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Abstract— Separable games are a structured subclass of
continuous games whose payoffs take a sum-of-products form;
the zero-sum case has been studied in earlier work. Included
in this subclass are all finite games and polynomial games.
Separable games provide a unified framework for analyzing
and generating results about the structural properties of low
rank games. This work extends previous results on low-rank
finite games by allowing for multiple players and a broader
class of payoff functions. We also discuss computation of exact
and approximate equilibria in separable games. Finally we
tie these results together with alternative characterizations of
separability which show that separable games are the largest
class of continuous games to which low-rank arguments apply.

I. INTRODUCTION
There has been much interest recently in the problem of

computing mixed strategy Nash equilibria of games. The
hardness of this problem for cases as simple as two-player
finite games has been established by Chen and Deng [3], and
this suggests the need to search for classes of games which
are computationally tractable. Many such classes have been
identified, but in this paper we will consider a generalization
of the low-rank games studied by Lipton et al. [11]. Here
the computational simplification arises because it can be
proven that in an equilibrium, each player chooses a “simple
strategy” without loss of generality, where simple refers to
the fact that the players randomize among a small number
of pure strategies with positive probability.

In games with infinite strategy sets, additional complica-
tions arise in computing equilibria. Without compactness of
the strategy spaces and continuity of the payoff functions,
an equilibrium may fail to exist at all. Even when these
assumptions are made, as in so-called continuous games, the
strategies played in equilibrium may be arbitrarily compli-
cated. Specifically, two-player zero-sum games with compact
intervals for strategy sets and rational payoff functions can
be constructed in which the unique equilibrium strategies are
the Cantor measure or worse, see Karlin [9] for an example.
To compute equilibria of continuous games, we therefore
require some additional structure which will ensure that an
equilibrium exists which can be succinctly represented.

There are several possible structures which could be
imposed. In this paper we study a separable structure in
which the payoffs to each player can be written as a weighted
sum of products of functions in each player’s strategy
separately, e.g. as polynomials. Zero-sum games possessing
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such a separable structure have been studied by Karlin
[9]. Efficient algorithms for computing equilibria of games
with polynomial payoffs have been given by Parrilo [14].
Since continuous functions can be uniformly approximated
by polynomials, a large class of games can be exactly or
approximately represented as separable games.

Another advantage of the separable structure is that for
games of this type, the complexity of the payoffs gives an
immediate bound on the complexity of the strategies played
in equilibrium. If the payoff functions are viewed as matrices
whose indices range over compact metric spaces rather than
merely finite sets, then the separable form of the payoffs
can be viewed as a “finite rank” condition. Since a generic
continuous function has “infinite rank,” separable games
are a natural generalization of games with low-rank payoff
matrices. In this more general setting we extend the results of
[11] on Nash equilibria of low-rank two-player finite games,
allowing for an arbitrary finite number of players as well as
infinite strategy sets and a broader class of payoff functions.
We also extend the correlated equilibrium results in [5] to
this setting.

The rest of this paper is organized as follows. In Section
II, we present the basic definitions and theorems as well as
introduce a running example. Then in Section III we define
the rank of a continuous game, present a theorem demon-
strating the relevance of this definition to the cardinality of
the support of Nash equilibria, and show how to bound the
rank for arbitrary separable games and compute it exactly
for finite and polynomial games. In Section IV we discuss
computation of Nash equilibria and approximate equilibria.
Section V contains a characterization theorem for separable
games which in particular shows that within the class of
continuous games, the low-rank results in this paper cannot
be extended past separable games. We close with conclusions
and directions for future work.

II. BASIC THEORY

Some notational conventions used throughout are that
subscripts refer to players, while superscripts are reserved
for other indices, rather than exponents. If Sj are sets for
j = 1, . . . , n then S = Πn

j=1Sj and S−i = Πj 6=iSj . The n-
tuple s and the (n−1)-tuple s−i are formed from the points
sj similarly. We use the symbols spanS, aff S, convS, and
S to denote the span, affine hull, convex hull, and closure of
the set S, respectively.

Definition 2.1: An n-player continuous game is defined
by n pure strategy spaces Ci assumed to be nonempty
compact metric spaces and n utility or payoff functions
ui : C → R assumed to be continuous. Throughout, ∆i will



denote the space of Borel probability measures σi over Ci,
referred to as mixed strategies, and the ui will be extended
from C to ∆ by expectation, defining

ui(σ) =
∫

C

ui(s)dσ.

