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Review of standard successive cancelation decoding (through noise
prediction)

Review of integer-forcing equalization

Successive integer-forcing

Optimality of Korkin-Zolotarev reduction

Asymmetric rates and sum-rate optimality
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The MIMO channel

Transmitter Channel Receiver

w Encoder

x1

...

xM

H

y1

z1

...

yN

zN

Decoder ŵ

y = Hx+ z

H ∈ R
N×M , x ∈ R

M×1 and z ∼ N (0, IN×N )

Power constraint is E‖xm‖2 ≤ SNR for m = 1, . . . ,M
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The MIMO channel

Transmitter Channel Receiver

w1 Enc 1
x1

...

wM Enc M
xM

H

y1

z1

...

yN

zN

Decoder ŵ1, . . . , ŵM

We only consider BLAST schemes
=⇒ All results are also valid for multiple access channels

Or Ordentlich, Uri Erez and Bobak Nazer Successive Integer-Forcing and its Sum-Rate Optimality



Sum rate optimality of SIC (via noise prediction)

Assume each encoder uses an i.i.d. Gaussian codebook, such that x
looks like N (0,SNRI)
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Sum rate optimality of SIC (via noise prediction)

Assume each encoder uses an i.i.d. Gaussian codebook, such that x
looks like N (0,SNRI)

The receiver first performs linear MMSE estimation of x from

y = Hx+ z. The LMMSE filter is B = HT
(

1
SNR I+HHT

)

−1
.
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Sum rate optimality of SIC (via noise prediction)

Assume each encoder uses an i.i.d. Gaussian codebook, such that x
looks like N (0,SNRI)

The receiver first performs linear MMSE estimation of x from

y = Hx+ z. The LMMSE filter is B = HT
(

1
SNR I+HHT

)

−1
.

Resulting effective channel is

yeff = By = x+ e,

where e = By− x = (BH− I)x+ Bz is a Gaussian vector with

Kee = SNR(I+ SNR HTH)−1 = SNRGGT
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Sum rate optimality of SIC (via noise prediction)

Assume each encoder uses an i.i.d. Gaussian codebook, such that x
looks like N (0,SNRI)

The receiver first performs linear MMSE estimation of x from

y = Hx+ z. The LMMSE filter is B = HT
(

1
SNR I+HHT

)

−1
.

Resulting effective channel is

yeff = By = x+ e,

where e = By− x = (BH− I)x+ Bz is a Gaussian vector with

Kee = SNR(I+ SNR HTH)−1 = SNRGGT

e can be written as e =
√
SNRGw where w ∼ N (0, I) and G is lower

triangular matrix satisfying (I+ SNR HTH)−1 = GGT
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Successive cancelation decoding via noise prediction

Equivalent channel after LMMSE estimation is

yeff =
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Successive cancelation decoding via noise prediction

Equivalent channel after LMMSE estimation is

yeff =











x1
x2
...
xM











+
√
SNR













g11 0 · · · 0

g21 g22 0
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...
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gM1 gM2 · · · gMM
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Decoding first stream from yeff,1 = x1 +
√
SNRg11w1 is possible if

R1 <
1

2
log

(

1 +
SNR

SNRg2
11

− 1

)

= −1

2
log(g2

11)

Or Ordentlich, Uri Erez and Bobak Nazer Successive Integer-Forcing and its Sum-Rate Optimality



Successive cancelation decoding via noise prediction

After decoding first stream, w1 is also known and can be canceled from
remaining streams

y
(2)
eff =
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Successive cancelation decoding via noise prediction

After decoding first stream, w1 is also known and can be canceled from
remaining streams

y
(2)
eff =
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x2
...
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SNR













g11 0 · · · 0
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Decoding second stream from y
(2)
eff,2 = x2 +

√
SNRg22w2 is possible if

R2 <
1

2
log

(

1 +
SNR

SNRg2
22

− 1

)

= −1

2
log(g2

22)
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Successive cancelation decoding via noise prediction

Continuing in the same manner, each stream can be decoded if

Rm < −1

2
log(g2

mm), m = 1, . . . ,M
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Successive cancelation decoding via noise prediction

Continuing in the same manner, each stream can be decoded if

Rm < −1

2
log(g2

mm), m = 1, . . . ,M

Achievable sum-rate is

M
∑

m=1

Rm = −1

2

M
∑

m=1

log
(

g2
mm

)

= −1

2
log
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M
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)
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Integer-forcing - background

Transmitter Channel Receiver

w1 Enc
x1

...

wM Enc
xM

H

y1

z1
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yN

zN

B

Dec
v̂1
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Dec
v̂M

A−1

w1

...

wM

Proposed by Zhan et al. ISIT2010
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Integer-forcing - background

Transmitter Channel Receiver

w1 Enc
x1

...

wM Enc
xM

H

y1

z1

...

yN

zN

B

Dec
v̂1

...

