
User’s Guide to the LATEX Calendar Bundle
∗

Frank G. Bennett, Jr.

February 18, 2004

Contents

1 System Preparation 1

2 Creating Calendars 1

3 Data Files 3

3.1 Pinpoint Date Syntax . 3
3.2 Recursive Date Syntax . 4
3.3 Color Support . 6
3.4 Freezing Data . 7
3.5 Composite Lists . 7
3.6 Language Support . 8
3.7 Rotating Text . 9
3.8 Arbitrary Formulæ . 10

4 Calendar, Class and Package Options 10

4.1 Timesheets . 10
4.1.1 Package Options . 10
4.1.2 Calendar Options . 11

4.2 Weekly . 12
4.2.1 Class Options . 12
4.2.2 Calendar Options . 12

4.3 Monthly . 13
4.3.1 Package Options . 13
4.3.2 Calendar Options . 14

4.4 Yearly . 14
4.4.1 Class or Package Options 14
4.4.2 Calendar Options . 14

4.5 Timetable . 15
4.5.1 Package Options . 15
4.5.2 Calendar Options . 15

4.6 Event List . 16
4.6.1 Class or Package Options 16
4.6.2 Calendar Options . 16

4.7 HTML Monthly Calendar . 16

∗This file is version number 3.1. It was last revised on 1998/01/17 17:11:27.

4.7.1 Class or Package Options 16
4.7.2 Calendar Options . 16

4.8 HTML Event List . 16
4.8.1 Class or Package Options 17
4.8.2 Calendar Options . 17

4.9 HTML Month and Event List . 17
4.9.1 Class or Package Options 17
4.9.2 Calendar Options . 17

2

Preface

Welcome to the LATEX Calendar bundle. This bundle will produce calendars in a
variety of formats, in any language supported by LATEX2ε, simply, quickly, and
with enough flexibility to make the little “personal calendars” that ship with
Windows 95 and the like beg for mercy. It just might be the only calendaring
system you need.

This manual explains how to use it.

1 System Preparation

The first thing you must do is be sure that you have all of the necessary tools
to hand. Before using the styles in the LATEX calendar package, you should first
check that your LATEX installation includes all of the utilities in the graphics

subdirectory under packages in the main LATEX2ε distribution directory on
CTAN, and the longtable and the multicol packages from the tools subdi-
rectory of packages. You will also need everything in the calendar package
itself. With these items in hand, the package should function smoothly in accor-
dance with the documentation given here and in the individual *.dtx files. If
you have problems, please contact me on bennett@nomolog.nagoya-u.ac.jp.

2 Creating Calendars

There are nine calendar styles in the bundle. The simplest possible document for
each is shown in Figure 1. It is worth spending a little time studying these ex-
amples to see what the essential elements are, and what can vary from one style
to another. Some are packages, invoked through the \usepackage tag. Others
are classes, invoked via the \documentclass tag at the top of the document. In
either case, the calendar itself takes the form of a LATEX environment. The name
of this environment sometimes differs from the name given to \usepackage or
\documentclass, because the operating system on which the largest software
company in the world was built cannot cope with more than eight characters in
a file name.

There are always two extra arguments after the \begin tag that opens the
environment. The first extra argument contains formatting instructions and
other options that modify the behavior of the style. We will refer to these as
calendar options. A few calendar options are common to all calendar styles,
while others are specific to a particular style. In the examples, the first extra
argument is always empty because (get ready for this one) calendar options are
optional. A full explanation of all calendar options for all styles is given in
section 4 below.

The second extra argument gives names of data files containing lists of events
or appointments, together with the names of any colors to be associated with the
entries in each data file. In the examples, this second argument is blank because
a calendar can be created without including any events or appointments. See
section 3 below for a discussion of how to manage data lists and include them
in calendars.