Definition 2.2: An n-player separable game is an n-
player continuous game with utility functions ui : C → R
taking the form

ui(s) =
m1∑

j1=1

· · ·
mn∑

jn=1

aj1···jn

i f j1
1 (s1) · · · f jn

n (sn), (1)

where aj1···jn

i ∈ R and the f j
i : Ci → R are continuous. In

the special case when the Ci are subsets of R and the f j
i are

polynomials in si, the game is called a polynomial game.
When it is convenient to do so, and always for polynomial

games, we will begin the summations in (1) at ji = 0.
For polynomial games we can then use the convention that
f j

i (si) = sj
i , where the superscript on the right hand side

denotes an exponent rather than an index.
Example 1: Consider a two player game with C1 = C2 =

[−1, 1] ⊂ R. Letting x and y denote the pure strategies of
players 1 and 2, respectively, we define the utility functions

u1(x, y) = 2xy + 3y3 − 2x3 − x− 3x2y2,

u2(x, y) = 2x2y2 − 4y3 − x2 + 4y + x2y.
(2)

This is a polynomial game, and we will return to it periodi-
cally to apply the results presented.

Let Vi denote the space of all finite-valued signed mea-
sures (henceforth simply called measures) on Ci, which can
be identified with the dual of the Banach space C(Ci) of all
continuous real-valued functions on Ci endowed with the sup
norm. Two natural topoligies on Vi which will play a role
are the weak* and the strong (or norm) topology. The former
is the weakest topology such that whenever f : Ci → R is
continuous, σ 7→

∫
fdσ is a continuous linear functional on

Vi. The latter is the topology arising from the total variation
norm.

We can extend the utility functions of a continuous game
to all of V in the same way they are extended from C to ∆,
yielding a multilinear functional on V . For a fixed separable
game we can extend the f j

i from Ci to Vi similarly, yielding
the so-called generalized moment functionals, so (1) holds
with s replaced by σ. In the case of polynomial games when
f j

i (si) = sj
i , the generalized moment functionals are just the

classical moment functionals. We will abuse notation and
identify the elements of Ci with the atomic measures in ∆i,
so Ci ⊆ ∆i ⊂ Vi. Note that convCi and spanCi are the
set of all finitely-supported probability measures and the set
of all finitely-supported finite signed measures, respectively.
The following are standard results (see Ch. 2 of Parthasarathy
[15] for the proofs).

Proposition 2.3:
• The sets Ci and ∆i are weak* compact.
• The weak* closures of convCi and spanCi are ∆i and
Vi, respectively.

• The norm topology makes Vi a Banach space.

The simplifications which occur in separable games as
opposed to general continuous games can be expressed in
terms of the following three notions of equivalence between
two measures:

Definition 2.4: Two measures σi, τi ∈ Vi are
• moment equivalent if f j

i (σi) = f j
i (τi) for all j

(representation-dependent and only defined for separa-
ble games).

• payoff equivalent if uj(σi, s−i) = uj(τi, s−i) for all j
and all s−i ∈ C−i.

• almost payoff equivalent if uj(σi, s−i) = uj(τi, s−i)
for all j 6= i and all s−i ∈ C−i.

Note that in separable games moment equivalence im-
plies payoff equivalence and in all continuous games payoff
equivalence implies almost payoff equivalence. Since the f j

i

and uj are linear and multilinear functionals on Vi and V ,
respectively, these equivalence relations can be expressed in
terms of (potentially infinitely many) linear constraints on
σi − τi.

Definition 2.5: Let
• Wi = {measures moment equivalent to 0}
• Xi = {measures payoff equivalent to 0}
• Yi = {measures almost payoff equivalent to 0}

where 0 denotes the zero measure in Vi.
Then Wi ⊆ Xi ⊆ Yi, and σi − τi ∈ Xi if and only if σi

is payoff equivalent to τi, etc. Furthermore, the subspaces
Xi and Yi are representation-independent and well-defined
for any continuous game, separable or not. Note that these
subspaces are given by the intersection of the kernels of
(potentially infinitely many) weak* continuous linear func-
tionals, hence they are weak* closed, and therefore closed
under the stronger norm topology as well.

We will analyze separable games by considering the
quotients of Vi by these subspaces, i.e. Vi mod these three
equivalence relations. To avoid defining excessively many
symbols let ∆i/Wi denote the image of ∆i in Vi/Wi and so
forth. The following theorem presents the most fundamental
result about separable games.

Theorem 2.6: In a separable game every mixed strategy σi

is moment equivalent to a finitely-supported mixed strategy
τi with |supp(τi)| ≤ mi + 1. Moreover, if σi is countably-
supported τi can be chosen with supp(τi) ⊂ supp(σi).

Proof: Note that the map

fi : σi 7→
(
f1

i (σi), . . . , fmi
i (σi)

)
is linear and weak* continuous, with kernel Wi. Thus Vi/Wi

has dimension at most mi. Then

fi(∆i) = fi

(
convCi

)
⊆ fi(convCi)

= conv fi(Ci) = conv fi(Ci).
(3)

The first three steps follow from Proposition 2.3, continuity
of fi, and linearity of fi, respectively. The final equality
follows from the fact that conv fi(Ci) is compact, being
the convex hull of a compact subset of a finite-dimensional
space. The reverse inclusion is obvious, so we have fi(∆i) =



Fig. 1. The space fi(∆i) ∼= ∆i/Wi of possible moments for either player
under the payoffs given in (2) due to a measure σi on [−1, 1]. The zeroth
moment, which is identically unity, has been omitted.

conv fi(Ci) = fi(convCi). Thus any mixed strategy is mo-
ment equivalent to a finitely-supported mixed strategy, and
applying Carathéodory’s theorem to the set conv fi(Ci) ⊂
Rmi yields the uniform bound. Since a countable convex
combination of points in a bounded subset of Rmi can always
be written as a finite convex combination of at most mi + 1
of those points, the final claim follows.

