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Abstract—Let X and Y be dependent random variables. We
consider the problem of designing a scalar quantizer for Y
to maximize the mutual information between its output and
X , and study fundamental properties and bounds for this
form of quantization. Our main focus is the regime of low
I(X;Y ), where we show that for a binary X , there always
exists an M -level quantizer attaining mutual information of
Ω(−M · I(X;Y )/ log(I(X;Y )) and that there exists pairs of
X,Y for which the mutual information attained by any M -level
quantizer is O(−M · I(X;Y )/ log(I(X;Y ))).

I. INTRODUCTION

Quantization plays a central role in many information pro-

cessing systems. For instance, when the data comes from a

continuous alphabet, quantization is a pre-requisite for digital

processing. However, even if the data comes from a discrete

alphabet, reducing its cardinality often leads to more efficient

processing.

Let X and Y be a pair of random variables with a given

distribution PXY . This paper deals with the problem of

quantizing Y into M < |Y| values, under the objective of

maximizing the mutual information between the quantizer’s

output and X . Thus, the optimal quantizer under this setup is

argsup
f :Y→[M ]

I(X ; f(Y )), (1)

where [M ] , {1, 2, . . . ,M}. We will use the following

shorthand1 to denote the value of the mutual information

attained by the optimal M -ary quantizer.

I(X ; [Y ]M ) , sup
Ỹ ∈[Y ]M

I(X ; Ỹ ). (2)

where [Y ]M is the set of all (deterministic) M -ary quantiza-

tions of Y ,
[Y ]M , {f(Y ) : f : Y → [M ]}.

When X and Y are thought of as the input and output of a

channel, respectively, the problem (1) boils down to designing

the M -level quantizer that maximizes the information rate,

whereas (2) is the highest information rate attainable. It is
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1This notation is meant to suggest the distance from a point to a set.

therefore not surprising that this problem has received con-

siderable attention.2 For example, it is well known [2, Section

2.11] that when X is a BPSK input to an AWGN channel with

output Y it holds that I(X ; [Y ]2) ≥ 2I(X ;Y )/π and this is

achieved by taking f(·) to be the maximum a posteriori (MAP)

estimator of X from Y .3

A characterization of (2) is also required for practically

constructing polar codes, since the large output cardinality

of polarized channels makes it challenging to evaluate their

respective capacities (and identify “frozen” bits). Efficient

techniques for channel output quantization that preserve mu-

tual information were developed to overcome this obstacle,

and played a major role in the process of making polar

codes implementable [4]–[6]. Specifically, it was recently

shown in [6] that, for arbitrary PXY , it holds that I(X ;Y )−
I(X ; [Y ]M ) ≤ O(M−2/(|X |−1)). The works [4]–[6], among

others, also provided polynomial complexity sub-optimal algo-

rithms for designing such quantizers. In addition, for binary

X , an algorithm for determining the optimal quantizer was

proposed in [7] that runs in time O(|Y|3).
In this paper, we ignore the algorithmic aspects of finding

the optimal M -level quantizer and instead focus on the fun-

damental properties of the function I(X ; [Y ]M ). In particular,

our main interest is in identifying the joint distributions PXY

that are the most difficult to quantize, and in the value of

I(X ; [Y ]M ) for these cases. Special attention will be given

to the binary case, where X ∼ Bernoulli(p) for some p. In

this setting, it may seem at a first glance that the optimal

binary quantizer should always retain a significant fraction of

I(X ;Y ), and that the MAP quantizer should be sufficient to

this end. For large I(X ;Y ), this is indeed the case, as we

show in Proposition 5. This is also the case for the binary

AWGN channel for all values of I(X ;Y ), since the MAP

quantizer always retains at least 2/π ≈ 63.66% of the mutual

information.

We state our main result next, with proof deferred to

Section III-C.4

Theorem 1: If X ∼ Bernoulli(1/2) and I(X ;Y ) = β > 0,

2This problem is also connected to the log-loss distortion criterion and the
information bottleneck tradeoff [1]. An in-depth discussion will appear in an
extended version.

3It was recently demonstrated in [3] that, if instead of BPSK, an asymmetric
signaling scheme is used, the AWGN capacity can be attained at low SNR
with an asymmetric 2-level quantizer.