The only other component of a complete calendar is a controlling date or a
controlling range of dates. As you can see from the examples, this is the only

1

\documentclass{article}

\usepackage{timesht}

\begin{document}

\begin{timesheet}

{}

{}

Jan 1 1997

\end{timesheet}

\documentclass{weekly}

\begin{document}

\begin{weekly}

{}

{}

Jan 1 1997

\end{weekly}

\documentclass{monthly}

\begin{document}

\begin{monthly}

{}

{}

Jan 1 1997

\end{monthly}

\documentclass{article}

\usepackage{yearly}

\begin{document}

\begin{yearly}

{}

{}

Jan 1 1997

\end{yearly}

\documentclass{article}

\usepackage{evntlist}

\begin{document}

\begin{eventlist}

{}

{}

Jan 1 1997

\end{eventlist}

\documentclass{timetabl}

\begin{document}

\begin{timetable}

{}

{}

Jan 1 1997

\end{timetable}

\documentclass{article}

\usepackage{hmonth}

\begin{document}

\begin{htmlmonth}

{}

{}

Jan 1 1997

\end{htmlmonth}

\documentclass{article}

\usepackage{hlist}

\begin{document}

\begin{htmllist}

{}

{}

Jan 1 1997

\end{htmllist}

\documentclass{article}

\usepackage{hml}

\begin{document}

\begin{htmlmonthlist}

{}

{}

Jan 1 1997

\end{htmlmonthlist}

Figure 1: Minimal documents for each calendar style

2

thing written inside the environment, and it is written in a human-readable
form. The bundle is pretty forgiving in the way it reads dates; the elements of
a simple date can be written in any order (that is to say, Aug 1 1997, 1 Aug

1997 and 1997 Aug 1 will all work equally well). Only the first three letters of
the month are read, but any extra characters are quietly ignored (so you can say
August 1 1997 instead of Aug 1 1997). And the first character of the month
can be either upper-case or lower-case (so 1 aug 1997 is okay too).

The finished calendar will be composed so that it includes the controlling
date. This may be expressed as a range rather than, as in the examples, a
pinpoint date. A range is simply two pinpoint dates separated by the word to.
If a range is used (for example, jan 1 1997 to 1 august 1997), the finished
calendar will be composed so that it includes both the starting and the ending
date of the controlling range.

We have now completed an overview of how calendars are written. All that
remains is to examine (a) how data files are written and included in documents
(see section 3 below), and (b) what options are available to modify the behavior
of each of the styles (see section 4 below).

3 Data Files

Most commercial calendars come with pre-printed notes of the major holidays
and other significant events. Calendars created with the LATEX Calendar Bun-
dle can contain pre-printed notes of any events or appontments that you like.
Events or appointments are incorporated into a calendar from separate files that
have the extension .cld. The names of the files, less the extension, should be
listed, separated by commas and without spaces, in the second argument to the
calendar environment, as show in Figure 2. In the next section, we will examine
the content of the data files themselves.

\documentclass{weekly}

\begin{document}

\begin{weekly}{}{firstlist,secondlist}

Jan 1 1997

\end{weekly}

\end{document}

Figure 2: Data file names

3.1 Pinpoint Date Syntax

The simplest type of .cld file is a list of dates, each followed by a note in curly
braces. Such a file is shown in Figure 3. The month is specified as a word (the
first three letters of which will be recognized), the day as an integer between 1

and 31, and the year as a four-digit integer. The items may come in any order,
and the first letter of the word may be in upper or lower case.

The text given in curly braces should be a brief note describing the event
or appointment. This can be followed by a longer note in square braces. Styles
will use this longer text where appropriate and physically possible. An example
is given in Figure 4.