This theorem can also be proven by a separating hyper-
plane argument as applied to zero-sum games by Karlin [9].
Combining this theorem with Glicksberg’s result [6] that
every continuous game has an equilibrium yields:

Corollary 2.7: Any separable game has a Nash equilib-
rium in which player i mixes among at most mi + 1 pure
strategies.

Example 1 (cont’d): Apply the standard definition of the
f j

i to the polynomial game with payoffs given in (2). The
set of moments ∆i/Wi

∼= fi(∆i) as described in Theorem
2.6 is shown in Figure 1. In this case it is the same for both
players.

For each player the range of the indices in (1) is 0 ≤ ji ≤
3, so by Corollary 2.7, this game has an equilibrium in which
each player mixes among at most 4 + 1 = 5 pure strategies.
To produce this bound, we have not used any information
about the payoffs except for the degree of the polynomials.
However, there is extra structure here to be exploited. For
example, u2 depends on the expected value Eσ1 [x

2], but not
on Eσ1 [x] or Eσ1 [x

3]. In particular, player 2 is indifferent
between the two strategies ±x of player 1 for all x, insofar
as this choice does not affect his payoff (though it does
affect what strategy profiles are equilbria). In the following
section, we will show how to give improved bounds on the
number of strategies played in equilibrium which take these
simplifications into account in a systematic manner.

III. THE RANK OF A CONTINUOUS GAME

By comparing the two-player case of (1) with the singular
value decomposition for matrices, separable games can be
thought of as games of “finite rank.” Now we will define

rank precisely, use it to give a bound on the cardinality of the
support of equilibrium strategies, and show how to compute
the rank of finite and polynomial games. This will generalize
the results by Lipton et al. [11] on low-rank two-player
finite games to multiplayer finite and polynomial games,
simultaneously improving these results slightly. The primary
tool will be the notion of almost payoff equivalence from
Definition 2.4. In what follows, the dimension of a set will
refer to the dimension of its affine hull.

Definition 3.1: The rank of a continuous game is defined
to be ρ = (ρ1, . . . , ρn) where ρi = dim ∆i/Yi. A game is
said to have finite rank if ρi <∞ for all i.

Since Wi ⊆ Yi and Vi/Wi is finite-dimensional for any
separable game, it is clear that separability implies finite
rank. In Section V we show that the converse is also true.
Using the rank of a game, Corollary 2.7 can now be improved
as follows:

Theorem 3.2: Given an equilibrium σ of a separable game
with rank ρ, there exists an equilibrium τ such that each
player i mixes among at most ρi + 1 pure strategies and
ui(σ) = ui(τ). If dim ∆i/Xi = 1 and the metric space Ci

is connected, then this bound can be improved so that τi is
a pure strategy. Furthermore, all strategy profiles in the box
conv{σ1, τ1} × · · · × conv{σn, τn} formed by σ and τ are
equilibria with payoff ui(σ) to player i.

Proof: By Theorem 2.6, we can assume without loss
of generality that each player’s mixed strategy σi is finitely
supported. Fix i, let ψi : Vi → Vi/Yi denote the canonical
projection transformation and let σi =

∑
j λ

jsj
i be a finite

convex combination of pure strategies. By linearity of ψi we
have

ψi(σi) =
∑

j

λjψi(s
j
i ).

Carathéodory’s theorem states that (renumbering the sj
i and

adding some zero terms if necessary) we can write

ψi(σi) =
ρi∑

j=0

µjψi(s
j
i ),

a convex combination but perhaps with fewer terms. Let τi =∑ρi

j=0 µ
jsj

i . Then ψi(σi) = ψi(τi). Since σ was a Nash
equilibrium, and σi is almost payoff equivalent to τi, σj is
a best response to (τi, σ−i,j) for all j 6= i. On the other
hand σi was a mixture among best responses to the mixed
strategy profile σ−i, so the same is true of τi, making it a
best response to σ−i. Thus (τi, σ−i) is a Nash equilibrium.

If dim ∆i/Xi = 1 and Ci is connected, then Ci/Xi

is connected, compact, and one-dimensional, i.e. it is an
interval. Therefore it is convex, so ∆i/Xi = conv(Ci/Xi) =
Ci/Xi. This implies that there exists a pure strategy si which
is payoff equivalent to σi, so we may take τi = si and
(τi, σ−i) is a Nash equilibrium.

Beginning with this equilibrium and repeating the above
steps for each player in turn completes the construction of τ
and the final statement of the theorem is clear.