Dec
v̂M

A−1

w1

...

wM

Antennas transmit independent streams (BLAST).

All streams are codewords from the same linear code with rate R .
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Integer-forcing - background

Transmitter Channel Receiver

w1 Enc
x1

...

wM Enc
xM

H

y1

z1

...

yN

zN

B

Dec
v̂1

...

Dec
v̂M

A−1

w1

...

wM

Rather than estimating x from y as in standard linear equalizers, in IF
Ax is estimated for some full-rank A ∈ Z

M×M . LMMSE filter is

B = AHT

(

SNR−1I+HHT

)

−1
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Integer-forcing - background

x1 ∈ C

...

xM ∈ C

A

v1 ∈ C
e1

ỹeff,1 =
∑

M

m=1 a1mxm + e1

...

vM ∈ C
eM

ỹeff,M =
∑

M

m=1 aMmxm + eM

Effective channel is ỹeff = Ax+ e

A linear combination of codewords with integer coefficients is a
codeword
=⇒ Can decode the linear combinations - remove noise
=⇒ Can solve noiseless linear combinations for transmitted streams
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Effective channel is ỹeff = Ax+ e

A linear combination of codewords with integer coefficients is a
codeword
=⇒ Can decode the linear combinations - remove noise
=⇒ Can solve noiseless linear combinations for transmitted streams
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Integer-forcing - background

x1 ∈ C

...
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Integer-forcing - background

x1 ∈ C

...

xM ∈ C

A

v1 ∈ C
e1

ỹeff,1 =
∑

M

m=1 a1mxm + e1

...

vM ∈ C
eM

ỹeff,M =
∑

M

m=1 aMmxm + eM

For capacity achieving codebooks, the estimation errors behave like
i.i.d. (in time) Gaussian RVs. The spatial covariance matrix is

Kee = SNRA(I+ SNR HTH)−1AT
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Integer-forcing - background

x1 ∈ C

...

xM ∈ C

A

v1 ∈ C
e1

ỹeff,1 =
∑

M

m=1 a1mxm + e1

...

vM ∈ C
eM

ỹeff,M =
∑

M

m=1 aMmxm + eM

For capacity achieving codebooks, the estimation errors behave like
i.i.d. (in time) Gaussian RVs. The spatial covariance matrix is

Kee = SNRA(I+ SNR HTH)−1AT

Standard IF equalizer ignores the spatial correlations between estimation
errors. Successive IF equalizer exploits them to increase rates
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Integer-forcing - background

x1 ∈ C

...

xM ∈ C

A

v1 ∈ C
e1

ỹeff,1 =
∑

M

m=1 a1mxm + e1

...

vM ∈ C
eM

ỹeff,M =
∑

M

m=1 aMmxm + eM

Theorem (Nazer-Gastpar11IT)

Each vm can be decoded if R < 1
2 log

(

SNR
Kee(m,m)

)
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Integer-forcing - background

x1 ∈ C

...

xM ∈ C

A

v1 ∈ C
e1

ỹeff,1 =
∑

M

m=1 a1mxm + e1

...

vM ∈ C
eM

ỹeff,M =
∑

M

m=1 aMmxm + eM

Theorem (Nazer-Gastpar11IT)

Each vm can be decoded if R < 1
2 log

(

SNR
Kee(m,m)

)

Theorem (Zhan et al. ISIT2010)

All messages can be decoded if R < 1
2 log

(

SNR
maxm Kee(m,m)

)

Or Ordentlich, Uri Erez and Bobak Nazer Successive Integer-Forcing and its Sum-Rate Optimality



Successive integer-forcing
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ỹeff,1 =
∑

M

m=1 a1mxm + e1

...

vM ∈ C
eM
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Successive integer-forcing

x1 ∈ C

...

xM ∈ C

A

v1 ∈ C
e1

ỹeff,1 =
∑

M

m=1 a1mxm + e1

...

vM ∈ C
eM

ỹeff,M =
∑

M

m=1 aMmxm + eM

Let L be a lower triangular matrix such that SNRLLT = Kee. Using suc-
cessive decoding we reduce the variance of em to SNR`2mm.

