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Abstract

The main contribution of this thesis is a new solution concept for symmetric games
(of complete information in strategic form), the exchangeable equilibrium. This is
an intermediate notion between symmetric Nash and symmetric correlated equi-
librium. While a variety of weaker solution concepts than correlated equilibrium
and a variety of refinements of Nash equilibrium are known, there is little previous
work on “interpolating” between Nash and correlated equilibrium.

Several game-theoretic interpretations suggest that exchangeable equilibria
are natural objects to study. Moreover, these show that the notion of symmetric
correlated equilibrium is too weak and exchangeable equilibrium is a more natural
analog of correlated equilibrium for symmetric games.

The geometric properties of exchangeable equilibria are a mix of those of Nash
and correlated equilibria. The set of exchangeable equilibria is convex, compact,
and semi-algebraic, but not necessarily a polytope. A variety of examples illustrate
how it relates to the Nash and correlated equilibria.

The same ideas which lead to the notion of exchangeable equilibria can be
used to construct tighter convex relaxations of the symmetric Nash equilibria as
well as convex relaxations of the set of all Nash equilibria in asymmetric games.
These have similar mathematical properties to the exchangeable equilibria.

An example game reveals an algebraic obstruction to computing exact ex-
changeable equilibria, but these can be approximated to any degree of accuracy
in polynomial time. On the other hand, optimizing a linear function over the
exchangeable equilibria is NP-hard. There are practical linear and semidefinite
programming heuristics for both problems.

A secondary contribution of this thesis is the computation of extreme points of
the set of correlated equilibria in a simple family of games. These examples illus-
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trate that in finite games there can be factorially many more extreme correlated
equilibria than extreme Nash equilibria, so enumerating extreme correlated equi-
libria is not an effective method for enumerating extreme Nash equilibria. In the
case of games with a continuum of strategies and polynomial utilities, the exam-
ples illustrate that while the set of Nash equilibria has a known finite-dimensional
description in terms of moments, the set of correlated equilibria admits no such
finite-dimensional characterization.
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Thesis Co-Supervisor: Pablo A. Parrilo
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Chapter 1

Introduction

A game is a situation in which multiple agents interact, each led by his own
preferences. Game theory seeks to understand such situations, either describing
how players will play or prescribing how they should play. To this end a variety of
solution concepts have been proposed to explain how games are played. These all
make some assumptions about the players, how rational they are, and how they
are connected.

As one would expect, stronger assumptions lead to stronger predictions, but
such improvements are tempered by a decrease in the domain of applicability.
Since the assumptions may be false or difficult to verify, such conclusions may
also be less convincing. On the other hand, weaker solution concepts can lose
their meaning in the opposite way, sometimes failing to narrow down the space of
possible outcomes at all.

The variety of solution concepts which have been proposed and the abundance
of examples of failures of both of these types suggest that such a tradeoff is
unavoidable. There is no one “best” solution concept. To understand a game we
will often need to employ several to understand what different assumptions about
players mean for the outcome and why.

In this thesis we propose a new solution concept in the context of symmetric
games, games in which the players are interchangeable. While it would be unrea-
sonable to believe that a game played in real life is exactly symmetric in the sense
that the players truly have identical preferences about parallel outcomes, it is a
common simplifying assumption which in many cases does not appear far from
reality and so it is a reasonable model to study.

For example, we may wish to model a game played by many over the internet,
such as bidding for an item in an online auction. Such a situation is a game
of incomplete information, because players do not in general know each other’s
valuations. Nonetheless, it is natural to assume a prior probability distribution
over such valuations which is symmetric. If we imagine each player choosing a plan
of action as a function of his valuation “before he learns his valuation,” then the
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16 CHAPTER 1. INTRODUCTION

(u1, u2) W M
W (4, 4) (1, 5)
M (5, 1) (0, 0)

Table 1.1. Chicken. Player 1 chooses rows and player 2 chooses columns.

players do truly face a symmetric situation. In other words, the induced complete
information game is symmetric.

Using this type of reasoning we can apply ideas from symmetric games to
asymmetric games. Each player imagines himself behind a veil of ignorance,
unaware of which role he will take in the game. He then imagines taking all roles
(or equivalently, a uniform average of the roles) in a symmetrized game. This
idea of players “putting themselves in each other’s shoes” incorporates a notion of
fairness into the analysis of asymmetric games. Rawls explores the philosophical
implications of taking this idea as the basis for a theory of justice [60], though in
a way which violates some fundamental game-theoretic principles [7, 35].

We take the viewpoint of a Bayesian who has yet to observe the outcome of
the game. As shown by Aumann [2], if we believe the players will act rationally
(maximizing their utilities given their information) and this is common knowledge,
then this restricts our choice of prior over outcomes. In particular the prior
must be a correlated equilibrium. Conversely, without further assumptions any
correlated equilibrium would do.

In this thesis we will focus on symmetric games of complete information. Given
the symmetry, it is natural to focus on symmetric equilibria: those distributions
which do not change if the players are relabeled. If statistical independence of
actions is to be expected, the result is a symmetric Nash equilibrium, or in other
words, a correlated equilibrium in which the players’ actions are independent and
identically distributed (i.i.d.). More generally, without independence we should
expect a symmetric correlated equilibrium.

The main message of this thesis is that unlike the asymmetric case, not all
symmetric correlated equilibria are equally reasonable in a symmetric game. We
define a subset of these called the exchangeable equilibria and argue that symmetric
correlated equilibria which are not exchangeable are unnatural in several senses.

This is most easily illustrated with an example, so consider the game “Chicken”
shown in Table 1.1. This is a battle of nerves in which two players are riding
their bikes towards each other. Each can choose to be either “Wimpy,” and veer
off to the side at the last moment, or “Macho,” and hold his course. If both
players play M they crash, which is unambiguously the worst possible outcome.
If both play W then they merely walk away feeling slightly ridiculous. If the
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players choose different strategies then the Macho one looks good in front of the
assembled spectators, the Wimpy one looks bad, and their utilities reflect this.

As pictured here this is a symmetric game: swapping the roles of the players
does not change the utilities. This means that both players feel exactly the
same about being in parallel situations. The amount the row player would be
embarrassed by playing W when the column player plays M is exactly the same
as the amount the column player would be embarrassed if the opposite were
to happen. Similarly, they both feel precisely the same about the prospect of
crashing.

When the situation leads to such a symmetric model, we can also consider a
somewhat stronger assumption: that the players are in fact independent copies of
a single decision-making agent, so each would pursue the same actions if given the
same information. In other words, we could assume that any difference in action
is explained purely by a difference in information, rather than by a difference in
interpretation or personal preferences (symmetric utilities mean that with respect
to the outcome of the game, at least, no such difference in preferences exists).
This means assuming that the players base their actions on rolls of the same types
of dice and measurements of the same environmental variables, but the resulting
actions may differ based on random events such as measurement noise or the
inherent unpredictability of a die roll.

If we make such an additional assumption, then conditioned on the state of
the world the players’ actions will be i.i.d. We define exchangeable equilibria to be
those correlated equilibria which are i.i.d. conditioned on some auxiliary variables.
Thus the set of exchangeable equilibria contains the symmetric Nash equilibria
and is contained in the symmetric correlated equilibria. Any symmetric correlated
equilibrium which is not exchangeable cannot be implemented without implicitly
breaking symmetry in some way.

In the Chicken example there are two asymmetric Nash equilibria: one player
chooses M and the other W . Such a situation is stable because neither player
wishes to deviate from it if he believes his opponent will not deviate. Viewed as
probability distributions over outcomes in the game, we can write these equilibria
as 2× 2 matrices: [

0 1
0 0

]
and

[
0 0
1 0

]
.

If some device, such as a traffic light, randomly chooses between these two dis-
tributions with equal probability, the resulting distribution over outcomes is the
symmetric correlated equilibrium [

0 1/2
1/2 0

]
.
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The players each interpret the internal state of the traffic light in opposite
ways. In fact this distribution over outcomes cannot be realized without some
symmetry-breaking in the players’ interpretation of environmental information.
To see this note that distributions over outcomes which are i.i.d. are of the form[

1− p
p

] [
1− p
p

]T
=

[
(1− p)2 p(1− p)
p(1− p) p2

]
for some 0 ≤ p ≤ 1. The probability that both players choose the same action
is (1− p)2 + p2 ≥ 1

2
. Thus if the players’ actions were conditionally i.i.d. on any

auxiliary parameter then even unconditionally (by linearity of expectation) both
players would choose the same strategy with probability at least 1

2
. This means

the symmetric correlated equilibrium above is not exchangeable.
In fact the unique exchangeable equilibrium of Chicken places equal probability

on all outcomes: [
1/4 1/4
1/4 1/4

]
.

In particular it is independent, so it is a symmetric Nash equilibrium. Thus in
this case taking the symmetry assumption to its logical conclusion leads to a
unique prediction about the outcome of the game, but if we only go halfway then
there are other possible outcomes. If we wish to allow symmetry-breaking such
outcomes may be reasonable, but otherwise they are not. Viewed another way, the
only way for symmetric rational players to completely avoid crashes in Chicken is
with a traffic light.

� 1.1 Overview

In this section we outline the body of the thesis, pointing out the contributions
made by each chapter in turn.

Chapter 2 covers the background material used frequently in the bulk of
the thesis. The concepts and results introduced here are all either known or
straightforward extensions of known results. Some background material which is
only locally relevant is introduced later.

The main contribution of this thesis is the notion of exchangeable equilibrium
defined above. In Chapter 3 we introduce these in their most basic form, in the
context of symmetric games. We study the geometry of the set of exchangeable
equilibria, proving its basic properties and computing many examples.

The set of exchangeable equilibria includes the symmetric Nash equilibria
and is included in the symmetric correlated equilibria. These inclusions can be
strict; in fact symmetric correlated equilibria can yield higher social welfare than
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exchangeable equilibria, which can yield higher social welfare than symmetric
Nash equilibria. A symmetric game with an asymmetric Nash equilibrium always
has symmetric correlated equilibria which are not exchangeable (under a mild
condition on the symmetries of the game). In the case of 2×2 symmetric bimatrix
games the exchangeable equilibria are the convex hull of the symmetric Nash
equilibria. For games with more strategies or players these sets can be distinct.

The set of exchangeable equilibria retains many but not all elementary prop-
erties of correlated equilibria: it is convex, compact, and semialgebraic (defined
by polynomial inequalities), but not polyhedral in general. The existence of ex-
changeable equilibria can be proven by elementary means, using an extension
of Hart and Schmeidler’s argument for correlated equilibria [38]. In games with
“enough” symmetry, symmetric Nash equilibria are always extreme points of the set
of exchangeable equilibria; the corresponding statement with correlated equilibria
in place of exchangeable equilibria can fail when there are more than two players
[14, 25, 52].

We also give an alternative construction of the set of exchangeable equilibria
of a symmetric bimatrix game as a convex relaxation of the set of symmetric Nash
equilibria defined in terms of quadratic inequalities. In this case exchangeable
equilibria are correlated equilibria which are completely positive when viewed as
matrices. To complement this derivation we also give a new characterization of the
convex hull of symmetric Nash equilibria in terms of completely positive matrices.

With an understanding of the definitions and geometry in place, Chapter 4
covers game-theoretic interpretations of exchangeable equilibria. We give four ways
of viewing exchangeable equilibria of symmetric games. These show that among
correlated equilibria, the exchangeable equilibria are the most symmetric, assume
the least knowledge of opponents, are the most robust to players’ knowledge of the
number of opponents, and can be implemented using simple correlation schemes.
Such results imply that among correlated equilibria, exchangeable equilibria should
be focal (likely to be chosen because they “stand out” in some way). We take these
interpretations as evidence that exchangeable equilibria are natural game-theoretic
objects to study.

One of these interpretations suggests a way to design tighter convex relaxations
of Nash equilibria, which we study in Chapter 5. We call these order k exchange-
able equilibria (k = 1 reduces to the usual exchangeable equilibria) and show that
in games with “enough” symmetry these converge to mixtures of symmetric Nash
equilibria as k goes to infinity. Geometrically these have similar properties to
exchangeable equilibria, but we do not prove their existence directly for k > 1.
Constructing such a proof is an open problem; combined with the other results it
would yield a new proof of the existence of Nash equilibria.

We use a different modification of the same interpretation to motivate the
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notion of exchangeable equilibria in asymmetric games in Chapter 6. For simplicity
we restrict attention to bimatrix games. The set of asymmetric exchangeable
equilibria is convex, compact, and semialgebraic. It is related to but distinct
from the symmetric exchangeable equilibria of the symmetrization of the game.
There are natural maps from Nash equilibria to symmetric Nash equilibria of
the symmetrization to symmetric exchangeable equilibria of the symmetrization
to asymmetric exchangeable equilibria of the game to correlated equilibria of
the game. In particular the map from symmetric exchangeable equilibria of the
symmetrization into asymmetric exchangeable equilibria shows that existence of
asymmetric exchangeable equilibria follows automatically from the symmetric
theory.

In Chapter 7 we turn to computational questions about exchangeable equilib-
ria. An example in Chapter 3 shows that a game can have a unique exchangeable
equilibrium, the probabilities of which are irrational numbers, so computing ε-
exchangeable equilibria is the best we can hope for. Papadimitriou and Roughgar-
den [55] turned Hart and Schmeidler’s existence proof into an efficient algorithm
for computing correlated equilibria (intended for use on games with polynomially
many players – with a constant number of players the problem is easily solved by
linear programming), so it is natural to try to compute exchangeable equilibria
by modifying the algorithm in the same way we modified the existence proof.
The results of [55] imply that this modification computes a rational exchangeable
equilibrium, a contradiction.

This exposes a previously unknown error in the arithmetic precision analysis of
[55]. We give a simple fix for this which computes ε-correlated and ε-exchangeable
equilibria in polynomial time. This algorithm can also compute asymmetric
exchangeable equilibria of bimatrix games. It is not known whether an order
k exchangeable equilibrium can be computed in polynomial time for any fixed
k > 1. We show that the problem of optimizing an arbitrary linear functional
over exchangeable equilibria is NP-hard.

We then present a variety of linear and semidefinite programming methods for
approximating exchangeable equilibria which are useful in practice, particularly
for small games where they are exact, but which do not give a priori performance
guarantees for larger games. These semidefinite programming methods have been
used to compute most of the examples in this thesis.

We move away from exchangeable equilibria in Chapter 8 to discuss extreme
points of the set of correlated equilibria, which can be viewed as another type of
structured correlated equilibria. It is known that in bimatrix games the extreme
Nash equilibria are among the extreme correlated equilibria [25]. We show that
there can be factorially many more of the latter, so computing all of these is not
an efficient way to compute all extreme Nash equilibria.
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We show further than in polynomial games there can be extreme correlated
equilibria which are not finitely supported measures. This shows that certain
natural attempts to prove the existence of finitely supported correlated equilibria
in polynomial games without going through Nash equilibria must fail. It also
shows that the set of correlated equilibria does not admit a finite-dimensional
representation of the type enjoyed by the Nash equilibria of a polynomial game.
This explains past difficulties finding provably efficient algorithms for computing
or approximating correlated equilibria in polynomial games [68, 70].

Finally in Chapter 9 we summarize the results of the thesis and in particu-
lar draw connections between the work on exchangeable equilibria and extreme
correlated equilibria. We close by discussing related open problems.

� 1.2 Previous work

In this section we give context for the results of this thesis. Broadly, these results
split into two loosely related parts: the theory of exchangeable equilibria, which
forms the bulk of the thesis, and the structure of extreme correlated equilibria,
discussed in Chapter 8. We review literature related to these two parts in turn.

� 1.2.1 Leading towards exchangeable equilibria

As we will see, the idea of exchangeable equilibrium arises naturally when one
combines the notion of exchangeable random variables with the correlated equi-
librium solution concept. Both of these are large areas of study in their own right
and we make no attempt at an exhaustive survey of the literature on either. How-
ever, several papers have led toward the idea of exchangeable equilibrium in some
way or seem to be particularly related to what is accomplished by exchangeable
equilibria and we review those here.

One such example is Hart and Schmeidler’s elementary proof of existence of
correlated equilibria [38]. This was nearly contemporaneous with a similar but
independent proof of the same theorem by Nau and McCardle [54]. Papadimitriou
and Roughgarden suggested a clever application of the ellipsoid algorithm to turn
these ideas into an efficient algorithm for computing correlated equilibria of large
games [55]. We will see in Chapter 7 that this algorithm has a technical flaw, but
that a repaired version can compute approximate correlated and exchangeable
equilibria.

The arguments in [38], [54], and [55] share the somewhat mysterious quality
that they work with non-equilibrium product distributions at an intermediate
stage, but in the end the product structure vanishes entirely and the result is a
correlated equilibrium with no obvious extra structure. Considering what extra
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structure might be obtained from such an argument, in particular if we require
the game to be symmetric and try to make the argument respect the symmetry
as much as possible, is one route to our notion of exchangeable equilibrium.

Another example is Brandenburger’s survey of epistemic game theory [8]. He
mentions that the standard assumption of probabilistic independence of different
players’ strategies in noncooperative game theory is somewhat suspect and perhaps
unnatural. In a footnote he offers the concept of exchangeability as an example of
a more natural way to capture our ignorance of the distinctions between random
variables. However, this is not explored further.

The notion of exchangeable equilibrium bears at least an outward resemblance
to the work of Hillas, Kohlberg, and Pratt on an outside observer’s assessment of
the outcome of a game [40]. They consider an observer watching a given n-player
game being played repeatedly. Each time the game is played by a new set of
players disjoint from the set of all previous players, so it makes sense to view these
interactions as exchangeable. These players do not have access to the history of
play, though the observer does.

Hillas, Kohlberg, and Pratt characterize correlated equilibria of the original
game by considering when in the extended game the observer can offer advice to
some player allowing him to increase his expected payoff. They argue that the
players should have a better understanding of the game than the observer, and
prove that the limiting distribution of play is a correlated equilibrium if and only
if the observer cannot offer such helpful advice. Furthermore, they give a stronger
exchangeability-type condition under which play will be a Nash equilibrium.

The paper [40] does not consider solution concepts between Nash and correlated
equilibrium. However, its heavy use of exchangeability suggests an ideological
kinship with the present work. It seems likely that the concept of exchangeable
equilibrium could be reinterpreted in that setup, though we do not do so here.

One interpretation of exchangeable equilibria is that they are those correlated
equilibria which extend to symmetric correlated equilibria of games with an arbi-
trarily large number of identical interactions (Section 4.3). That is to say, they are
robust to the number of players: the players could imagine playing these equilibria
with any large, even unknown, number of players and could not profitably deviate
even if they knew the number of players. This is in contrast to the paper of
Myerson on games with many players in which the number of players is modeled
probabilistically [51]. That work is in a Bayesian game setting and so not directly
comparable to ours, but the distinction between robust equilibria and those which
are sensitive to a given probabilistic model is worth making. In a given situation,
one assumption or the other may be more natural.

Another interpretation of exchangeable equilibria is that they are those corre-
lated equilibria in which the correlating device takes a specific form: the players
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choose strategies conditionally i.i.d. on some hidden parameters (Section 4.1). In
general it is an interesting to problem to study which equilibria can arise from a
particular type of correlating device. Of course the most well-studied class of corre-
lating device makes players choose their strategies independently and corresponds
to the mixed Nash equilibria. But there is also Sorin’s notion of distribution equi-
libria, correlated equilibria in which each player gets the same payoff conditional
on all outcomes [67]. These are in general incomparable to exchangeable equilibria
as shown in Example 3.20. Another work of this type is Du’s classification of the
correlated equilibria which can arise when the players correlate on their hierarchy
of beliefs about the play of the game [22].

Exchangeable equilibria have a natural characterization in terms of complete
positivity, as does the convex hull of the symmetric Nash equilibria (Section 3.4).
These characterizations allow these sets to be computed explicitly for small games
or approximated efficiently for larger games using associated semidefinite pro-
grams (Section 7.2). With the theory of exchangeable equilibria in place, these
computational results are immediate from the known semidefinite relaxations for
the completely positive matrices developed by Parrilo [57]. Another semidefinite
relaxation has been developed specifically for Nash equilibria of finite games and
more general min-max problems by Laraki and Lasserre [45].

� 1.2.2 Literature related to extreme correlated equilibria

The geometry of Nash and correlated equilibria has also been studied extensively.
Therefore we again only mention work below if it is directly connected to ours
and we do not attempt to be exhaustive.

In Chapter 8 we study extreme points of the set of correlated equilibria of a
family of example games which includes both finite games and games with con-
tinuous strategy spaces and polynomial utility functions. This builds on previous
work which falls roughly into three categories. The first establishes the connection
between extreme Nash and correlated equilibria. Second is the study of separable
games, a common generalization of finite and polynomial games which serves as
an abstract unifying framework to make and test conjectures about such games.
Much of this work focuses on bounding the support, or number of strategies played
with positive probability, of equilibria. As such we place other results on this
topic in this category as well. The third is work on correlated equilibria in infinite
games, which require somewhat more care to define and work with than Nash
equilibria in infinite games or correlated equilibria in finite games. We discuss
each of these categories in turn.

The main result in the first category is that for two-player finite games, extreme
Nash equilibria (viewed as product distributions) are a subset of the extreme
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correlated equilibria. Cripps [14] and Evangelista and Raghavan [25] proved this
independently. This result shows that it makes sense to compare the number
of extreme Nash and correlated equilibria. It also raises the natural question
of whether all extreme Nash equilibria could be enumerated efficiently (say in
polynomial time in the size of the output) by enumerating the extreme correlated
equilibria.

In a similar vein, Nau et al. [53] show that for non-degenerate finite games with
any number of players, the Nash equilibria lie on the boundary of the correlated
equilibrium polytope. With three or more players, the Nash equilibria need not be
extreme correlated equilibria. For example the three-player poker game analyzed
by Nash in [52] has rational payoffs, hence rational extreme correlated equilibria,
but its unique Nash equilibrium uses irrational probabilities.

The second category of previous work covers separable games, which are a class
of games including polynomial games and finite games which share many properties
of finite games. These were first studied during the 1950’s by Dresher, Karlin, and
Shapley in papers such as [21], [20], and [44], which were later combined in Karlin’s
book [43]. Their work focuses on the zero-sum case, which contains some of the
key ideas for the nonzero-sum case. In particular, they show how to replace the
infinite-dimensional mixed strategy spaces (sets of probability distributions over
compact metric spaces) with finite-dimensional moment spaces. Carathéodory’s
theorem [5] then applies to show that finitely-supported Nash equilibria exist.

There are many similarities between separable games and finite games whose
payoff matrices satisfy low-rank conditions. Lipton et al. [46] consider two-player
finite games and provide bounds on the cardinality of the support of extreme
Nash equilibrium strategies in terms of the ranks of the payoff matrices. The main
technical tool here is again Carathéodory’s theorem.

Germano and Lugosi show that in finite games with three or more players there
exist correlated equilibria with smaller support than one might expect for Nash
equilibria [29]. The proof is geometrical; it essentially views correlated equilibria
as living in a subspace of low codimension and it too uses Carathéodory’s theorem.

The bounds on the support of Nash and correlated equilibria in finite and
separable games of the previous three paragraphs are all synthesized in [68]; the
portion on Nash equilibria has appeared in [69]. The general idea is that simple
payoffs (low-rank matrices, low-degree polynomials, etc.) lead to simple Nash
equilibria (small support), and those in turn lead to simple correlated equilibria
(small support again).

To produce upper bounds on the minimal support of correlated equilibria
which depend only on the rank of the payoff matrices and not on the size of the
strategy sets, [68] does not bound the support of all extreme correlated equilibria,
but rather only those whose support is contained inside a Nash equilibrium of
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small support, which must exist. Similar results hold for polynomial games with,
for example, degree used in place of rank (the notions of degree and rank are
generalized in [68] and [69]).

This work left open the question of whether all extreme correlated equilibria
have support size which can be bounded in terms of the rank of the payoff matrices,
independently of the size of the strategy sets. We show that this is not the case,
because our examples have payoffs which are of rank 1 and extreme correlated
equilibria of arbitrarily large, even infinite (when the strategy spaces are) support.

The third category of previous work concerns correlated equilibria without
finite support, which have been defined and studied by several authors. An
important example of this line of research is the paper by Hart and Schmeidler
[38]. The definition of correlated equilibria presented in [38] is convenient for
proving some theoretical results (they focus on existence) but not usually for
computation.

Equivalent characterizations of correlated equilibria in continuous games which
are more suitable for computation are developed in [70]. One of these forms
the basis for the analysis in Section 8.4. Other such characterizations lead to
algorithms for approximating correlated equilibria of continuous games [70].





Chapter 2

Background

This chapter covers a variety of standard material required repeatedly throughout
the remaining chapters. Additional background is given in later chapters when it
is only needed locally.

No claim is made to the originality of anything in this section except the
exposition. We define several new terms: internal and external correlated equi-
librium, good response, good set, player-transitive, player trivial, strategy-trivial,
completely positive tensor, and doubly nonnegative tensor. For some of these the
corresponding theory may not have been developed in detail before, but these are
natural extensions or applications of standard concepts.

We work with families of probability distributions throughout, so we first fix
some notation. For a topological space T we will write ∆(T ) to denote the set
of regular Borel probability measures on T . Often T will be finite and given
the discrete topology by default. If T is a product it will be given the product
topology. The mass of a singleton t ∈ T under a probability measure π ∈ ∆(T )
will be denoted π(t) := π({t}) for simplicity. The distribution which assigns unit
mass to t ∈ T will be denoted δt ∈ ∆(T ). For finite T we will view elements of the
simplex ∆(T ) as column vectors and elements of ∆(T 2) := ∆(T × T ) as matrices.
To avoid trivialities in our discussion we will often tacitly assume that |T | ≥ 2.

The symbol ♦ will signal the end of an example throughout, just as signals
the end of a proof.

� 2.1 Game theory

This section is divided into three parts. In the first part we lay out the basic
definitions of finite games and equilibria. The second part reviews Hart and
Schmeidler’s proof of the existence of correlated equilibria [38]. The third part
covers symmetries of games.

27
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� 2.1.1 Games and equilibria

Throughout we will consider only games of complete information in strategic
(also called normal) form. That is to say, each player will have a set of possible
strategies among which he may choose, perhaps randomly. All players choose their
actions simultaneously and then each is awarded a payoff based on the choices of
all players. Each player seeks to maximize his payoff in the presence of the other
players’ actions. All the data defining the game is common knowledge: everyone
knows it, everyone knows that everyone knows it, ad infinitum. This is one of the
most classical types of game, and the methods of this thesis could certainly be
extended to more modern or realistic models. We restrict to this simple case to
avoid distractions from the key ideas.

We will extend some of the definitions of this section to certain infinite games
in Chapter 8. Until then, all games are finite. More formally:

Definition 2.1. A (finite) game has a finite set P of n ≥ 2 players, each with
a finite set Ci of mi := |Ci| ≥ 2 strategies (also called pure strategies) and a
utility or payoff function ui : C → R, where C =

∏
Ci. A game is zero-sum

if it has two players, called the maximizer (denoted M) and the minimizer
(denoted m), and satisfies uM + um ≡ 0.