If a submatrix is formed from a matrix by “sampling,” i.e.
selecting a subset of the rows and columns, the rank of the



submatrix is bounded by the rank of the original matrix. The
same is true of continuous games.

Proposition 3.3: Let ({Ci}, {ui}) be a continuous game
with rank ρ and C̃i be a nonempty compact subset of Ci for
each i, with ũi = ui

∣∣
C̃

. Then the game ({C̃i}, {ũi}) satisfies
ρ̃i ≤ ρi for all i.

Proof: Since ∆̃i ⊆ ∆i and Yi ∩ Ṽi ⊆ Ỹi,

ρ̃i = dim ∆̃i/Ỹi ≤ dim ∆̃i/(Yi ∩ Ṽi)

= dim ∆̃i/Yi ≤ dim ∆i/Yi = ρi.

Definition 3.4: The game ({C̃i}, {ũi}) in Proposition 3.3
is called a sampled game or a sampled version of
({Ci}, {ui}).

Note that if we take C̃i to be finite for each i, then
the sampled game is a finite game. If the original game
is separable and hence has finite rank, then Proposition
3.3 yields a uniform bound on the complexity of finite
games which can arise from this game by sampling. This
fact is applied to the problem of computing approximate
equilibria in Section IV below. Note that while the proof of
Proposition 3.3 is trivial, there exist other kinds of bounds
on the cardinality of the support of equilibria (e.g. for special
classes of polynomial games as studied by Karlin [9]) which
do not share this sampling property.

With the significance of rank made clear by Theorem 3.2
and Proposition 3.3, we will now present a bound on the rank
for arbitrary separable games which is tight in the case of
finite and polynomial games. For consistency while deriving
these results we will use the convention that the summations
in (1) begin at zero, even for non-polynomial games. For
finite games we will assume each player’s strategy set is a set
of the form Ci = {0, 1, . . . ,mi} and let f ji

i (si) = δ(ji−si)
where δ is the Kronecker delta function. We will assume that
polynomial games are written so that f j

i (si) = sj
i . This way

the coefficients in (1) are just the payoffs for finite games and
the coefficients of the polynomials for polynomial games.

Despite the fact that Vi may be infinite-dimensional, the
problem of computing the rank of a separable game can
be reduced to computing the dimension of certain finite-
dimensional convex sets. To show this, we first require
several preliminary definitions and a lemma. Let fi : Vi →
Mi, where Mi = Rmi+1 ⊇ Vi/Wi, be the generalized
moment function defined by

fi(σi) = (f0
i (σi), . . . , fmi

i (σi)).

We write xi =
(
x0

i , . . . , x
mi
i

)
for a typical element of Mi

and we define multilinear functionals vi : M → R by

vi(x) =
m1∑

j1=0

· · ·
mn∑

jn=0

aj1···jn

i xj1
1 · · ·xjn

n , (4)

so ui(σ) = vi (f1(σ1), . . . , fn(σn)). Let e0i , . . . , e
mi
i denote

the standard unit vectors in Mi.
Lemma 3.5: Consider the linear functionals on Vi of the

form vl(fi(·), x−i) for 1 ≤ l, i ≤ n where l 6= i and x−i ∈

M−i. Then

Yi ⊇
⋂

xk∈{e0
k

,...,e
mk
k }

k,l 6=i

ker vl(fi(·), x−i) (5)

with equality holding for all i if span fi(Ci) = Mi for all i.
Proof: The definition of Yi can be written as

Yi =
⋂

sk∈Ck
k,l 6=i

kerul(·, s−i).

Letting xk = fk(sk) and applying (4), we obtain

Yi =
⋂

xk∈fk(Ck)
k,l 6=i

ker vl(fi(·), x−i). (6)

Without changing the set on the right hand side, we can
take the intersection over the kernels of a larger class of
linear functionals, those which are linear combinations of
the functionals considered in (6). Using the multilinearity of
the vl yields

Yi =
⋂

xk∈span fk(Ck)
k,l 6=i

ker vl(fi(·), x−i). (7)

If we replace span fk(Ck) by Mk we will be taking the
intersection over a larger collection of sets, so

Yi ⊇
⋂

xk∈Mk
k,l 6=i

ker vl(fi(·), x−i)

with equality if span fk(Ck) = Mk for all k 6= i. Reversing
the procedure used to pass from (6) to (7), we may replace
the collection of linear functionals on the right hand side
by a spanning set. Letting xk range over the standard unit
vectors in Mk for all k 6= i yields such a spanning set (by
the multilinearity of the vl), which proves the lemma.

The linear functional vl(fi(·), x−i) appearing in (5) can
be written as the composition vl(·, x−i) ◦ fi. Since x−i is of
the form

x−i =
(
ej1
1 , . . . , e

ji−1
i−1 , e

ji+1
i+1 , . . . , e

jn
n

)
,

the matrix for the linear functional vl(·, x−i) is the row
vector consisting of the mi + 1 coefficients aj1···jn

l as ji
ranges from 0 to mi.