3

Jan 1 1997 {New Year’s Day}

Jan 1 1997 {The Day After New Year’s Day}

Figure 3: Simple pinpoint entries

jan 1 1997 10:00-11:30 {Smith}

[Smith: \textit{Reflections on Principle in the work

of Ambrose Bierce}]

Figure 4: Verbose description in square braces

Finally, a time or a range of times may be added to pinpoint entries. In
this manual, I refer to entries that do not specify a time as “events”, and to
those that do specify a time as “appointments”, but there is no other difference
between the two. They may be intermixed within a single .cld file, and in any
order. There should be no space in the time string. See Figure 5 for an example
of what appointment entries look like.

jan 1 1997 8:00 {Happy New Year}

[Take stock of New Year hangover and damage to home

and hearth]

jan 1 1997 10:00-16:00 {New Year cleaning}

Figure 5: Appointment entries

3.2 Recursive Date Syntax

Some events happen repeatedly. Birthdays happen every year. Classes happen
every week during school terms except on holidays. Phases of the moon recur. It
is not very efficient to use repeated pinpoint entries for such events, so the LATEX
Calendar Bundle allows you to write such dates descriptively. This manual refers
to dates defined in this way as recursive dates.

% file: class.cld

% The schedule for my Spanish class

range curyear {Current year}

every thurs {Spanish class}

Figure 6: class.cld

% file: curyear.cld

% A range including all dates in the current year

January 1 1997 to December 31 1997 {The year}

Figure 7: curyear.cld

Figures 6 and 7 show the content of two .cld files, which together define a

4

simple recursive date. The file class.cld, shown in Figure 6, will produce a
note saying “Spanish class” for every Thursday within the range given in the
file curyear.cld. It is worth pausing for a few moments to study how these
two files are constructed.

Note that the range declaration takes a filename (less the .cld extension),
followed by a comment in curly braces. The comment will not be printed in
the calendar output, so the braces can be left empty if desired. The file called
by the range declaration should contain one or more ranges, each of which is
composed of a starting and an ending date separated by the word to. Each
range should be ended with a comment (possibly, as in the example, an empty
comment) in matched curly braces.1

The recursive date itself always begins with the word every, followed by a
description of conditions to be repeated throughout the range. Figure 8 gives
examples of all of the conditions that can be specified. The only entry that is
not self-explanatory, I think, is the every third (or first, or second) Tuesday
example. This puts an entry on the nth day of the specified week of the month
throughout the specified range. Note also that times can be specified for all
recursive entries (that is to say, you can specify recursive appointments as well
as recursive events).

every day {Rejoice if you can}

every day 8:00 {Wake up}

every 20 {Payday}

every 20 12:00 {Buy big lunch}

every 1 April {All Fools Day}

every 1 april 8:00 {Practical joke time!}

every third tuesday {Village council}

every third monday 2:00-3:00 {That appointment}

every Tuesday 3:00-4:00 {Aerobics}

every Tuesday {Happy Tuesday!}

every other week from 12 dec 1997 {Kite flying}

every other week from 12 dec 1997 17:00 {Repair kite}

Figure 8: Examples of all possible recursive entry types

There is one common situation with which the simple recursive date illus-
trated in Figures 6 and 7 cannot cope. Suppose I want to define a recursive date
that will put an entry in my diary for classes that I teach on a regular basis. I
might try to do this using an entry like that in Figure 9.

The problem is that the simple ranges recorded in schoolterms.cld will
not account for holidays, and I do not plan to teach classes during holidays. To
cope with this little difficulty, the LATEX Calendar Bundle provides the holiday
declaration. As you can see in Figure 10, the syntax of this declaration is the
same as that of the range declaration. The separate file ukhols.cld should
contain a list of pinpoint dates which are to be excluded when recursive dates
are calculated.

1The starting date may also be followed by a comment in curly braces. It is often useful
to associate a comment with the starting and ending dates of a range. See Figure 11 and the
discussion at the end of this section.