We will also use m := maximi, especially when the mi are all equal, with the
distinction between the identity of the minimizer in a zero-sum game clear from
context. For elements of Ci we use Roman letters subscripted with the player’s
identity, such as si and ti. We will typically use the unsubscripted letter s to
denote a strategy profile, a choice of strategy for each player. For a choice of a
strategy for all players except i we use the symbol s−i. This allows the abuse of
notation (ubiquitous in game theory) in which we write (ti, s−i) for the strategy
profile (s1, . . . , si−1, ti, si+1, . . . , sn) to avoid a proliferation of ellipses.

Definition 2.2. A mixed strategy for player i in a game Γ is a probability
distribution over his pure strategy set Ci, and the set of mixed strategies for player
i is ∆(Ci). The set of mixed strategy profiles (also called independent or
product distributions) will be denoted ∆Π(Γ) :=

∏
i ∆(Ci).

For independent distributions it is important that we write ∆Π(Γ) rather than
∆Π(C), because Γ specifies how C is to be thought of as a product. For example,
the set S×S×S could be viewed as a product of three copies of S, or a product of
S with S × S, and these lead to different notions of an independent distribution –
one is a product of three terms and one is a product of two terms. This distinction
will be particularly important when we define powers of games in Section 5.2.

To make the notation fit together we will write ∆(Γ) for ∆(C). We may then
view ∆Π(Γ) as the (nonconvex) subset of ∆(Γ) consisting of product distributions
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or as a convex subset of RtiCi . The former view will be natural when we define
exchangeable equilibria, which live in ∆(Γ), as convex combinations of product
distributions. The latter will be useful when looking for product distributions
which are fixed by a group action (see the proof of Lemma 3.15); such fixed
distributions are easy to find with a convex setup (Proposition 2.22). Which of
these views we are using will be clear from context if not explicitly specified.

As usual we extend the domain of ui from C to ∆(Γ) by linearity, defining
ui(π) =

∑
s∈C ui(s)π(s), the expected value of ui under the probability distribution

π. Having done so we can define equilibria. These are distributions over strategy
profiles which are self-enforcing in the sense that if a player believes the other
players will play according to the distribution, it is in his own best interest to do
so as well. The case of product distributions yields the famous Nash equilibria [52].
Without assuming a product structure one obtains Aumann’s notion of correlated
equilibria. Both are defined below and will be used throughout.

The term equilibria is used because these distributions are defined by a funda-
mental stability property. The use of equilibria in analyzing games is justified in
a number of ways. One of the most important is Aumann’s proof that if players
commonly believe in a probabilistic model describing outcomes of a game, then
this distribution must be a correlated equilibrium [2]. This result holds under
the standard assumptions on noncooperative games: the game being played is
common knowledge, and the players are rational (utility-maximizing) and act
independently.

It is natural to expect that under any dynamic procedure for adjusting the
players’ strategy choices based on self-interest, such distributions would be stable
(attracting or not). There is a wealth of literature on such dynamics, when they
reach an equilibrium, and which equilibria can be reached, e.g. [36, 37, 65, 76].
Despite the failure of some such procedures to converge and other philosophical
objections, equilibria provide a good starting point for understanding games and
continue to be widely used when analyzing games in practice.

Even in games where equilibria do not seem to represent reasonable outcomes,
this failure often offers some insight. After computing equilibria of a given game
we may find that we should not expect real players to act in a perfectly rational,
utility-maximizing manner. They may choose to sacrifice some amount of utility
in favor of computational complexity or ease of implementation, or they might
believe there is some chance their opponents will do this. In this thesis we will set
aside most such philosophical issues (except those related to symmetry of games
and solutions) and take standard equilibrium notions as given.

Definition 2.3. A Nash equilibrium is an n-tuple (ρ1, . . . , ρn) ∈ ∆Π(Γ) =∏
i ∆(Ci) of mixed strategies, one for each player, such that ui(si, ρ−i) ≤ ui(ρi, ρ−i)
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for all strategies si ∈ Ci and all players i. The set of Nash equilibria of a game Γ
is denoted NE(Γ).

Equivalently:

Proposition 2.4. A Nash equilibrium is an n-tuple (ρ1, . . . , ρn) ∈ ∆Π(Γ) such
that only best responses are played with positive probability:

ρi(si) > 0⇒ si ∈ arg max
ti∈Ci

ui(ti, ρ−i).

Aumann generalized this equilibrium notion for situations in which there may
be some correlation between players’ strategy choices, either due to common
observations of (noisy) environmental variables or an explicit mediator advising
all interested parties [1]. In either case we assume each player knows his own
strategy and so is free to consider deviations which depend on this. Such an
assumption leads to the following definition (only requiring this condition for
constant functions ζi yields the notion of weak correlated equilibrium).

Definition 2.5. A correlated equilibrium is a joint distribution π ∈ ∆(Γ)
such that

∑
s∈C [ui(ζi(si), s−i)− ui(s)] π(s) ≤ 0 for all functions ζi : Ci → Ci and

all players i. The set of correlated equilibria of a game Γ is denoted CE(Γ).

Nash equilibria correspond exactly to the correlated equilibria which are prod-
uct distributions, so viewing ∆Π(Γ) as a subset of ∆(Γ) we can write NE(Γ) =
CE(Γ) ∩ ∆Π(Γ). We introduce the existence theorems for correlated and Nash
equilibria in Sections 2.1.2 and 2.1.3.

The correlated equilibrium conditions are expressed by
∑n

i=1m
mi
i linear in-

equalities. This number can be reduced to
∑n

i=1 mi(mi − 1) in the standard
way:

Proposition 2.6. A joint distribution π ∈ ∆(Γ) is a correlated equilibrium if and
only if

∑
s−i∈C−i [ui(ti, s−i)− ui(s)]π(s) ≤ 0 for all strategies si 6= ti ∈ Ci and all

players i.

This proposition can be rephrased as follows. Suppose (X1, . . . , Xn) is a
random vector taking values in C. We think of Xi as a (random) strategy rec-
ommended to player i. Given this information, player i can form his conditional
beliefs Prob(X−i | Xi) about the recommendations to the other players given his
own recommendation. That is to say, Prob(X−i | Xi) is a random variable taking
values in ∆(C−i) which is a function of Xi. One can then define the event

{pure strategy Xi is a best response to distribution Prob(X−i | Xi) for all i}.

The distribution of (X1, . . . , Xn) is a correlated equilibrium if and only if this
event happens almost surely. More succinctly:
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Proposition 2.7. Let (X1, . . . , Xn) be a random vector taking values in C dis-
tributed according to π ∈ ∆(Γ). Then π is a correlated equilibrium if and only if
Xi is a best response to Prob(X−i | Xi) almost surely for all i.

Sometimes we consider correlated equilibria in a more general sense, in which
players may have access to information besides their actions. The general frame-
work for doing so is illustrated in Figure 2.1. There is some underlying (random)
state of the world which is not assumed to be known to the players. The infor-
mation available to each player is an arbitrary function of this state and some
private random noise; the state and all the noise signals are assumed independent.
This random noise could for example be measurement noise, or the outcome of
some private coin tosses on which a player will base his action – anything which
we wish to explicitly assume the other players cannot access.

For mathematical simplicity we typically think of the state of the world, the
noises, and the players’ information as all taking values in some finite sets. If this
is not the case we must make some measurability restrictions. We speak informally
and avoid assigning symbols to everything involved to prevent a pointless explosion
of notation.

Each player chooses a function fi mapping his information to actions. We
refer to all the data together – the state distribution, the noise distributions, the
maps from these to information, and the fi – as a correlation scheme. We
assume these data are known to the players: only the realizations of the random
quantities are hidden. If no player can improve his expected utility by unilaterally
deviating to a different function f ′i , we refer to the correlation scheme as an
external correlated equilibrium. When we wish to emphasize the distinction
we will refer the content of Definition 2.5 as an internal correlated equilibrium.
These two notions were studied by Aumann in [1] and [2], respectively1, and are
closely related:

Proposition 2.8. The distribution of actions in an external correlated equilibrium
is an internal correlated equilibrium and every internal correlated equilibrium arises
in this way.

Proof. Given an external correlated equilibrium, no player can gain by deviating
from fi. In particular no player can gain by deviating to ζi ◦ fi for any ζi : Ci →
Ci. Therefore if we push the fi back into the unobserved part of the model
in Figure 2.1, merging it into the noise-adding stage, the result is an external
correlated equilibrium in which all players choose the identity function from their

1Aumann refers to both notions simply as correlated equilibrium. We know of no standard
terminology for differentiating the two, and so introduce the terms internal and external here.
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Figure 2.1. In a correlation scheme, each player receives noisy information about the state of
the world (the “+i” indicates the state is being combined with the noise somehow, not necessarily
additively) and chooses his action in the game as a function fi of this information. If no player
can improve his utility by playing a different function of his information, we call all this data
(the functions and the information structure together) an external correlated equilibrium.
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information to their action. This coincides with the definition of what it means for
the distribution over information / actions to be an internal correlated equilibrium.

Conversely, given a π ∈ ∆(C) we can design a correlation scheme in which the
state of the world is a random strategy profile distributed according to π, each
player’s information is equal to his personal component of this strategy profile (so
the “noise adding” step just strips away the other players’ choices of strategy –
no additional randomness is needed), and each fi is the identity on Ci. By the
definitions this is an external correlated equilibrium if and only if π is an internal
correlated equilibrium.

For a given correlation scheme we say that a player knows the state of the
world if the state of the world is a function of (measurable with respect to) his
information. This means that player knows all relevant information which he can
know in theory, but not the outcomes of the other players’ private environment
measurements or coin tosses. We have built some redundancy into the model in
the sense that we could have chosen to push all the random noise into the state
of the world, making each player’s information a deterministic function of the
state. The resulting model would allow for less flexibility, in the sense that players
knowing the state of the world would mean there could be no private coin tosses.
Compare the following statements:

Proposition 2.9. In an external correlated equilibrium, if each player knows the
state of the world then the outcome conditioned on the state is a Nash equilibrium
almost surely, and every Nash equilibrium arises in this way.

Proposition 2.10. In an external correlated equilibrium, if each player knows
the state of the world and all the noise signals are constant (or equivalently are
considered part of the state) then the outcome conditioned on the state is a pure
Nash equilibrium almost surely, and every pure Nash equilibrium arises in this
way.

The proofs of these propositions amount to little more than repeating the
definitions. The main idea is that if the players commonly know the state, then
conditioned on this knowledge their play is independent and each is best replying
to his opponent. That is to say, the outcome is conditionally a Nash equilibrium,
which must be pure if the players cannot privately randomize.

We complete our survey of basic concepts in game theory with a brief discussion
of zero-sum games, the first class of games to be studied in detail. The most
important result about zero-sum games is that they admit a value, but to define
this we need to introduce the Minimax Theorem. We will also use this theorem in
the following section to prove the existence of correlated equilibria, and similarly
in Chapter 3 for exchangeable equilibria.
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Minimax Theorem. Let U and V be finite-dimensional vector spaces with com-
pact convex subsets K ⊂ U and L ⊂ V . Let Φ : U × V → R be a bilinear map.
Then

sup
x∈K

inf
y∈L

Φ(x, y) = inf
y∈L

sup
x∈K

Φ(x, y),

and the optima are attained.

The standard modern proof uses the separating hyperplane theorem [5].

Definition 2.11. Given a zero-sum game Γ, we can apply the Minimax Theorem
with K = ∆(CM), L = ∆(Cm), and Φ = uM . The common value of these
two optimization problems is called the value of the game and denoted v(Γ).
Maximizers on the left hand side are called maximin strategies and the set of
such is denoted Mm(Γ) ⊆ ∆(CM). Minimizers on the right are called minimax
strategies and the set of these is denoted mM(Γ) ⊆ ∆(Cm).

We now introduce the notion of a good reply in a zero-sum game. This is not a
standard definition, but it will simplify the statements of several arguments below.
The name is meant to be evocative of the term best reply : while a best reply is
one which maximizes one’s payoff, a good reply is merely one which returns a
“good” payoff: at least the value of the game.

Definition 2.12. In a zero-sum game Γ, we say that a strategy σ ∈ ∆(CM) for
the maximizer is a good reply to θ ∈ ∆(Cm) if uM(σ, θ) ≥ v(Γ). We say that
a set Σ ⊆ ∆(CM) of strategies is good against the set Θ ⊆ ∆(Cm) if for all
θ ∈ Θ there is a σ ∈ Σ which is a good reply to θ. If Σ is good against ∆(Cm) we
say that Σ is good.2

The main result about good sets is:

Proposition 2.13. If Γ is a zero-sum game and Σ ⊆ ∆(CM) is good, then Γ has
a maximin strategy in conv(Σ), i.e., conv(Σ) ∩Mm(Γ) 6= ∅.

Proof. Apply the Minimax Theorem with K = conv(Σ) and L = ∆(Cm).

It is worth noting that in general a good set need not include a maximin
strategy. For example, in any zero-sum game the set CM ( ∆(CM) is a good set,
but some zero-sum games such as matching pennies only have mixed maximin
strategies, i.e. CM ∩Mm(Γ) = ∅.

The notion of payoff equivalence is a standard way to turn structural informa-
tion about a game into structural information about equilibria. The definition is
chosen to lead directly to the proposition which follows.

2Good sets are similar in spirit to Voorneveld’s prep sets [74], but tailored to zero-sum games.



Sec. 2.1. Game theory 35

Definition 2.14. Two mixed strategies σi, τi ∈ ∆(Ci) are said to be payoff
equivalent if uj(σi, s−i) = uj(τi, s−i) for all s−i ∈ C−i and all players j.

Proposition 2.15. If σi is payoff equivalent to τi for all i, then (σ1, . . . , σn) is a
Nash equilibrium if and only if (τ1, . . . , τn) is a Nash equilibrium.

� 2.1.2 The Hart-Schmeidler argument

In this section we recall the structure of Hart and Schmeidler’s proof of the
existence of correlated equilibria based on the Minimax Theorem [38]. The goal of
this is to frame their argument in a way which will allow us to extend it, redoing
as little as possible of the work they have done. We will use a similar argument
to prove the existence of exchangeable equilibria (Theorem 3.16).

Hart and Schmeidler’s argument begins by associating with a game Γ a new
zero-sum game Γ0 and interpreting correlated equilibria of Γ as maximin strategies
of this new game. In Γ0 the maximizer plays the roles of all the players in Γ
simultaneously and the minimizer tries to find a profitable unilateral deviation
from the strategy profile selected by the maximizer.

Definition 2.16. Given any game Γ, define a two-player zero-sum game Γ0 with
C0
M := C, C0

m :=
⊔
iCi × Ci, and utilities

u0
M(s, (ri, ti)) = −u0

m(s, (ri, ti)) :=

{
ui(s)− ui(ti, s−i) if ri = si,

0 otherwise.

Proposition 2.17. Let Γ be any game. For any player i in Γ, ri ∈ Ci, and s ∈ C
we have u0

M(s, (ri, ri)) = 0, so we can bound the value of Γ0 by v(Γ0) ≤ 0. A mixed
strategy σ ∈ ∆(C0

M) = ∆(C) for the maximizer in Γ0 satisfies u0
M(σ, (ri, ti)) ≥ 0

for all (ri, ti) ∈ C0
m if and only if σ ∈ CE(Γ). Therefore, if v(Γ0) = 0 then

Mm(Γ0) = CE(Γ).

Proof. Immediate from the definitions.

To prove v(Γ0) = 0, and hence the existence of correlated equilibria (Theo-
rem 2.20), we must show that for any y ∈ ∆(C0

m) there is a π ∈ ∆(C0
M) such

that uM(π, y) ≥ 0. Hart and Schmeidler actually show that there exists such a π
with some extra structure, which we summarize in Lemma 2.19. We will exploit
this extra structure below to prove Lemma 3.15, a stronger statement in a similar
spirit. This in turn allows us to prove the existence of exchangeable equilibria
(Theorem 3.16).

Given a y = (y1, . . . , yn) ∈ ∆(C0
m), yi ∈ RCi×Ci , a good reply π can be

constructed in terms of certain auxiliary games γ(yi). For our purposes it is more
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important to understand the statement of Lemma 2.19 than to remember the
details of this construction. Besides this lemma the only property of γ(yi) we
will need is that its definition is independent of how elements of Ci are labeled
(Proposition 3.14).

Definition 2.18. For any player i in Γ and any nonnegative yi ∈ RCi×Ci, define
the zero-sum game γ(yi) with strategy sets CM = Cm := Ci and utilities

u
γ(yi)
M (si, ti) = −uγ(yi)

m (si, ti) :=

{∑
ri 6=si y

si,ri
i if si = ti,

−ysi,tii otherwise.

Lemma 2.19 ([38]). Fix a game Γ and consider Γ0. If y ∈ ∆(C0
m), then any

strategy π ∈ Mm(γ(y1)) × · · · ×Mm(γ(yn)) ⊂ ∆(C0
M) satisfies u0

M(π, y) = 0. In
particular v(Γ0) = 0, π is good against y, and ∆Π(Γ) is good.

Proof. First we show v(γ(yi)) = 0 for yi ≥ 0. If the minimizer plays τi ∈ ∆(Ci),

u
γ(yi)
M (si, τi) =

∑
ri 6=si

[τi(si)− τi(ri)]ysi,rii

is nonnegative when si maximizes τi(si). Thus choosing τi uniform is a minimax
strategy with zero payoff. This strategy is fully supported, so by the Minimax
Theorem any πi ∈ Mm(γ(yi)) satisfies u

γ(yi)
M (πi, ti) = 0 for ti ∈ Ci.

For π ∈ ∆Π(Γ) ⊂ ∆(C0
M) and y ∈ ∆(C0

m),

u0
M(π, y) =

∑
i

∑
s−i∈C−i

π−i(s−i)
∑

si,ti∈Ci

πi(si) [ui(s)− ui(ti, s−i)] ysi,tii

=
∑
i

∑
s−i∈C−i

π−i(s−i)
∑

si,ti∈Ci

ui(ti, s−i)
[
πi(ti)y

ti,si
i − πi(si)ysi,tii

]
=
∑
i

∑
s−i∈C−i

π−i(s−i)
∑
ti∈Ci

ui(ti, s−i)
∑
si 6=ti

[
πi(ti)y

ti,si
i − πi(si)ysi,tii

]
=
∑
i

∑
s−i∈C−i

π−i(s−i)
∑
ti∈Ci

ui(ti, s−i)u
γ(yi)
M (πi, ti),

where the first equality follows by swapping the roles of si and ti in one of the
summands. Taking πi ∈ Mm(γ(yi)) for i = 1, . . . , n makes every summand
zero.

Theorem 2.20 ([38]). For any game Γ, the value v(Γ0) = 0, so Mm(Γ0) = CE(Γ)
and a correlated equilibrium of Γ exists.
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Proof. Combining Lemma 2.19 and Proposition 2.17, we get Mm(Γ0) = CE(Γ).
Applying Proposition 2.13 to Γ0 with Σ = ∆Π(Γ) gives existence.

This proof merits two remarks. First of all, since conv(∆Π(Γ)) = ∆(Γ),
Proposition 2.13 does not yield any benefit in this case over directly applying the
Minimax Theorem to Γ0. Rather, we have used Proposition 2.13 to illustrate our
proof strategy for Theorem 3.16, in which we use a stronger version of Lemma 2.19
to choose Σ with conv(Σ) ( ∆(Γ).

Second, note that in this case we know that there is a maximin strategy of
Γ0 in the good set ∆Π(Γ): this is just the statement of Nash’s Theorem (see the
following section). However, we cannot conclude this directly from the fact that
∆Π(Γ) is a good set because of the remark after Proposition 2.13.

� 2.1.3 Groups acting on games

The concept of a symmetry of a game extends back at least to Nash’s paper [52].
Although we use the language of group theory to discuss symmetries, it is worth
noting that we do not use any but the most basic theorems from group theory
(e.g., the fact that for any h in a group G, the maps g 7→ gh and g 7→ hg are
bijections from G to G).

All groups will be finite throughout. In any group e will denote the identity
element. The subgroup generated by group elements g1, . . . , gn will be denoted
〈g1, . . . , gn〉. For n ∈ N we will write Zn for the additive group of integers mod
n and Sn for the symmetric group on n letters. We will use cycle notation to
express permutations. For example σ = (1 2 3)(4 5)(6) is shorthand for

σ(1) = 2, σ(2) = 3, σ(3) = 1, σ(4) = 5, σ(5) = 4, and σ(6) = 6.

Definition 2.21. A left action of the group G on the set X is a map
· : G ×X → X written with infix notation which satisfies the identity condition
e · x = x and the associativity condition g · (h · x) = (gh) · x. A right action of
G on X is a map · : X ×G→ X such that x · e = x and (x · g) · h = x · (gh).

We say that an action is linear if it extends to an action on an ambient vector
space V containing X and the map x 7→ x · g on V is linear for all g ∈ G. An
x ∈ X is G-invariant if x · g = x for all g ∈ G. The set of G-invariant elements
is denoted XG.

Proposition 2.22. If G acts linearly on the convex set X then there is a map
aveG : X → XG given by aveG(x) = 1

|G|
∑

g∈G x · g. In particular if X is nonempty
then XG is nonempty.
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Proof. For any x ∈ X, aveG(x) is a convex combination of elements x · g ∈ X,
hence aveG(x) ∈ X. For any h ∈ G we have

aveG(x) · h =

[
1

|G|
∑
g∈G

x · g

]
· h =

1

|G|
∑
g∈G

(x · g) · h =
1

|G|
∑
g∈G

x · (gh)

=
1

|G|
∑
g∈G

x · g = aveG(x),

where we have used linearity, the definition of a group action, and bijectivity of
g 7→ gh.

Example 2.23. Proposition 2.22 can fail without the implicit assumption that
G is finite. For example let Z act on the convex set ∆(Z) by translation. An
element of the fixed point set ∆Z(Z) would be a p : Z→ [0,∞) such that pi = p0

for all i and
∑

i∈Z pi =∞ · p0 = 1. No such p exists. ♦
A left action of G on X induces right actions on many function spaces defined

on X. For example RX is the space of functions X → R. For y ∈ RX we can
define y · g ∈ RX by (y · g)(x) = y(g · x). The condition that this is a right action
of G on RX follows immediately from the fact that we began with a left action of
G on X. For finite X (the case of most interest to us), the same argument shows
that G acts on ∆(X) on the right.

Definition 2.24. We say that a group G acts on the game Γ if the following
conditions hold. The group G acts on the left on the set of players P and

⊔
iCi,

making g · si ∈ Cg·i for si ∈ Ci. Such actions automatically induce a left action
of G on C =

∏
iCi defined by (g · s)g·i = g · si. We require that the utilities be

invariant under the induced action on the right: ug·i ·g = ui, i.e., ug·i(g ·s) = ui(s)
for all i ∈ P , s ∈ C, and g ∈ G. We say that G is a symmetry group of Γ,
call elements of G symmetries of Γ, and call Γ a symmetric game when G
can be inferred from context.

Note that an action of G on a game can be fully specified by its action on
⊔
iCi

or on C. One way to do this is to choose G to be a subgroup of the symmetric
group on

⊔
iCi or C satisfying the above properties.

We will generally view the symmetry group associated to a game as commonly
known by the players, just like the rest of the structure of the game (see Section 4.2
for further discussion of this). Reasoning by symmetry, the players can thus view
player i’s choice between strategies si and ti as the same as player g · i’s choice
between g ·si and g · ti for any g ∈ G. In this way we can transport any assessment
of player i’s action to player g · i and vice versa. For simplicity we will concern
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ourselves mostly with the case when the set of players is homogeneous in the sense
that any two players can be compared in this fashion. This is captured by the
definition of player-transitivity below.

Some games have symmetries g with g · i = i and g · si 6= si for some i ∈ P
and si ∈ Ci. Admitting such symmetries corresponds to considering player i’s
strategies si and g · si as indistinguishable, so he can never favor one of the other.
A game with such symmetries can always be reduced to one without by grouping
together strategies thus identified into meta-strategies in which an element of the
subset is chosen uniformly at random. The result is a game whose symmetry
group is strategy-trivial :

Definition 2.25. The stabilizer subgroup of player i is

Gi := {g ∈ G | g · i = i},

and acts on Ci on the left. We say that the action of G is player trivial if
Gi = G for all i, or in other words if g · i = i for all g and i. The action of G
is player-transitive if for all i, j ∈ P there exists g ∈ G such that g · i = j.
We call the action of G strategy-trivial if g · si = si for all g ∈ Gi (but not
necessarily all g ∈ G) and si ∈ Ci.

If g, h ∈ G satisfy g · i = h · i = j, then h−1g ∈ Gi. Strategy-triviality means
g · si = h · si for all si ∈ Ci, so G identifies Ci with Cj in a canonical way; a similar
computation shows that all such identifications are compatible. Player-transitivity
means that all the strategy spaces are thus identified. Therefore in a game with
a player-transitive strategy-trivial action we often think of all players as having
the same strategy set, in which case G acts by permuting the players but leaving
the labels of the strategies fixed.

Definition 2.26. A standard symmetric game is a game which has a player-
transitive and strategy-trivial symmetry group and which satisfies the additional
conditions that Ci = Cj for all i and j and symmetries act by permuting the roles
of the players: g · (sg·1, . . . , sg·n) = (s1, . . . , sn). We will say such a game has a
standard symmetry group.

We illustrate the notion of group actions on a game using four examples.

Example 2.27. Let Γ be any game and G any group. Define g · s = s for all
g ∈ G and s ∈ C. This defines a player-trivial and strategy-trivial action of G on
Γ called the trivial action. ♦
Example 2.28. A two-player finite game is often called a bimatrix game be-
cause it can be described by two matrices A and B, such that if player one plays
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(u1, u2) H2 T2

H1 (1,−1) (−1, 1)
T1 (−1, 1) (1,−1)

Table 2.1. Matching pennies. Player 1 chooses rows and player 2 chooses columns.

strategy i and player two plays strategy j then their payoffs are Aij and Bij,
respectively. If these matrices are square and B = AT then we call the game a
symmetric bimatrix game. One example is the game of chicken (Table 1.1),
which has A = [ 4 1

5 0 ] = BT .
To put this in the context of group actions defined above, let each player’s

strategy set be C1 = C2 = {1, . . . ,m} indexing the rows and columns of A and
B. Define g · (i, j) = (j, i) for (i, j) ∈ C, so g · (g · (i, j)) = (i, j). The assumption
B = AT is exactly the utility compatibility condition saying that this specifies an
action of G = {e, g} ∼= S2 on this game. Of course, depending on the structure of
A and B there may be other nontrivial symmetries as well. The element g swaps
the players but not the strategy labels, so the action of G is standard. ♦
Example 2.29. Note that the condition that a bimatrix game be symmetric is
not that A = AT and B = BT . Indeed, such a game need not have any nontrivial
symmetries. For example, consider the game defined by A = [ 0 2

2 1 ] and B = [ 3 0
0 1 ].

The unique Nash equilibrium of this game is for player 1 to play the mixed strategy
p = [ 1

4
3
4 ] and player 2 to play q = [ 1

3
2
3 ]. Since the equilibrium is unique, any

symmetry of the game must induce a corresponding symmetry of the equilibrium
by Nash’s Theorem (below). But the four entries of p and q are all distinct, so
the only symmetry of this game is the trivial one. ♦

Example 2.30. Consider the game of matching pennies, whose utilities are shown
in Table 2.1. The labels H and T stand for heads and tails, respectively, and the
subscripts indicate the identities of the players for notational purposes. This a
bimatrix game, but it is not a symmetric bimatrix game in the sense of Exam-
ple 2.28.