Definition 3.6: Let Si denote the matrix composed of all
such row vectors as jk ranges from 0 to mk and k, l 6= i;
the order of these vectors is irrelevant. The matrix Si has
(n−1)Πk 6=i(mk+1) rows and mi+1 columns. For a set X ⊆
Mi we will write Si·X to denote the image set {Six|x ∈ X}.

Theorem 3.7: The rank is bounded by

ρi ≤ dim [Si · fi(Ci)]

with equality for all i if span fi(Ci) = Mi for all i. In
particular, equality holds for arbitrary finite games and for
polynomial games which satisfy |Ci| > mi.



Proof: Given Si, we can rephrase Lemma 3.5 as: Yi ⊇
ker [Si · fi] with equality for all i when span fi(Ci) = Mi

for all i. Using the definition of rank we have

ρi = dim ∆i/Yi ≤ dim ∆i/ (ker [Si · fi])
= dim [Si · fi(∆i)] = dim [Si · conv fi(Ci)]
= dim [Si · fi(Ci)]

with equality for all i if span fi(Ci) = Mi for all i. The third
equality follows from (3) and the final equality follows from
the definition of the dimension of a set as the dimension of
its affine hull.

In the case of a finite game, we have

aff fi(Ci) = aff fi({0, . . . ,mi}) = aff{e0i , . . . , e
mi
i }

=

{
(x0

i , . . . , x
mi
i ) ∈ Rmi+1

∣∣∣ mi∑
k=0

xk
i = 1

}
.

(8)

In the case of a polynomial game

aff fi(Ci) = aff{(1, x, x2, . . . , xmi)|x ∈ Ci}
= aff{e0i , e0i + e1i , e

0
i + e2i , . . . , e

0
i + emi

i }
= {(x0

i , . . . , x
mi
i ) ∈ Rmi+1|x0

i = 1},
(9)

where we assume that |Ci| > mi to get the penultimate
equality, which is a standard result. Note that in both the
finite and polynomial cases we have shown that aff fi(Ci)
is a hyperplane which does not pass through the origin, so
span fi(Ci) = Mi.

Let Fi be the matrix with one fewer column than Si whose
jth column is the jth column of Si minus the 0th column of Si

for 1 ≤ j ≤ mi. Let Pi be Si with the 0th column removed.
In view of (8) and (9) we have proven the following.

Proposition 3.8: The rank can be computed or bounded
as follows. For any:

• Separable game, ρi ≤ rankSi.
• Finite game, ρi = rankFi ≥ rankSi − 1.
• Polynomial game with |Ci| > mi for all i, ρi =

rankPi ≥ rankSi − 1.
Now consider a two-player finite game having payoff ma-

trices U1 and U2 where player 1 chooses rows and player 2
chooses columns. Then S1 = U ′

2 and S2 = U1, so the general
separable game rank bound in Proposition 3.8 applied to
Theorem 3.2 shows that the game has an equilibrium in
which player 1 mixes among at most rankU2 + 1 pure
strategies and player 2 mixes among at most rankU1 + 1
pure strategies, as proven by Lipton et al. [11]. The finite
game bound proven in Proposition 3.8 yields strictly better
results in some cases (by at most one), and applies also to
the multiplayer case which was left open in [11].

Example 1 (cont’d): We can apply Proposition 3.8 and
Theorem 3.2 to the example with payoffs given by (2). Using
the procedure described above, we produce the matrices

S1 =


0 0 −1 0
4 0 1 0
0 0 2 0
−4 0 0 0

 , S2 =


0 0 0 3
−1 2 0 0
0 0 −3 0
−2 0 0 0



and

P1 =


0 −1 0
0 1 0
0 2 0
0 0 0

 , P2 =


0 0 3
2 0 0
0 −3 0
0 0 0

 .
Thus the rank of the example game is

ρ = (rankP1, rankP2) = (1, 3),

so in fact there exists an equilibrium in which player 1 mixes
among at most 2 pure strategies and player 2 mixes among
at most 4 pure strategies.

The manipulations done in this section essentially show
how to compute the space ∆i/Yi as a linear image of ∆i/Wi.
The space ∆i/Xi could be computed similarly. Applying
these results to the example shows that ∆1/X1, ∆2/X2, and
∆2/Y2 are all isomorphic to ∆i/Wi, the set shown in Figure
1. On the other hand, since rankP1 = 1, the set ∆1/Y1 is
a 1-dimensional image of ∆i/Wi, i.e. it is an interval.

IV. COMPUTATION OF NASH EQUILIBRIA AND
APPROXIMATE EQUILIBRIA

In this section, we present an algorithm for computing ap-
proximate equilibria of separable games with infinite strategy
sets which follows directly from the results on the rank of
games given in Section III. First, we consider briefly the
problem of computing exact equilibria.

