to within a constant gap

Constant gap-to-capacity also implies

- DMT optimality
- Constant gap to the outage capacity for any channel statistics

This Work

A low-complexity scheme that achieves the compound MIMO ${\mbox{\bf capacity}}$ to within a constant gap

Constant gap-to-capacity also implies

- DMT optimality
- Constant gap to the outage capacity for any channel statistics

Main result

IF equalization with space-time coded transmission can achieve any rate

$$R < C_{\mathsf{WI}} - \Gamma\left(\delta_{\mathsf{min}}(\mathcal{C}^{\mathsf{ST}}_{\infty}), M
ight)$$

where $\Gamma\left(\delta_{\min}(\mathcal{C}^{\mathsf{ST}}_{\infty}), M\right) \triangleq \log \frac{1}{\delta_{\min}(\mathcal{C}^{\mathsf{ST}}_{\infty})} + 3M\log(2M^2)$

Precoded Integer-Forcing

For 2×2 Rayleigh fading with Golden code precoding

Or Ordentlich and Uri Erez Precoded Integer-Forcing Equalization

• Proposed by Zhan et al. ISIT2010

3

- Antennas transmit independent streams (BLAST).
- All streams are codewords from the same linear code with rate R.

• Rather than equalizing **H** to identity (as in ZF or MMSE), in IF the channel is equalized to a full-rank $\mathbf{A} \in \mathbb{Z}^M + i\mathbb{Z}^M$

$$\mathbf{B}=\mathbf{A}\mathbf{H}^{\dagger}\left(\mathsf{SNR}^{-1}\mathbf{I}+\mathbf{H}\mathbf{H}^{\dagger}
ight)^{-1}$$

A linear combination of codewords with integer coefficients is a codeword

 \Longrightarrow Can decode the linear combinations - remove noise

 \Longrightarrow Can solve noiseless linear combinations for the transmitted streams

• A linear combination of codewords with integer coefficients is a codeword

 \Longrightarrow Can decode the linear combinations - remove noise

 \Longrightarrow Can solve noiseless linear combinations for the transmitted streams

• Effective noise $\mathbf{z}_{\text{eff},k}$ has effective variance

$$\sigma_{\text{eff},k}^{2} \triangleq \frac{1}{n} \mathbb{E} \|\mathbf{z}_{\text{eff},k}\|^{2}$$
$$= \text{SNR}\mathbf{a}_{k}^{\dagger} \left(\mathbf{I} + \text{SNR}\mathbf{H}^{\dagger}\mathbf{H}\right)^{-1} \mathbf{a}_{k}$$

where \mathbf{a}_{k}^{\dagger} is the *k*th row of **A**.

Or Ordentlich and Uri Erez

Same codebook used over all subchannels

 the subchannel with the largest noise dictates the performance

$$SNR_{eff,k} \triangleq \frac{SNR}{\sigma_{eff,k}^2} = \left[\mathbf{a}_k^{\dagger} \left(\mathbf{I} + SNR\mathbf{H}^{\dagger}\mathbf{H} \right)^{-1} \mathbf{a}_k \right]^{-1}$$
$$SNR_{eff} \triangleq \min_{k=1,...,M} SNR_{eff,k} = \left[\max_{k=1,...,M} \mathbf{a}_k^{\dagger} \left(\mathbf{I} + SNR\mathbf{H}^{\dagger}\mathbf{H} \right)^{-1} \mathbf{a}_k \right]^{-1}$$

For AWGN capacity achieving nested lattice codebook $\ensuremath{\mathcal{C}}$

 $R_{\rm IF} < M \log({\rm SNR}_{\rm eff})$

For AWGN capacity achieving nested lattice codebook $\ensuremath{\mathcal{C}}$

 $R_{\rm IF} < M \log({\rm SNR}_{\rm eff})$

To approach C_{WI} we need $SNR_{eff} \approx 2^{\frac{C_{WI}}{M}}$

(本部) (문) (문) (문

Integer-Forcing: SNR_{eff}

$$\mathsf{SNR}_{\mathsf{eff}} = \frac{1}{\min_{\substack{\mathbf{A} \in \mathbb{Z}^{M \times M} + i\mathbb{Z}^{M \times M} \max_{k=1...,M} \mathbf{a}_{k}^{\dagger} \left(\mathbf{I} + \mathsf{SNRH}^{\dagger}\mathbf{H}\right)^{-1} \mathbf{a}_{k}}$$

▲圖> ▲屋> ▲屋>

æ

Integer-Forcing: SNR_{eff}

$$\mathsf{SNR}_{\mathsf{eff}} = \frac{1}{\min_{\substack{\mathbf{A} \in \mathbb{Z}^{M \times M} + i\mathbb{Z}^{M \times M} \max_{k=1...,M} \mathbf{a}_{k}^{\dagger} \left(\mathbf{I} + \mathsf{SNRH}^{\dagger}\mathbf{H}\right)^{-1} \mathbf{a}_{k}}$$

ullet Does not give much insight to the dependence on $oldsymbol{H}$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Integer-Forcing: SNR_{eff}

$$\mathsf{SNR}_{\mathsf{eff}} = \frac{1}{\min_{\mathbf{A} \in \mathbb{Z}^{M \times M} + i\mathbb{Z}^{M \times M}} \max_{\substack{k=1...,M}} \mathbf{a}_{k}^{\dagger} \left(\mathbf{I} + \mathsf{SNRH}^{\dagger}\mathbf{H}\right)^{-1} \mathbf{a}_{k}}_{\det(\mathbf{A}) \neq 0}$$