5

range schoolterms {Terms}

every Tuesday 10:00-12:00 {Jse Lec}

[Japanese Law lecture]

every Tuesday 13:00-14:00 {Prop Tut}

[Property Law tutorial]

Figure 9: First attempt to record my teaching dates

range schoolterms {Terms}

holiday ukhols {United Kingdom holidays}

every Tuesday 10:00-12:00 {Jse Lec}

[Japanese Law lecture]

every Tuesday 13:00-14:00 {Prop Tut}

[Property Law tutorial]

Figure 10: A better attempt to record my teaching dates

The text enclosed in curly braces that follows a range or holiday declaration
(see Figures 6, 9 and 10), and the comments in curly braces inside the .cld files
called by these declarations (see Figure 7) will not appear in the text of printed
calendars. Sometimes it is useful to print a note of the beginning and ending
dates of a range, or the dates of holidays. In this case, the file containing the
relevant range (which should have notes associated with the starting an ending
dates) should be named in the second argument to the calendar environment,
as a normal input file. Figure 11 gives an example of a fully-commented range
file.

% file: ug-current.cld

17 sep 1997 {First SOAS term begins}

to 12 dec 1997 {First SOAS term ends}

5 jan 1998 {Second SOAS term begins}

to 20 mar 1998 {Second SOAS term ends}

20 apr 1998 {Third SOAS term begins}

to 5 jun 1998 {Third SOAS term ends}

Figure 11: Ranges with comments

3.3 Color Support

You can make calendars that are more informative and easier to read by printing
entries of different types in different colors. To do this, you must first include
color support by calling the color package. If the color package has not been
configured for your system, you may need to tell it about your driver. If you
use dvips, it is handy to use named colors and the pallette of colors provided
by the dvipsnames option. See the documentation to the graphics package for
further details.

Once color support is in place (and you have a color printer to hand), you
can associate a color with the entries in a data file by putting a colon after

6

\documentclass{weekly}

\usepackage[dvips,usenames,dvipsnames]{color}

\begin{document}

Figure 12: A header that invokes color support

the name of the file, followed by the name of the color in which you want its
entries to appear. See the documentation to the graphics package for further
information on what color names are available.

\documentclass{weekly}

\begin{document}

\begin{weekly}{}{firstlist:red,secondlist:blue}

Jan 1 1997

\end{weekly}

\end{document}

Figure 13: Data file names

3.4 Freezing Data

A price must be paid for the very friendly syntax of the data files used by the
LATEX Calendar bundle; when large amounts of data are involved, it can take
a significant amount of time to process a calendar. The freeze declaration
provides a means of speeding things up. To freeze the data in a file, put the
declaration freeze (without any following curly braces) immediately after any
range or holiday specifications. All subsequent dates generated by the file will
be captured in a pre-processed form to a file with the same name, but with the
extension .eve. The next time a style from the LATEX Calendar bundle reads
that file, the pre-processed .eve file will be read instead of the .cld file.

range year {Current year}

freeze

every second thursday {Working group}

Figure 14: An example of the freeze declaration

3.5 Composite Lists

Large or complex data sets can be easier to manage if the data is broken down
into small chunks. The LATEX Calendar bundle facilitates this through the list
declaration, which allows one .cld file to incorporate another by reference. The
file called by list may include either pinpoint or recursive dates. This can be
used to create a file representing an entire category of entries. Figure 15 shows
the content of a file that I used to represent all of the undergraduate lectures in
a university law department in London.

A nice feature of the list declaration is that the color associated with the
“top” file is inherited by files called from it using list. When dealing with

7

list ug-cinl-lecture {}

list ug-cinl-lecture {}

list ug-conflicts-lecture {}

list ug-criminal-lecture {}

list ug-csel-lecture {}

list ug-eml-lecture {}

list ug-equity-lecture {}

list ug-essay-lecture {}

list ug-family-lecture {}

list ug-hr-lecture {}

list ug-iel-lecture {}

list ug-islam-lecture {}

list ug-jsel-lecture {}

list ug-ld-lecture {}

list ug-ld-lecture {}

list ug-lsaa-lecture {}

list ug-lssa-lecture {}

list ug-obs1-lecture {}

list ug-obs2-lecture {}

list ug-pil-lecture {}

list ug-property-lecture {}

list ug-public-lecture {}

Figure 15: ug-lectures.cld

large or complex data sets, this is a Really Nice Feature. Note, however, that
the freeze declaration will not export any data contained in files referenced
using list. The freeze declaration should therefore be used only in files that
do not contain any list declarations.