4Logarithms are generally taken w.r.t. base 2 in this paper, with the
exception of the ln function that is taken w.r.t. base e.



we have for binary quantization

I(X ; [Y ]2) ≥
1

3e

β

1 + ln
(

1
β

) . (3)

Furthermore, for any η ∈ (0, 1) and any natural M <
12max{log

(

1
β

)

, 1}/(1− η)2

I(X ; [Y ]M ) ≥ (M − 1)
β

max{log
(

1
β

)

, 1}
η(1 − η)2

12
. (4)

Finally, for any 0 < β ≤ 1, there exist distributions PXY with

X ∼ Bernoulli(1/2) and I(X ;Y ) = β, for which

I(X ; [Y ]M ) ≤ 2M
β

ln
(

e log(e)
2β

) , (5)

for every natural M .

Note that this is in stark contrast to the intuition from the

binary AWGN channel. While for the former, two quantization

levels suffice for retaining a 2/π fraction of I(X ;Y ), Theo-

rem 1 shows that there exist distributions for which at least

Ω(log(1/I(X ;Y ))) quantization levels are needed in order to

retain a fixed fraction of I(X ;Y ). Furthermore, as illustrated

in Section III, for small I(X ;Y ) and M = 2, the MAP

quantizer can be arbitrary bad w.r.t. the optimal quantizer,

which is in general not “symmetric”.

For a fixed distribution PX on X , we define and study the

“information distillation” function

IDM (PX , β) , inf
PY |X : I(X;Y )≥β

I(X ; [Y ]M ), (6)

where the infimum is taken w.r.t. to all channels with input

alphabet X and arbitrary (possibly continuous) output alphabet

such that the mutual information is at least β. With this

notation, Theorem 1 states that IDM (Bernoulli(1/2), β) =
Θ (Mβ/ log(1/β)), and in fact, as briefly argued in Sec-

tion III-C, the same scaling law continues to hold for

IDM (Bernoulli(p), β), 0 < p < 1.

As discussed above, prior work [4]–[6] has focused on

bounding the additive gap. In our notation, this corresponds

to bounding ∆I∗M , supβ,PX
β − IDM (PX , β). In particular,

the bound derived in [6] on ∆I∗M is equivalent to the fol-

lowing “constant-gap” result: for every PX , IDM (PX , β) ≥
β − ν(|X |)M−2/|(X|−1) for some function ν. For small β,

however, results of this form are less informative. Indeed, for

binary-input channels and small β, this bound requires M to

scale like β−1/2 in order to preserve a constant fraction of the

mutual information. On the other hand, our result shows that

M = O(log(1/β)) suffices for binary-input channels.

II. PROPERTIES OF I(X ; [Y ]M ) AND IDM (PX , β)

Let PXY be a joint distribution on X × Y and consider

the function I(X ; [Y ]M ), as defined in (2). The restriction

to deterministic functions incurs no loss of generality, see

e.g., [7]. Indeed, any random function of y, can be expressed

as f(y, U) where U is some random variable statistically

independent of (X,Y ). Thus,

I(X ; f(Y, U)) ≤ I(X ; f(Y, U), U) = I(X ; f(Y, U)|U)

and hence there must exist some u for which I(X ; f(Y, u)) ≥
I(X ; f(Y ;U)). Furthermore, for any function f : Y → [M ],
we can associate a disjoint partition of the cube [0, 1]|X | into

M regions I1, . . . , IM , such that f(y) = i iff PX|Y=y ∈
Ii for i = 1, . . . ,M . A remarkable result of Burshtein et

al. [8, Theorem 1] shows that the supremum in (2) can w.l.o.g.

be restricted to functions for which there exists an associated

partition where the regions I1, . . . , IM are all convex.

Below, we state simple upper and lower bounds on

I(X ; [Y ]M ). (The proofs of all propositions are left to an

extended version due to space constraints.)

Proposition 1: For any distribution PXY on X × Y with a

finite output alphabet, and M < |Y|,
M − 1

|Y| I(X ;Y ) ≤ I(X ; [Y ]M ) ≤ min{I(X ;Y ), log(M)}.

For K < M , we can construct a (possibly sub-optimal) K-

level quantizer by first finding the optimal M -level quantizer

and then quantizing its output to K-levels. This together with

the lower bound in Proposition 1, yields the following.

Corollary 1: For natural numbers K < M we have

I(X ; [Y ]K) ≥ K − 1

M
I(X ; [Y ]M ).