Nonetheless this game does have symmetries. The easiest to see is the map
σ which interchanges the roles of heads and tails. Letting g be the permutation
of
⊔
iCi given in cycle notation as g = (H1 T1)(H2 T2), we define g · si = g(si).

Another symmetry is the permutation h = (H1 H2 T1 T2). These satisfy g2 = e
and h2 = g, so G = 〈h〉 ∼= Z4. Note that g acts on P as the identity whereas
h swaps the players, so G acts player-transitively, whereas 〈g〉 ∼= S2 acts player-
trivially. Neither acts strategy-trivially. In fact there is no way to relabel the
strategies to make this a standard symmetric game. ♦
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Example 2.31. Now we consider an example of an n-player game with symmetries.
Throughout this example all arithmetic will be done mod n. We take the set of
players to be P := Zn and all strategy sets to be Ci := Zn. Define

ui(s1, . . . , sn) =

{
1, when si = si−1 + 1

0, otherwise.

Then we can define a symmetry g by g(si) = si + 1, which increments each
player’s strategy by one mod n, but fixes the identities of the players. Clearly g
is a permutation of order n.

We can define another symmetry h which maps a strategy for player i to the
same numbered strategy for player i+ 1. That is to say, h acts on C by cyclically
permuting its arguments. Again, h is a permutation of order n. Note that g and
h commute, so together they generate a symmetry group G ∼= Zn × Zn. Both
〈h〉 ∼= Zn and G act player-transitively, whereas 〈g〉 ∼= Zn acts player-trivially.
Only 〈h〉 acts strategy-trivially. If n is composite and factors as n = kl for k, l > 1
then 〈hk〉 ∼= Zl acts on Γ but neither player-transitively nor player-trivially. ♦

The left actions in the definition of a group action on a game induce linear
right actions on function spaces such as ∆(Γ) ( RC and ∆Π(Γ) ( RtiCi . The
inclusion map RtiCi → RC is G-equivariant (commutes with the action of G), so
with regard to this action it does not matter whether we choose to view ∆Π(Γ)
as a subset of RtiCi or of RC .

Because of the utility compatibility conditions of a group action on a game,
the actions on ∆(Γ) and ∆Π(Γ) restrict to actions on the sets CE(Γ) and NE(Γ),
respectively. This allows us to define the G-invariant subsets ∆G(Γ), ∆Π

G(Γ),
CEG(Γ), and NEG(Γ). The action of the stabilizer subgroup Gi on Ci allows us
to define the G-invariant subset ∆Gi(Ci).

Definition 2.32. When the symmetry group is understood from context, elements
of CEG(Γ) and NEG(Γ) are called symmetric correlated and Nash equilibria,
respectively.

The main theorem about symmetric games is:

Nash’s Theorem ([52]). A symmetric game has a symmetric Nash equilibrium.

Compare this with the following trivial improvement on Theorem 2.20.

Proposition 2.33. A symmetric game has a symmetric correlated equilibrium.

Proof. Apply Proposition 2.22 to CE(Γ), which is nonempty by Theorem 2.20.
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A priori we might not expect correlated equilibria with a greater degree of
symmetry than predicted by Proposition 2.33 to exist. But viewing G-invariant
Nash equilibria as correlated equilibria, we see that we can often guarantee much
more. Suppose we have an n-player game which has identical strategy sets for
all players and which is symmetric under cyclic permutations of the players,
such as the game in Example 2.31. Then Proposition 2.33 yields a correlated
equilibrium π which is invariant under cyclic permutations of the players, but
need not be invariant under other permutations. On the other hand the Nash
equilibrium ρ = (ρ1, . . . , ρn) given by Nash’s Theorem satisfies ρ1 = · · · = ρn
so the corresponding product distribution π(s1, . . . , sn) = ρ1(s1) · · · ρ1(sn) is a
correlated equilibrium which is invariant under arbitrary permutations of the
players. Exchangeable equilibria will be, among other things, correlated equilibria
with all of the extra symmetry of symmetric Nash equilibria.

� 2.2 Exchangeability

Throughout the thesis we will deal with collections of random variables which are
exchangeable, meaning they are in some sense indistinguishable. Such is the case
when the measurements they represent are unlabeled or labeled in a way which
does not relate to their outcome. We will usually assume these are given to us in
some arbitrary order. The defining property of exchangeability, then, is that the
joint distribution does not depend on this order.

One example is a sequence of i.i.d. fair coin flips, or indeed any i.i.d. sequence.
However, this does not exhaust the possibilities. Another example is the case
in which Xi = X1 almost surely for all i. This is exchangeable regardless of
the distribution on X1, but is only independent in the trivial case when X1 is
deterministic.

We begin our formal discussion of exchangeability with finite collections of
random variables. The infinite case will follow. Our random variables will take
values in a set T with 2 ≤ |T | <∞ to avoid trivialities on one end and irrelevant
complexities on the other.

Definition 2.34. For finite n, a probability distribution π ∈ ∆(T n) is said to be
n-exchangeable if it is invariant under permutations of the indices, or in other
words, if it represents a sequence of random variables (X1, . . . , Xn) which is equal
in distribution to (Xσ(1), . . . , Xσ(n)) for all permutations σ on {1, . . . , n}. The set
of n-exchangeable distributions is denoted ∆Sn(T n).

There is a map ∆(T n) → ∆(Tm) for any m ≤ n given by marginalization
onto the first m factors. If the distribution of (X1, . . . , Xn) is invariant under
permutations then clearly so is the distribution of (X1, . . . , Xm), so this restricts
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to a natural map µn→m : ∆Sn(T n) → ∆Sm(Tm). The composition condition
µm→l ◦ µn→m = µn→l for l ≤ m ≤ n is immediate.

The image of the map µn→m for n > m is the set of m-exchangeable dis-
tributions which can be extended to n-exchangeable distributions. Why is this
important? If we are interested in a sequence of m coin flips, can we not just say
the distribution should be an element of ∆Sm(Tm) and be done? The problem is
that even if we are only planning to flip the coin m times or we only care about
the outcome of m flips, we generally believe that it would be physically possible to
flip the coin an arbitrary number of additional times and obtain results consistent
with the first m flips. Our probabilistic model should reflect this.

Definition 2.35. Distributions in the image of µn→m are called n-extendable.

Example 2.36. Let m := |T |. Suppose X1 and X2 have a 2-exchangeable distri-
bution. We will look at one consequence of n-extendability: its implications for
Prob(X1 = X2).

First suppose the distribution of X1 and X2 is (m + 1)-extendable and let
X1, X2, . . . , Xm+1 be an (m + 1)-exchangeable sequence extending these. Since
these random variables all take values in a set of size m, in any realization the
pigeonhole principle implies there will be two which are equal. By exchangeability
Prob(X1 = X2) = Prob(Xi = Xj) for any i 6= j. Since there are

(
m+1

2

)
such pairs,

the union bound gives Prob(X1 = X2) ≥
(
m+1

2

)−1
.

If we merely assume m-exchangeability we do not get any such lower bound.
To see this note that the distribution in which X1, . . . , Xm are assigned distinct
values in T in each of the m! ways with equal probability is m-exchangeable and
yet Prob(X1 = X2) = 0. Similar reasoning shows that the bound above can be
achieved.

As n increases past m + 1 we obtain larger lower bounds on Prob(X1 = X2)
from the assumption of n-extendability. Instead of a combinatorial argument, we
will derive a bound analytically in the n→∞ case below (Example 2.42) using
De Finetti’s Theorem. ♦
Example 2.37. To get a feel for µn→m we will write it down and analyze it in
the simplest case, when T = {0, 1}; for a deeper and more general analysis of such
maps see [18]. A distribution π ∈ ∆Sn(T n) is characterized by the probabilities
π(x1, . . . , xn) for xi ∈ T . By definition of an n-exchangeable distribution, this
probability does not depend on the order of the xi, so in particular there are
some p0, . . . , pn ≥ 0 such that π(x1, . . . , xn) = pk whenever

∑n
i=1 xi = k. Since π

is a probability mass function,
∑n

k=0

(
n
k

)
pk = 1. Conversely, any p1, . . . , pn ≥ 0

satisfying this equation define a distribution π ∈ ∆Sn(T n).
In particular, for any 0 ≤ k ≤ n there is a distribution πn,k ∈ ∆Sn(T n) under
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which
∑n

i=1 Xi = k almost surely, i.e., pk =
(
n
k

)−1
and the other pi are zero. The

set ∆Sn(T n) is a simplex with extreme points πn,0, . . . , πn,n. The map µn→n−1

which drops Xn is linear and satisfies

µn→n−1(πn,k) =
k

n
πn−1,k−1 +

n− k
n

πn−1,k.

With this map in hand we address the question of when an arbitrary m-
exchangeable distribution is n-extendable. Note that πn−1,l is in the image of
µn→n−1 if and only if l = 0 or l = n − 1, so µn→n−1 is onto if and only if n = 2.
For more general 1 ≤ m < n this shows that µn→m is not onto unless m = 1.
For any π ∈ ∆S1(T

1) = ∆(T ) the distribution π⊗n of n i.i.d. copies of π satisfies
µn→1(π⊗n) = π, so µn→1 is onto. The result is that an arbitrary m-exchangeable
distribution cannot necessarily be extended to an n-exchangeable distribution,
except in the trivial case m = 1. ♦

A similar argument shows that the same statements about surjectivity of µ·→·
are true for general finite T ; we will not prove this fact because it is merely
motivational and our results do not logically depend on it. Summing up, we have
a sequence of sets and maps

· · · µ4→3−−−→ ∆S3(T
3)

µ3→2−−−→ ∆S2(T
2)

µ2→1−−−→ ∆S1(T
1) = ∆(T ),

where the maps defined by composition of the ones shown are omitted and only
the rightmost map is onto. Another way of looking at these maps is the following
result whose converse is obvious. It states that if all the m-variable marginals of
some distribution ψ ∈ ∆(T n) equal the distribution π ∈ ∆(Tm) (in which case π
must be symmetric) and we are only interested in ψ through its effect on π, we
may take ψ itself to be symmetric.

Proposition 2.38. Let m ≤ n. If all n!
(n−m)!

of the m-variable marginals of a

distribution in ∆(T n) equal π ∈ ∆(Sm), then π is n-extendable.

Proof. Let K ⊆ ∆(T n) be the set of distributions all whose marginals equal π,
so K is nonempty by assumption. Since marginalization is linear, K is convex.
The linear action of the symmetric group Sn on ∆(T n) restricts to an action on
K, so by Proposition 2.22 there is a distribution in KSn := K ∩∆Sn(T n) whose
marginal is π.

We are interested in m-exchangeable distributions which are n-extendable for
all n ≥ m to model sequences such as coin flips where there is no natural limit
on the number of instances. In a sense we would like to take the intersection
“
⋂

∆Sn(T n),” but this expression is meaningless (or ∅, if you prefer) as written
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because these sets do not all live in the same place. The correct notion for what
we would like to work with is the inverse (also called projective) limit

lim←−∆Sn(T n) :=
{

(π1, π2, . . .) | µn→m(πn) = πm
}
⊂
∞∏
n=1

∆Sn(T n).

By the Kolmogorov Consistency Theorem (Theorem 12.1.2 in [23], for exam-
ple) any element of this limit defines a unique probability measure on T∞ and this
probability measure is invariant under arbitrary permutations of finitely many
indices. Conversely any probability measure on T∞ invariant under such per-
mutations marginalizes to give the corresponding element of the limit. We can
therefore identify this inverse limit with ∆S∞(T∞), defined as follows.

Definition 2.39. Let S∞ denote the group of permutations of N which fix all
but finitely many elements. We write ∆S∞(T∞) to denote the exchangeable
distributions, the subset of ∆(T∞) which is invariant under permutations of
finitely many indices, or in other words joint distributions of sequences of random
variables (X1, X2, . . .) which are invariant under permutations of finitely many
indices.

Again there is a map ∆(T∞)→ ∆(Tm) marginalizing onto the first m factors,
which restricts to a map µ∞→m : ∆S∞(T∞)→ ∆Sm(Tm). We also refer to the dis-
tributions in µ∞→m(∆S∞(T∞), those which extend to an exchangeable distribution,
as exchangeable. Under the identification ∆S∞(T∞) ∼= lim←−∆Sn(T n), we have
µ∞→m : (π1, π2, . . .) 7→ πm. The compatibility conditions µm→l ◦ µn→m = µn→l
mean that the limit lim←−∆Sn(T n) acts like an intersection “

⋂
∆Sn(T n)” in the fol-

lowing sense. Rather than being about the sets of exchangeable distributions, this
statement and proof work mutatis mutandis for any inverse system of nonempty
compact Hausdorff spaces.

Proposition 2.40. A distribution in ∆Sm(Tm) is exchangeable if and only if it
is n-extendable for all n ≥ m. More specifically, for any finite m we have the
nesting

∆Sm(Tm) ⊇ µm+1→m(∆Sm+1(T
m+1)) ⊇ µm+2→m(∆Sm+2(T

m+2)) ⊇ · · · ,

and image of the marginalization map is

∞⋂
n=m

µn→m (∆Sn(T n)) = µ∞→m (∆Sm(T∞)) .
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Proof. Nesting comes from the compatibility of the marginalization maps. As
for the equation, any πm in the right hand side extends to a π = (π1, π2, . . .) ∈
lim←−∆Sn(T n) ∼= ∆S∞(T∞). By definition µn→m(πn) = πm for all n ≥ m, so πm is in
the left hand side. For the converse, suppose πm is in the left hand side. For n ≥ m,
let An be the inverse image of the point {πm} under the map µn→m. By assumption
the An are nonempty compact Hausdorff and they form an inverse system under
the restrictions of the marginalization maps: the compatibility conditions still
hold. The inverse limit of a system of nonempty compact Hausdorff spaces is
nonempty (and compact Hausdorff); this generalizes the statement the a nested
intersection of nonempty compact Hausdorff spaces is nonempty and can be proven
in the same way [24]. Therefore there are πm+1, πm+2, . . . such that µn→l(π

n) = πl

for all n ≥ l ≥ m. Defining πk = µm→k(π
m) for all k < m we obtain an element

(π1, π2, . . .) ∈ lim←−∆Sn(T n), so πm is in the right hand side.

Thus the polyhedral sets µn→m(∆Sn(T n)) approximate µ∞→m(∆S∞(T∞)). This
proposition also yields infinitary versions of some results about n-exchangeable
distributions. For example, combining with Proposition 2.38 yields:

Corollary 2.41. If all of the m-variable marginals of a distribution in ∆(T∞)
equal π ∈ ∆(Tm), then π ∈ µ∞→m(∆S∞(T∞)).

While ∆S∞(T∞) is more concrete than the limit representation, it still does
not give a way to generate all exchangeable distributions. We now introduce
De Finetti’s Theorem, which supplies this. Note that for any π ∈ ∆(T ), the
distribution π⊗∞ of countably many random variables each i.i.d. according to π is
in ∆S∞(T∞) (it is evidently exchangeable and is represented by (π, π⊗2, π⊗3, . . .)
in the inverse limit). Furthermore, the sets ∆Sn(T n) for 1 ≤ n ≤ ∞ are convex,
so any random mixture of such i.i.d. distributions is also in ∆S∞(T∞). That is
to say, there is a natural weakly continuous linear map ∆(∆(T )) → ∆S∞(T∞)
sending δπ to π⊗∞.

De Finetti’s Theorem. The map ∆(∆(T ))→ ∆S∞(T∞) is a bijection.

For a proof see e.g. [64]. The upshot is that we can think of any exchangeable
distribution as arising from a two-stage process. First, a random element Θ ∈ ∆(T )
is secretly selected according to some distribution in ∆(∆(T )). Second, the
sequence of random variables X1, X2, . . . is constructed to be i.i.d. according to
Θ.

If we are trying to build exchangeable distributions, this limits the class of
constructions we have to consider. If we are trying to understand a given exchange-
able distribution, we can think of it having been constructed this way whether it
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was or was not3.
The inverse map ∆S∞(T∞)→ ∆(∆(T )) sends the distribution of the exchange-

able sequence X1, X2, . . . to the distribution of the limiting empirical distributions
limn→∞

1
n

∑n
i=1 δXi . This entire discussion can be generalized to certain classes of

infinite T , but we will not need the details.

Example 2.42 (continues Example 2.36). Suppose the distribution of X1 and X2,
which take values in a set T of cardinality m, is exchangeable (i.e.,∞-extendable),
the natural limiting case of the original example. By De Finetti’s Theorem these
are i.i.d. conditioned on some parameter.

Suppose for now that they are i.i.d. with distribution π ∈ ∆(S) ( [0, 1]m.
Then Prob(X1 = X2) = ‖π‖2

2. Let e ∈ RT denote the all ones vector. By the
Cauchy-Schwarz inequality,

1 = (π • e)2 ≤ ‖π‖2
2 ‖e‖

2
2 = Prob(X1 = X2)m,

so Prob(X1 = X2) ≥ m−1 whenever X1 and X2 are i.i.d. By linearity of expec-
tation this bound also holds when they are conditionally i.i.d., so whenever they

are exchangeable. This improves the lower bound
(
m+1

2

)−1
proven from (m+ 1)-

extendability above by combinatorial means. Since the Cauchy-Schwarz inequality
is tight exactly when applied to parallel vectors, this new bound is tight if and
only if X1 and X2 are i.i.d. uniform over T . ♦

� 2.3 Tensors

If we imagine trying to write the joint distribution of random variables X1, . . . , Xn

all with finite range, ignoring the constraints imposed by paper, the natural thing
to do is to write an n-dimensional array with entry (i1, . . . , in) indicating the
probability Prob(X1 = i1, . . . , Xn = in). Such an object is called a tensor of
type4 n. If n = 1 it is a vector and if n = 2 it is a matrix. We will need very
little theory of tensors in what follows; mostly it is the notation which will be
convenient.

To be slightly more formal, let V1, . . . , Vn be finite-dimensional real vector
spaces with each Vi having a distinguished basis e1

i , . . . , e
di
i . Then the tensor

product V1 ⊗ · · · ⊗ Vn is the real vector space of dimension d1 · · · dn with dis-
tinguished basis ej11 ⊗ · · · ⊗ ejnn for 1 ≤ ji ≤ di. An element of such a tensor
product is a linear combination of such distinguished basis elements and is called
a d1 × · · · × dn tensor.

3The classic example of an exchangeable distribution which does not obviously arise in this
way is the Pólya urn model [58].

4Often the word “order” is used instead, but this would cause confusion later.
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It is called a nonnegative tensor if it is entrywise nonnegative (always with
respect to the distinguished basis), a normalized tensor if its entries sum to
one, and a probability tensor if it is both. Such definitions automatically define
nonnegative vectors, probability matrices, and so on. Tensor products can
be defined without reference to bases (and much more generally), but we will al-
ways be interested in probability tensors and related notions where a distinguished
basis is available, so we will not need a more general definition.

We can extend the range of the tensor product ⊗ multilinearly from sequences
of basis elements to all of V1 × · · · × Vn. If vi =

∑di
j=1 c

ji
i e

ji
i for cjii ∈ R then

v1 ⊗ · · · ⊗ vn :=
∑

cj11 · · · cjnn e
j1
1 ⊗ · · · ⊗ ejnn

where the product of the cjii is taken in R and the sum is over all j with 1 ≤ ji ≤ di.
Such a tensor is said to be simple or rank one. If the vi are all probability vectors
then v1 ⊗ · · · ⊗ vn is a probability tensor: it is exactly the joint distribution of n
independent random variables with the given distributions.

If v and w are viewed as column vectors then the rank 1 matrix vwT can be
identified with v ⊗ w in a natural way. If dimV = m ≥ 2 and dimW = n ≥ 2
then V ⊗W is the space of m× n matrices, so not all elements of V ⊗W are of
the form v ⊗ w: only rank 1 matrices are of this form.

Often we will be interested in sequences of random variables X1, . . . , Xn all
taking values in some fixed finite set. If the distribution of X1 is a probability
vector in V , then the joint distribution of these random variables is naturally an
element of the nth tensor power V ⊗n := V ⊗ · · · ⊗ V . We define the tensor
power of a vector v to be v⊗n := v ⊗ · · · ⊗ v. If v is a probability vector then
this is the joint distribution of n random variables i.i.d. according to v. When
performing the tensor power operation we will not distinguish between row and
column vectors, using whichever is more legible.

Within the tensor power V ⊗n we can define the space Symn(V ) of symmetric
tensors to be those which are invariant under arbitrary permutations of the
indices. For type 2 tensors this reduces to the definition of a symmetric matrix.
For v, w ∈ V some example symmetric tensors in Sym3(V ) are v⊗3 and v⊗v⊗w+
v⊗w⊗v+w⊗v⊗v. Symmetric probability tensors of type n are exactly the same
as joint distributions of n-exchangeable sequences of random variables X1, . . . , Xn

with finite range. The tensor powers of vectors are exactly the symmetric simple
tensors (although symmetric simple tensors may also be written in other ways,
e.g. (2v)⊗ (2v) = (4v)⊗ v).

We will often need to write down tensors of type 3, which we will do by writing
them as matrices and separating the “pages” by a vertical bar. These pages should
be thought of as being stacked like pages of a book rather than being adjacent
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to each other. For example if v =
[
1 1

]
and w =

[
1 0

]
then the examples from

the previous paragraph are[
1 1 1 1
1 1 1 1

]
and

[
3 2 2 1
2 1 1 0

]
.

� 2.4 Complete positivity

For the purposes of this section, T will be a set of finite cardinality m which we
identify with the standard basis vectors in Rm. If we view the distributions in
∆(T n) as m × · · · ×m tensors of type n, those which are exchangeable (can be
extended to distributions in ∆S∞(T∞)) are exactly those which are completely
positive, as defined below. After establishing this link with exchangeability, we
will examine the geometry of the sets of completely positive tensors.

Completely positive tensors are a direct generalization of completely positive
matrices (studied in e.g. [4]) to tensors of higher type. They should not be confused
with the completely positive maps used in quantum mechanics.

Definition 2.43. The set CPn
m of completely positive tensors is defined to

be the convex hull of the set {v⊗n | v ∈ Rm
≥0} of nonnegative symmetric simple

tensors, or equivalently the conic hull or set of finite sums of elements of this set.

The set of nonnegative symmetric simple tensors is positively homogeneous:
c(v⊗n) = ( n

√
c v)⊗n for all c ≥ 0. This gives the equivalence of the definitions.

Example 2.44. Fix n ∈ N and define matrices M,B ∈ Rn×n
≥0 by

Mij = #{common factors of i and j} and Bij =

{
1 if j divides i,

0 otherwise.

Then M is completely positive, because M = BBT :

(BBT )ij =
n∑
k=1

BikBjk = #{k | k divides i and j} = Mij. ♦

Proposition 2.45. The set of normalized completely positive tensors is

conv{v⊗n | v ∈ ∆(T )}.

Proof. One direction is immediate. For the other, let W =
∑k

i=1 v
⊗n
i for some

vi ∈ Rm
≥0 and k ∈ N. Summing the entries of W we get 1 =

∑k
i=1 ‖vi‖

n
1 . Let

λi = ‖vi‖n1 , so these are nonnegative and sum to one. Then vi
‖vi‖1

∈ ∆(T ) and

W =
k∑
i=1

λi

(
vi
‖vi‖1

)⊗n
.
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Proposition 2.46. The image µ∞→n(∆S∞(T∞)) of the marginalization map is
the set of normalized completely positive tensors.

Proof. By De Finetti’s Theorem the image is
{∫

v⊗ndµ(v) | µ ∈ ∆(∆(T ))
}

. The
conclusion follows by applying the following lemma to X := ∆(T ) and f(v) := v⊗n

and then applying Proposition 2.45.

Lemma 2.47. Let f : X → V be a continuous map from a compact Haus-
dorff space into a finite-dimensional vector space. Then

{∫
f dµ | µ ∈ ∆(X)

}
=

conv{f(x) | x ∈ X}.

Proof. The author has given a topological proof (Theorem 2.8 in [69]). Here we
instead follow Karlin’s convex analytic proof (Theorem 3.1.1 in [43]).

Let the two sets mentioned be Y and Z, respectively. If z ∈ Z then z =∑k
i=1 λif(xi) for distinct xi ∈ X and λ a probability vector. Defining the prob-

ability measure µ :=
∑k

i=1 λiδxi ∈ ∆(X) which assigns mass λi to xi, we get
z =

∫
f dµ ∈ Y .

If z 6∈ Z then by compactness of Z there exists separating hyperplane, an
affine functional g : V → R such that g(z) = −1 and g(f(x)) ≥ 0 for all x ∈ X
[5]. For any µ ∈ ∆(X), linearity of integration gives

g

(∫
f dµ

)
=

∫
g(f(x)) dµ(x) ≥

∫
0 dµ(x) = 0,

so z 6∈ Y .

By combining Proposition 2.46 with Proposition 2.40 and removing the nor-
malization conditions, we can construct polyhedral outer approximations to CPn

m.
Later we will see how to construct better approximations in terms of positive
semidefinite matrices.

Proposition 2.48. The set CPn
m is a closed convex cone. It is also semialgebraic

(describable by finite Boolean combinations of polynomial inequalities) and decid-
able in the sense that a Turing machine can determine in finite time whether a
given tensor in (Qm)⊗n is completely positive.

Proof. It is a convex cone by definition. To see that it is closed, suppose that
W1,W2, . . . ∈ CPn

m and Wk → W∞ ∈ (Rm)⊗n. If W∞ = 0 then we are done, so
we may assume Wk 6= 0 for all 1 ≤ k ≤ ∞. Then ‖Wk‖1 → ‖W∞‖1 > 0. Let

Ŵk = Wk

‖Wk‖1
. Then Ŵk is a normalized completely positive tensor for k < ∞.
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By Proposition 2.45 the set of these is the convex hull of a compact set, hence
compact. Therefore the limit Ŵ∞ is also completely positive, so W∞ is as well.

To prove semialgebraicity, we begin with the definition that any completely
positive tensor can be written as a sum of tensor powers of nonnegative vectors.
These all live in the vector space of symmetric m × · · · × m tensors which has
dimension

(
n+m−1
m−1

)
. By Carathéodory’s theorem on convex cones [5] and homo-

geneity of the set of tensor powers of nonnegative vectors, any completely positive
tensor can be written as a sum of at most

(
n+m−1
m−1

)
such tensors. That is to say

W ∈ CP n
m ⇔ ∃v1, v2, . . . , v(n+m−1

m−1 ) ∈ Rm
≥0 s.t. W =

(n+m−1
m−1 )∑
i=1

v⊗ni ,

so membership in CP n
m is expressible by a first-order formula over the reals. By

quantifier elimination this means CPn
m is semialgebraic and decidable [3].

Quantifier elimination procedures are extremely computationally intensive (to
the extent that running them is not even feasible on modern computers for tensors
with more than a handful of entries), but suffice to prove decidability. We will
see in Section 2.5.4 that faster methods are available for the cases when m = 2 or
n = 2 and m ≤ 4, but in general no faster algorithms are known.