If your operating system can cope with long filenames, see the tar archive
file bigdemo.tgz in the calendar subdirectory on CTAN for a complete working
data set that relies on the list declaration to organize things in this way.

3.6 Language Support

The LATEX Calendar bundle can be quickly configured to support any language
that LATEX is capable of handling. By default, calendars are produced using
English names of the month and names of days of the week. It can also support
multiple languages in each of the *.cld files on your system, and produce the
same calendar with month and day names and the entry texts in alternative
languages.

The language configuration of the LATEX Calendar bundle is contained in the
file dates.cfg. The sample file that ships with the bundle has the following
contents:

\DeclareCalendarLanguage{English}

{{Sunday}{Monday}{Tuesday}{Wednesday}{Thursday}{Friday}{Saturday}}

{{Sun}{Mon}{Tue}{Wed}{Thu}{Fri}{Sat}}

{{January}{February}{March}{April}{May}{June}{July}{August}{September}

{October}{November}{December}}

8

{{Jan}{Feb}{Mar}{Apr}{May}{Jun}{Jul}{Aug}{Sep}{Oct}{Nov}{Dec}}

\DeclareCalendarLanguage{German}

{{Sonntag}{Montag}{Dienstag}{Mittwoch}{Donnerstag}{Freitag}{Samstag}}

{{So}{Mo}{Di}{Mi}{Do}{Fr}{Sa}}

{{Januar}{Februar}{M\"arz}{April}{Mai}{Juni}{Juli}{August}{September}%

{Oktober}{November}{Dezember}}

{{Jan}{Feb}{M\"arz}{Apr}{Mai}{Juni}{Juli}{Aug}{Sep}{Okt}{Nov}{Dez}}

These entries serve two purposes. First, they define the texts that should
be use for long and short names of the days of the week and the months for
each of the language options that they declare. Second, the order of options
determines the order of alternative language entries in your *.cld files. In the
example above, English is the default language, but German can be specified
as an option in your documents, by giving that as a class or package option to
the calendar style you are using. You can declare as many languages in your
dates.cfg file as you like.

Once you have edited the dates.cfg file to your satisfaction, and put the
languages into the correct order for your needs, you are ready to add multi-
lingual *.cld to your files. The first thing to note is that alternative languages
are always optional. If we are using the sample dates.cfg file above, and the
*.cld file contains only default entries in English, the English entries will be
supplied. Nothing will break as a result of specifying an alternative language
that has been declared; they are perfectly safe.

Again following the example configuration file above, a German entry can
be added to a file by using angle braces instead of curly braces for its short
text. Square braces (for a long text) work exactly as they do after the default,
curly-brace text:

jan 1 1998 {New Year}

<Neue Yahr>

jan 1 1998 21:00 {New Year’s Party} [New Year’s Party at Fred’s house.]

<Neue Yahr> []

3.7 Rotating Text

Two of the style packages (weekly and timetabl) need to be able to twist text
sideways before it is printed. Internally, they use the special facilities of the
graphics bundle for this purpose. You may want to turn other calendars (such
as the monthly calendar, for example) sideways in order to make better use of
the space on a page. To get full use out of this package, it is therefore important
that you have the the graphics bundle installed on your system, and that your
print driver be one that is capable of rotating text. I don’t have access to most
of the devices supported by the graphics package, but from the code in the
package it looks as though only the following drivers support rotation: dvips,
dvipsone, dvitops, pctex32, pctexps, pubps, textures.

Note that the graphics bundle must also be configured properly for your
system. In essence, this means that the files in the bundle must be told what
driver you are using, via a file called graphics.cfg. If you have problems, please
see the documentation in the file grfguide.tex, shipped with the graphics

bundle.