When X − Y −V form a Markov chain in this order, we can

simulate any function of V from Y . Thus,

Proposition 2 (Data processing inequality): If X − Y − V
form a Markov chain in this order, then

I(X ; [V ]M ) ≤ I(X ; [Y ]M ).

Since the supremum of convex functions is convex, we have

Proposition 3: For a fixed PX , the function PY |X 7→
I(X ; [Y ]M ) is convex.

Remark 1: It is tempting to expect that I(X ; [Y ]M ) will

have “diminishing returns” in M for any PXY , i.e., that it

will satisfy the inequality I(X ; [Y ]M1·M2
) ≤ I(X ; [Y ]M1

) +
I(X ; [Y ]M2

). However, as demonstrated by the following

example, this is not the case. Let X ∼ Uniform({0, 1, 2, 3})
and Y = [X+Z] mod 4, where Z is additive noise statistically

independent of X with Pr(Z = 0) = δ and Pr(Z = 1) =
Pr(Z = 2) = Pr(Z = 3) = (1− δ)/3. Clearly,

I(X ; [Y ]4) = I(X ;Y ) = 2− h(δ)− (1− δ) log(3),

and it can be verified that

I(X ; [Y ]2) =

{

h
(

1
4

)

− 1
4h(δ)− 3

4h
(

1−δ
3

)

δ ≤ 1/4,

1− h
(

1+2δ
3

)

δ > 1/4.

Thus, for this example we have that 2I(X ; [Y ]2) < I(X ; [Y ]4)
for all δ /∈ {1/4, 1}.



Remark 2: Without putting any restriction on |X |, the

solution of (1) is in general NP-hard, as for M = 2 and Y = X
it reduces to the NP-hard subset sum problem [9].

Proposition 4: The function IDM (PX , β) is convex and

monotonically nondecreasing in β.

III. BOUNDS FOR X ∼ Bernoulli(1/2)

In this section we provide upper and lower bounds on

IDM (PX , β), for the special case where X ∼ Bernoulli(p),
which we denote by IDM (p, β). To simplify derivations, we

shall further restrict attention to p = 1/2, though the results

we obtain below remain valid for any 0 < p < 1 with

some correction terms which are qualitatively insignificant.

Clearly, for any distribution PXY with X = {1, 2} it holds

that I(X ;Y ) ≤ 1. Thus, β is restricted to the interval [0, 1].

A. The Symmetric Quantizer for M = 2

We begin by analyzing the mutual information induced

by the most natural binary quantizer, which is based on the

maximum a posteriori (MAP) estimator. In particular, we

consider the symmetric MAP quantizer

fMAP(y) =











1 if Pr(X = 1|Y = y) > 1/2

2 if Pr(X = 1|Y = y) < 1/2

Bernoulli(1/2) if Pr(X = 1|Y = y) = 1/2

,

where tie-breaking is done via flipping a coin. While the fash-

ion in which ties are broken has no effect on the average error

probability, as we shall see, it may effect the mutual informa-

tion induced by the quantizer. Let Pe,MAP(y) , Pr(fMAP(Y ) 6=
X |Y = y) and Pe,MAP , EY Pe,MAP(Y ). By concavity of the

binary entropy function h(p) , −p log(p)− (1−p) log(1−p)
we have that h(p) ≥ 2p for any 0 ≤ p ≤ 1/2, with equality iff

p ∈ {0, 1/2}. Consequently, H(X |Y ) = EY h(Pe,MAP(Y )) ≥
2Pe,MAP. We therefore have that

I(X ; fMAP(Y )) = 1− EY h (Pr(X 6= fMAP(Y )))

≥ 1− h(Pe,MAP) ≥ 1− h

(

1− I(X ;Y )

2

)

.

(7)

B. The High Mutual Information Regime

From (7), we have ID2(1/2, β) ≥ 1 − h ((1− β)/2).
Furthermore, note that the bound (7) is achieved with equality

when PY |X is the binary erasure channel (BEC). For the

BEC, however, ties occur frequently and the symmetric MAP

quantizer, which involves randomness, turns out not to be a

very good choice. Instead of flipping a coin whenever y =?,

we can always assign a fixed value, say f(?) = 1, to it.

This deterministic asymmetric quantizer, which is also a MAP

quantizer, is given by

fZ(y) =

{

1 if y ∈ {1, ?},
2 if y = 0,

and induces a Z-channel from X to fZ(Y ) with mutual

information

I(X ; fZ(Y )) =
β

2
h

(

1− β

2− β

)

+ 1− h

(

1− β

2− β

)

. (8)

It is easy to verify that fZ(y) is the optimal 1-bit quantizer

for the BEC.