The moments of an equilibrium can in principle be com-
puted using the following generalization of the equilibrium
formulation given by Başar and Olsder [1]:

max
∑n

i=1 [vi(x)− pi]
s.t. xi ∈ ∆i/Wi for all i

vi(fi(si), x−i) ≤ pi for all i, all si ∈ Ci

where xi are the moments, fi is the moment function, and
vi is the payoff function on the moment spaces as defined
in Section III. Each player also has an auxilliary variable pi.
The optimum objective value of this problem is zero and is
attained exactly at the Nash equilibria. To compute equilibria
by this method, we require an explicit description of the
spaces of moments ∆i/Wi. We also require a method for
computing the payoff to player i if he plays a best response
to an m−i-tuple of moments for the other players.

While it seems doubtful that such descriptions could be
found for arbitrary f j

i , they do exist for two-player polyno-
mial games in which the pure strategy sets are intervals.
In this case they can be given in terms of linear matrix
inequalities as in Parrilo’s treatment of the zero-sum case
[14]. This yields a problem with multiaffine objective and
linear matrix inequality constraints.

Example 1 (cont’d): Directly solving this nonconvex
problem with MATLAB’s fmincon has proven error-prone,
as there appear to be many local minima which are not
global. However, we were able to compute the equilibrium
measures

σ1 = 0.5532δ(x+ 1) + 0.4468δ(x− 0.1149),
σ2 = δ(y − 0.7166)



(i.e. player 1 plays the pure strategy x = −1 with probability
0.5532 and so on) for the payoffs in (2) by this method.

The difficulties in computing equilibria by general non-
convex optimization techniques suggest the need for more
specialized systematic methods. As a step toward this, we
present an algorithm for computing approximate equilibria
of separable games. There are several possible definitions of
approximate equilibrium, but here we will use:

Definition 4.1: A mixed strategy profile σ ∈ ∆ is an ε-
equilibrium (ε ≥ 0) if

ui(si, σ−i) ≤ ui(σ) + ε

for all si ∈ Ci and i = 1, . . . , n. If ε = 0 then σ is called a
Nash equilibrium.

Throughout the rest of this section, we will consider a
separable game for which Ci is a compact interval for each
i, and for which the utility funcitons satisfy a Lipschitz
condition

|ui(si, s−i)− ui(s′i, s−i)| ≤ Li|si − s′i|

for some Li ≥ 0, all s−i ∈ C−i and all i. Clearly this is
equivalent to requiring the same inequality for all σ−i ∈
∆−i. We must also be able to compute the values of ui

efficiently, so for example ui could be a polynomial with
rational coefficients. These assumptions could be relaxed, say
by making Ci a box in Rn or by requiring a Hölder condition
in place of a Lipschitz condition, but for the sake of clarity
we do not do so here.

Fix ε > 0. Divide the interval Ci into equal subintervals of
length no more than 2 ε

Li
; at most d 1

2ε l(Ci)Lie such intervals
are required, where l(Ci) denotes the length of the interval
Ci. Let C̃i be the set of center points of these intervals and
let ũi be the corresponding sampled payoffs. Suppose σ is a
Nash equilibrium of the sampled game. Choose any si ∈ Ci

and let s′i be an element of C̃i closest to si, so |si−s′i| ≤ ε
Li

.
Then

ui(si,σ−i)− ui(σ)
≤ ui(si, σ−i)− ui(s′i, σ−i) + ui(s′i, σ−i)− ui(σ)
≤ |ui(si, σ−i)− ui(s′i, σ−i)|+ ũi(s′i, σ−i)− ũi(σ)

≤ Li
ε

Li
+ 0 = ε

so σ is automatically an ε-equilibrium of the original separa-
ble game. Thus it will suffice to compute a Nash equilibrium
of the finite sampled game.

To do so, first compute or bound the rank ρ of the original
separable game as in Proposition 3.8. By Theorem 3.2 and
Proposition 3.3, the sampled game has a Nash equilibrium in
which player i mixes among at most ρi + 1 pure strategies,
independent of how large |C̃i| is. The number of possible
choices of at most ρi + 1 pure strategies from C̃i is

ρi+1∑
k=1

(
|C̃i|
k

)
≤
(
|C̃i|+ ρi

1 + ρi

)
,

which is a polynomial in |C̃i| since ρi is fixed.

This leaves the step of checking whether there exists an
equilibrium σ for a given choice of supp(σi) ⊆ C̃i with
| supp(σi)| ≤ ρi + 1 for each i, and if so, computing such
an equilibrium. If the game has two players, the set of such
equilibria for given supports is described by O(|C̃1|+ |C̃2|)
linear equalities and inequalities (with more than two players
these would become nonlinear), and hence an equilibrium
or certificate of nonexistence of an equilibrium for a given
support can be found in time polynomial in |C̃1|+ |C̃2| ∝ 1

ε .
Since the number of possible supports to be checked is also
polynomial in 1

ε , we have the following result.
Proposition 4.2: For ε > 0, an ε-equilibrium of a two-

player separable game satisfying the conditions of this sec-
tion can be found in time polynomial in 1

ε for fixed ρ and
time polynomial in the components of ρ for fixed ε.