9

To rotate an entire calendar (such as monthly), use the lscape package, and
enclose the calendar tags in landscape tags:

\documentclass{article}

\usepackage{monthly}

\usepackage{lscape}

\begin{landscape}

\begin{monthly}{}{}

january 1 1998

\end{monthly}

\end{landscape}

3.8 Arbitrary Formulæ

Finally, it is possible to specify recursive dates using an arbitrary formula, using
the function declaration in a .cld file. The use of the function declaration
is beyond the scope of this manual, but interested designers might want to take
a look at the documentation contained in dates.dtx for a discussion of this
declaration, and an example that generates a note of the phases of the moon.

4 Calendar, Class and Package Options

In this section, all of the options to all of the styles are explained. “Options”
come in two flavors. One is accepted by the calendar package or class that
makes a given calendar environment available. Such options are fed to the
\usepackage or \documentclass commands in the conventional way, through a
square-braced argument. These are referred to here as class or package options.
The second type of option is given in the second argument to the calendar
environment itself, and are referred to here as calendar options.2 Calendar
options are given as a comma-delimited list. Boolean calendar options take
effect when they appear by themselves in the argument text. Variable calendar
options must be followed by an equal sign and some value, possibly in curly
braces. Figure 16 gives examples of each type. To conclude our explanatory
tour, we will examine the options recognized by each style in the bundle. If
you would like to see samples of any of the styles, please extract and print the
appropriate demo file from the distribution.

4.1 Timesheets

The timesheet style produces a timesheet for every date in the controlling range.
Timesheets have a column of time blocks marked out on the left side of the page,
a list of appointments (if any) to the right of that, and a blank area for recording
actions taken (or doodling pictures) on the far right of the page.

4.1.1 Package Options

This style is provided as a package. Its only options are language options de-
clared in dates.cfg.

2Calendar options are processed using the keyval package. See the documentation of that
package if you would like more detailed information about how these work.

10

\documentclass{timetabl}

\begin{document}

\begin{timetable}

{notimes,

title={Law Department Timetable},

labels={Monday,Tuesday,Wednesday,Thursday,Friday},

start=9:00,

end=21:00,

blockminutes=60}

{}

Jan 5 1997 to Jan 9 1997

\end{timetable}

\end{document}

Figure 16: Examples of boolean and variable options

4.1.2 Calendar Options

The following formatting options are supported by the timesheet environment:

title The string fed to this option will form the title of the timesheet. Ro-
bust commands (like \LaTeXe) should be safe here. The default string is
Timesheet.

leftright This option can be used to alter the proportion of space taken up by
the right and left columns. The syntax is a pair of integers separated by
a slash. The default value is 1/1, for evenly spaced columns. The values
express a ratio, so you do not need to make the values add up to anything
in particular.

start This is the starting time of the timesheet. The format is colon-delimited
24-hour time (i.e. 17:00 for five o’clock in the afternoon). The default
starting time is 8:00.

end Like start, but specifies an ending time for the timesheet. The default
ending time is 17:00.

blockminutes If you want the timesheet to be split into time blocks of equal
duration, you can use this option to select the length of the blocks in
minutes. This must divide evenly (without a remainder) into the span of
time specified by the start and end of the timesheet. The default value of
this option is 15, for fifteen-minute blocks.

blockgroup A line will be drawn all the way across the timesheet at the end
of every group of time blocks. The number of blocks in a group can be
set using this option. The default is 4, which puts a line at every hour
boundary with the default value of blockminutes.

width If you don’t want the timesheet to fill the whole width of the page, you
can use this option to specify a smaller size. The feedback given when the
style is run gives you the size in points for that run of LATEX, which may
be useful in making formatting adjustments.

11

leftspace This can be used to specify an explicit left-offset value. The default
is \fill.

rightspace Like leftspace, but for the right side of the timesheet. The default
is \fill, for a centred table.

titletype This sets the default typeface for the overall title of the timesheet.

labeltype This sets the default typeface for the labels (Plan and Action) at
the top of the sheet.

timelabeltype This sets the default typeface for the time markings on the
lefthand side of the page.

timeitemtype This sets the default typeface for the times associated with ap-
pointments.

itemtype This sets the default typeface for the item text itself.