We have therefore established the following proposition.

Proposition 5: For all 0 ≤ ǫ ≤ 1 we have

1− h
( ǫ

2

)

≤ ID2(1/2, 1− ǫ) ≤ 1− 1 + ǫ

2
h

(

ǫ

1 + ǫ

)

.

Thus, for large β, the loss for quantizing the output to one

bit is small and the fraction of the mutual information that can

be retained approaches 1 as the mutual information increases.

In particular, the natural symmetric MAP quantizer is never

too bad, and retains a significant fraction of at least 1−h((1−
β)/2) of the mutual information β.

C. The Low Mutual Information Regime

In the small β regime, we arrive at qualitatively different

behavior. Consider again the BEC with capacity β for β ≪ 1.

By (7) (which becomes an equality for the BEC) and (8), we

have that

I(X ; fMAP(Y )) = 1− h

(

1− β

2

)

=
log e

2
β2 + o(β2). (9)

I(X ; fZ(Y )) =
β

2
h

(

1− β

2− β

)

+ 1− h

(

1− β

2− β

)

=
β

2
+ o(β).

(10)

Thus, the asymmetric quantizer fZ(y) retains 50% of the mu-

tual information, whereas the fraction of mutual information

retained by the symmetric MAP quantizer vanishes as β → 0.

The BEC example may lead to the erroneous conclusion

that the weakness of the symmetric MAP quantizer is due to

the random tie-breaking, and that a MAP quantizer that breaks

ties more cleverly can always retain a significant fraction of

I(X ;Y ). However, this is not the case. To see this consider a

channel with binary input and output alphabet Y = {1, 2} ×
{g, b}, defined by

Pr(Y = y|X = x) =











β if y = (x, g)

(1− β)
(

1
2 + δ

)

if y = (x, b)

(1− β)
(

1
2 − δ

)

if y = (1− x, b)

,

for some 0 ≤ β ≤ 1 and 0 ≤ δ ≤ 1/2. Note that for δ = 0,

this channel becomes a BEC with capacity 1− β, but for any

δ 6= 0 ties never occur. For any δ > 0, the MAP quantizer is

therefore unique and deterministic, but as δ → 0, the channel

approaches a BEC, and its performance becomes closer and

closer to (9). Similarly, the performance of a binary quantizer

that assigns the same value to both “bad” outputs, i.e., f(y) =
2 if y = (0, g) and f(y) = 1 otherwise, which is not a MAP

quantizer, approaches (10) as δ → 0, and is therefore much

better than the MAP quantizer.



Next, we prove Theorem 1, which requires the following

proposition.

Proposition 6: The function g(t) = −t ln(t) is monotone

increasing in 0 < t < 1/e and its inverse restricted to this

interval satisfies 1
e · t

− ln(t) < g−1(t) ≤ t
− ln(t) .

Proof of lower bounds in Theorem 1. Consider the joint

distribution PXY , and for any y ∈ Y define αy , Pr(X =
1|Y = y), ᾱ , E(αY ) =

1
2 and

Dy , D(PX|Y=y‖PX) = d (αy ‖ ᾱ) ,

where d(p‖q) , p log(p/q) + (1 − p) log((1 − p)/(1− q)) is

the binary divergence function. We further define the function

F̄ (γ) , Pr(DY ≥ γ),

and note that it is non-increasing and satisfies

I(X ;Y ) = EDY =

∫ γ∗

0

F̄ (γ)dγ, (11)

where γ∗ = maxy∈Y Dy ≤ 1. Let M = 2L + 1 for some

natural number L, let 0 = γ0 ≤ γ1 ≤ · · · ≤ γL ≤ γL+1 =
γ∗+δ, for some arbitrary small δ > 0, and define the following

M -level quantizer

f(y) =











0 d(αy‖ᾱ) ≤ γ1

−ℓ αy < ᾱ, γℓ ≤ d(αy‖ᾱ) < γℓ+1

ℓ αy > ᾱ, γℓ ≤ d(αy‖ᾱ) < γℓ+1

.