- ullet Does not give much insight to the dependence on $oldsymbol{H}$
- Fortunately, using a transference theorem by Banaszczyk we can lower bound with a simple expression 🙂

伺下 イヨト イヨト

Integer-Forcing: SNR_{eff} via Uncoded d_{min}

Theorem - SNR_{eff} bound

$$SNR_{eff} > \frac{1}{4M^2} \min_{\mathbf{a} \in \mathbb{Z}^{M} + i\mathbb{Z}^{M} \setminus \mathbf{0}} \mathbf{a}^{\dagger} \left(\mathbf{I} + SNR\mathbf{H}^{\dagger}\mathbf{H} \right) \mathbf{a}^{\dagger}$$

通 と く ヨ と く ヨ と

Integer-Forcing: SNR_{eff} via Uncoded d_{\min}

Theorem - SNR_{eff} bound

$$\mathsf{SNR}_{\mathsf{eff}} > \frac{1}{4M^2} \min_{\mathbf{a} \in \mathbb{Z}^{M} + i\mathbb{Z}^{M} \setminus \mathbf{0}} \mathbf{a}^{\dagger} \left(\mathbf{I} + \mathsf{SNRH}^{\dagger} \mathbf{H} \right) \mathbf{a}^{\dagger}$$

Let

 $QAM(L) \triangleq \{-L, -L+1, \dots, L-1, L\} + i\{-L, -L+1, \dots, L-1, L\},\$

and define $d_{\min}(\mathbf{H}, L) \triangleq \min_{\mathbf{a} \in \mathsf{QAM}^M(L) \setminus \mathbf{0}} \|\mathbf{Ha}\|$

(本部)) (本語)) (本語)) (語)

Integer-Forcing: SNR_{eff} via Uncoded d_{\min}

Theorem - SNR_{eff} bound

$$\mathsf{SNR}_{\mathsf{eff}} > \frac{1}{4M^2} \min_{\mathbf{a} \in \mathbb{Z}^M + i\mathbb{Z}^M \setminus \mathbf{0}} \mathbf{a}^{\dagger} \left(\mathbf{I} + \mathsf{SNRH}^{\dagger} \mathbf{H} \right) \mathbf{a}^{\dagger}$$

Let

$$QAM(L) \triangleq \{-L, -L+1, \dots, L-1, L\} + i\{-L, -L+1, \dots, L-1, L\},\$$

and define $d_{\min}(\mathbf{H}, L) \triangleq \min_{\mathbf{a} \in \mathsf{QAM}^M(L) \setminus \mathbf{0}} \|\mathbf{Ha}\|$

Corollary

$$\mathsf{SNR}_{\mathsf{eff}} > \frac{1}{4M^2} \min_{L=1,2,\dots} \left(L^2 + \mathsf{SNR}d_{\min}^2(\mathbf{H},L) \right)$$

・ 同・ ・ ヨ・ ・ ヨ・

$$\mathsf{SNR}_{\mathsf{eff}} > \frac{1}{4M^2} \min_{L=1,2,\dots} \left(L^2 + \mathsf{SNR}d_{\mathsf{min}}^2(\mathbf{H},L) \right)$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

æ

$$SNR_{eff} > \frac{1}{4M^2} \min_{L=1,2,\dots} \left(L^2 + SNRd_{\min}^2(\mathbf{H},L) \right)$$

What can we guarantee for a specific channel realization? Unfortunately nothing...

$$SNR_{eff} > \frac{1}{4M^2} \min_{L=1,2,\dots} \left(L^2 + SNRd_{\min}^2(\mathbf{H}, L) \right)$$

Example for a bad channel

$$\mathbf{H} = \left[egin{array}{cc} h & 0 \ 0 & 0 \end{array}
ight]$$

- $SNR_{eff} = 1$, $R_{IF} = M \log(SNR_{eff}) = 0$.
- $C_{WI} R_{IF}$ is unbounded (as with any BLAST scheme).

/⊒ > < ≣ >

$$SNR_{eff} > \frac{1}{4M^2} \min_{L=1,2,\dots} \left(L^2 + SNRd_{\min}^2(\mathbf{H}, L) \right)$$

Example for a bad channel

$$\mathbf{H} = \left[\begin{array}{cc} h & 0 \\ 0 & 0 \end{array} \right]$$

- $SNR_{eff} = 1$, $R_{IF} = M \log(SNR_{eff}) = 0$.
- $C_{WI} R_{IF}$ is unbounded (as with any BLAST scheme).

Need to precode over time for transmit diversity

伺 と く き と く き とう

Space-Time Coding/Modulation

- Instead of transmitting *M* independent streams of length *n* over *n* time slots, transmit *MT* independent streams over *nT* time slots
- Before transmission, precode all MT streams using a unitary matrix $\mathbf{P} \in \mathbb{C}^{MT \times MT}$.