V. CHARACTERIZATIONS OF SEPARABLE
GAMES

The following theorem presents two alternative charac-
terizations of separable games, including the finite rank
characterization mentioned above.

Theorem 5.1: For a continuous game, the following are
equivalent:

1) The game is separable.
2) The game has finite rank.
3) For each player i, every countably supported mixed

strategy σi is almost payoff equivalent to a finitely sup-
ported mixed strategy τi with supp(τi) ⊂ supp(σi).

Proof: (1 ⇒ 3) This follows from Theorem 2.6.
(2 ⇒ 1) Assume the game has finite rank. Since Vi =

aff (∆i ∪ {0}) we have dimVi/Yi ≤ 1 + dim ∆i/Yi, so
that Vi/Yi is finite-dimensional and thus isomorphic to Rri

for some ri. Then from the (possibly infinite) collection
of kernels of linear functionals whose intersection gives
Yi, ri functionals can be chosen such that the intersec-
tion of their kernels is also Yi. Note that each of these
functionals is the integral of some continuous function
ek
i (si) =

∫
C−i

ujk
(si, s−i)dσk

−i over Ci. Define ψi(σi) =
(
∫
e1i dσi, . . . ,

∫
eri
i dσi) and note that kerψi = Yi so we

can identify ψi(Vi) = Rri with Vi/Yi. In particular, the
continuity of the ek

i shows that the restriction of the map
ψi to the pure strategy space Ci is continuous.

Define a multilinear functional w1 on V1×Πn
j=2Vj/Yj as

follows. For σ ∈ V , let

w1 (σ1, ψ2(σ2), . . . , ψn(σn)) = u1(σ).

By definition of ψi this function is well-defined on all of
V1×Πn

j=2Vj/Yj , and it is straightforward to verify that it is
multilinear.

Let {b1i , . . . , b
ri
i } be a basis for Vi/Yi and {b∗1i , . . . , b

∗ri
i }

be the corresponding algebraic dual basis. Being linear
functionals on a finite-dimensional vector space, these dual
functionals are continuous. Letting xi = ψi(si) for notational



simplicity, we have

u1(s) = w1(s1, x2, . . . , xn)

= w1

s1, r2∑
j2=1

b∗j2
2 (x2)b

j2
2 , . . . ,

rn∑
jn=1

b∗jn
n (xn)bjn

n


=

r2∑
j2=1

· · ·
rn∑

jn=1

b∗j2
2 (x2) · · · b∗jn

n (xn)w1

(
s1, b

j2
2 , . . . , b

jn
n

)
.

Clearly b∗jk

k (xj) = b∗jk

k (ψk(sk)) is a continuous function
of sk for all k. Since the utility functions are continuous,
w1

(
s1, e

j2
2 , . . . , e

jn
n

)
is a continuous function of s1 for all

j2, . . . , jn. Thus u1 has the separable form given in (1), and
the same argument holds for all ui.

(3 ⇒ 2) Assume condition 3. Since Yi is closed under the
norm topology, Vi/Yi is a Banach space under the quotient
norm and the projection transformation ψi : Vi → Vi/Yi is
a bounded linear operator. For the first half of this proof the
topologies on Vi and Vi/Yi will be those induced by these
norms.

Since Ci is a bounded subset of Vi, ψi(Ci) is a bounded
subset of Vi/Yi. Assume for a contradiction that spanψi(Ci)
is infinite-dimensional, so ψi(Ci) contains a countable lin-
early independent subset Bi = {ψi(s1i ), ψi(s2i ), . . .}. By
a theorem of Erdös and Straus (see [4]), we can assume
(replacing Bi by a countable subset if necessary), that if∑∞

k=1 c
kψi(sk

i ) = 0 then ck = 0 for all k, a property which
is in general stronger than algebraic linear independence.

Let {pk} be a sequence of positive reals summing to one.
Define the mixed strategy

σi =
∞∑

k=1

pksk
i . (10)

Clearly this sum converges in Vi. Since ψi is a bounded
linear operator,

v = ψi(σi) =
∞∑

k=1

pkψi(sk
i ) (11)

converges as well. By assumption 3 we can choose an integer
N and nonnegative coefficients qk such that

v =
N∑

k=1

qkψi(sk
i ). (12)

Define qk = 0 for k > N . Then
∞∑

k=1

(pk − qk)ψi(sk
i ) = 0, (13)

so pk = qk for all k. This implies pN+1 = qN+1 =
0, contrary to assumption. Thus spanψi(Ci) is a finite
dimensional vector space.