4.2 Weekly

The weekly style prints weekly calendars for use with a Filofax(tm) or other
personal planner. Pages are framed with cut-lines, and punch-marks show where
to cut holes at the edge of the page. For each date, the style initially attempts
to set the event and date text as a single column. If the text overflows the
box for that date, the style will attempt to recover by resetting the text as two
columns.

4.2.1 Class Options

This style is provided as a LATEX class file. It has the following special features
and limitations:

• The text of the calendar is always rotated, using the lscape package from
the graphics bundle. As a result, calendars generated using this package
can only be printed using dvips or other PostScript(TM) print drivers
supported by the graphics bundle.

• If the graphics bundle has not been configured for your system, you can
specify the driver and other options for its use by giving LATEX options to
the class when it is loaded.

• While the paper size can be specified using options like a4paper, this will
have no effect; the actual paper size is governed by calendar options.

• Documents created with this style should contain nothing other than a
calendar environment.

4.2.2 Calendar Options

The following formatting options are supported by the weekly environment:

firstday This is the starting day of the calendar, expressed as an integer.
Friday (the default) is “5”.

12

punchcluster Most filofaxes have two or or more clusters or groups of punches
to hold the pages in place. This option sets the number of punches in each
cluster. The default is three.

intraspace This governs the space between punchouts within a group. The
default is 19.25mm.

punchgroups This option sets the number of groups of punches. The default is
two groups.

interspace This option sets the distance between the groups of punches. The
default is 51.25mm.

pageheight This fixes the height of a filofax page (not the physical paper on
which it is printed). The default is 172mm.

pagewidth This fixes the width of an individual page. The physical printed
area will be twice this figure. The default is 95mm, for a 190mm printed
area.

grip This adjusts the distance from the edge of the page to the outer edge of
the punchouts. Default is 5mm.

punchmargin This adjusts the distance from the edge of the text to the inner
edge of the punchouts. Default is 2mm.

punchsize Size, in points, of punchouts. Default is 15.

topspace Gap between top of filofax page and top of text page.

bottomspace Gap between bottom of filofax page and bottom of text page.

jawspread If set to a positive length, this places a set of rules the width of the
punchmarks on either side of each punchhole, centered on its center and
spread the distance specified. This can be useful as a guide with some
one-hole punches that are designed to be used “blind”.

jawline Sets the width of the lines used to make jawmarks. Default value is
0.4pt.

4.3 Monthly

The monthly style produces a simple monthly calendar, similar to the ones you
can buy in shops. The LATEX Calendar version does not include cartoons by
Gary Larson or pictures of the latest fave rave teen band (at least by default),
but you do have access to all of the goodies available in the other packages in
the bundle (color coding, et cetera). Ordinarily you will want to print this using
the lscape package and its landscape environment.

4.3.1 Package Options

This style is provided as a package. It only recognizes language options declared
in dates.cfg.

13

4.3.2 Calendar Options

title The string fed to this option will form the title of the calendar. Robust
commands (like “LATEX2ε”) should be safe here. The default is the name
of the month, followed by the year.

labels This is an optional comma-delimited, brace-enclosed string giving a list
of seven labels to be used for days of the week. This was once used to
make calendars in languages other than English.

firstday This is the starting day of the calendar, expressed as an integer.
Sunday (the default) is “0”.

titletype This sets the typeface for the title. The default is \large\bfseries.

daynametype This sets the typeface for the day-name labels. The default is
\bfseries.

datetype This sets the default typeface for the day in each box. The default
is \bfseries.

texttype This sets the default typeface for the entry texts. The default is
\tiny.

4.4 Yearly

This produces a simple yearly calendar. It was the first of the Calendar style
packages to be written, and in some ways it is the most unsatisfactory; I invite
others to use this style as a model and improve on it. But for workaday needs
— to produce a simple one-year calendar on a single piece of paper — it works
well enough.

4.4.1 Class or Package Options

This is distributed as a package.