Space-Time Coding/Modulation

Or Ordentlich and Uri Erez

Precoded Integer-Forcing Equalization

Precoded Integer-Forcing

$$\bar{\mathbf{y}} = \begin{bmatrix} \mathbf{H} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{H} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{H} \end{bmatrix} \mathbf{P}\bar{\mathbf{x}} + \bar{\mathbf{z}} = \mathcal{H}\mathbf{P}\bar{\mathbf{x}} + \bar{\mathbf{z}} = \bar{\mathbf{H}}\bar{\mathbf{x}} + \bar{\mathbf{z}}$$

• Can apply IF equalization to the aggregate channel [Domanovitz and Erez IEEEI12]

回 と く ヨ と く ヨ と

Precoded Integer-Forcing

$$\bar{\mathbf{y}} = \begin{bmatrix} \mathbf{H} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{H} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{H} \end{bmatrix} \mathbf{P}\bar{\mathbf{x}} + \bar{\mathbf{z}} = \mathcal{H}\mathbf{P}\bar{\mathbf{x}} + \bar{\mathbf{z}} = \bar{\mathbf{H}}\bar{\mathbf{x}} + \bar{\mathbf{z}}$$

• Can apply IF equalization to the aggregate channel [Domanovitz and Erez IEEEI12]

But how to choose **P** to guarantee good performance?

- Large minimum distance for QAM translates to large SNR_{eff} for IF
- **P** should maximize $d_{\min}^2(\mathcal{H}\mathbf{P}, L)$ for the worst-case matrix **H**
- This problem was extensively studied under the *linear dispersion space-time coding* framework
- "Perfect" linear dispersion codes guarantee that $d_{\min}^2(\mathcal{H}\mathbf{P},L)$ grows appropriately with $C_{\rm WI}$

Theorem

If ${\bf P}$ generates a perfect linear dispersion code

$$\mathsf{SNR}d^2_{\mathsf{min}}(\mathcal{H}\mathbf{P},L) \geq \left[\delta_{\mathsf{min}}(\mathcal{C}^{\mathsf{ST}}_{\infty})^{rac{1}{M}}2^{rac{\mathcal{C}_{\mathsf{WI}}}{M}} - 2M^2L^2
ight]^+$$

for all channels matrices $\boldsymbol{\mathsf{H}}$

Proof follows by using the properties of perfect codes and extending Tavildar and Vishwanath's proof for the approximate universality criterion

Theorem

If ${\bf P}$ generates a perfect linear dispersion code

$$\mathsf{SNR}d^2_{\mathsf{min}}(\mathcal{H}\mathbf{P},L) \geq \left[\delta_{\mathsf{min}}(\mathcal{C}^{\mathsf{ST}}_{\infty})^{rac{1}{M}}2^{rac{\mathcal{C}_{\mathsf{WI}}}{M}} - 2M^2L^2
ight]^+$$

for all channels matrices $\boldsymbol{\mathsf{H}}$

Proof follows by using the properties of perfect codes and extending Tavildar and Vishwanath's proof for the approximate universality criterion

Combining with the SNR_{eff} lower bound

For precoded IF with a generating matrix \mathbf{P} of a perfect ST "code"

$$\begin{aligned} \mathsf{SNR}_{\mathsf{eff}} &> \frac{1}{4M^4} \min_{L=1,2,\dots} \left(L^2 + \mathsf{SNR} d_{\mathsf{min}}^2(\mathcal{H}\mathbf{P},L) \right) \\ &\geq \frac{1}{8M^6} \delta_{\mathsf{min}}(\mathcal{C}_{\infty}^{\mathsf{ST}})^{\frac{1}{M}} 2^{\frac{\mathcal{C}_{\mathsf{WI}}}{M}} \end{aligned}$$

Since $R_{IF} = M \log(SNR_{eff})$ we get the main result

For precoded IF with a generating matrix ${\bf P}$ of a perfect ST "code"

$$R_{IF} = M \log(\text{SNR}_{eff}) > C_{WI} - \Gamma\left(\delta_{\min}(C_{\infty}^{ST}), M\right)$$

where $\Gamma\left(\delta_{\min}(\mathcal{C}^{ST}_{\infty}), M\right) \triangleq \log \frac{1}{\delta_{\min}(\mathcal{C}^{ST}_{\infty})} + 3M \log(2M^2)$

Since $R_{IF} = M \log(SNR_{eff})$ we get the main result

For precoded IF with a generating matrix ${\bf P}$ of a perfect ST "code"

$$R_{IF} = M \log(\text{SNR}_{eff}) > C_{WI} - \Gamma\left(\delta_{\min}(C_{\infty}^{ST}), M\right)$$

where
$$\Gamma\left(\delta_{\min}(\mathcal{C}_{\infty}^{\mathsf{ST}}), M\right) \triangleq \log \frac{1}{\delta_{\min}(\mathcal{C}_{\infty}^{\mathsf{ST}})} + 3M \log(2M^2)$$

Thanks for your attention!