The definition of CPn
m is parsimonious in the sense that we have written it as

the convex cone generated by its extreme rays. In particular there are infinitely
many of these, so CPn

m is not polyhedral.

Proposition 2.49. If n ≥ 2 then {v⊗n | v ∈ Rm
≥0, v 6= 0} is the set of extreme

rays of CPn
m.

Proof. Since these tensors generate CPn
m, only they can be extreme; we will show

that they are. To do so we must show that if v⊗n = P +Q where P,Q ∈ CPn
m then

one of P and Q is a nonnegative multiple of v⊗n (in which case the other is as well).
By the definition of CPn

m and induction it suffices to prove that if v⊗n =
∑k

i=1 u
⊗n
i

for nonzero ui ≥ 0 and some k, then one of the ui is a scalar multiple of v. The
nonzero and nonnegativity assumptions on v and the ui automatically imply that
this scalar must be positive.

We first treat the case when n is even. Let • denote the Euclidean inner
product: the sum of the products of corresponding components of the arguments,
be they vectors in Rm or tensors in (Rm)⊗n. Then x⊗n • y⊗n = (x • y)n. For any
x ∈ Rm with v • x = 0, we have

0 = (v • x)n = v⊗n • x⊗n =
k∑
i=1

u⊗ni • x⊗n =
k∑
i=1

(ui • x)n.
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Since n is even, the summands on the right must all be zero: ui • x = 0. Since
this holds for all x ∈ Rm with v • x = 0, each ui must be a scalar multiple of v.

Now we consider the case when n ≥ 2 is odd, so n− 1 ≥ 2 as well. Since v is
nonzero there is some j ≤ m such that vj > 0; let (ui)j denote the jth entry of
ui. Looking at the jth “slice” along one dimension of the supposed decomposition
v⊗n =

∑k
i=1 u

⊗n
i we obtain(

v
1

n−1

j · v
)⊗(n−1)

= vj · v⊗(n−1) =
k∑
i=1

(ui)j · u⊗(n−1)
i =

k∑
i=1

(
(ui)

1
n−1

j · ui
)⊗(n−1)

.

Since n − 1 ≥ 2 is even, the left hand side is an extreme ray of CPn−1
m . The

decomposition on the right then implies that for some i with (ui)j > 0, (ui)
1

n−1

j ·ui
is a scalar multiple of v

1
n−1

j · v. In particular, ui is a multiple of v.

The definition of complete positivity makes it easy to give examples of com-
pletely positive tensors. The following is a simple criterion to rule out some tensors
as not completely positive.

Proposition 2.50. If a tensor W =
∑

j∈Tn cje
j1
1 ⊗ · · ·⊗ ejnn is completely positive

and ci,...,i = 0 then cj = 0 whenever one of the coordinates of j is i.

Proof. Write W =
∑

k v
⊗n
k with vk ∈ Rm

≥0. Then ci,...,i is the sum of the nth powers
of the ith coordinates of the vk, so these coordinates are all zero. If j ∈ T n has
a coordinate equal to i then cj is a sum of products of the coordinates of the vk,
and each of these products includes the ith coordinate of at least one of the vk, so
is zero.

� 2.5 Semidefinite relaxations

� 2.5.1 Conic programming

Conic programming is a widely-applicable framework for optimization problems.
A conic program is specified by a linear map L : V → W between a pair of
finite-dimensional vector spaces, a closed convex cone K ⊆ V , a linear objective
function f : V → R and a right-hand side vector y ∈ W :

minimize
x∈V

f(x)

subject to L(x) = y,

x ∈ K.
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This primal comes associated with a dual in an entirely syntactic way:

maximize
g∈W ∗

g(y)

subject to f − L∗(g) ∈ K∗,

where L∗ : W ∗ → V ∗ is the transpose of L, defined in terms of the dual vector
spaces, and K∗ := {h ∈ V ∗ | h(x) ≥ 0 for all x ∈ K} is the dual cone. Direct
algebraic manipulation shows that if x and g are feasible solutions of the primal
and dual, respectively, then f(x) ≥ g(y), so the optimal value of the primal is
always at least that of the dual. Under favorable conditions such as feasibility of
an interior point of each cone (many others are known [5]) these values will in
fact be equal and attained at some feasible points.

While these programs look different, both amount to optimizing an affine
function over the intersection of an affine space with a closed convex cone. The
apparent difference is because the affine space is defined in the primal in terms of
relations and in the dual in terms of generators. Basic linear algebra allows us to
switch between such representations, so mathematically there is no difference and
we will refer to both as conic programs.

� 2.5.2 Linear, semidefinite, and completely positive programming

Families of conic programs are usually named according to the choice of cone K.
For instance, if K = Rn

≥0 is the nonnegative orthant then (identifying Rn and
(Rn)∗ using the standard inner product) K = K∗ and these problems reduce to

minimize
x∈Rn

fTx

subject to Lx = y,

x ≥ 0,

and
maximize

g∈Rm
yTg

subject to LTg ≤ f,

two standard forms of linear programs (LPs).
For another example let V be the space of symmetric n×n matrices and K the

cone of positive semidefinite matrices (membership in which is denoted X � 0).
Again we can identify V with V ∗ using the standard inner product and we obtain
K = K∗: such cones are called self-dual. The primal and dual problems are now
called semidefinite programs (SDPs):

minimize
X=XT∈Rn×n

f(X)

subject to L(X) = y,

X � 0,

and
maximize

g∈W ∗
g(y)

subject to f − L∗(g) � 0.
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If we wish to have multiple symmetric matrices with positive semidefiniteness
constraints as variables, we can do so by thinking of these as blocks on the diagonal
of a larger matrix. We can use the equality constraints to ensure that the entries
not in these blocks are all zero and recall that a block diagonal matrix is positive
semidefinite if and only if all the blocks are. Thus the problem can still be cast
as a semidefinite program.

An extreme case of this would be to have n positive semidefinite “blocks” all of
size 1×1, which is the same as n nonnegative variables. Therefore linear programs
are a special case of semidefinite programs, and in particular we can use linear
inequality constraints when we write down semidefinite programs.

Linear and semidefinite programming are well-studied problems which can
be solved5 efficiently both in theory and in practice. Many important practi-
cal problems can be modeled exactly or approximately as linear or semidefinite
programs.

Another class of conic programs are the completely positive programs,
where K is the (not self-dual) cone of n× n completely positive matrices. These
can encode a wide class of problems, but unfortunately they are not so easy to
solve. For example, let A • B := Tr(AB) denote the standard inner product on
symmetric n× n matrices, E the matrix of all ones, and suppose we could solve

minimize
X=XT∈Rn×n

A •X

subject to E •X = 1,

X completely positive.

(2.1)

The optimal value would be negative if and only if there were an x ≥ 0 such that
xTAx < 0. The set {A ∈ Rn×n | A = AT and xTAx ≥ 0 for all x ≥ 0} is called
the cone of copositive matrices. So solving this optimization problem tells us
whether A is copositive, a problem which is known to be co-NP-complete [50].
Therefore solving general completely positive programs is NP-hard.

Often it will happen that we can write down a set and observe that it is the
collection of feasible points of a particular conic program or a projection thereof
(e.g. we are only interested in a subset of the variables in the conic program), but

5There are two subtleties here in the case of semidefinite programs. First, there are
polynomially-sized semidefinite programs whose optimal solutions require exponentially many
bits to write down (in binary, say), so we require explicit inner and outer bounds on the solution
set to ensure we can even write down the answer in polynomial time. Second, the optimal
solution may well be irrational and of high algebraic degree, so in practice we must settle for
approximate solutions. Given fixed inner and outer bounds on the feasible set, a solution within
ε > 0 of optimal can be computed in polynomial time in the size of the instance and log 1

ε using
the ellipsoid method.
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we will have no particular objective function in mind to optimize. In this case we
will nonetheless say that the set is or is described by the conic program. For
example, the set of correlated equilibria of a game is a linear program in this sense.
We can find a correlated equilibrium by adding to these an arbitrary objective
function and solving the linear program, we can plot projections of the set of
correlated equilibria by solving a family of linear programs with varying objective,
and generally speaking we can understand much about sets of correlated equilibria
via the theory of linear programming.

The set of exchangeable equilibria of a game, the main topic of this thesis, is a
completely positive program in this sense. As such we do not expect that we will
be able to test membership or optimize over the set of these in an efficient way,
and it is important to be able to approximate this set in a more tractable way.
To do so we apply the standard technique of approximating the cone involved (in
this case the completely positive tensors) by a simpler cone in such a way that the
resulting problem can easily be transformed into a semidefinite program. This is
the content of Section 2.5.4, which builds on the following.

� 2.5.3 Polynomial nonnegativity and sums of squares

For this section x = (x1, . . . , xm) will be a vector of indeterminates and R[x]n will
denote the vector space of homogeneous polynomials in m variables of total degree
n with coefficients in R (along with the zero polynomial). Many problems can
be reduced to the question of whether a polynomial in this set takes nonnegative
values for all x ∈ Rm. We define the set of such nonnegative (homogeneous)
polynomials as Ψm,2n := {f ∈ R[x]2n | f(x) ≥ 0 for all x ∈ Rm}. Note that by
homogeneity nonzero polynomials can only be nonnegative if their degree is even.
This set is a closed convex cone, but testing membership in it is NP-hard: as we
will soon see, testing copositivity reduces to polynomial nonnegativity.

A simple sufficient condition for a polynomial to be nonnegative is that it be
a sum of squares of polynomials:

Definition 2.51. We say that a polynomial f ∈ R[x]2n is a sum of squares if
there exist g1, . . . , gk ∈ R[x]n such that f ≡

∑k
i=1 g

2
i . The set of such polynomials

is denoted Σm,2n.

At any x ∈ Rm, we have f(x) =
∑k

i=1 [gi(x)]2 ≥ 0 since squares in R are non-
negative, so Σm,2n ⊆ Ψm,2n. The set Σm,2n is also a convex cone, but membership
in it is easier to test: it can be reduced to a semidefinite program.

Fix m and n and let µ(x) be a vector of length l = dimR[x]n =
(
n+m−1
m−1

)
listing all monomials in R[x]n. Then a polynomial g ∈ R[x]n is the same as an
inner product µ(x)T z for some z ∈ Rl. The square of this polynomial is g2 =
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µ(x)T zzTµ(x). A sum of squares in Σm,2n therefore takes the form µ(x)TZµ(x)

where Z =
∑k

i=1 ziz
T
i . Such a Z is positive semidefinite, and conversely any

positive semidefinite Z can be written as Z =
∑k

i=1 ziz
T
i for some k and some

zi ∈ Rl.
Note that H : Z 7→ µ(x)TZµ(x) is a linear map Rl×l → R[x]2n. We have shown

that Σm,2n = {H(Z) | Z � 0}. Suppose we would like to constrain the decision
variables in a conic program so that a polynomial f ∈ R[x]2n whose coefficients
are affine in the decision variables (perhaps constant, perhaps not) is a sum of
squares. Then we can introduce the new symmetric matrix variable Z � 0 and
write f = H(Z), a collection of linear equality constraints on the coefficients.

That is to say, we can express sum of squares conditions on polynomials in a
semidefinite program. In this way we can easily test whether a polynomial is a
sum of squares, optimize over families of sums of squares, and much more [56].
We say that the sums of squares are an (inner) semidefinite relaxation6 or
approximation of the nonnegative polynomials.

How close is Σm,2n to Ψm,2n? It is a classic result of Hilbert that these sets are
equal (and the relaxation is said to be exact) in precisely three cases: (1) m = 2,
(2) 2n = 2, or (3) m = 3 and 2n = 4 (see Reznick [61] for a modern treatment).
The third case is difficult to prove and the second is essentially the fact that
symmetric positive semidefinite matrices admit square roots. The first is a simple
exercise: dehomogenization yields a univariate polynomial which factors over C as
a product of linear terms. These linear terms group into complex conjugate pairs,
which multiply to yield a sum of squares, and real roots, which must each have
even multiplicity by the nonnegativity assumption. The product of two sums of
squares is again a sum of squares, and homogenizing completes the proof.

While Hilbert showed that these were the only cases where equality holds, his
counterexamples in the other cases were not particularly explicit. Motzkin has
given the simple example M(x, y, z) = x4y2 + x2y4− 3x2y2z2 + z6 of a polynomial
of degree 6 in three variables which is not a sum of squares. The fact that M has
no odd powers of any variables will be exploited in the next section.

If in a particular case Σm,2n is not a good enough approximation to Ψm,2n,
there are tighter approximations available. For instance, if f is a sum of squares
then so is (

∑
x2
i )
rf for r ∈ N, but the converse is not necessarily true. Therefore

we obtain a better approximation by asking that (
∑
x2
i )
rf be a sum of squares for

some fixed r, a condition which we can again write as a semidefinite program. As
r increases we obtain a nested sequence of inner approximations to Ψm,2n which
converge in the sense that the closure of their union is Ψm,2n [61].

6The term “relaxation” is used for both inner and outer approximations even though logically
it makes more sense for outer approximations.
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� 2.5.4 Double nonnegativity

We can use this master example of relaxing Ψm,2n to Σm,2n to construct SDP
relaxations of other cones by expressing them in terms of Ψm,2n and replacing that
with Σm,2n, or one of the tighter relaxations if we wish. In this section we will
illustrate this technique by deriving an outer SDP relaxation for CPn

m called the
cone DNNn

m of doubly nonnegative tensors. The name comes from the well-studied
matrix case n = 2.

It will be clear from the final result that DNNn
m is an SDP relaxation of CPn

m,
so we could avoid going through the derivation by pulling it out of thin air and
checking that it contains CPn

m. The point of deriving it is to illustrate that this
is a general systematic procedure which we could use to derive tighter relaxations
as well.

Fix m,n ≥ 2 and endow the space of Symn(Rm) of symmetric tensors with the
Euclidean inner product A • B =

∑
j∈{1,...,m}n AjBj. Using this we can identify

this vector space with its dual and view CPn
m and its dual cone

(CPn
m)∗ = {A ∈ Symn(Rm) | A •B ≥ 0 for all B ∈ CPn

m},

the set of copositive tensors, as subsets of Symn(Rm). We can simplify this
definition slightly by recalling that CPn

m is the collection of sums of nonnegative
symmetric simple tensors. A tensor A has a nonnegative inner product with all
such sums if and only if it has a nonnegative inner product with all such simple
tensors. Furthermore

A • x⊗n =
∑

j∈{1,...,m}n
Ajxj1 · · ·xjn ,

so

(CPn
m)∗ =

A ∈ Symn(Rm)

∣∣∣∣∣ ∑
j∈{1,...,m}n

Ajxj1 · · · xjn ≥ 0 for all x ≥ 0

 .

The copositive tensors are those which make a certain polynomial in variables
x1, . . . , xm nonnegative whenever the variables are nonnegative. Since the nonneg-
ative reals are exactly the squares, a symmetric tensor A is copositive if and only
if

A •
[
x2

1, . . . , x
2
m

]⊗n
:=

∑
j∈{1,...,m}n

Ajx
2
j1
· · ·x2

jn ≥ 0

for all x ∈ Rm. In other words, if we define a linear map L : Symn(Rm) →
R[x1, . . . , xm]2n by the left hand side of this inequality, then (CPn

m)∗ is the inverse
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image of Ψm,2n under L. Replacing the nonnegative polynomials with sums of
squares gives us an inner SDP relaxation L−1(Σm,2n) ⊆ L−1(Ψm,2n) = (CPn

m)∗.
Taking the dual of convex cones reverses inclusions and every closed convex

cone is its own double dual [5]. Therefore we get an outer relaxation for the
completely positive tensors: CPn

m = (CPn
m)∗∗ ⊆ (L−1(Σm,2n))∗. The name for the

relaxation comes from the n = 2 case, Example 2.54 below.

Definition 2.52. The set of doubly nonnegative tensors is

DNNn
m := (L−1(Σm,2n))∗.

We now use the technique of symmetry reduction to give a more explicit
characterization of DNNn

m. As in the previous section, we can define µ(x) to
be a vector of all monomials in R[x1, . . . , xm]n. We refer to α = (α1, . . . , αm)
as the multi-degree of the monomial xα1

1 · · ·xαmm . We will say that two such
multi-degrees α and β (or the corresponding monomials) have the same parity
if αi = βi mod 2 for all i. We will assume that the monomials are listed in µ(x)
in an order such that all monomials having the same parity are in a continuous
segment. There will be at most 2m−1 such blocks: n =

∑
i αi means that the

parities are not independent.
Suppose L(A) ∈ Σm,2n. Then we can write L(A) = µ(x)TZµ(x) for some

Z � 0. Observe that for any A, the polynomial L(A) only has monomials in
which all exponents are of even degree in all the variables. Therefore we in fact
have

L(A) = µ(±x1, . . . ,±xm)TZµ(±x1, . . . ,±xm)

for any choice of signs (same on both sides). For any such sign choice there
is a diagonal matrix D with ±1 on the diagonal such that µ(±x1, . . . ,±xm) =
Dµ(x1, . . . , xm), so L(A) = µ(x)TDTZDµ(x) and DTZD � 0 (conjugation pre-
serves semidefiniteness).

This gives an action of the finite group (S2)m (the product of m copies of S2)
on the convex set Z := {Z � 0 | L(A) = µ(x)TZµ(x)}. Viewing Z as a matrix
indexed by the monomials in µ(x), the effect of flipping the sign of xi is to flip
the sign of Zα,β if and only if αi 6= βi mod 2.

Since we have a finite group acting linearly on a convex set Z, Proposition 2.22
gives a Z ∈ Z which is fixed by this action. Such a Z has Zα,β = 0 whenever α
and β do not have the same parity. The way the monomials in µ(x) were ordered,
the means that Z is block diagonal with blocks corresponding to the segments of
µ(x). From now on when we say a matrix is block diagonal, this is what we will
mean. Letting H(Z) = µ(x)TZµ(x) as in the previous section, we have shown
that

L−1(Σm,2n) = {A ∈ Symn(Rm) | ∃ block diagonal Z � 0 with H(Z) = L(A)}.
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To an index j ∈ {1, . . . ,m}n we can associate a multi-degree α = (α1, . . . , αm)
by αi = #{k : jk = i}, the number of times i appears listed in j. Doing so
generates all multi-degrees of monomials in µ(x). The symmetry of a tensor A ∈
Symn(Rm) means that two indices j, j′ corresponding to the same α must satsify
Aj = Aj′ . The map L sends a symmetric tensor A to the polynomial for which the
coefficient of x2α1

1 · · · x2αm
m is a fixed multiple of Aj for any index j corresponding

to multi-degree α. The multiplier is the number of indices corresponding to this
multi-degree.

Therefore L is injective and has image equal to the subspace V of R[x]2n for
which all powers of all variables are even. If we view this space as its range, L is
invertible. We will denote its inverse by R : V → Symn(Rm) since L−1 has been
reserved for the inverse image. Let W denote the space of block diagonal matrices
Z. The restriction H|W maps W to V , so

L−1(Σm,2n) = {R(H|W (Z)) | Z � 0 is block diagonal}.

Then

DNNn
m = (L−1(Σm,2n))∗ = {B ∈ Symn(Rm) | A •B ≥ 0 for all A ∈ L−1(Σm,2n)}

= {B ∈ Symn(Rm) | R(H|W (Z)) •B ≥ 0 for all block diagonal Z � 0}
= {B ∈ Symn(Rm) | Z • H|∗W (R∗(B)) ≥ 0 for all block diagonal Z � 0},

where H|∗W and R∗ are adjoints and • is the standard inner product. By definition
H|∗W (R∗(B)) is in W , i.e. it is block diagonal. The tensor B is doubly nonnegative
if and only if each block of H|∗W (R∗(B)) makes a nonnegative inner product
with all positive semidefinite matrices. Since the cone of positive semidefinite
matrices is self-dual, this happens if and only if each block of H|∗W (R∗(B)) is
itself positive semidefinite, which in turn happens if and only if H|∗W (R∗(B)) is
positive semidefinite. If we define T = H|∗W ◦ R∗ we can write out T explicitly
in coordinates (being careful about which inner products were used to define the
adjoints), which proves the following.

Theorem 2.53. Fix m and n and define the map T from Symn(Rm) to block
diagonal matrices indexed by pairs of multi-degrees of monomials in R[x1, . . . , xm]n

by

[T (B)]αβ =

{
Bj, j has associated multi-degree α+β

2
∈ Zm≥0,

0, α and β have different parity so α+β
2
6∈ Zm≥0.

Then

DNNn
m = {B ∈ Symn(Rm) | T (B) � 0}

= {B ∈ Symn(Rm) | each block of T (B) is positive semidefinite}.
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If α is the multi-degree associated with index j, then [T (B)]αα = Bj. In
particular positive semidefiniteness of T (B) means that the diagonal entries are
nonnegative, so B is a nonnegative tensor. This is a good sanity check, because
nonnegativity is a baseline requirement we would expect from a convex relaxation
of CPn

m, all of whose elements are nonnegative. It is straightforward to show
directly that for x ∈ Rm

≥0 we have T (x⊗n) � 0, so by convexity CPn
m ⊆ DNNn

m as
expected. We now look at several values of m and n explicitly, focusing on the
question of exactness: when does CPn

m = DNNn
m?

Example 2.54. The case n = 2 is that of symmetric matrices. Categorizing
the quadratic monomials in m variables according to the parity of their multi-
degrees, we get one size m group x2

1, . . . , x
2
m of all the squares and then

(
m
2

)
size

one groups each consisting of xixj for some i 6= j. Therefore for a matrix B the

matrix T (B) ∈ R(m+1
2 )×(m+1

2 ) has its upper left m×m block equal to B, while its
remaining diagonal entries list the off-diagonal entries of B and the other elements
are zero. Thus B is doubly nonnegative if and only if B � 0 and the off-diagonal
entries of B are nonnegative. Since B � 0 implies that the diagonal entries of B
are nonnegative, this agrees with the standard:

Definition 2.55. A matrix is doubly nonnegative if it is symmetric, element-
wise nonnegative, and positive semidefinite.

This case is the reason for the name doubly nonnegative. Exactness of the
relaxation has been well-studied in the matrix case, where it is known that CP2

m =
DNN2

m if and only if m ≤ 4. For a discussion of the history of this result and a
geometric proof, see [33]. The case m = 2 is easy to show by hand, the others are
successively more difficult, and there is an explicit counterexample known in the
case m = 5. For our purposes, the utility of this result is that it provides a way
to decide complete positivity easily for 4× 4 and smaller matrices. ♦
Example 2.56. Next we consider the case m = 2 of 2×· · ·×2 symmetric tensors
of type n. We formed the relaxation DNNn

m of CPn
m by relaxing Ψm,2n to Σm,2n,

but in the case m = 2 we have also proven Ψ2,2n = Σ2,2n, so we have not actually
relaxed anything: double nonnegativity and complete positivity are equivalent in
this case.

A tensor in Symn(R2) is indexed by j ∈ {0, 1}n and two entries are forced to
be equal by symmetry if and only if their indices have the same number of ones.
Thus a tensor B can be described by n+1 numbers b0, . . . , bn, where bi is the value
of all Bj such that

∑
jk = i. The bivariate monomials of degree n are of the form

xi1x
n−i
2 and so split into two categories by parity of i. The number of monomials

of each parity in turn depends on the parity of n, so the conditions split into two
cases. If n = 2l + 1 is odd, then B is doubly nonnegative / completely positive if
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and only if
b0 b1 · · · bl
b1 b2 · · · bl+1

...
...

. . .
...

bl bl+1 · · · b2l

 � 0 and


b1 b2 · · · bl+1

b2 b3 · · · bl+2

...
...

. . .
...

bl+1 bl+2 · · · b2l+1

 � 0.

If n = 2l is even, then B is doubly nonnegative / completely positive if and only
if 

b0 b1 · · · bl
b1 b2 · · · bl+1

...
...

. . .
...

bl bl+1 · · · b2l

 � 0 and


b1 b2 · · · bl
b2 b3 · · · bl+1

...
...

. . .
...

bl bl+1 · · · b2l−1

 � 0.

♦
Example 2.57. A 3× 3× 3 symmetric tensor B has 27 entries but the symmetry
requirement leaves only 10 free parameters. We can view such a tensor as three
3× 3 matrices B1, B2, B3 stacked above each other. The triviariate monomials of
degree 3 split into four groups based on parity: x1 · (x2

1, x
2
2, x

2
3), x2 · (x2

1, x
2
2, x

2
3),

x3 · (x2
1, x

2
2, x

2
3), and the singleton x1x2x3. Therefore T (B) is block diagonal with

three 3× 3 blocks B1, B2, and B3 and one 1× 1 block B123 (the only entry of B
not on the diagonal of any of the matrices Bi). Therefore B ∈ DNN3

3 if and only
if the three “slices” Bi are positive semidefinite and B123 ≥ 0.

Define the tensor

A =

 0 1/3 0 1/3 1/3 −1/2 0 −1/2 0
1/3 1/3 −1/2 1/3 0 0 −1/2 0 0
0 −1/2 0 −1/2 0 0 0 0 1

 ∈ Sym3(R3).

Then L(A) = M , the Motzkin polynomial in Ψ3,6 \ Σ3,6. That means A ∈
(CP3

3)∗ \ L−1(Σ3,6). Dualizing, we get CP3
3 ( DNN3

3: complete positivity and
double nonnegativity disagree for 3× 3× 3 tensors. By solving the semidefinite
program with constraints B ∈ DNN3

3 and A•B = −6 (any negative number would
do) we can find an explicit tensor

B =

 639 30 80 30 30 32 80 32 40
30 30 32 30 639 80 32 80 40
80 32 40 32 80 40 40 40 30

 ∈ DNN3
3 \CP3

3 . ♦

Since the image of L is the space of polynomials in R[x1, . . . , xm]2n all of whose
terms have even degree in all the variables, L−1(Σm,2n) ( L−1(Ψm,2n) if and only
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if there is a p ∈ Ψm,2n \ Σm,2n whose terms have even degree in all the variables.
The Motzkin polynomial fulfills this role for m = n = 3. We can use this to derive
such a p whenever m,n ≥ 3.

A polynomial p ∈ R[x1, . . . , xm]2n is nonnegative if and only it is nonnegative
when viewed as a polynomial in R[x1, . . . , xm+1]2n. By Newton polytope consid-
erations, such a p is in Σm,2n if and only if it is in Σm+1,2n. Adding a variable in
this way does not change the fact that all terms of p have even degree in all vari-
ables. Therefore L−1(Σm,2n) ( L−1(Ψm,2n) implies L−1(Σm+1,2n) ( L−1(Ψm+1,2n).
The same statements apply to p and x2

1 · p(x1, . . . , xm) ∈ R[x1, . . . , xm]2n+2, so
L−1(Σm,2n) ( L−1(Ψm,2n) implies L−1(Σm,2n+2) ( L−1(Ψm,2n+2).

Combining these two procedures and repeatedly applying them to the Motzkin
polynomial, we get L−1(Σm,2n) ( L−1(Ψm,2n) for all m,n ≥ 3. Taking dual cones,
we therefore have CPn

m ( DNNn
m for all m,n ≥ 3. We summarize this and the

results proven or cited above as:

Theorem 2.58. For all m and n, CPn
m ⊆ DNNn

m. Equality holds if and only if
m = 2 or n = 2 and m ≤ 4.