We have that for ℓ = 1, . . . , L

d (E[αY |f(Y ) = −ℓ]‖ᾱ) ≥ γℓ, d (E[αY |f(Y ) = ℓ]‖ᾱ) ≥ γℓ

and by the definition of F̄ (γ) we also have

Pr ({f(Y ) = −ℓ} ∪ {f(Y ) = ℓ}) = F̄ (γℓ)− F̄ (γℓ+1).

Thus,

I(X ; f(Y )) =

L
∑

ℓ=−L

Pr(f(Y ) = ℓ)D(PX|f(Y )=ℓ‖PX)

≥
L
∑

ℓ=1

(

F̄ (γℓ)− F̄ (γℓ+1)
)

γℓ =

L
∑

ℓ=1

F̄ (γℓ)(γℓ − γℓ−1) (12)

where in the last equality we used γ0 = 0 and F̄ (γL+1) =
F̄ (γ∗ + δ) = 0. Our goal is therefore to choose the numbers

{γℓ}Lℓ=1 such as to maximize (12).

For the special case of L = 1, this reduces to γ1 =
argmaxγ γF̄ (γ), and with this choice we have I(X ; f(Y )) =
maxγ γF̄ (γ). Thus, F̄ (γ) ≤ min{1, I(X ; f(Y ))/γ}. Using

the identity (11) with γ∗ ≤ 1, this yields

I(X ;Y ) ≤
∫ I(X;f(Y ))

0

dγ +

∫ 1

I(X;f(Y ))

I(X ; f(Y ))

γ
dγ

(13)

= I(X ; f(Y ))

(

1 + ln
1

I(X ; f(Y ))

)

= −e
I(X ; f(Y ))

e
ln

(

I(X ; f(Y ))

e

)

.

Recalling that L = 1 corresponds to a quantizer with M =
2L + 1 = 3 levels and applying Proposition 6, we have

therefore obtained

I(X ; [Y ]3) ≥ e · g−1

(

I(X ;Y )

e

)

≥ 1

e
· I(X ;Y )

1 + ln
(

1
I(X;Y )

) .

Now, applying Corollary 1, yields (3).

For a general L, the problem of finding {γℓ} such as to

maximize (12) is more difficult. We therefore resort to a

possibly suboptimal choice according to the rule

γ1 = ǫI(X ;Y ), θ = γ
− 1

L

1 , γℓ = γ1 · θℓ−1, (14)

for ℓ = 2, . . . , L, L+ 1 and some 0 < ǫ < 1 to be specified.

Note that this choice guarantees that

γℓ+1 − γℓ = θ (γℓ − γℓ−1) , ℓ = 1, . . . , L.

This implies that

I(X ;Y ) =
L
∑

ℓ=0

∫ γℓ+1

γℓ

F̄ (γ)dγ ≤
L
∑

ℓ=0

(γℓ+1 − γℓ)F̄ (γℓ)

= γ1 + θ
L
∑

ℓ=1

(γℓ − γℓ−1)F̄ (γℓ)

≤ γ1 + θI(X ; f(Y )).

Now, setting ǫ = 1/(L+ 1) yields

I(X ; f(Y )) ≥ (I(X ;Y ))
L+1

L
L

(1 + L)
L+1

L

≥ (I(X ;Y ))
L+1

L ·
(

1− 1√
L

)

, (15)

where the last inequality is valid for every L ≥ 1.

Substituting in L =
⌈

4max
{

log
(

1
I(X;Y )

)

, 1
}

/(1 − η)2
⌉

,

it follows that

I(X ; f(Y )) ≥ 2−(1−η)2/4

(

1

2
+

η

2

)

I(X ;Y ) ≥ ηI(X ;Y ).

Since M = 2L + 1 and L ≥ 4, it follows

that we can guarantee I(X ; f(Y )) ≥ ηI(X ;Y ) if

M =
⌊

12max
{

log
(

1
I(X;Y )

)

, 1
}

/(1 − η)2
⌋

and thus

IDM (1/2, β) ≥ ηβ for this choice of M as well. For smaller

values of M , we can apply Corollary 1 to obtain 4.

Remark 3: The proof above only used the assumption that

X ∼ Bernoulli(1/2) (rather than Bernoulli(p) with general p)

in order to bound γ∗ ≤ 1. The proof can be easily modified to

deal with any p, in which case we have γ∗ ≤ − log(min{p, 1−
p}). This will require changing the integration limits in (13),

and replacing the choice of θ in (14) with θ = (γ∗/γ1)1/L.