Each vm can be decoded if R < 1
2 log

(

SNR
SNR`2mm

)

= −1
2 log(`

2
mm)
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Successive integer-forcing

x1 ∈ C

...

xM ∈ C

A

v1 ∈ C
e1

ỹeff,1 =
∑
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m=1 a1mxm + e1

...

vM ∈ C
eM

ỹeff,M =
∑

M

m=1 aMmxm + eM

Let L be a lower triangular matrix such that SNRLLT = Kee. Using suc-
cessive decoding we reduce the variance of em to SNR`2mm.

Each vm can be decoded if R < 1
2 log

(

SNR
SNR`2mm

)

= −1
2 log(`

2
mm)

All messages can be decoded if R < −1
2 log

(

maxm `2mm

)
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Optimality of KZ reduction

All messages can be decoded if R < −1
2 log

(

maxm `2mm

)

, where

LLT = A(I+ SNR HTH)−1AT
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Optimality of KZ reduction

All messages can be decoded if R < −1
2 log

(

maxm `2mm

)

, where

LLT = A(I+ SNR HTH)−1AT

How should we choose A for maximizing R?
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Optimality of KZ reduction

All messages can be decoded if R < −1
2 log

(

maxm `2mm

)

, where

LLT = A(I+ SNR HTH)−1AT

How should we choose A for maximizing R?

Theorem

The optimal A for successive integer-forcing can be found using
Korkin-Zolotarev lattice basis reduction

=⇒ The optimal A always satisfies |A| = 1 (unlike standard IF)
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Asymmetric rates

For standard SIC, if H is known at the transmitter, it can appropriately
allocate the rate for each stream.
Can this also be done for integer-forcing?
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Asymmetric rates

For standard SIC, if H is known at the transmitter, it can appropriately
allocate the rate for each stream.
Can this also be done for integer-forcing?

Assume that M = 2 (only two streams)

First stream is taken from a linear code C1 with rate R1

Second stream is taken from a linear code C2 ⊂ C1 such that R2 < R1

Both codes are over Z5

Assume that a1 = [2 3]T and a2 = [1 3]T
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Asymmetric rates

For standard SIC, if H is known at the transmitter, it can appropriately
allocate the rate for each stream.
Can this also be done for integer-forcing?

Assume that M = 2 (only two streams)

First stream is taken from a linear code C1 with rate R1

Second stream is taken from a linear code C2 ⊂ C1 such that R2 < R1

Both codes are over Z5

Assume that a1 = [2 3]T and a2 = [1 3]T

The effective outputs after equalization are

ỹeff,1 = 2x1 + 3x2 + e1

ỹeff,2 = 1x1 + 3x2 + e2
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Asymmetric rates

For standard SIC, if H is known at the transmitter, it can appropriately
allocate the rate for each stream.
Can this also be done for integer-forcing?

Assume that M = 2 (only two streams)

First stream is taken from a linear code C1 with rate R1

Second stream is taken from a linear code C2 ⊂ C1 such that R2 < R1

Both codes are over Z5

Assume that a1 = [2 3]T and a2 = [1 3]T

Reducing ỹeff modulo 5 we get

ỹeff,1 = [2x1 + 3x2 + e1] mod 5 = [v1 + e1] mod 5

ỹeff,2 = [1x1 + 3x2 + e2] mod 5 = [v2 + e2] mod 5
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Asymmetric rates

ỹeff,1 = [2x1 + 3x2 + e1] mod 5 = [v1 + e1] mod 5

ỹeff,2 = [1x1 + 3x2 + e2] mod 5 = [v2 + e2] mod 5

v1 = [2x1 + 3x2] mod 5 ∈ C1
=⇒ Can be decoded if R1 sufficiently small w.r.t. 1/`211
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Asymmetric rates

ỹeff,1 = [2x1 + 3x2 + e1] mod 5 = [v1 + e1] mod 5

ỹeff,2 = [1x1 + 3x2 + e2] mod 5 = [v2 + e2] mod 5

v1 = [2x1 + 3x2] mod 5 ∈ C1
=⇒ Can be decoded if R1 sufficiently small w.r.t. 1/`211

v2 = [1x1 + 3x2] mod 5 is also in C1
Using the decoded v1 we can make it belong to C2
C2 is sparser than C1
=⇒ Easier to decode
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Asymmetric rates