Chapter 3

Symmetric Exchangeable Equilibria

In this chapter we define exchangeable equilibria of symmetric games and establish
their basic properties. For now we will view these purely formally. We defer
discussion of interpretations of exchangeable equilibria to the following chapter.

We first define a class of generalized exchangeable distributions, which are
closely connected with exchangeable distributions in the usual sense when the
symmetry group G of the game is standard (acts by permuting players transi-
tively but does not permute strategies of any individual player). We then define
exchangeable equilibria to be correlated equilibria which are exchangeable in this
general sense and examine the geometric content of this definition. Next we
present a series of examples to illustrate the theory.

In the final section we restrict to the symmetric bimatrix case and show how
symmetric correlated equilibria, exchangeable equilibria, and the convex hull
of symmetric Nash equilibria all arise naturally as successively stronger convex
relaxations of a well-known system of quadratic inequalities defining symmetric
Nash equilibria. The exchangeable equilibria and the convex hull of symmetric
Nash equilibria are both characterized in terms of completely positive matrices.
A reader preferring a more concrete approach may prefer to read the final section
first as motivation for the general case; indeed, that order better reflects the
sequence in which the concepts were originally developed.

� 3.1 Generalized exchangeable distributions

When Γ is a standard symmetric game with G as its symmetry group, ∆Π
G(Γ)

is the set of i.i.d. distributions in n random variables taking values in C1. By
De Finetti’s Theorem and Proposition 2.46, the distributions in conv(∆Π

G(Γ)) are
exactly those which can be extended to exchangeable distributions in infinitely
many random variables. The following definition lacks this elegant interpretation
when G is not standard, but will allow us to develop the theory of exchangeable
equilibria with minimal assumptions on the action of G.

63



64 CHAPTER 3. SYMMETRIC EXCHANGEABLE EQUILIBRIA

Definition 3.1. Viewing ∆Π
G(Γ) as a nonconvex subset of the convex set ∆G(Γ),

the set of (generalized) exchangeable probability distributions is

∆X
G (Γ) := conv

(
∆Π
G(Γ)

)
⊆ ∆G(Γ).

Often the word generalized will be clear from context and will be omitted.
Note that the symbol ∆X

G does not refer to the G-invariant elements of some set
∆X ; rather, it is an abuse of notation chosen to fit with the symbols ∆G and ∆Π

G.
To get a feel for these sets, we will look at them in the context of some examples.

Example 3.2 (continues Example 2.27). When G acts trivially we can ignore it
entirely. Not all distributions are independent so ∆Π

G(Γ) ( ∆G(Γ) = ∆(Γ), but
∆X
G (Γ) = ∆G(Γ). By definition one inclusion is automatic. To prove the reverse

note that for any s ∈ C, δs = δs1 · · · δsn ∈ ∆Π(Γ) = ∆Π
G(Γ). But for any π ∈ ∆(Γ)

we can write π =
∑

s∈C π(s)δs, and such a convex combination of the δs is in
∆X
G (Γ) by definition. ♦

Example 3.3 (continues Example 2.28). A symmetric bimatrix game is standard,
so ∆X

G is the set of normalized completely positive matrices (Proposition 2.45). ♦
Example 3.4 (continues Example 2.30). In matching pennies the map on C
induced by the symmetry h is the cyclic permutation

((H1, H2) (T1, H2) (T1, T2) (H1, T2)).

In particular, a G-invariant probability distribution must assign equal probability
to all four outcomes in C. There is only one such distribution and it is independent,
so ∆Π

G(Γ) = ∆X
G (Γ) = ∆G(Γ). ♦

Example 3.5 (continues Example 2.31). Recall that in this game there are n
players and the Ci are the same for all i. The group G permutes the players cycli-
cally. Therefore the elements of ∆Π

G(Γ) are invariant under arbitrary permutations
of the players, hence so are the elements of ∆X

G (Γ). (The converse statement is
false; that is to say, there are probability distributions over C which are invariant
under arbitrary permutations of the players but are not in ∆X

G (Γ).) On the other
hand, an element of ∆G(Γ) need only be invariant under cyclic permutations of
the players. ♦

The basic properties of ∆X
G (Γ) are summarized in the following propositions.

Proposition 3.6. The set ∆X
G (Γ) is a compact convex semialgebraic set with

∆Π
G(Γ) ⊆ ∆X

G (Γ) ⊆ ∆G(Γ).

If the action of G is player-transitive then the set of extreme points of ∆X
G (Γ) is

∆Π
G(Γ). If G is standard then ∆X

G (Γ) is the set of normalized completely positive
tensors in CPn

m.
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Proof. The inclusions are immediate. The set ∆Π(Γ) viewed as a set of n-tuples,
being a product of simplices, is compact. To view ∆Π(Γ) as a set of product
distributions in ∆(Γ) we take the image of the set of tuples under the continuous
map (σ1, . . . , σn) 7→ σ1 ⊗ · · · ⊗ σn, so this is also compact. The action of G on
this set is continuous, thus the fixed point subset ∆Π

G(Γ) is closed, hence compact.
The convex hull of a compact set is compact [5]. Semialgebraicity follows from
Carathéodory’s theorem and quantifier elimination just as in Proposition 2.48.

By definition an element of ∆X
G (Γ) can be written as a convex combination of

elements of ∆Π
G(Γ), so only elements of the latter set can be extreme. If the action

of G is player-transitive, the elements of ∆Π
G(Γ) are nonnegative symmetric simple

tensors. Therefore they are extreme rays of CPn
m by Proposition 2.49. But ∆X

G (Γ)
is a convex subset of CPn

m all of whose elements are normalized. In particular
this means ∆X

G (Γ) cannot contain two elements which are scalar multiples of each
other, so a point in ∆Π

G(Γ) which is an extreme ray of CPn
m is an extreme point

of ∆X
G (Γ).

The final claim is by definition of ∆Π
G(Γ) for a standard game and Proposi-

tion 2.45.

Example 3.2 shows how the above can fail without the assumption on G. In
that example ∆X

G (Γ) = ∆G(Γ) only has finitely many extreme points.

Proposition 3.7. The linear extension of the inclusion map ∆Π
G(Γ)→ ∆G(Γ) is

weakly continuous and maps ∆(∆Π
G(Γ)) onto ∆X

G (Γ).

Proof. Apply Lemma 2.47 with X = ∆Π
G(Γ) and f : ∆Π

G → ∆G(Γ) the inclusion
map.

� 3.2 Definition and properties

We are now ready to define exchangeable equilibria.

Definition 3.8. The set of (symmetric) exchangeable equilibria of a game
Γ with symmetry group G is

XEG(Γ) := CE(Γ) ∩∆X
G (Γ).

Note that similarly to ∆X
G , the symbol XEG(Γ) is chosen to match NEG(Γ) and

CEG(Γ); it does not denoteG-invariant elements of some set XE(Γ) of “asymmetric
exchangeable equilibria.” We leave such an asymmetric notion undefined until
Chapter 6. Until then we are free to drop the word symmetric in our discussion.

For now we observe that if the action of G is trivial, Example 3.2 above shows
that ∆X

G (Γ) = ∆(Γ), so XEG(Γ) = CE(Γ). In particular this shows that we
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would not get a novel concept if we tried to define the asymmetric exchangeable
equilibria as XEG(Γ) for a trivial action of G. To get the correct notion we will
need some additional insight from studying symmetric exchangeable equilibria in
detail.

Intersecting everything in Proposition 3.6 with CE(Γ) yields the following.

Proposition 3.9. The set XEG(Γ) is a compact convex semialgebraic set with
conv(NEG(Γ)) ⊆ XEG(Γ) ⊆ CEG(Γ). If the action of G is player-transitive then
elements of NEG(Γ) are (among the) extreme points of XEG(Γ).

In the following section we will see examples in which all of these containments
are strict. There is one case in which the first containment cannot be strict:

Theorem 3.10. If Γ is a symmetric bimatrix game with m = 2 strategies per
player then conv(NES2(Γ)) = XES2(Γ).

Proof. Let A = [ x y
z w ] be the payoff matrix for the row player, b := x − z and

c := w − y. An exchangeable equilibrium W = [ p qq r ] must satisfy the correlated
equilibrium constraints and complete positivity, which is the same as double
nonnegativity as shown in Example 2.56. Altogether the conditions are:

pr ≥ q2 (semidefiniteness),
p, q, r ≥ 0 (nonnegativity),
bp ≥ cq (incentive constraint #1),
cr ≥ bq (incentive constraint #2), and

p+ 2q + r = 1 (normalization).

Let us show that any extreme point W of XES2(Γ) is in conv(NES2(Γ)). If
pr = q2 then rank(W ) = 1, so it is a Nash equilibrium. If q = 0 then we can write
W = p [ 1 0

0 0 ] + r [ 0 0
0 1 ] as a convex combination of symmetric pure Nash equilibria.

The remaining case is that semidefiniteness and nonnegativity are not tight.
Extremality requires that the remaining three linear conditions on p, q, and r be
tight and linearly independent. Multiplying the tight incentive constraints yields
(bc)pr = (bc)q2. But pr > q2, so b = 0 or c = 0. Then bp = cq and p, q > 0 give
b = c = 0. The incentive constraints are trivial, hence linearly dependent.

By Nash’s Theorem symmetric games always admit symmetric Nash equilibria.
Many symmetric games also have asymmetric Nash equilibria. In the strategy-
trivial case, such games also admit symmetric correlated equilibria which are
not exchangeable, so the second containment in Proposition 3.9 is strict. In
Examples 3.18 and 3.19 below we will see some ways in which the assumptions of
this theorem cannot be weakened.
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Theorem 3.11. If a game Γ with strategy-trivial symmetry group G has NEG(Γ) (
NE(Γ) then XEG(Γ) ( CEG(Γ). In particular, if π ∈ NE(Γ) \ NEG(Γ) then
aveG(π) ∈ CEG(Γ) \ XEG(Γ).

Proof. Let π = x1 ⊗ · · · ⊗ xn ∈ NE(Γ) and ψ = aveG(π). The action of G maps
CE(Γ) to itself, so ψ ∈ CEG(Γ). We will prove the contrapositive of the theorem
statement in the form: if ψ ∈ ∆X

G (Γ) then π ∈ ∆Π
G(Γ). We first do this in the case

that G is standard (i.e. also player-transitive) and then generalize. Standardness
means ∆X

G (Γ) ⊆ ∆Sn(Cn
1 ), so ψ is Sn-invariant and completely positive.

Standardness also implies that the action of G factors through the map G→ Sn
induced by the action of G on the players. Modding out by the kernel of this action,
we can take G to be a subgroup of Sn without changing any of the equilibrium
sets in the theorem statement. For any σ ∈ Sn, the distribution ψ = ψ · σ is
the average of π over the right coset Gσ. Averaging over all cosets we obtain
ψ = aveSn(π).

We now show that for any r ∈ Rm, r • x1 = · · · = r • xn. For α ∈ R, define
rα := r − αe. Define a linear functional Lrα on (Rm)⊗n by Lrα(W ) := W • (rα ⊗
rα ⊗ e⊗(n−2)). Then for any v ∈ Rm

≥0, we have Lrα(v⊗n) = (rα • v)2(e • v)n−2 ≥ 0.
By linearity, Lrα is nonnegative on CPn

m.
By assumption on ψ:

0 ≤ Lrα(ψ) = Lrα

(
1

n!

∑
σ∈Sn

π · σ−1

)
=

1

n!

∑
σ∈Sn

Lrα(xσ(1) ⊗ · · · ⊗ xσ(n))

=
1

n!

∑
σ∈Sn

(rα • xσ(1))(rα • xσ(2))(e • xσ(3)) · · · (e • xσ(n))

=
1

n!

∑
σ∈Sn

(rα • xσ(1))(rα • xσ(2)) =
(n− 2)!

n!

n∑
i=1

∑
j 6=i

(rα • xi)(rα • xj)

=
1

n(n− 1)

n∑
i=1

∑
j 6=i

(r • xi − α)(r • xj − α).

Let pi := r • xi. We have shown
∑n

i=1

∑
j 6=i(pi − α)(pj − α) ≥ 0 for all α ∈ R.

Clearly this is the case if all the pi are equal. We now show that this is the only case
in which this inequality can hold for all α. Let a = n(n− 1), b = −2(n− 1)

∑
i pi

and c = (
∑

i pi)
2 −

∑
i p

2
i be the coefficients of this quadratic polynomial in α.

Then aα2 + bα + c is nonnegative for all α, so its minimum value 4ac−b2
4a

is also
nonnegative. Rearranging terms in the inequality b2 ≤ 4ac we obtain

n
∑
i

p2
i ≤

(∑
i

pi

)2

.
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The Cauchy-Schwarz inequality applied to p = [ p1 p2 ··· pn ] and e is the reverse.
But the Cauchy-Schwarz inequality is only tight when applied to parallel vectors,
so p is a multiple of e. That is to say, r • x1 = · · · = r • xn. Since r ∈ Rm was
arbitrary, x1 = · · · = xn and π ∈ ∆Π

G(Γ). This completes the standard case.
In general the action of a group on a game partitions the set of players into

multiple orbits; the player-transitive case is when there is exactly one orbit. In each
orbit, the cardinalities of all players’ strategy sets are equal, because each of these
is mapped bijectively onto each other one by the action of some group element.
When the action is strategy-trivial, these bijections are unique and compatible,
so the strategy sets of all players in an orbit are identified in a canonical way and
we can take them to be identical.

Reordering the players so players in an orbit are numbered consecutively,
elements of ∆Π

G(Γ) are of the form v⊗l11 ⊗ · · · ⊗ v⊗lkk , where k is the number of
orbits, the lk are their sizes, and

∑
k lk = n. Marginalizing out the strategies of all

players except those in a given orbit j (which we may assume to contain more than
one player), the above argument for the standard case shows that if ψ ∈ ∆X

G (Γ)
then the mixed strategies xi of players in orbit j are all equal. Repeating this
argument for all orbits, we obtain π ∈ ∆Π

G(Γ).

Compare the final statement of Proposition 3.9 with the similar statement of
Proposition 8.6, first proven in [14] and [25]. This second result states that for
generic two-player games, which have finitely many Nash equilibria (see e.g. [32]),
elements of NE(Γ) are among the extreme points of CE(Γ). Without the two-
player or genericity assumptions this result can fail. In contrast Proposition 3.9
shows that the corresponding statement about NEG(Γ) and XEG(Γ) holds without
assumptions about the number of players or genericity of the game, as long as the
action of G is player-transitive. This is one sense in which the set of exchangeable
equilibria can be thought of as closer to the set of (symmetric) Nash equilibria
than the set of correlated equilibria is.

We now give a direct proof (i.e. without applying Nash’s theorem) that an
exchangeable equilibrium exists along the lines of the correlated equilibrium exis-
tence proof in Section 2.1.2. We again consider the zero-sum game Γ0 and prove
that a certain set is good in this game (Lemma 3.15). The difference is that the
action of G yields a smaller good set, ∆Π

G(Γ). To prove this lemma we need the
following three symmetry results.

Proposition 3.12. If G acts on Γ then G acts player-trivially on Γ0 by

g · (s, (ri, ti)) := (g · s, (g · ri, g · ti)).

Proof. The action thus defined on the strategy sets of Γ0, which is obviously
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player-trivial, respects the utilities. This is a matter of applying the definitions:

u0
M(g · (s, (ri, ti))) = u0

M(g · s, (g · ri, g · ti))

=

{
ug·i(g · s)− ug·i(g · ti, g · s−i) if g · ri = g · si,
0 otherwise

=

{
ui(s)− ui(ti, s−i) if ri = si,

0 otherwise

= u0
M(s, (ri, ti))

for all values of the parameters. For u0
m multiply by −1.

Proposition 3.13. If G acts player-trivially on a zero-sum game, then a set
Σ ⊆ ∆G(CM) is good if and only if it is good against ∆G(Cm).

Proof. For all g ∈ G, σ ∈ ∆G(CM), and θ ∈ ∆(Cm) we have uM(σ, θ · g) =
uM(σ · g, θ · g) = uM(σ, θ), so uM(σ, θ) = uM(σ, aveG(θ)).

Proposition 3.14. The map Mm(γ(·)) is natural in the sense that if σ : Ci → Cj
is a bijection and yi = yj ◦ (σ, σ), then composition with σ maps Mm(γ(yj)) to
Mm(γ(yi)).

Proof. For all si, ti ∈ Ci we have

u
γ(yj)
M (σ(si), σ(ti)) =

{∑
rj 6=σ(ti)

y
σ(si),rj
j if σ(si) = σ(ti),

−yσ(si),σ(ti)
j otherwise

=

{∑
ri 6=ti y

σ(si),σ(ri)
j if si = ti,

−ysi,tii otherwise

=

{∑
ri 6=ti y

si,ri
i if si = ti,

−ysi,tii otherwise

= u
γ(yi)
M (si, ti),

so γ(yi) and γ(yj) are the same game up to a relabeling of the strategy sets. Thus
maximin strategies of γ(yj), appropriately relabeled, give maximin strategies of
γ(yi) by the same argument which shows that if a group G acts on a game Γ then
it acts on NE(Γ).

Lemma 3.15. If G acts on the game Γ then the set ∆Π
G(Γ) is good in the zero-sum

game Γ0 of Definition 2.16.
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Proof. By Proposition 3.12 and Proposition 3.13, it suffices to consider only y ∈
∆G(C0

m), and show that there is a π ∈ ∆Π
G(Γ) which is good against y. Lemma 2.19

states that any π ∈ Z(y) := Mm(γ(y1))×· · ·×Mm(γ(yn)) ⊂ ∆Π(Γ) is good against
y.

By Proposition 3.14 the action of G on ∆Π(Γ) restricts to a linear action
of G on Z(y) since y ∈ ∆G(C0

m). Viewing Z(y) as a convex subset of RtiCi ,
Proposition 2.22 shows the G-invariant subset ZG(y) ⊆ ∆Π

G(Γ) is nonempty, so
∆Π
G(Γ) is good.

Theorem 3.16. A game with symmetry group G has an exchangeable equilibrium.

Proof. By Theorem 2.20, Mm(Γ0) = CE(Γ). Lemma 3.15 shows we can apply
Proposition 2.13 to Γ0 with Σ = ∆Π

G(Γ), proving that Mm(Γ0)∩∆X
G (Γ) = XEG(Γ)

is nonempty.

It is worth contrasting this with the proof that symmetric correlated equilibria
exist (Proposition 2.33). Both involve averaging arguments to produce symmetric
solutions. The difference is that in the proof of Proposition 2.33 the averaging
occurs within the set ∆(Γ), whereas in the case of Theorem 3.16 (in particular
Lemma 3.15), the averaging occurs within ∆Π(Γ), viewed as a convex subset
of RtiCi . By averaging within this smaller set, we guarantee that the resulting
correlated equilibrium has the additional structure such as symmetries discussed
at the end of Section 2.1.3.

The latter averaging argument requires a bit more care. In particular, Proposi-
tion 2.33 is an immediate corollary of Theorem 2.20 on the existence of correlated
equilibria. On the other hand, to prove Theorem 3.16 we have to “lift the hood”
on Theorem 2.20 and use Lemma 2.19 on good sets. By doing so we exhibit a
correlated equilibrium which we can prove lies in ∆X

G (Γ) instead of just ∆G(Γ).
A nonempty semialgebraic set defined in terms of polynomials with rational

coefficients contains a point with algebraic coordinates (by induction on the pro-
jection theorem for semialgebraic sets, Theorem 2.76 in [3]), so any symmetric
game with rational utilities has an algebraic exchangeable equilibrium. In the case
of symmetric bimatrix games we can sharpen this by invoking Nash’s theorem.

Theorem 3.17. A symmetric bimatrix game Γ with rational utilities admits a
rational exchangeable equilibrium: XES2(Γ) ∩Qm×m 6= ∅.

Proof. By Nash’s theorem a symmetric Nash equilibrium (x, x) ∈ NES2(Γ) exists.
Let Di ⊆ Ci be the set of strategies to which x assigns positive probability. Then
the conditions y ∈ ∆(D1) ⊆ ∆(C1) and s1 is a best response to y for all s1 ∈ D1

are a finite number of linear inequalities on y. The coefficients are differences of
utilities, so rational, and the constraints are feasible as the choice y = x shows.
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A feasible y is a best response to itself, so the pair (y, y) ∈ NES2(Γ). Any
extreme point of the feasible polytope is rational, so in particular a rational Nash
equilibrium exists and this is a rational exchangeable equilibrium.

� 3.3 Examples

All the examples presented in this section are standard symmetric games sized so
that complete positivity coincides with double nonnegativity; this is an important
part of what enables us to do the computations. Many are games of identical
interest, i.e., games in which every player receives the same utility in all outcomes.
It is somewhat surprising that these games exhibit any noteworthy behavior,
because identical interest games are often thought of as somewhat trivial: they
always have pure Nash equilibria, for example, and are often viewed as single-
player decision problems in disguise. However, the pure Nash equilibria need
not be symmetric, so when restricting attention to symmetric equilibria identical
interest games seem to be a less trivial class.

Example 3.18 (2 × 2 game with conv(NES2) = XES2 = CES2). Consider the
coordination game with utility matrices A1 = B1 = [ 1 0

0 1 ]. Parametrize symmetric
probability matrices as [ p qq r ] with p, q, r ≥ 0 and p + 2q + r = 1. Then the
correlated equilibrium conditions are exactly p ≥ q and r ≥ q. Note that together
these imply that pr ≥ q2, so any correlated equilibrium is automatically positive
semidefinite (the principal minors are nonnegative), hence completely positive by
Theorem 2.58 and so exchangeable. Therefore the set of symmetric exchangeable
equilibria is the same as the set of symmetric correlated equilibria and a simple
computation shows that these sets are equal to

CES2 = XES2 = conv

{[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0.25 0.25
0.25 0.25

]}
= conv(NES2).

This game also admits asymmetric correlated equilibria such as
[

1/3 1/3
0 1/3

]
, which

shows that we cannot replace Nash equilibria with correlated equilibria in the
statement of Theorem 3.11. ♦
Example 3.19 (2 × 2 game with conv(NES2) = XES2 ( CES2). Compare the
game in Example 3.18 with the anti-coordination game having utility matrices
A2 = B2 = [ 0 1

1 0 ]. Parametrizing probability matrices in the same way, the
correlated equilibrium conditions are now reversed: q ≥ p and q ≥ r. If either of
these were strict we would have q2 > pr and the probability matrix would have
negative determinant, so it could not correspond to an exchangeable equilibrium.
Thus the only exchangeable equilibrium is the one with p = q = r = 1

4
. This is

also the only symmetric Nash equilibrium.
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(u1 = u2) a b c
a 2 2 0
b 2 1 2
c 0 2 2

Table 3.1. A game for which the convex hull of the symmetric Nash equilibria is strictly
contained in the set of exchangeable equilibria which is itself strictly contained in the set of
symmetric correlated equilibria.

These two games are in some sense isomorphic as bimatrix games but not
as symmetric bimatrix games, and this accounts for the fact that their sets of
symmetric exchangeable (and Nash) equilibria are not isomorphic. In the following
chapter we will see that this difference corresponds to the fact that when these
games are played by many players simultaneously, there is a symmetric (with
respect to the players) way to break symmetry between the two pure strategies
in the case of the coordination game but not in the case of the anticoordination
game.

This game can also be viewed as having a larger symmetry group S2 × S2,
where one factor swaps the players as usual and the other fixes the players but
swaps the strategies of both. This symmetry group is not strategy-trivial and
∆S2×S2(Γ) is a singleton containing only the uniform distribution. Therefore
CES2×S2(Γ) = XES2×S2(Γ) even though NES2×S2(Γ) ( NE(Γ), so without strategy-
triviality the conclusion of Theorem 3.11 can be false. ♦
Example 3.20 (3 × 3 game with conv(NES2) ( XES2 ( CES2 , exchangeable
equilibria incomparable to Sorin’s distribution equilibria). Consider the game in
Table 3.1. First, we show strict containment in XES2 ( CES2 . Second, we show
strict containment in conv(NES2) ( XES2 . Third, we observe that XES2 is not
polyhedral. These results are summarized in Figure 3.1. Finally we show that in
general no containment holds in either direction between exchangeable equilibria
and Sorin’s notion of distribution equilibria [67].

The matrix

W 1 =
1

4

0 1 0
1 0 1
0 1 0


is a correlated equilibrium because each player gets his maximum payoff with
probability one. By Proposition 2.50 it is not completely positive, so it is a corre-
lated equilibrium which is not exchangeable. In fact we can say more: W 1 is not
3-extendable. Suppose X1, X2, X3 were random variables with a 3-exchangeable
distribution taking values in {a, b, c} and having W 1 as the marginal distribution
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Figure 3.1. Comparison of equilibrium sets for the game in Table 3.1. These sets are naturally
sets of symmetric 3 × 3 matrices, but we have chosen a projection into two dimensions which
highlights the separation between the sets. The set XES2

(Γ, 3), discussed in Section 4.2, denotes
the correlated equilibria which are marginals of distributions in ∆S3

(C3
1 ). The set of exchangeable

equilibria is not polyhedral despite the fact that the other sets are.
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of X1 and X2. This would imply

1

4
= Prob(X1 = a)

≤ Prob ((X1 = a,X2 6= b) ∨ (X1 = a,X3 6= b) ∨ (X2 = b,X3 = b))

≤ Prob(X1 = a,X2 6= b) + Prob(X1 = a,X3 6= b) + Prob(X2 = b,X3 = b)

= 2W 1
11 + 2W 1

13 +W 1
22 = 0,

a contradiction, so no such 3-exchangeable distribution exists.
One can also verify that

W 2 =
1

8

1 1 0
1 2 1
0 1 1

 =
1

8

1 0
1 1
0 1

[1 1 0
0 1 1

]

is a correlated equilibrium, and the exhibited factorization shows that W 2 is
completely positive, hence exchangeable. Suppose for a contradiction that W 2

were a convex combination of Nash equilibria. Then at least one of the Nash
equilibria in the convex combination would have to assign positive probability to
the strategy profile (b, b). Suppose player 2 did not play c with positive probability
in such a Nash equilibrium. Given this information, player 1 prefers a to b, so player
1 cannot choose b with positive probability in such an equilibrium, a contradiction.
Symmetric arguments show that each player must play all his strategies with
positive probability. Therefore this Nash equilibrium has full support. But W 2

has entries which are zero, hence this Nash equilibrium cannot be included in an
expression of W 2 as a convex combination of Nash equilibria. Thus W 2 is not a
convex combination of Nash equilibria.

This argument also shows that the only symmetric Nash equilibrium which
assigns positive probability to b is the one with full support, which a simple
computation shows to be

[
1
4

1
2

1
4

]
. The only other symmetric Nash equilibria

are
[
1 0 0

]
and

[
0 0 1

]
. There can be no symmetric Nash equilibrium which

assigns zero probability to b but positive probability to both a and c. Such an
equilibrium would have to assign equal probability to a and c, but b is the unique
best response to such a mixture.