Proof of upper bound in Theorem 1. It suffices to provide

one distribution PXY with I(X ;Y ) ≥ β for which no M -

level quantizer achieves mutual information exceeding the

RHS of (5). To this end, let X ∼ Bernoulli(1/2) and

Y = (X⊕ZT , T ) be the output of a binary-input memoryless



output-symmetric (BMS) whose input is X , where T is a

mixed random variable in [0, 1/2) whose probability density

function is given by

fT (t) =

{

rδ(t) + 4r
(1−2t)3 0− < t ≤ 1−√

r
2

0 otherwise

for some 0 < r ≤ 1, ZT is a binary random variable

with Pr(ZT = 1|T = t) = t, and (ZT , T ) is statistically

independent of X . It can be easily verified that Pr(αY =
t|T = t) = Pr(αY = 1− t|T = t) = 1/2.

By [8, Theorem 1], the optimal quantizer partitions the

interval [0, 1] into M subintervals Ii = [γi−1, γi) for i =
1, . . . ,M − 1 and IM = [γM−1, γM ], where 0 = γ0 < γ1 <
· · · < γM = 1, and outputs f(y) = i iff αy ∈ Ii. We therefore

have

I(X ; f(Y )) =

M
∑

i=1

Pr(αY ∈ Ii)d
(

E[αY |αY ∈ Ii] ‖
1

2

)

≤ M max
0≤a<b≤1

Pr(a ≤ αY ≤ b)d

(

E[αY |a ≤ αY ≤ b] ‖ 1

2

)

.

By the symmetry of the random variable αY around 1/2, we

can restrict the optimization to a < 1/2 and a < b ≤ 1. Let

b = min{b, 1 − b} and b̄ = max{b, 1 − b} and define the

two intervals T0 = [a, b), T1 = [b, b̄]. By the convexity of KL

divergence we have that

d

(

E[αY |a ≤ αY ≤ b] ‖ 1

2

)

≤
1

∑

i=0

Pr(αY ∈ Ti|a ≤ αY ≤ b)d

(

E[αY |αY ∈ Ti] ‖
1

2

)

= Pr(αY ∈ T0|a ≤ αY ≤ b)d

(

E[αY |a ≤ αY ≤ b] ‖ 1

2

)

,

where we have again used the symmetry of the random

variable αY in the last equation. We have therefore obtained

I(X ; f(Y ))

≤ M max
0≤a≤b≤ 1

2

Pr(a ≤ αY ≤ b)d

(

E[αY |a ≤ αY ≤ b] ‖ 1

2

)

=
M

2
max

0≤a≤b≤ 1
2

Pr(a ≤ T ≤ b)d

(

E[T |a ≤ T ≤ b] ‖ 1

2

)

.

=
M

2
max

0≤b≤ 1
2

Pr(0 ≤ T ≤ b)d

(

E[T |0 ≤ T ≤ b] ‖ 1

2

)

where the last equality follows since both terms are individ-

ually maximized by a = 0. It can be verified that for any

0 ≤ ρ ≤ 1−√
r

2

∫ ρ

0

tfT (t)dt =
2rρ2

(1− 2ρ)2
; Pr(0 ≤ T ≤ ρ) =

r

(1− 2ρ)2
,

and therefore E[T |0 ≤ T ≤ b] = 2b2, and we have that for

any M -level quantizer

I(X ; f(Y )) ≤ M

2
· max
0≤b≤ 1−√

r
2

r · 1− h(2b2)

(1− 2b)2
≤ M · log(e)r,

where the last inequality follows by noting that the function
1−h(2b2)
(1−2b)2 is monotone increasing in 0 < b < 1/2, and taking

the limit as b → 1/2. It remains to relate r and I(X ;Y ).
Recalling that h(12 − p) ≤ 1− 2 log(e)p2, we have

I(X ;Y ) = 1− Eh(T ) ≥ 2 log(e)E

(

1

2
− T

)2

= 2 log(e)
r

4
ln
(e

r

)

=
e log(e)

2

r

e
ln
(e

r

)

.

Applying Proposition 6, we have

r ≤ eg−1

(

2I(X ;Y )

e log(e)

)

≤ 2I(X ;Y )

log(e)

1

ln
(

e log(e)
2I(X;Y )

)

which gives

I(X ; f(Y )) ≤ 2M
I(X ;Y )

ln
(

e log(e)
2I(X;Y )

) ,

for any M -level function f .
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