4.4.2 Calendar Options

The following options are recognized by the yearly style:

title The string fed to this option will form the title of the calendar. Ro-
bust commands (like “LATEX2ε”) should be safe here. The default is the
number of the year.

labels This is an optional comma-delimited, brace-enclosed string giving a list
of seven labels to be used for days of the week. This can be used to make
a calendar in a language other than English or German.

firstday This is the starting day of the calendar, expressed as an integer.
Sunday (the default) is “0”.

14

4.5 Timetable

This package organizes date items in a format suitable for conference schedules,
itineraries, academic teaching timetables and the like. It is a versatile package,
worth playing around with if you want to use this bundle in an institutional
context.

4.5.1 Package Options

This style is provided as a package. Its only options are language options de-
clared in dates.cfg.

4.5.2 Calendar Options

The options valid for use with the timetable environment are:

leftspace Amount of space to the left of the table (default is \hfill, but with
table sized to exactly fit the margins).

rightspace Amount of space to the right of the table (default is \hfill, but
with table sized to exactly fit the margins).

width Width of the table. The default is \textwidth.

title The string fed to this option will form the title of the timetable. Robust
commands (like “LATEX2ε”) should be safe here. The default is “Confer-
ence Schedule”.

notimes If this option is given, the time of each item is not given in the body
of the timetable. If all entries begin and end exactly on the boundaries
arrived at by applying blockminutes to the range of the table, no infor-
mation is lost, and the table will have a cleaner appearance and be easier
to read.

start Time from which schedule should begin, with hours and minutes sepa-
rated by a colon. The default is 8:00.

end Time at which the schedule should end. The default is 17:00.

blockminutes The number of minutes in each time block. This should divide
evenly into the total number of minutes within the range specified by
start and end. The default is 60.

blocks As an alternative to blockminutes, you can specify the precise periods
of time you want included in each time block. The format is a set of
comma-delimited time ranges, all enclosed in a pair of matching braces.
For example:

blocks={8:00-9:00,9:00-10:00,4:00-5:00}

labels This is an optional comma-delimited, brace-enclosed string giving a list
of labels to be used for the day headings.

titleface The typeface used for the title.

15

labelface The typeface used for the day labels.

timelabelface The typeface used for the time labels on the left edge of the
table.

timeitemface The typeface used for the time of each entry (suppressed alto-
gether if the notimes option is given).

itemface The typeface used for the entry text.

4.6 Event List

This is a simple package that produces a list of events in cronological order. It
is not particularly elegant, and users are invited to improve on this model.

4.6.1 Class or Package Options

The only options recognized by this package are language options declared via
dates.cfg.

4.6.2 Calendar Options

This package does not recognize any calendar options at present.

4.7 HTML Monthly Calendar

This package produces a monthly calendar in HTML. The calendar does not take
advantage of any table features of HTML, and can be viewed on any browser,
including the Lynx browser for character terminals.

4.7.1 Class or Package Options

The only options recognized by this package are language options declared via
dates.cfg.

4.7.2 Calendar Options

This package recognizes he following calendar options:

title The string fed to this option will form the title of the calendar. The
default is the name of the month, followed by the year.

firstday This is the starting day of the calendar, expressed as an integer.
Sunday (the default) is “0”.

outputfile This is the name of a file to which the HTML output should be
written.

4.8 HTML Event List

This is a simple package that produces an HTML list of events in cronological
order.

16

4.8.1 Class or Package Options

The only options recognized by this package are language options declared via
dates.cfg.

4.8.2 Calendar Options

The only option recognized by this package is outputfile, which sets the name
of the file to which the HTML output should be written.

4.9 HTML Month and Event List

There are CGI scripts that do the same thing as this script — produce one
or more monthly calendars, with jump-links on appropriate days into a list of
events. The difference is that this style offers multi-lingual support, and could
be made to work with color by a wizard.

4.9.1 Class or Package Options

The only options recognized by this package are language options declared via
dates.cfg.

4.9.2 Calendar Options

This package recognizes the same calendar options as the HTML Monthly style.

17