The set of correlated equilibria of a game is always polyhedral. The set of
Nash equilibria is generically finite, so its convex hull is polyhedral for generic
games, and for this game in particular. It is visually evident, and can be proven
algebraically, that the projection of the set of exchangeable equilibria pictured in
Figure 3.1 is not polyhedral. In fact it is an algebraic curve of degree 11 which
factors into three linear components, a quadratic component, and a degree six
component over Q. Two of the linear components are easily visible (the bottom
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and left of the convex hull of the symmetric Nash equilibria), and the third
corresponds to the maximum y value, attained along the line segment joining
(11

36
, 1

6
) to (1

3
, 1

6
). The quadratic component corresponds to the curved portion

of the boundary to the right of this maximum and is defined by the vanishing
of x2 + 2xy + 4y2 − x. The degree six component is the curved portion of the
boundary to the left of the maximum.

To the author’s knowledge, beside exchangeable equilibria (and the general-
izations in Chapters 5 and 6) Sorin’s notion of distribution equilibria is the only
solution concept known which lies between the Nash and correlated equilibria.

Definition 3.21 ([67]). A distribution equilibrium is a correlated equilibrium
such each player’s expected utility conditioned on his recommendation is a constant
(potentially different for each player) almost surely.

Since at a Nash equilibrium players are indifferent between the strategies they
play with positive probability, any Nash equilibrium viewed as a product distribu-
tion is a distribution equilibrium. Similarly we may define symmetric distribution
equilibria to be distribution equilibria which are symmetric, so symmetric Nash
equilibria are symmetric distribution equilibria.

Under W 1 the expected utility of either player conditioned on his recommen-
dation is always 2, so this is a symmetric distribution equilibrium which is not
exchangeable. On the other hand under W 2 the expected utility conditioned on
receiving recommendation a is 2 and conditioned on recommendation b is 3

2
. There-

fore W 2 is an exchangeable equilibrium which is not a distribution equilibrium,
and these two intermediate equilibrium notions are incomparable. ♦
Example 3.22 (Exchangeable equilibrium with higher payoff than symmetric
Nash equilibria). Let Γ be the symmetric bimatrix game with payoffs

A = BT :=

0 1 1
2 1 0
1 0 1

 .
The expected utility of both players under a symmetric distribution W ∈ ∆S2(Γ)
is W • A = W • B = W • A+B

2
. The largest value in A+B

2
is 3/2 and occurs in

entries (1, 2) and (2, 1) only. The unique symmetric distribution placing all mass
on these entries is

W 1 =

 0 1/2 0
1/2 0 0
0 0 0

 ,
so the only W with W •A ≥ 3

2
is W = W 1. One can verify that W 1 is a correlated

equilibrium but it is not exchangeable by Proposition 2.50 because it has zero
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(u1 = u2) a b c
a 0 3 2
b 3 0 2
c 2 2 3

Table 3.2. A game with correlated equilibria supported on {a, b} × {a, b} but no exchangeable
equilibria supported on this set.

diagonal, so W 1 ∈ CES2(Γ) \ XES2(Γ). Furthermore W 1 achieves a higher utility
than any exchangeable equilibrium.

The distribution

W 2 :=
5

7

1/8
7/8
0

1/8
7/8
0

T +
2

7

1/8
0

7/8

1/8
0

7/8

T =
1

64

1 5 2
5 35 0
2 0 14


is exchangeable and it is also a correlated equilibrium, so it is an exchangeable
equilibrium yielding expected utility W • A = W •B = 17

16
to both players.

Suppose for a contradiction that there were a symmetric Nash equilibrium x
with xTAx > 1. Since x is a probability vector, [Ax]1, [Ax]3 ≤ 1. But xTAx is a
convex combination of [Ax]1, [Ax]2, and [Ax]3, so [Ax]2 > 1. Therefore strategy
2 is the unique best response to x. Only best responses are played with positive
probability in a Nash equilibrium, so x = [ 0 1 0 ]. But then the expected utility
xTAx = 1, a contradiction. Thus there is no symmetric Nash equilibrium which
yields utility greater than 1. In particular W 2 ∈ XES2(Γ) \ conv(NES2(Γ)) and
W 2 achieves a higher utility than any symmetric Nash equilibrium.

Indeed, Gambit [48] computes that there are two symmetric pure Nash equi-
libria [ 0 1 0 ] and [ 0 0 1 ] as well as one symmetric mixed Nash equilibrium [ 1

4
1
4

1
2 ].

Both pure equilibria yield utility 1 and the mixed equilibrium yields utility 3
4
. ♦

Example 3.23 (Supports of exchangeable equilibria). A natural question is
whether the existence of symmetric correlated equilibria in a symmetric bima-
trix game with a given support (set of pairs assigned positive probability) implies
the existence of exchangeable equilibria with this support. One can trivially con-

struct counterexamples, such as the symmetric correlated equilibrium
[

0 1/2
1/2 0

]
in

Example 3.19.
A weaker question would be whether the existence of a correlated equilibrium

with support within some principal submatrix guarantees the existence of an
exchangeable equilibrium with support within that principal submatrix. Again,
the answer is no, as the following example shows.
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Consider the symmetric game of identical utilities in Table 3.2. For 0 ≤ ε ≤ 1
6

the probability matrix  ε 1
2
− ε 0

1
2
− ε ε 0
0 0 0


is a correlated equilibrium of this game. Now suppose p, q, and r were such thatp q 0

q r 0
0 0 0


were a completely positive matrix with entries summing to one. Then this matrix
would be positive semidefinite, implying p+r ≥ 2q. In other words, at most half of
the probability would be assigned to outcomes with a payoff of three and the rest
of the probability would be assigned to outcomes with a payoff of zero. Therefore
the expected payoff of such a distribution would be at most 3

2
, and it would be

in either player’s best interest to deviate unilaterally from his recommendation
and play strategy c. Thus such a matrix could not be a correlated equilibrium, so
there do not exist any symmetric exchangeable equilibria with this support. ♦
Example 3.24 (Exchangeable equilibria need not optimize utility over correlated
equilibria). It was shown in Aumann’s original paper on correlated equilibria [1]
that correlated equilibria can achieve utilities outside the convex hull of those
achievable by Nash equilibria. The same can happen with exchangeable equilibria
in place of Nash equilibria. Consider the symmetric bimatrix game with utilities

A =


0 60 30 40
30 0 60 40
60 30 0 40
40 40 40 41


and B = AT , as considered in [25, 49, 54] and originally due to Aumann. Let W be
a symmetric correlated equilibrium of this game. Then we must have W •A ≥ 40
or else the row player could unilaterally improve by switching to the bottom
strategy. One can verify that

W 1 =
1

27


1 4 4 0
4 1 4 0
4 4 1 0
0 0 0 0


is a correlated equilibrium which achieves the minimum utility W 1 • A = 40.
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On the other hand by symmetry of W one has

W • A =
1

2
W • A+

1

2
W T • A =

1

2
W • A+

1

2
W • AT = W • A+B

2
≤ 45,

since A+B
2
≤ 45 elementwise. One can verify that

W 2 =
1

6


0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


is a correlated equilibrium achieving the maximum utility W 2 • A = 45.

We will show that this game has a unique exchangeable equilibrium, which
has utility W • A = 41. To see this suppose W is an exchangeable equilibrium.
Then W � 0, so 

2 −1 −1 0
−1 2 −1 0
−1 −1 2 0
0 0 0 0

 •W ≥ 0,

and thus 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 •W ≥ 1

3


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

 •W.
That is to say, at least a third of the mass placed in the upper left 3 × 3 block
of W is on the diagonal of that block. The entries of A+B

2
corresponding to the

diagonal of this block are zero and the entries corresponding to the rest of this
block are 45. Therefore the expected utility of the players conditioned on their
joint recommendation being in this 3× 3 block is at most 1

3
(0) + 2

3
(45) = 30.

Define S and T to be the events that the row player and column player,
respectively, receive a recommendation within their first three strategies. Suppose
for a contradiction that W is an exchangeable equilibrium which places positive
probability on S. Since W � 0, the first three diagonal entries of W cannot all
be zero. In particular, the probability of T given S is positive. Letting (i, j) be
distributed according to W , we can then compute

E [Aij | S] = E [Aij | S ∧ T ] Prob(T | S) + E [Aij | S ∧ ¬T ] Prob(¬T | S)

≤ 30 Prob(T | S) + 40 Prob(¬T | S) < 40,

so the row player can improve by playing the bottom row independent of his
recommendation, contradicting the assumption that W is a correlated equilibrium.
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Therefore W places zero probability on S and by symmetry also on T . That is
to say, W44 = 1, so W is a symmetric pure strategy Nash equilibrium with utility
A44 = 41. In particular no correlated equilibrium which maximizes or minimizes
utility is an exchangeable equilibrium. ♦
Example 3.25 (Exchangeable equilibria need not optimize trace over correlated
equilibria). We have seen in Examples 2.36 and 2.42 and Proposition 2.46 that
exchangeability of a distribution in ∆S2(C

2
1 ) gives a lower bound on the trace of the

corresponding matrix. For this reason it is natural to ask whether exchangeable
equilibria optimize trace over correlated equilibria. To see that they do not, we
consider the symmetric bimatrix game with utilities

A = BT =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .
Let L : R4×4 → R4×4 be the map which circularly shifts the columns of a matrix
right by one and the rows down by one. Since A is a circulant matrix (invariant
under L), the set of correlated equilibria is invariant under L. So is the set of
4 × 4 completely positive matrices and the trace function, so among the set of
symmetric correlated equilibria of maximal trace there is one which is circulant
and similarly for symmetric exchangeable equilibria. The same argument works
for minimal trace.

The general form of a 4× 4 symmetric circulant probability matrix is

W =


a b c b
b a b c
c b a b
b c b a

 ,
where a, b, c ≥ 0 and 4a + 8b + 4c = 1. The correlated equilibrium condition
says exactly that b ≥ a and b ≥ c. Therefore the maximal trace of a symmetric
correlated equilibrium is achieved by setting a = b = 1

12
and c = 0, yielding a

trace of 1
3
. The minimal trace of zero is achieved by setting b = 1

8
and a = c = 0.

Now we impose the additional condition that W � 0, so W is an exchangeable
equilibrium. The positivity of 2× 2 principal minors gives a ≥ b, and the reverse
inequality comes from the correlated equilibrium conditions, so a = b. Multiplying
W on the left by v =

[
1 −1 1 −1

]
gives vW = (c−b)v, so c−b is an eigenvalue

of W and we must have c ≥ b. The correlated equilibrium conditions again give the
reverse inequality, so a = b = c = 1

16
and we see that any symmetric exchangeable

equilibrium must have trace 1
4
, and so cannot optimize the trace over correlated

equilibria. ♦
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Example 3.26 (2× 2× 2 game with conv(NES3) ( XES3 ( CES3). Consider the
three-player, two-strategy game of identical interest with utilities

u(s1, s2, s3) =

{
1, when s1 = s2 = s3,

0, otherwise,

written in tensor form as

u =

[
1 0 0 0
0 0 0 1

]
.

This coordination game has three symmetric Nash equilibria:[
1 0 0 0
0 0 0 0

]
,

[
0 0 0 0
0 0 0 1

]
, and

1

8

[
1 1 1 1
1 1 1 1

]
.

An element of ∆S3(Γ) can be written as[
w x x y
x y y z

]
;

to be in conv(NES3(Γ)) such a tensor must satisfy x = y because this linear
constraint is satisfied by all the symmetric Nash equilibria.

The correlated equilibrium conditions are w ≥ y and z ≥ x. Let λ ∈ [0, 1].
The exchangeable distribution

πλ := λ
[

2
3

1
3

]⊗3
+ (1− λ)

[
1
3

2
3

]⊗3
=

λ

27

[
8 4 4 2
4 2 2 1

]
+

1− λ
27

[
1 2 2 4
2 4 4 8

]
=

1

27

[
1 + 7λ 2 + 2λ 2 + 2λ 4− 2λ
2 + 2λ 4− 2λ 4− 2λ 8− 7λ

]
is a correlated equilibrium if and only if 1 + 7λ ≥ 4 − 2λ and 8 − 7λ ≥ 2 + 2λ.
Therefore πλ ∈ XES3(Γ) if and only if λ ∈

[
1
3
, 2

3

]
. This distribution only satisfies

x = y only when λ = 1
2
, so πλ ∈ XES3(Γ) \ conv(NES3(Γ) for λ ∈

[
1
3
, 1

2

)
∪
(

1
2
, 2

3

]
.

When λ = 1
2

we have

π 1
2

=
1

54

[
9 6 6 6
6 6 6 9

]
=

1

18

[
1 0 0 0
0 0 0 0

]
+

1

18

[
0 0 0 0
0 0 0 1

]
+

8

9
· 1

8

[
1 1 1 1
1 1 1 1

]
,

so π 1
2
∈ conv(NES3(Γ)).
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On the other hand

1

5

[
1 1 1 0
1 0 0 1

]
∈ CES3(Γ) \ XES3(Γ)

because det [ 1 1
1 0 ] = −1. Therefore we have conv(NES3(Γ)) ( XES3(Γ) ( CES3(Γ).

A similar argument yields the corresponding containment for the n-player coordi-
nation game for all n ≥ 3.

Continuing with the three-player coordination game, let us calculate the ex-
treme points of XES3(Γ). Since complete positivity and double nonnegativity are
the same for 2× 2× 2 tensors, the conditions for a point to be in XES3(Γ) are

w ≥ y ≥ 0,

z ≥ x ≥ 0,

wy ≥ x2,

xz ≥ y2,

(3.1)

and normalization w+ 3x+ 3y+ z = 1. We will drop the normalization condition,
calculate extreme rays of the resulting closed convex cone, and normalize at the
end.

Any such extreme ray satisfies x = y, x > y, or x < y. In the first case one
can check that such an extreme ray is one of the three symmetric Nash equilibria
given above. The second case reduces to the third by applying the symmetry of
the game which swaps the two strategies, thereby swapping x ↔ y and w ↔ z.
Thus it suffices to compute extreme rays with y > x; until otherwise specified we
will assume y > x.

We can decompose the equilibrium tensor as[
w x x y
x y y z

]
=

[
w − y 0 0 0

0 0 0 0

]
+

[
y x x y
x y y z

]
,

where both summands satisfy the constraints (3.1). Extremality means that one
of these summands is a nonnegative multiple of the other. Since y > x ≥ 0, the
first summand must be zero, w = y, and the constraint wy ≥ x2 is automatic.
Therefore we want to compute extreme rays of the system

y > x,

z ≥ x ≥ 0,

xz ≥ y2.

Since y2 > 0 the bottom constraint gives x, y, z > 0. Furthermore if x = z then
x2 ≥ y2, contradicting y > x > 0, so z > x. For extremality we need some
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constraint to be tight – the set where no constraints are tight is open and so has
no extreme rays – and the only candidate now is xz ≥ y2. Thus our extreme ray
must satisfy

y, z > x > 0,

xz = y2.

That is to say, it is of the form [
y x x y

x y y y2

x

]
(3.2)

for y > x > 0. Conversely, all such tensors are extreme. To see this, decompose
such a tensor into two nonzero tensors[

w1 x1 x1 y1

x1 y1 y1 z1

]
+

[
w2 x2 x2 y2

x2 y2 y2 z2

]
,

both of which are exchangeable equilibria. Since
[ x y

y y2

x

]
has zero determinant, it

is an extreme ray of the cone of positive semidefinite matrices. Therefore there are
λ1, λ2 ≥ 0 such that xi = λix, yi = λiy, and zi = λi

y2

x
. The correlated equilibrium

conditions give wi ≥ yi, but we have w1 +w2 = y = y1 +y2, so these must be tight.
Therefore wi = yi = λiy, which means both tensors are nonnegative multiples of
(3.2), so that tensor is extreme.

Adding the normalization condition back in, we get that such an extreme
exchangeable equilibrium satisfies 3x2 + 4xy + y2 = x, the equation for an ellipse.
Since w = y and z = 1 − 3x − 4y by normalization, these points (w, x, y, z) do
in fact lie on an ellipse in the plane [w = y, w + 3x + 3y + z = 1] in R4. They
form an arc of the ellipse cut off by the strict inequalities y > x > 0. A priori
the endpoints where one of these becomes tight need not correspond to extreme
exchangeable equilibria, but in this case the endpoints are actually the symmetric
Nash equilibria [

0 0 0 0
0 0 0 1

]
and

1

8

[
1 1 1 1
1 1 1 1

]
,

which we know to be extreme by Proposition 3.9.
Symmetry gives another such ellipse for x > y. The result is that the set

of exchangeable equilibria of this game is formed as follows. We begin with the
three symmetric Nash equilibria, which correspond to points spanning the plane
[x = y, w+3x+3y+x = 1] in R4. We draw two copies of an elliptical arc lying in the
independent subspaces [w = y, w+3x+3y+z = 1] and [z = x,w+3x+3y+z = 1]
connecting the two symmetric pure Nash equilibria to the mixed one. The set of



Figure 3.2. Exchangeable equilibria of the game in Example 3.26. This set is formed by
beginning with the three symmetric Nash equilibria (circles), joining the two pure ones to
the mixed ones by arcs from an ellipse (bold curves), and taking the convex hull. The set of
symmetric correlated equilibria is polyhedral and so strictly contains the exchangeable equilibria.
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exchangeable equilibria is the convex hull of the resulting set, which is a subset
of a reducible algebraic curve. This is shown in Figure 3.2. ♦
Example 3.27 (2× 2× 2 game with unique irrational exchangeable equilibrium).
Let Γ be the three player symmetric game of identical utilities with common
strategy space Ci = {0, 1} and common utility function

u(s1, s2, s3) =

{
0 when s1 + s2 + s3 = 3,

s1 + s2 + s3 else,

which we may alternatively write as the 2× 2× 2 symmetric tensor

u =

[
0 1 1 2
1 2 2 0

]
.

The exchangeable equilibria are the tensors of the form[
w x x y
x y y z

]
(3.3)

subject to w, x, y, z ≥ 0 (nonnegativity), w+ 3x+ 3y+ z = 1 (normalization), and
the conditions:

2y − 2x ≥ w, (3.4)

x ≥ 2z − 2y, (3.5)

wy ≥ x2, (3.6)

xz ≥ y2. (3.7)

If any of the variables w, x, y, z were zero then these conditions would imply
they were all zero, contradicting normalization. So w, x, y, z > 0 and some algebra
yields:

Multiply (3.4) by y and apply (3.6): 2y2 − 2xy ≥ wy ≥ x2 (3.8)

Multiply (3.5) by x and apply (3.7): x2 ≥ 2xz − 2xy ≥ 2y2 − 2xy (3.9)

Equality throughout (3.8) and (3.9): x2 = 2xz − 2xy = 2y2 − 2xy = wy
(3.10)

Quadratic formula, x, y > 0: x =
(√

3− 1
)
y (3.11)

Substitute (3.11) into (3.10): z =
x2 + 2xy

2x
=
x+ 2y

2
=

√
3 + 1

2
y

Substitute (3.11) into (3.10): w =
x2

y
=
(√

3− 1
)2

y.
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Normalization gives a unique solution. Let p = 1 − 1√
3
, so p

1−p =
√

3 − 1 and
1−p
p

=
√

3+1
2

. Then the unique exchangeable equilibrium is given by w = p3,

x = p2(1− p), y = p(1− p)2, and z = (1− p)3, or in tensor form:

conv(NES3(Γ)) = XES3(Γ) =

{[
p

1− p

]⊗3
}
.

In particular p, w, x, y, z ∈ Q
[√

3
]
\ Q are irrational, so Γ has no exchangeable

equilibrium with rational numbers for probabilities. ♦

� 3.4 Convex relaxations of Nash equilibria

For this section only we restrict attention to symmetric bimatrix games. We write
down the standard complementarity conditions defining (symmetric) Nash equi-
libria, and consider three ways of formally relaxing or weakening these conditions
to yield convex sets. We identify these relaxations as the symmetric correlated
equilibria, the symmetric exchangeable equilibria, and the convex hull of the sym-
metric Nash equilibria. Both the exchangeable equilibria and the convex hull
of symmetric Nash equilibria are characterized in terms of completely positive
matrices. The results are summarized in Table 3.3.

While the set XES2 is defined in terms of CP2
m for an m×m game, we charac-

terize conv(NES2) in terms of CP2
2m. Thus we obtain an easily-checkable positive

semidefiniteness condition for a matrix to be in conv(NES2) from Theorem 2.58
only in the case 2m ≤ 4, i.e., 2× 2 games. To demonstrate this we give another
proof of Theorem 3.10.

We now recall the well-known complementarity characterization of symmetric
Nash equilibria (see e.g. Von Stengel’s survey [73], which treats the asymmetric
case in a similar way). Let A ∈ Rm×m denote the utility matrix of player 1, defined
by Aij = u1(i, j), and define the auxiliary matrix

P :=

[
e −A
0 I

]
∈ R2m×(m+1),

where e ∈ Rm is a column vector of all ones and 0 and I are the zero vector and
identity matrix of the appropriate sizes.

Proposition 3.28. The vector w ∈ Rm is a symmetric Nash equilibrium if and
only if

∑
wi = 1 and there exists v ∈ R such that

z := P

[
v
w

]
=

[
ve− Aw

w

]
∈ R2m
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is elementwise nonnegative and complementary in the sense that zizi+m = 0 for
1 ≤ i ≤ m.

Rewriting this characterization in terms of a matrix W ∈ Rm×m, a vector
γ ∈ R1×m, and a scalar α (thinking of W = wwT , γ = vwT , and α = v2), we get
the following characterization of the matrices W ∈ NES2(Γ).

Proposition 3.29. The matrix W ∈ ∆S2(C
2
1) is in NES2(Γ) if and only if there

exist γ ∈ R1×m and α ∈ R such that the symmetric matrix

Z := P

[
α γ
γT W

]
P T :=

[
αeeT − AγT eT − eγAT + AWAT eγ − AW

γT eT −WAT W

]
satisfies:

• Z has rank 1,

• Z ≥ 0 elementwise, and

• Zi,i+m = 0 for 1 ≤ i ≤ m.

There are a number of straightforward ways to produce convex relaxations of
the set NES2(Γ) using the characterization in Proposition 3.29. We will analyze
three of these, which lead in turn to CES2 , XES2 , and conv(NES2). For the first we
drop the rank 1 condition and recover the set of symmetric correlated equilibria.

Proposition 3.30. The following are equivalent for W ∈ ∆S2(C
2
1):

1. W ∈ CES2(Γ),

2. W satisfies all conditions of Proposition 3.29 except the rank 1 condition, and

3. there exists γ ∈ R1×m such that eγ ≥ AW with equality on the diagonal.

Proof. Note that α only appears in the upper left block of Z, so by making α
large we can make the entries of this block nonnegative. Thus we may drop the
variable α and ignore the upper left block of Z. The lower right block of Z is just
W , the nonnegativity of which is implicit in the assumption W ∈ ∆S2(C

2
1).

Thus the final two constraints written in Proposition 3.29 reduce in this case
to the condition that the matrix eγ − AW be elementwise nonnegative with
zeros on the diagonal. By matrix multiplication and symmetry of W we have
(AW )ij =

∑m
k=1AikWkj =

∑m
k=1AikWjk. Thus the condition on eγ − AW is

equivalent to the condition that γj =
∑m

k=1 AjkWjk and
∑m

k=1AikWjk ≤ γj for
all i and j. In other words, we can drop γ and get the equivalent condition that∑m

k=1[Ajk − Aik]Wjk ≥ 0 for all i, j.
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By restricting W to be a convex combination of matrices of the form wwT for
w ≥ 0 we get a second, tighter relaxation.

Corollary 3.31. The set XES2(Γ) of (symmetric) exchangeable equilibria is ob-
tained by relaxing the rank 1 condition in Proposition 3.29 to complete positivity
of W .

For the third and final relaxation of this section, note that whenever W satisfies
the conditions of Proposition 3.29 it is a symmetric Nash equilibrium so we can
take v = wTAw and Y :=

[ α γ

γT W

]
= [ vw ] [ vw ]T to get Z := PY P T to be elementwise

nonnegative. Since it is also rank one, Z will be completely positive. The lower
right block of Z is W , so complete positivity of Z implies complete positivity of
W . Thus we can obtain an even tighter relaxation than exchangeable equilibria
by replacing the rank 1 condition by complete positivity of Z. In fact, this is the
tightest convex relaxation.

Theorem 3.32. The set conv(NES2(Γ)) is obtained by relaxing the rank 1 condi-
tion in Proposition 3.29 to complete positivity of Z.

The main technical tool in the proof of this theorem is:

Lemma 3.33. Define
K = cone

{
yyT |Py ≥ 0

}
and

L =
{
Y |PY P T is completely positive

}
.

If P has full column rank, then K = L.

Proof. For any yyT in the generating set of K we have Py ≥ 0 so PyyTP T is
completely positive, hence yyT ∈ L. Since L is a convex cone, K ⊆ L.

Conversely, let Y ∈ L. Then we can write PY P T = F TF for some rectangular
elementwise nonnegative matrix F . For any real vector x with P Tx = 0 we have

‖Fx‖2 = xTF TFx = xTPY P Tx = 0TY 0 = 0,

so Fx = 0. That is to say the null space of P T is contained in the null space of
F , so the row space of F is contained in the row space of P T .

In particular there is a matrix B such that F = BP T , so PY P T = F TF =
PBTBP T . Since P has full column rank there exists a matrix Q such that
QP = I, the identity matrix. Then Y = QPY P TQT = QPBTBP TQT = BTB.
If y1, . . . , yk are the columns of BT , then Pyi is the ith column of F T , so Pyi ≥ 0.
Therefore Y =

∑
i yiy

T
i ∈ K.



88 CHAPTER 3. SYMMETRIC EXCHANGEABLE EQUILIBRIA

Proof of Theorem 3.32. Let Y =
[ α γ

γT W

]
be any matrix satisfying the constraints.

Then PY P T is completely positive by assumption and P has full column rank,
so Lemma 3.33 implies that Y =

∑
yiy

T
i for some yi such that Pyi ≥ 0. Let

Yi = yiy
T
i . Then PYiP

T is completely positive for each i, hence elementwise
nonnegative for each i. Thus for an entry of PY P T =

∑
i PYiP

T to be zero, the
corresponding entry of PYiP

T must be zero for all i. Therefore PYiP
T satisfies

the complementarity condition.
Define

λi :=

[
0
e

]T
Yi

[
0
e

]
=

∥∥∥∥yTi [0e
]∥∥∥∥2

.

Then λi ≥ 0 and since W is normalized,
∑

i λi = 1. Reindex all the quantities so
that λi > 0 for i = 1, . . . , l and λi = 0 for i = l + 1, . . . , k. For i = 1, . . . , l define

ŷi = yi√
λi

and Ŷi = ŷiŷ
T
i . Write ŷi =

[
ui
wi

]
. Then the components of wi sum to one,

and Wi = wiw
T
i is a symmetric Nash equilibrium.

Now consider yi for i = l+ 1, . . . , k. By definition of P the bottom block of yi
is the same as that of Pyi, hence nonnegative. Since λi = 0 these elements sum
to zero and must all be zero. Therefore

W =
l∑

i=1

λiwiw
T
i ,

where λi ≥ 0 and
∑l

i=1 λi = 1, so W is a convex combination of symmetric Nash
equilibria.