ỹeff,1 = [2x1 + 3x2 + e1] mod 5 = [v1 + e1] mod 5

ỹeff,2 = [1x1 + 3x2 + e2] mod 5 = [v2 + e2] mod 5

v1 = [2x1 + 3x2] mod 5 ∈ C1
=⇒ Can be decoded if R1 sufficiently small w.r.t. 1/`211

After decoding v1 the receiver can add 2v1 to ỹeff,2 and reduce mod 5

ỹ
(2)
eff,2 = [1x1 + 3x2 + e2 + 2v1] mod 5

= [(1 + 2 · 2)x1 + (3 + 2 · 3)x2 + e2] mod 5

= [4x2 + e2] mod 5
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Asymmetric rates

ỹeff,1 = [2x1 + 3x2 + e1] mod 5 = [v1 + e1] mod 5

ỹeff,2 = [1x1 + 3x2 + e2] mod 5 = [v2 + e2] mod 5

v1 = [2x1 + 3x2] mod 5 ∈ C1
=⇒ Can be decoded if R1 sufficiently small w.r.t. 1/`211

After decoding v1 the receiver can add 2v1 to ỹeff,2 and reduce mod 5

ỹ
(2)
eff,2 = [1x1 + 3x2 + e2 + 2v1] mod 5

= [(1 + 2 · 2)x1 + (3 + 2 · 3)x2 + e2] mod 5

= [4x2 + e2] mod 5

In addition e1 can be used to estimate e2
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Asymmetric rates

[v2 + 2v1] mod 5 = 4x2 ∈ C2
=⇒ Can be decoded if R2 sufficiently small w.r.t. 1/`222
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Asymmetric rates

[v2 + 2v1] mod 5 = 4x2 ∈ C2
=⇒ Can be decoded if R2 sufficiently small w.r.t. 1/`222

We also assumed R2 < R1

=⇒ R2 also needs to be sufficiently small w.r.t. 1/`211

If `211 ≤ `222 this requirement is redundant
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Asymmetric rates

[v2 + 2v1] mod 5 = 4x2 ∈ C2
=⇒ Can be decoded if R2 sufficiently small w.r.t. 1/`222

We also assumed R2 < R1

=⇒ R2 also needs to be sufficiently small w.r.t. 1/`211

If `211 ≤ `222 this requirement is redundant

If `211 ≤ `222 we can encode one stream with rate R1 < −1
2 log

(

`211
)

and
the other stream with rate R2 < −1

2 log
(

`222
)
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Sum-rate optimality of successive integer-forcing

If `211 ≤ · · · ≤ `2
MM

the achievable sum-rate for successive integer-forcing is

M
∑

m=1

Rm = −1

2

M
∑

m=1

log
(

`2mm

)

= −1

2
log

(

M
∏

m=1

`2mm

)

= −1

2
log det

(

LLT

)

= −1

2
log det

(

A
(

I+ SNRHTH
)

−1
AT

)

=
1

2
log det

(

I+ SNRHTH
)

− log | det(A)|
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Sum-rate optimality of successive integer-forcing

If `211 ≤ · · · ≤ `2
MM

the achievable sum-rate for successive integer-forcing is

M
∑

m=1

Rm = −1

2

M
∑

m=1

log
(

`2mm

)

= −1

2
log

(

M
∏

m=1

`2mm

)

= −1

2
log det

(

LLT

)

= −1

2
log det

(

A
(

I+ SNRHTH
)

−1
AT

)

=
1

2
log det

(

I+ SNRHTH
)

− log | det(A)|

There is always an optimal A with | det(A)| = 1, so the sum-rate is optimal
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Sum-rate optimality of successive integer-forcing

So what? Standard SIC is also sum-rate optimal...

The attained rate-tuples with successive IF tend to be more symmetric
than with standard SIC
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Sum-rate optimality of successive integer-forcing

So what? Standard SIC is also sum-rate optimal...

The attained rate-tuples with successive IF tend to be more symmetric
than with standard SIC

Why is this important in closed-loop?

For MIMO it is not very important
For MAC each stream belongs to a different user and symmetry is often
desired
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Gaussian MAC with nested linear codes - IF rate region

Gaussian two-user MAC y = 1x1 +
√
2x2 + z at SNR = 15dB

R2

2.51

1.85

1.44

0.28

R13.001.851.440.77
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