From now on we consider the weak topology on Vi, which
makes it a topological vector space. Since Yi is a closed
subspace of Vi, Vi/Yi is a Hausdorff topological vector space
under the quotient topology and ψi is continuous with respect
to this topology (see 5.7 and 7.3 of Ch.2 in [10]). Since Vi/Yi

is Hausdorff, the finite-dimensional subspace spanψi(Ci) is
closed, and hence its inverse image ψ−1

i (spanψi(Ci)) is
a closed subspace of Vi containing the set of all finitely
supported measures, which is a dense set. Thus Vi =
ψ−i

i (spanψi(Ci)), so Vi/Yi
∼= ψi(Vi) = spanψi(Ci) is

finite-dimensional and dim ∆i/Yi ≤ dimVi/Yi <∞.
The following counterexample shows that the containment

supp τi ⊂ suppσi is a necessary part of condition 3 in
Theorem 5.1 by showing that there exists a nonseparable
continuous game in which every mixed strategy is payoff
equivalent to a pure strategy.

Example 2: Consider a two-player game with C1 = C2 =
[0, 1]ω, the set of all infinite sequences of reals in [0, 1],
which forms a compact metric space under the metric

d(x, x′) = sup
i

|xi − x′i|
i

. (14)

Define the utilities

u1(x, y) = u2(x, y) =
∞∑

i=1

2−ixiyi. (15)

To show that this is a continuous game we must show that
u1 is continuous. Assume d(x, x′), d(y, y′) ≤ δ. Then |xi −
x′i| ≤ δi and |yi − y′i| ≤ δi, so

|u1(x,y)− u1(x′, y′)| =

∣∣∣∣∣
∞∑

i=1

2−i(xiyi − x′iy
′
i)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

i=1

2−i(xiyi − x′iyi + x′iyi − x′iy
′
i)

∣∣∣∣∣
≤

∞∑
i=1

2−i (yi|xi − x′i|+ x′i|yi − y′i|)

≤
∞∑

i=1

2−i(2δi) =

(
2

∞∑
i=1

2−ii

)
δ.

(16)

Thus u1 = u2 is continuous (in fact Lipschitz), making this
a continuous game.

Let σ and τ be mixed strategies for the two players.

u1(σ, τ) =
∫
u1d(σ × τ) =

∞∑
i=1

2−i

(∫
xidσ

)(∫
yidτ

)
(17)

Thus σ is payoff equivalent to the pure strategy(∫
x1dσ,

∫
x2dσ, . . .

)
∈ C1 and similarly for τ , so this

game has the property that every mixed strategy is payoff
equivalent to a pure strategy.

Finally we will show that this game is nonseparable. Let
ei ∈ C1 be the element having component i equal to unity
and all other components zero. Let {pi} be a sequence of
positive reals summing to unity and define the probability
distribution σ =

∑∞
i=1 pie

i ∈ V1. Suppose σ were payoff
equivalent to some mixture among finitely many of the ei,
call it τ =

∑∞
i=1 qie

i where qi = 0 for i greater than some
fixed N . Let eN+1 be the strategy for player 2. Then the



payoff if player i plays σ is

u1(σ, eN+1) =
∫

2−(N+1)xN+1dσ = 2−(N+1)pN+1.

(18)
Similarly, if he chooses τ the payoff is 2−(N+1)qN+1. Since
pN+1 > 0 and qN+1 = 0, this contradicts the assumption
that σ and τ are payoff equivalent. Thus condition 3 of
Theorem 5.1 does not hold, so this game is not separable.

Therefore the condition that all mixed strategies be payoff
equivalent to finitely supported strategies does not imply
separability, even if a uniform bound on the size of the
support is assumed, and the containment supp τi ⊂ suppσi

cannot be removed from condition 3 of Theorem 5.1.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that separable games provide a natural
setting for the study of games with payoffs satisfying a low-
rank condition. This level of abstraction allows the low-rank
results of Lipton et al. [11] to be extended to the multi-
player and polynomial cases. Since the rank of a separable
game gives a bound on the cardinality of the supports of
equilibria for any sampled version of that separable game,
approximate equilibria can be computed in time polynomial
in 1

ε by discretizing the strategy spaces and applying standard
computational techniques for low-rank games.

Other types of low-rank conditions have been studied
for finite games, for example Kannan and Theobald have
considered the condition that the sum of the payoff matrices
be low-rank [8]. It is likely that that the discretization
techniques used here can be applied in an analogous way
to yield results about computing approximate equilibria of
continuous games when the sum of the payoffs of the players
is a separable function.

There also exist many computational techniques for finite
games which do not make low-rank assumptions. It may
be possible to extend some of these techniques directly to
separable games to yield algorithms for computing exact
equilibria of separable games. Such an extension would
likely require an explicit description of the moment spaces
in terms of inequalities rather than the description given
above as the convex hull of the set of moments due to
pure strategies. In the case of two-player polynomial games,
such an explicit description is known to be possible using
linear matrix inequalities and has been applied to zero-
sum polynomial games by Parrilo [14]. While the lack of
polyhedral structure in the moment spaces would most likely
prohibit the use of a Lemke-Howson type algorithm, a variety
of other finite-game algorithms may be extensible to this
setting; McKelvey and McLennan have presented a survey
of such algorithms [12].
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