It is tempting to try to use this characterization to compute a distribution
in conv(NES2) by finding such a Z with an explicit nonnegative factorization
proving complete positivity. In fact, the above argument shows that we can easily
find a symmetric Nash equilibrium from this factorization. So computing such a
distribution along with a factorization is as hard as computing Nash equilibria
(see [10, 11, 13, 15, 16, 30, 63]). Nonetheless, we can use this characterization for
approximate computation in which no such factorization is computed as described
in Section 7.1.7, as well as to give another proof that exchangeable equilibria are
the convex hull of symmetric Nash equilibria for 2× 2 symmetric bimatrix games
(Theorem 3.10).

Proof #2 of Theorem 3.10. Let W ∈ XES2(Γ) ⊂ R2×2. Clearly W is not the zero
matrix. If W has rank 1 then W is a correlated equilibrium which is a symmetric
product distribution, so W ∈ NES2(Γ). Otherwise W has rank 2, so it is invertible
and completely positive, hence positive definite.
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Equilibrium type (†) Condition on W (∗) Condition on Z (∗∗)

NES2 rank(W ) = 1 Z ≥ 0
NES2 rank(Z) = 1, Z ≥ 0

conv(NES2) Z completely positive
XES2 W completely positive Z ≥ 0
CES2 Z ≥ 0

Table 3.3. Each row characterizes a type of equilibrium by a condition on W and a condition
on Z using a statement of the form (3.12).

Since W ∈ CES2(Γ), Proposition 3.30 implies that we can find a γ ∈ R1×m and
an α ∈ R satisfying all conditions of Proposition 3.29 (except the rank condition on
W ). Note that we can freely increase α without violating any of these conditions.
If we take α > γW−1γT , then the Schur complement condition implies that the
matrix

[ α γ

γT W

]
is positive definite, hence the matrix Z = P

[ α γ

γT W

]
P T is positive

semidefinite. But by assumption Z ∈ R4×4 is also elementwise nonnegative, so
it is completely positive by Theorem 2.58. Theorem 3.32 then implies W ∈
conv(NES2(Γ)).

We summarize the results of this section in Table 3.3. Each row of the table
corresponds to a statement of the form:

W is a(n) (†)⇐⇒ W is symmetric, normalized, and satisfies (∗) and

∃α, γ such that Z satisfies complementarity and (∗∗),
(3.12)

Note that W is a principal submatrix of Z, so each of the statements about Z in
column (∗∗) of the table implies the corresponding statement about W . Therefore
conditions are only listed in column (∗) if they are not automatically implied by
the conditions in column (∗∗).





Chapter 4

Interpretations of Symmetric
Exchangeable Equilibria

Several different game-theoretic setups give rise to the notion of exchangeable
equilibria. Of course these are all related (some more obviously than others), but
each has something different to add to the overall picture. Taken together, the fact
that these interpretations each give rise to the same solution concept is evidence
that exchangeable equilibria are natural objects worthy of study.

Throughout this chapter we restrict attention to the motivating case of a
standard symmetric game. This means that all players have the same strategy set,
the symmetric product distributions are the i.i.d. distributions, and the generalized
exchangeable distributions are the mixtures of these. By Proposition 2.46 these
are exactly the distributions of n random variables which can be extended to
exchangeable distributions (in the classical sense) of an infinite sequence of random
variables.

� 4.1 Hidden variable interpretation

A basic tenet of decision theory is that preferences are specific to each individual,
and so interpersonal comparison of utilities is meaningless. In practice this belief
is often dropped in favor of other simplifying assumptions which can be justified
within the setting at hand. One important example of this phenomenon is zero-sum
bimatrix games. The zero-sum condition says not only that the players’ preferences
over outcomes are opposite, but also that their preferences over lotteries over
outcomes are opposite. This is a very strong condition indeed, and while it may
never be true exactly, it is often a reasonable approximation to model situations
in which there seems to be no opportunity for cooperation.

Similarly, symmetric games are an idealization in which we take the roles
and preferences of the players to be identical. Even when this assumption is
not directly applicable, we can make it so by passing to the symmetrization as
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discussed in Section 5.5.2 below. This corresponds to placing the players behind
a veil of ignorance [60] where they “forget their roles” and imagine themselves
confronting the situations faced by all players in the game. The resulting game is
symmetric by construction.

When symmetry is a natural approximation from the start or is imposed by
symmetrization, it seems reasonable to take this idea to its logical conclusion and
treat the players as independent instances of an identical decision-making agent,
or clones, as it were. Doing so, we should expect all players would make the same
choice when confronted with the same situation. They interpret their observations
of the environment in the same way. If the setup is such that we have reason
to believe that the players will choose their strategies statistically independently,
then our solution concept of choice should be symmetric Nash equilibrium. Here
we explicitly use the assumption that the players are identical; in particular they
have not been provided with a way to break the symmetry so as to choose an
asymmetric Nash equilibrium.

This raises a natural question: what is the appropriate solution concept to
use if statistical independence of actions is not a reasonable assumption and some
correlation may be expected? For a general game the answer would be corre-
lated equilibrium1, so the obvious answer in the symmetric setting is symmetric
correlated equilibrium.

It is our goal to argue that this obvious answer is wrong. Or it might be
more fair to say that it is half wrong. It is correct insofar as the symmetry of the
situation rules out any correlated equilibria which are not symmetric. However,
we claim that symmetry also rules out symmetric correlated equilibria which are
not exchangeable.

To see this we return to the notion of correlation schemes and external corre-
lated equilibria illustrated in Figure 2.1. We begin with the tautological statement
that each player bases his action on the state of the world. Perhaps he plays the
same action at all states, perhaps not. Insofar as he does not have full knowledge
of the state of the world his action must be based on some noisy observations of
the world. Since the players are identical they all make the same measurements
and coin flips and they all interpret them in the same way, but the outcomes of
these random events may differ. In this way and only this way may the players’
actions differ. More formally:

1See Aumann’s argument in [2]. The key assumption forming the basis of that argument
is that the players have common prior beliefs. While this is debatable in some contexts, it is
certainly true in the symmetric setting considered here. Put another way, the philosophical or
epistemic argument for correlated equilibrium is stronger in symmetric games than in general
games.
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Definition 4.1. We say that a correlation scheme is symmetric if all players
have the same noise distribution, mapping from state and noise to information,
and mapping fi from information to action. We say that an external correlated
equilibrium is symmetric if it arises from a a symmetric correlation scheme.

For example, the players may wish to base their actions on tomorrow’s weather.
This is an aspect of the underlying state of the world, albeit one which is not
known precisely to the players (it is a hidden variable), so they can only condi-
tion their actions on their estimates of the weather. Perfect correlation may occur
if these estimates are obtained from a common weather report. Weaker correla-
tion may arise if both players make their own forecasts in terms of independent
measurements of atmospheric data.

Under a symmetric correlation scheme, the players’ noise distributions are
i.i.d., so their information, and hence actions, are i.i.d. conditioned on the state.
We immediately obtain the expected generalization of Proposition 2.9:

Proposition 4.2. In a symmetric external correlated equilibrium, if each player
knows the state of the world then the outcome conditioned on the state is a sym-
metric Nash equilibrium almost surely, and every symmetric Nash equilibrium
arises in this way.

On the other hand the generalization of Proposition 2.8 looks a bit different:

Proposition 4.3. The distribution of actions in a symmetric external correlated
equilibrium is an exchangeable equilibrium and every exchangeable equilibrium
arises in this way.

Proof. By Proposition 2.8 this distribution is a correlated equilibrium. It is also
i.i.d. conditioned on the state, so it is exchangeable.

Conversely, let π be any exchangeable equilibrium. Then we can write π =∑k
i=1 λix

⊗n
i for some xi ∈ ∆(C1) and some probability vector λ. Construct a

symmetric correlation scheme with k states of the world chosen according to the
distribution λ. In state i, choose each player’s information i.i.d. according to xi.
Let the mappings from information to action all be the identity map. Then the
distribution over actions is π, and since this is in particular an internal correlated
equilibrium, the resulting correlation scheme is a symmetric external correlated
equilibrium.

We might say that any internal correlated equilibrium which is not symmetric
explicitly breaks symmetry, whereas one which is not exchangeable implicitly
breaks symmetry since it cannot be implemented by a symmetric correlation
scheme. It is natural to focus on the exchangeable equilibria, which do not break
symmetry at all.
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(uRow, uColumn) My name is Alice My name is Bob
My name is Alice (0, 0) (1, 1)
My name is Bob (1, 1) (0, 0)

Table 4.1. Anti-coordinating based on player identity.

� 4.2 Unknown opponent interpretation

As in the previous section on the hidden variable interpretation, here we again
focus on games in which the symmetry includes not only the action spaces and
payoffs, but also the roles of the players in a larger sense. To illustrate this idea,
consider the anti-coordination game of Example 3.19 with its strategies named as
in Table 4.1. We will first give two examples of choices of players without this
symmetry and then an example with this symmetry. Note that because of the
symmetry of the payoffs, we do not have to select who will be the row player and
who will be the column player. In particular this information is not available to
help the players coordinate on an equilibrium.

Suppose first that this game were played by two people named Alice and Bob
whose names were common knowledge. It is reasonable to predict that the players
would have no trouble coordinating on the pure strategy Nash equilibrium in
which each player correctly identifies his own name. Suppose secondly that this
game were played by two friends named Alice. It may still be possible for them to
coordinate based on, say, the common knowledge that one of them has the middle
name Roberta and the other does not.

Suppose finally that two arbitrary Alices are selected from the record-breaking
crowd at this year’s Conference of Game Theorists Named Alice. They are se-
questered in separate rooms and asked to choose the action they would play in
this game against an opponent chosen from the same conference who has been
given the same information. It is common knowledge that both players are attend-
ing the conference, but no further information is given. As Bayesian observers,
how should we expect them to play? The standard Bayesian way to capture
our ignorance of any distinctions between the possible players is to say that the
distribution over outcomes should be symmetric. Based on the conference title
we can assume common knowledge of rationality, so by Aumann’s result [2] we
should expect the Alices to play a correlated equilibrium. In particular we should
not expect them to do something foolish like both playing “My name is Alice”
with probability one.

What else can we say about the outcome? The best symmetric correlated

equilibrium in terms of payoff is W =
[

0 1/2
1/2 0

]
. Is this a reasonable solution?
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We claim that W would not be played. Suppose for a contradiction that W
were the expected distribution of outcomes and consider asking a third Alice (recall
the record attendance) what strategy she would play in the game. The chosen
strategies A1, A2, and A3 of the three Alices would all be random variables, and
their joint distribution would be symmetric under arbitrary permutations of the
Alices. In particular all the pairwise distributions of two of these random variables
would be given by W . Consulting W , we see that the events E1 = {A2 = A3},
E2 = {A1 = A3}, and E3 = {A1 = A2} would each occur with probability zero,
therefore so would their union E = E1∪E2∪E3. But there are only two strategies
in the game, so in any realization at least two of the Ai must be equal by the
pigeonhole principle. That is to say, E must occur with probability one regardless
of the distribution of the Ai, a contradiction.

On the other hand, the mixed strategy Nash equilibrium in which each player
randomizes over her actions with equal probability does not suffer from this
difficulty: one can create a sequence of i.i.d. Bernoulli(1/2) random variables for
any number of Alices. Such a sequence has a distribution which is exchangeable
and has the desired mixed equilibrium as its marginal distribution corresponding
to any choice of two players.

Strictly speaking we have only argued that the observed correlated equilibrium
should be N -extendable, where N is the number of Alices at the conference.
However, with N assumed to be large, it is more natural to consider equilibria
which could be extended to an arbitrary number of attendees. In particular this
ensures that we select only the equilibria which are robust to the exact size of the
pool and the players’ knowledge thereof.

Being a bit more formal, we consider situations in which the players are
drawn from a pool of N interchangeable agents (n ≤ N ≤ ∞). We interpret
interchangeability as meaning that all N agents choose a hypothetical action for
the game, regardless of whether they are selected to play, and the joint distribution
ψ of these actions is N -exchangeable. Whichever n agents are chosen to play the
game, we assume they choose their actions in their best interest, in the sense that
their joint distribution is a correlated equilibrium. If this is true for one selection
of n agents it is true for any other by symmetry: the distribution of actions of
any n agents is µN→n(ψ).

Definition 4.4. For a standard symmetric game Γ and n ≤ N ≤ ∞ we define
the set of N-exchangeable equilibria to be the inverse image

XEG(Γ, N) := µ−1
N→n(CE(Γ)).

Up to marginalization,∞-exchangeable equilibria are the same as exchangeable
equilibria. Proposition 2.40 immediately yields the following result, which says
that N -exchangeable equilibria approximate exchangeable equilibria for large N .
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Proposition 4.5. For a standard symmetric game the images of the sets of N-
exchangeable equilibria under the marginalization maps are nested

· · · µn+3→n+2−−−−−−→ XEG(Γ, n+ 2)
µn+2→n+1−−−−−−→ XEG(Γ, n+ 1)

µn+1→n−−−−→ XEG(Γ, n)

and
∞⋂
N=n

µN→n(XEG(Γ, N)) = µ∞→n(XEG(Γ,∞)) = XEG(Γ).

Therefore we may view exchangeable equilibria as exactly those correlated
equilibria arising when players are selected from a large pool of interchangeable
agents and their identities are unknown to each other. It makes sense to say that
the notion of exchangeable equilibria eliminates those correlated equilibria which
are “unreasonable” on the grounds of symmetry arguments such as the one made
above. Of course, in settings such as the Alice and Bob example where these kinds
of symmetry arguments do not apply, we may expect other equilibria.

Finally, note that by Proposition 2.38 we can weaken the interchangeability
assumption somewhat. As long as all n-variable marginals of any joint distri-
bution of N random variables are equal, we can view these as marginals of an
N -exchangeable distribution. Thus we can avoid explicitly assuming the joint
distribution is N -exchangeable.

� 4.3 Many player interpretation

We have interpreted N -exchangeable equilibria as lifts of equilibria of the n-player
game Γ. We can also interpret these directly as symmetric equilibria of an extended
N -player game for n ≤ N <∞ (for technical reasons we avoid directly analyzing
games with infinitely many players). To do so suppose that instead of picking n
players out of a pool of N in an arbitrary fashion, we pick the n players uniformly
at random (without replacement). The set

Q = {ordered n-tuples of distinct elements of {1, . . . , N}} ,

specifies the possible assignments of players in the pool to roles in Γ and has
cardinality |Q| = N !

(N−n)!
. If a player is chosen, he gets whatever utility he obtains

playing Γ; otherwise he gets zero. This defines a new game Γ(N) with strategy sets
C

(N)
i = C1 and utilities given by averaging over the possible selections of players:

u
(N)
i (s1, . . . , sN) :=

(N − n)!

N !

n∑
j=1

∑
p∈Q:
pj=i

uj(sp1 , . . . , spn).
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Scaling these utilities by N !
(N−n)!

we obtain a game in which all n-tuples in Q play
the game simultaneously, choosing the same strategy in each instance. Since
scaling utilities does not change the equilibria, this gives us (essentially) another
interpretation of Γ(N).

Example 4.6. We look again at the anti-coordination game Γ whose utilities are
shown in Table 4.1 (also studied in Example 3.19). The story is different from
the one in the previous section, so we simply refer to the strategies as ‘A’ and ‘B’.
The utilities of the N -player game Γ(N) are given by

u
(N)
i (s1, . . . , sN) =

2

N(N − 1)
#{j : sj 6= si},

so each player wants to choose whichever strategy is chosen by fewer of his op-
ponents. This is a version of “The Minority Game” introduced by Challet and
Zhang [9]. One interpretation is that the N players are choosing between two
equally good restaurants, A and B, so each player wants to eat at the less crowded
restaurant. ♦

The game Γ(N) is symmetric under arbitrary permutations of the N players,
so it is natural to focus on the set of symmetric correlated equilibria CESN

(
Γ(N)

)
,

which is contained in ∆SN

(
CN

1

)
. These are exactly the N -exchangeable equilibria

of Γ.

Proposition 4.7. Let Γ be a game with standard symmetry group G. Then Γ(N)

has symmetry group SN and CESN

(
Γ(N)

)
= XEG(Γ, N).

Proof. We have already made the observation about the symmetry group, so we
begin by rewriting the utilities of Γ(N). For any j we can find a g ∈ G such that
g · j = 1. For p ∈ Q with pj = i,

uj(sp1 , . . . , spn) = u1(si, spg−1·2
, . . . , spg−1·n

).

As p−j ranges over all (n − 1)-tuples of distinct elements of {1, . . . , N} \ {i} so
does (pg−1·2, . . . , pg−1·n). Therefore∑

p∈Q:
pj=i

uj(sp1 , . . . , spn) =
∑
p∈Q:
p1=i

u1(si, sp2 , . . . , spn)

is independent of j. Substituting this back in, we obtain

u
(N)
i (s1, . . . , sN) =

n(N − n)!

N !

∑
p∈Q:
p1=i

u1(si, sp2 , . . . , spn).
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Let ψ ∈ ∆SN

(
CN

1

)
and π = µN→n(ψ). For any ζ : C1 → C1 we have∑

s1,...,sN

u
(N)
i (s1, . . . , ζ(si), . . . , sN)ψ(s1, . . . , sN)

=
∑

s1,...,sN

n(N − n)!

N !

∑
p∈Q:
p1=i

u1(ζ(si), sp2 , . . . , spn)ψ(s1, . . . , sN)

=
n(N − n)!

N !

∑
p∈Q:
p1=i

∑
s1,...,sN

u1(ζ(si), sp2 , . . . , spn)ψ(s1, . . . , sN)

=
n(N − n)!

N !

∑
p∈Q:
p1=i

∑
s1,...,sn

u1(ζ(s1), s2, . . . , sn)π(s1, . . . , sn)

=
n(N − n)!

N !

(N − 1)!

(N − n)!

∑
s1,...,sn

u1(ζ(s1), s2, . . . , sn)π(s1, . . . , sn)

=
n

N

∑
s1,...,sn

u1(ζ(s1), s2, . . . , sn)π(s1, . . . , sn).

Therefore ζ will improve a player’s payoff in Γ(N) under ψ if and only if it will
do so in Γ under π (by symmetry and player-transitivity it suffices to look at
deviations ζ for player 1 in Γ), so ψ ∈ CESN

(
Γ(N)

)
if and only if π ∈ CE(Γ).

Thus exchangeable equilibria correspond to symmetric correlated equilibria of
N -player extensions of the game for arbitrary N . Given that the original game
was symmetric, it is reasonable to expect that equilibria with a high degree of
symmetry would be focal (apt to be chosen over other equilibria because they
attract attention by being “better” in some way). This is another reason we
might expect players to play an exchangeable equilibrium. This proposition also
provides another route to existence of exchangeable equilibria.

Proof #2 of Theorem 3.16 (standard case only). In Proposition 2.33 we used the
existence of correlated equilibria and an averaging argument to obtain the existence
of symmetric correlated equilibria. By Proposition 4.7 this means XEG(Γ, N) 6= ∅
for all n ≤ N <∞ These sets µN→n(XEG(Γ, N)) are polytopes and so compact.
They are also nested so their intersection is nonempty, and equal to XEG(Γ) by
Proposition 4.5.

Example 4.8 (continues Example 4.6). Which equilibria should we expect to be
played in The Minority Game? There are an abundance of pure equilibria of Γ(N);
these are exactly the strategy profiles in which

⌊
N
2

⌋
players choose one restaurant
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and
⌈
N
2

⌉
choose the other. These all have the disadvantage of not being symmetric

in the players. While such equilibria can be justified with an evolutionary model
[9], they do not make as much sense in a symmetric one-shot game.

We can symmetrize by constructing a correlated equilibrium which picks one
of these pure Nash equilibria uniformly at random. This yields a πN ∈ XEG(Γ, N).
One can show that if N is odd then π = πN+1 is the unique π ∈ ∆SN+1

(CN+1
1 )

such that µN+1→N(π) = πN (the extra player in Γ(N+1) goes to the less populated
restaurant). On the other hand, if N is even then there is no π ∈ ∆SN+1

(CN+1
1 )

such that µN+1→N(π) = πN . This means πN is not (N + 2)-extendable for any N .
In particular, there is no symmetric way to extend any of the πL to a correlated

equilibrium of all the games Γ(N) simultaneously. Therefore expecting the players
to actually play one of the πN means assuming that the value of N±1 (depending
on the parity of N) is common knowledge. This assumption does not seem realistic
in this model.

It is more realistic to look for a solution which is robust to the value of N .
This could be accomplished in a number of ways, such as by fixing some value N
which is much greater than the actual expected number of players and using πN ,
or by assuming the players have a probability distribution over possible values of
N [51]. Exchangeable equilibria are those which are the most robust to the value
of N ; namely, they are correlated equilibria of Γ(N) for all N .

The unique exchangeable equilibrium of the anti-coordination game in Table 4.1
is the mixed Nash equilibrium (proven in Example 3.19 above). That is to say,
the only Bayesian rational strategy of the players in The Minority Game which is
symmetric and makes sense regardless of the number of players is for everyone to
choose a restaurant uniformly at random. ♦

Finally, the fact that the exchangeable equilibria correspond to symmetric
correlated equilibria of some N -player extension for all N is robust to how exactly
we formulate Γ(N). For example, the above formulation corresponds to every
ordered list of n out of the N players playing a copy of Γ. We could alter this
to by choosing only a subset of these interactions. An exchangeable equilibrium
extends simultaneously to a symmetric correlated equilibrium of all these games.
Furthermore, we could allow the players in these extensions to consider different
deviations for different copies of Γ, in which case the exchangeable equilibria would
be exactly the correlated equilibria in which the players choose the same action
against all opponents. The proofs of both of these facts are similar to the proof
of Proposition 4.7.
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� 4.4 Sealed envelope implementation

For n ≤ N ≤ ∞ we can assign another interpretation to XEG(Γ, N) in terms
of which correlated equilibria can be implemented by a certain simple type of
correlation scheme. Suppose Γ is to be played by n players who have access to
a common pile of N indistinguishable sealed envelopes, each of which contains
a slip of paper on which an element of C1 is written. Each player is allowed to
choose one envelope and base his choice of action in Γ on its contents, which he
examines privately. We assume that there is some mechanism in place preventing
multiple players from choosing the same envelope (e.g. reducing the utilities of
such players below the minimum utility in Γ).

The fact that the envelopes are indistinguishable means that the distribution
ψ over their contents should be N -exchangeable. Then ψ is in XEG(Γ, N) if and
only if it is a Nash equilibrium of the larger game including the envelope selection
process for both players to choose distinct envelopes in an arbitrary fashion and
then play the strategy written inside the envelope they choose. In particular,
indistinguishability means they cannot exploit the knowledge of which envelope
the other player will choose in any way.

A natural question at this point is when this behavior is still in equilibrium if
the players are allowed to observe the contents of k > 1 envelopes. This leads to
the notion of order k exchangeable equilibria, the subject of Chapter 5.



Chapter 5

Higher Order Exchangeable
Equilibria

We motivate higher order exchangeable equilibria in the context of standard
symmetric games via the sealed envelope implementation of Section 4.4. We
then give the definition in the general case. We examine when these converge to
convex combinations of Nash equilibria as the order grows. Finally we show that
existence of higher order exchangeable equilibria is equivalent to Nash’s Theorem
on existence of Nash equilibria.

� 5.1 Refinement of the sealed envelope implementation

Fix a game Γ with standard symmetry group G. An N -extendable correlated
equilibrium can be viewed as the distribution of the contents of N indistinguishable
envelopes each containing an element of C1 so that it is a Nash equilibrium of the
game with envelope selection for the n players to each pick a different envelope
and play its contents.

Now fix k ∈ N. We can refine this definition by allowing each player to take
up to k of the envelopes (assuming N is large enough) and base his play of Γ
on the contents of all of these. If it is a Nash equilibrium for him to take only
one and play its contents then we call the distribution of envelopes an order k
N-exchangeable equilibrium. The case k = 1 reduces to the previously defined
notion of N -exchangeable equilibrium.

Definition 5.1. The set of order k N-exchangeable equilibria of a game Γ
with player-transitive strategy-trivial symmetry group G is written XEk

G(Γ, N).

The order k N -exchangeable equilibrium concept is most natural when N ≥ nk,
so each player can simultaneously choose k envelopes. However, since we stipulate
that no player can gain by choosing more than one envelope, the definition makes
sense as long as there is one envelope for everyone and an additional k−1 envelopes

101
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for one player to contemplate choosing. In other words, we only require N ≥
n+ k − 1.

For N ≥ n+k−1, to have ψ ∈ XEk
G(Γ, N) means therefore that ψ ∈ ∆SN (CN

1 )
and µN→n+k−1(ψ) satisfies a certain incentive condition. This condition is that if
X1, . . . , XN are distributed according to ψ, then conditioned on Xn+1, . . . , Xn+k−1,
the distribution of X1, . . . , Xn is a correlated equilibrium of Γ almost surely. Since
the correlated equilibrium constraints are homogeneous, this condition is just a
finite number of linear constraints on µN→n+k−1(ψ), hence on ψ.

Note that if ψ is i.i.d. then looking at multiple envelopes cannot convey any
extra information, so ψ ∈ XEk

G(Γ, N) if and only if µN→n(ψ) ∈ NEG(Γ). Thus the
symmetric Nash equilibria are naturally included in the order k N -exchangeable
equilibria for all k ∈ N and N ≥ n+ k − 1.

Example 5.2 (continues Example 3.20). We revisit the 3× 3 symmetric bimatrix
game Γ of identical utilities

A = AT = B =

2 2 0
2 1 2
0 2 2

 ,
for which we showed conv(NES2(Γ)) ( XES2(Γ) ( CES2(Γ). We have seen that

W 2 :=
1

2

1/2
1/2
0

1/2
1/2
0

T +
1

2

 0
1/2
1/2

 0
1/2
1/2

T ∈ XES2(Γ) \ conv(NES2(Γ)).

One way to extend this distribution to an exchangeable distribution of random
variables X1, X2, . . . is to flip a fair coin to choose either the first or third strategy,
then flip this coin infinitely many times to determine whether each Xi should
equal either the second strategy or this previously chosen strategy.

The resulting distribution is in XES2(Γ,∞) by definition, but it is not in
XE2

S2
(Γ,∞). To see this, note that there is a positive probability that a player

who opens two envelopes will see the first and second strategies as his recom-
mendations. In this case he knows that the original coin flip selected the first
strategy. Conditioned on this information, his opponent’s recommendation is one
of the first two strategies with equal probability. The unique best response to this
information is to play the first strategy. This gives a better payoff than following
the recommendation of the envelope which suggested the second strategy, so this
distribution is not in XE2

S2
(Γ,∞).

Now we compute µ∞→3(XE2
S2

(Γ,∞)) for this game. We will show that this set
is the convex hull of the images of the three symmetric Nash equilibria of Γ. We
look at the marginal onto three copies because n+ k − 1 = 2 + 2− 1 = 3, so this
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is the marginal on which the incentive constraints are naturally placed. Choosing
N = ∞ allows us to use results about complete positivity. We can parametrize
such distributions as symmetric tensors:

W =

 a b c b d e c e f
b d e d g h e h i
c e f e h i f i j

 .
The conditional correlated equilibrium conditions are

b ≥ 2c, d ≥ 2e, e ≥ 2f,

a ≥ c, b ≥ e, c ≥ f,

2e ≥ d, 2h ≥ g, 2i ≥ h,

2b ≥ d, 2d ≥ g, 2e ≥ h,

e ≥ 2c, h ≥ 2e, i ≥ 2f,

f ≥ c, i ≥ e, j ≥ f.

In particular c = f and d = 2e = h:

W =

 a b c b 2e e c e c
b 2e e 2e g 2e e 2e i
c e c e 2e i c i j

 .
Since W is the marginal of an exchangeable distribution, it is completely

positive and so doubly nonnegative. In particular, by Example 2.57 the slices of
W are all positive semidefinite and e ≥ 0. One of the 2× 2 minor conditions for
semidefiniteness yields 0 ≤ 2ec− e2 = e(2c− e). Therefore we either have e = 0
or e ≤ 2c. But c ≥ 0 so e ≤ 2c either way. The reverse inequality is one of the
equilibrium conditions, so e = 2c:

W =

 a b c b 4c 2c c 2c c
b 4c 2c 4c g 4c 2c 4c i
c 2c c 2c 4c i c i j

 .
The determinant of the first slice of W is

a(4c2−4c2)−b(bc−2c2)+c(2bc−4c2) = 0−bc(b−2c)+2c2(b−2c) = −c(b−2c)2.

Since this slice is positive semidefinite this determinant must be nonnegative,
meaning c = 0 or b = 2c. If c = 0 then positive semidefiniteness of the upper left
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2×2 block would imply b2 ≤ 4ac = 0, so b = 0 = 2c in this case as well. Therefore
b = 2c regardless. Applying the same reasoning to the last slice gives i = 2c:

W =

 a 2c c 2c 4c 2c c 2c c
2c 4c 2c 4c g 4c 2c 4c 2c
c 2c c 2c 4c 2c c 2c j

 .
From the equilibrium conditions we have g ≤ 2d = 4e = 8c. If g < 8c then in
particular c > 0 and the upper left 2 × 2 minor of the middle slice of W would
be 2cg − 16c2 < 16c2 − 16c2 = 0, contradicting positive semidefiniteness. Thus
g = 8c:

W =

 a 2c c 2c 4c 2c c 2c c
2c 4c 2c 4c 8c 4c 2c 4c 2c
c 2c c 2c 4c 2c c 2c j

 .
The only remaining correlated equilibrium conditions which are not automati-
cally satisfied with equality when W is of this form are a, j ≥ c ≥ 0 and the
normalization condition a+ 62c+ j = 1. Any such W can be written

W = (a− c)

1
0
0

⊗3

+ 64c

1/4
1/2
1/4

⊗3

+ (j − c)

0
0
1

⊗3

,

where a − c ≥ 0, 64c ≥ 0, j − c ≥ 0, and a − c + 64c + j − c = a + 62c + j = 1.
Conversely, these normalized nonnegative symmetric simple tensors are just the
symmetric Nash equilibria of Γ (extended to i.i.d. distributions on three random
variables), so any such convex combination really is the marginal of an order 2
∞-exchangeable equilibrium. Summarizing:

µ∞→3(XE2
S2

(Γ,∞)) = conv


1

0
0

⊗3

,

1/4
1/2
1/4

⊗3

,

0
0
1

⊗3
= conv

(
µ−1

3→2

(
NES2(Γ)

))
. ♦

It is not always the case that the order 2 ∞-exchangeable equilibria are the
same as the convex combinations of symmetric Nash equilibria.

Example 5.3 (continues Example 3.26). Consider the symmetric three player
coordination game with identical utilities

u =

[
1 0 0 0
0 0 0 1

]
.



Sec. 5.1. Refinement of the sealed envelope implementation 105

In this game a player should choose whichever strategy he believes is more likely
for both of his opponents to choose.

Fix p ∈
(

1
2
, 1
)
. Suppose we have an infinite sequence of envelopes containing

elements of the strategy space C1 = {0, 1} chosen according to the distribution
1
2

[ p
1−p
]⊗∞

+ 1
2

[
1−p
p

]⊗∞
. That is to say, we flip a fair coin to choose which strategy

to favor and conditioned on that choose the envelope contents i.i.d. with a p-biased
coin.

If a player observes the contents of two of these envelopes and his observations
match, then believes it more likely than not that the initial coin flip biased the
contents towards this observation. If his observations do not match then he assigns
equal posterior probability to both biases. No matter what, he always believes
both of his opponents are at least as likely to play the strategy from his first
envelope as they are the other strategy. Therefore this distribution is an order 2
∞-exchangeable equilibrium.

Suppose a player observes the contents of three envelopes to be 0, 1, 1. Then he
believes the coin is more likely to be biased towards strategy 1, so his opponents
are more likely to see a 1 than a 0. Therefore it is not in his best interest to play
0, so this distribution is not an order 3 ∞-exchangeable equilibrium.

The incentive conditions for an order 3 ∞-exchangeable equilibrium concern
the distribution of 3 + 3 − 1 = 5 envelopes. Let us see which distributions are
in µ∞→5(XE3

S3
(Γ,∞)). Such a distribution is specified by 6 numbers p0, . . . , p5,

where pi is the probability that a given sequence in {0, 1}5 with exactly i ones
will appear. Modulo normalization, if a player observes the last two envelopes his
beliefs about the distribution of the remaining three will be:[

p0 p1 p1 p2

p1 p2 p2 p3

]
,

[
p1 p2 p2 p3

p2 p3 p3 p4

]
, or

[
p2 p3 p3 p4

p3 p4 p4 p5

]
,

depending on the observed contents. To obtain an order 3 ∞-exchangeable equi-
librium these must each satisfy the correlated equilibrium conditions:

p0 ≥ p2, p1 ≥ p3, p2 ≥ p4,

p3 ≥ p1, p4 ≥ p2, p5 ≥ p3,

or more concisely, p5 ≥ p1 = p3 and p0 ≥ p2 = p4. The marginals of exchangeable
distributions are exactly the completely positive distributions. By Example 2.56
complete positivity and double nonnegativity agree and can be written (substi-
tuting in p3 = p1 and p4 = p2)p0 p1 p2

p1 p2 p1

p2 p1 p2

 � 0 and

p1 p2 p1

p2 p1 p2

p1 p2 p5

 � 0.
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The lower right 2× 2 minor of the left matrix and the upper left 2× 2 minor of
the right matrix give p2

2 ≥ p2
1 and p2

1 ≥ p2
2. Since p1, p2 ≥ 0 we must have p1 = p2.

The set of distributions in ∆S5(C
5
1) with p0, p5 ≥ p1 = p2 = p3 = p4 is exactly

µ∞→5(XE3
S3

(Γ,∞)) = conv

{[
1
0

]⊗5

,

[
1/2
1/2

]⊗5

,

[
0
1

]⊗5
}

= conv
(
µ−1

5→3

(
NES3(Γ)

))
. ♦

The relationships between the sets XEk
G(Γ, N) are summarized in Figure 5.1.

It is clear from the definitions that order k + 1 N -exchangeable equilibria are
automatically order k N -exchangeable equilibria. Similarly, marginalization maps
order k (N + 1)-exchangeable equilibria to order k N -exchangeable equilibria.
Since the inverse limit of ∆SN (CN

1 ) is ∆S∞(C∞1 ), the inverse limit of XEk
G(Γ, N)

for fixed k is XEk
G(Γ,∞).

It it natural to extend XEk
G(Γ, N) to the k =∞ case when N =∞ by defining

XE∞G (Γ,∞) :=
⋂∞
k=1 XEk

G(Γ,∞). This corresponds to players being allowed to
examine any finite number of envelopes. In the examples even for fairly small
fixed k, the order k ∞-exchangeable equilibria were the same as mixtures of Nash
equilibria. Why is this?

De Finetti’s theorem states that conditioned on observing the contents of
many envelopes (say k), the remaining envelopes are approximately i.i.d. with
distribution approximately equal to the observed empirical distribution. The order
k incentive conditions imply that all the observations are best responses to the
beliefs, so the [nth tensor power of the] empirical distribution is close to being a
symmetric Nash equilibrium. The more envelopes observed, the closer to a Nash
equilibrium the distribution is likely to be.

This argument suggests that XE∞G (Γ,∞) is exactly the set of distributions in
which a random Nash equilibrium is selected and conditioned on that the envelope
contents are generated i.i.d. according to this Nash equilibrium. In the remainder
of the chapter we will set this statement in a more formal and general context
and prove it.

� 5.2 Powers of games

To define order k exchangeable equilibria for games with arbitrary symmetry
group G we will need two notions of a power of a game Γ. These are larger games
in which multiple copies of Γ are played simultaneously1. We need to develop

1 These definitions can be generalized to define two possible products of games, so that the
powers we define reduce to k-fold products of a game with itself. If we remove all mention of



Sec. 5.2. Powers of games 107

∆(NES2)
‖

XE∞S2
(∞)

↓

. .
. ...

↓
XE3

S2
(4) ← · · · ← XE3

S2
(∞)

↓ ↓
XE2

S2
(3) ← XE2

S2
(4) ← · · · ← XE2

S2
(∞)

↓ ↓ ↓
XE1

S2
(2) ← XE1

S2
(3) ← XE1

S2
(4) ← · · · ← XE1

S2
(∞)

‖ ‖ ‖ ‖
CES2 ← XES2(3) ← XES2(4) ← · · · ← XES2

↓ ↓ ↓ ↓
∆S2(C

2
1) ← ∆S3(C

3
1) ← ∆S4(C

4
1) ← · · · ← ∆S∞(C∞1 )

Figure 5.1. Commutative diagram expressing relations between the sets of order k N -
exchangeable equilibria for a symmetric bimatrix game. The vertical maps are inclusions
and the horizontal maps are marginalizations. Ellipses imply equality in the (inverse) limit.
Dependence on the game Γ has been suppressed to unclutter the diagram.

the theory of these a bit before making the connection with the previous section
in Proposition 5.11. Throughout we will take as fixed a game Γ with symmetry
group G and a number k ∈ N.

Definition 5.4. The kth power of Γ, denoted ΠkΓ, is a game in which k in-
dependent copies of Γ are played simultaneously. More specifically, ΠkΓ has kn
players labeled by pairs i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, strategy spaces ΠkCij := Ci for
all i, j with generic element sji , and utilities Πkuij(s

1
1, . . . , s

k
n) := ui(s

j
1, s

j
2, . . . , s

j
n).

The contracted kth power of Γ, denoted ΞkΓ, is a game in which k copies
of Γ are played simultaneously, but all by the same set of players. Specifically, ΞkΓ
has n players, strategy spaces ΞkCi := Ck

i with generic element (s1
i , . . . , s

k
i ) for all

i, and utilities Ξkui(s
1
1, . . . , s

k
n) :=

∑
j ui(s

j
1, s

j
2, . . . , s

j
n).

A schematic illustration of these powers is shown in Figure 5.2.

symmetry groups (so in particular exchangeable distributions and exchangeable equilibria are
no longer defined) all the statements we make about Nash and correlated equilibria of these
powers extend to corresponding statements about products with identical proofs. We will not
need this level of generality, however, so to avoid complicating notation we focus on powers.
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Γ ΠkΓ ΞkΓ

s2

s1

s1
2 s2

2 · · · sk2

s1
1 s2

1 · · · sk1

s1
2 s2

2 · · · sk2

s1
1 s2

1 · · · sk1

Figure 5.2. Representing a 2-player game Γ with players choosing strategies s1 and s2 as
drawn on the left, the powers ΠkΓ and ΞkΓ are formed as shown. A shaded box represents
actions controlled by a single player, whose utility is given by the sum over all interactions.

Proposition 5.5. Let Γ be a game with symmetry group G and fix k ∈ N. Then
both powers ΠkΓ and ΞkΓ are games with symmetry group G×Sk and they satisfy:

• ∆G×Sk
(
ΠkΓ

)
= ∆G×Sk

(
ΞkΓ

)
• ∆Π

G×Sk

(
ΠkΓ

)
( ∆Π

G×Sk

(
ΞkΓ

)
• ∆X

G×Sk

(
ΠkΓ

)
⊆ ∆X

G×Sk

(
ΞkΓ

)
.

Furthermore, distributions in ∆X
G×Sk

(
ΠkΓ

)
are invariant under the larger

group 〈Snk , Gk〉, where the powers denote group products. That is to say, they
are invariant under separate permutations applied to the copies of player 1, the
copies of player 2, etc., and also under separate elements of G applied to the first
copy, the second copy, etc.

Proof. Both powers are invariant under arbitrary permutations of the copies and
under symmetries in G applied to all of the copies simultaneously. In fact in the
case of ΠkΓ we can apply a different symmetry in G to each copy independently
so that ΠkΓ is invariant under the larger group G o Sk (the wreath product of G
and Sk), but we will not need this fact.

Since G× Sk acts on ΠkC and ΞkC in the same way, we get the first equality.
The game ΠkΓ has more players than ΞkΓ, so ∆Π

G×Sk

(
ΠkΓ

)
has stronger inde-

pendence conditions than ∆Π
G×Sk

(
ΞkΓ

)
, yielding the strict containment. Taking

convex hulls gives the third containment.
Elements of ∆Π

G×Sk

(
ΠkΓ

)
are of the form x⊗k where x = x1⊗· · ·⊗xn ∈ ∆Π

G(Γ).
Such distributions are invariant under all the mentioned symmetries, so any convex
combination of these is as well.

Since ∆G×Sk(Π
kΓ) = ∆G×Sk(Ξ

kΓ), we can compare the conditions for a distri-
bution to be a correlated equilibrium of ΠkΓ or ΞkΓ. Many of the relationships
between these and the equilibria of Γ which we prove below are summarized in
Figure 5.3.
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Proposition 5.6. Let (X1
1 , . . . , X

k
n) be a random vector taking values in Ck dis-

tributed according to π ∈ ∆G×Sk
(
ΠkΓ

)
= ∆G×Sk

(
ΞkΓ

)
. Then

• π is a correlated equilibrium of ΠkΓ if and only if Xj
i is a best response (in

Γ) to Prob(Xj
−i | X

j
i ) almost surely for all i and j, and

• π is a correlated equilibrium of ΞkΓ if and only if Xj
i is a best response (in

Γ) to Prob(Xj
−i | X1

i , . . . , X
k
i ) almost surely for all i and j.

Proof. By Proposition 2.7, π is a correlated equilibrium of ΠkΓ if and only if Xj
i

is a best response in ΠkΓ to Prob(X1, . . . , Xj−1, Xj
−i, X

j+1, . . . , Xk | Xj
i ) almost

surely for all i and j. But the utility of player ij in ΠkΓ is ui(X
j
1 , . . . , X

j
n), so

player ij can ignore X l
r whenever l 6= j.

Similarly π is a correlated equilibrium of ΞkΓ if and only if (X1
i , . . . , X

k
i ) is

a best response in ΞkΓ to Prob(X1
−i, . . . , X

m
−i | X1

i , . . . , X
k
i ) almost surely for all

i. The utility of player i in ΞkΓ is
∑

j ui(X
j
1 , X

j
2 , . . . , X

j
n) and no Xj

i appears in
more than one term of this sum. Thus the sum is maximized when each term is
maximized independently. That is to say π ∈ CEG×Sk(Ξ

kΓ) if and only if Xj
i is a

best response in Γ to Prob(Xj
−i | X1

i , . . . , X
k
i ) almost surely for all i and j.

This characterization allows us to prove the following containments between
equilibrium sets. One can construct examples showing that in general none of the
inclusions in this proposition can be reversed. In particular, no containment holds
between XEG×Sk

(
ΠkΓ

)
and XEG×Sk

(
ΞkΓ

)
in either direction. This is connected

to the fact that the inclusion between the sets of correlated equilibria of ΠkΓ and
ΞkΓ goes in the opposite direction from the inclusion between the sets of Nash
equilibria.

Proposition 5.7. The symmetric equilibria of ΠkΓ and ΞkΓ satisfy

NEG×Sk
(
ΠkΓ

)
⊆ NEG×Sk

(
ΞkΓ

)
⊆ CEG×Sk

(
ΞkΓ

)
⊆ CEG×Sk

(
ΠkΓ

)
.

Proof. We use Proposition 5.6. If Xj
i are distributed according to π ∈ ∆Π

G×Sk(Π
kΓ)

then the Xj
i are all independent, so the conditional distributions in Proposition

5.6 are equal to the corresponding unconditional distributions and both conditions
are equivalent. This proves the first containment. The second containment follows
because Nash equilibria are always correlated equilibria. For the third containment,
suppose Xj

i is a best response to Prob(Xj
−i | X1

i , . . . , X
k
i ) almost surely. Summing

over possible values of X−ji we get that Xj
i is a best response to Prob(Xj

−i | X
j
i )

almost surely.
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These sets are closely related to the equilibria of Γ. We will express these
relationships in terms of the marginalization map from ∆G×Sk(Π

kΓ) to ∆G(Γ)
which sends the distribution of the random vector (X1

1 , . . . , X
k
n) to the distribution

of (X1
1 , . . . , X

1
n). We denote this marginalization map by µkn→n, although strictly

speaking this is an abuse of our established notation because (in the case when
G is trivial, say) distributions in ∆G×Sk(Π

kΓ) need not be kn-exchangeable, so it
matters which variables we choose to marginalize.

This marginalization map has two natural right inverses. First, the power map
powk which sends π to π⊗k. Second, the diagonal map diagk which sends the
distribution of random vector (X1, . . . , Xn) to the distribution of random vector
(X1

1 , . . . , X
k
n) where Xj

i = Xi almost surely for all i, j.
The following proposition records for completeness how these maps interact

with equilibria. We only use a few of these facts in what follows.

Proposition 5.8. A distribution ψ ∈ ∆G×Sk(Π
kΓ) is a correlated equilibrium

of ΠkΓ if and only if µkn→n(ψ) is a correlated equilibrium of Γ. A distribution
π ∈ ∆G(Γ) is a correlated equilibrium of Γ if and only if diagk(π) is a correlated
equilibrium of ΞkΓ if and only if powk(π) is a correlated equilibrium of ΞkΓ.
Marginalization maps CEG×Sk(Π

kΓ) and CEG×Sk(Ξ
kΓ) onto CEG(Γ).

A distribution π ∈ ∆Π
G(Γ) is a Nash equilibrium of Γ if and only if powk(π) is

a Nash equilibrium of ΠkΓ. This map NEG(Γ)→ NEG×Sk(Π
kΓ) is onto, as is the

marginalization map from NEG×Sk(Ξ
kΓ) to NEG(Γ).

Proof. Immediate from the definitions and Propositions 5.6 and 5.7.

Proposition 5.9. Marginalization maps XEG×Sk(Π
kΓ) and XEG×Sk(Ξ

kΓ) onto
XEG(Γ).

Proof. By Propositions 5.7 and 5.8 any correlated equilibrium of either power maps
to a correlated equilibrium of Γ. Product distributions for either power marginalize
to product distributions for Γ, so by linearity so do exchangeable distributions.
Therefore exchangeable equilibria of either power map into exchangeable equilibria
of Γ.

To see that this map is onto we use a different argument for each power. Let
π =

∑
j λ

jxj1 ⊗ · · · ⊗ xjn be a decomposition of a π ∈ XEG(Γ) as a finite convex

combination where xj1 ⊗ · · · ⊗ xjn are in ∆Π
G(Γ). Then

diagk(π) =
∑
j

λj diagk(xj1)⊗ · · · ⊗ diagk(xjn) ∈ ∆X
G×Sk(Ξ

kΓ)

and by Proposition 5.8 this is also a correlated equilibrium of ΞkΓ, so it is an
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exchangeable equilibrium which marginalizes to π. On the other hand∑
j

λj powk(xj1 ⊗ · · · ⊗ xjn) =
∑

λj powk(xj1)⊗ · · · ⊗ powk(xjn) ∈ ∆X
G×Sk(Π

kΓ)

and this must also be a correlated equilibrium of ΠkΓ by Propositions 5.7 and 5.8
since it marginalizes to π.

Note that we lifted π to an exchangeable equilibrium of ΞkΓ which is a cor-
related equilibrium of ΠkΓ but not necessarily an exchangeable distribution for
ΠkΓ, so not an exchangeable equilibrium of ΠkΓ. Conversely, the lift of π to an
exchangeable equilibrium of ΠkΓ is an exchangeable distribution of ΞkΓ but not
necessarily a correlated equilibrium thereof, so not an exchangeable equilibrium of
ΞkΓ. This raises the natural question of whether there always exists a lift which
is simultaneously an exchangeable equilibrium of both powers. We will see in the
coming sections that there need not be.

For any 1 ≤ p < k a similar abuse of notation gives a marginalization map

µkn→pn : ∆G×Sk(Π
kΓ)→ ∆G×Sp(Π

pΓ).

This map respects the structure of all the sets of distributions mentioned in Propo-
sition 5.5, i.e., it restricts to maps ∆Π

G×Sk(Π
kΓ) → ∆Π

G×Sp(Π
pΓ), ∆X

G×Sk(Ξ
kΓ) →

∆X
G×Sp(Ξ

pΓ), etc. By Proposition 5.6 it also respects the equilibrium struc-

ture of these games in the sense that XEG×Sk(Π
kΓ) maps into XEG×Sp(Π

pΓ),
NEG×Sk(Ξ

kΓ) maps into NEG×Sp(Ξ
pΓ), etc.

We have shown that if p = 1 then all of these maps are onto. In particular,
µkn→n(XEG×Sk(Π

kΓ)) = XEG(Γ) = µkn→n(XEG×Sk(Ξ
kΓ)), so neither of these

marginalized sets of exchangeable equilibria need approach the convex hull of the
Nash equilibria of Γ as k gets large. Alone neither power’s set of exchangeable
equilibria provides a tighter convex relaxation for the symmetric Nash equilibria
of Γ than XEG(Γ) itself does. We will see that taking their intersection fixes this.

� 5.3 Order k exchangeable equilibria

Definition 5.10. The set of order k exchangeable equilibria of Γ is

XEk
G(Γ) := XEG×Sk

(
ΠkΓ

)
∩ XEG×Sk

(
ΞkΓ

)
,

or equivalently by Propositions 5.5 and 5.7,

XEk
G(Γ) := ∆X

G×Sk

(
ΠkΓ

)
∩ CEG×Sk

(
ΞkΓ

)
.
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NEG×Sk(Π
kΓ) NEG×Sk(Ξ

kΓ)

XEk
G(Γ)

XEG×Sk(Π
kΓ) XEG×Sk(Ξ

kΓ)

CEG×Sk(Π
kΓ) CEG×Sk(Ξ

kΓ)

µkn→n

NEG(Γ)

µkn→n(XEk
G(Γ))

XEG(Γ)

CEG(Γ)

Figure 5.3. At the left is a summary of the containments between equilibrium sets of the
powers ΠkΓ and ΞkΓ proven in Section 5.2. An arrow A ↪→ B indicates A ⊆ B. Marginalization
maps each of these onto the set at the same height on the right.

The relationship between XEk
G(Γ) and the sets of equilibria of the kth powers

is summarized in Figure 5.3.
These order k exchangeable equilibria are related to order k ∞-exchangeable

equilibria, as defined in Section 5.1, just as exchangeable equilibria are related to
∞-exchangeable equilibria by Proposition 4.5:

Proposition 5.11. In a standard symmetric game,

XEk
G(Γ) = µ∞→nk(XEk

G(Γ,∞)).

Proof. The kth power ΠkΓ is a standard symmetric game with symmetry group
G × Sk. The set ∆X

G×Sk

(
ΠkΓ

)
= µ∞→nk(∆S∞(C∞1 )). Let X1, X2, . . . be an ex-

changeable sequence of random variables taking values in C1. By Proposition 5.6,
the marginal distribution of X1, . . . , Xnk is a correlated equilibrium of ΞkΓ if and
only if, conditioned on k− 1 of these random variables, any other n of them form
a correlated equilibrium of Γ.

We do not give a direct proof of the existence of order k exchangeable equilibria
in the style of the existence proofs for exchangeable equilibria. Rather, we observe
that existence follows immediately from Nash’s theorem. In the following two
sections we will show that this existence result is in fact equivalent to Nash’s
Theorem, in the sense that we can use it to prove Nash’s Theorem. Therefore a
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hypothetical direct proof of Proposition 5.12 would yield a new proof of Nash’s
Theorem.

Proposition 5.12. A game with symmetry group G has an order k exchangeable
equilibrium for all k ∈ N.

Proof. By Propositions 5.5 and 5.7 we have

NEG×Sk(Π
kΓ) ⊆ XEG×Sk(Π

kΓ) ∩ XEG×Sk(Ξ
kΓ),

so by Nash’s Theorem this intersection is nonempty.

For 1 ≤ p < k, the marginalization map sends XEG×Sk(Π
kΓ) into XEG×Sp(Π

pΓ)

and XEG×Sk(Ξ
kΓ) into XEG×Sp(Ξ

pΓ). Therefore it sends XEk
G(Γ) into XEp

G(Γ).
Projecting the order k exchangeable equilibria into ∆G(Γ) for all k ∈ N we obtain

NEG(Γ) ⊆ conv(NEG(Γ)) ⊆ · · · ⊆ µ3n→n(XE3
G(Γ)) ⊆ µ2n→n(XE2

G(Γ))

⊆ XEG(Γ) ⊆ CEG(Γ). (5.1)

This raises a natural question: does
⋂∞
k=1 µkn→n(XEk

G(Γ)) = conv(NEG(Γ))? We
will take up this question in the following sections.

� 5.4 Order ∞ exchangeable equilibria

As k varies the sets of higher order exchangeable equilibria live in different spaces
but the marginalization maps form a sequence

· · · → XE4
G(Γ)→ XE3

G(Γ)→ XE2
G(Γ)→ XEG(Γ),

so the natural way to take an “intersection” of these is the inverse limit.

Definition 5.13. The set of order ∞ exchangeable equilibria is

XE∞G (Γ) := lim←−XEk
G(Γ).

By the Kolmogorov consistency theorem elements of this inverse limit can be
viewed as distributions of arrays of random variables Xj

i , 1 ≤ i ≤ n, 1 ≤ j <∞.
The marginal distribution in which we only look at the variables with j ≤ k is in
XEk

G(Γ). Conversely if this is true for all k then the distribution of the Xj
i is an

order ∞ exchangeable equilibrium.

Proposition 5.14. A game with symmetry group G has an order∞ exchangeable
equilibrium.
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Proof. This follows from Proposition 5.12 and the fact that the inverse limit of a
sequence of nonempty compact Hausdorff spaces is nonempty.

The power map powk sends ∆Π
G(Γ) → ∆Π

G×Sk(Π
kΓ). Extending by linearity

we get a map ∆(∆Π
G(Γ))→ ∆X

G×Sk(Π
kΓ) and these maps are compatible with the

marginalization maps in the sense that the diagram

∆(∆Π
G(Γ))

· · · ∆X
G×S3

(Π3Γ) ∆X
G×S2

(Π2Γ) ∆X
G (Γ)

commutes. Using De Finetti’s Theorem (and an argument similar to the one prov-
ing Proposition 6.6 below) one can show that indeed ∆(∆Π

G(Γ)) = lim←−∆X
G×Sk(Π

kΓ).

Since XEk
G(Γ) ⊆ ∆X

G×Sk(Π
kΓ), we can pass to inverse limits and view XE∞G (Γ) as a

subset of ∆(∆Π
G(Γ)). In particular it is the subset consisting of those π ∈ ∆(∆Π

G(Γ))
which map into XEk

G(Γ) for all k. In the next section we compute this subset
explicitly when G is player-transitive.

Proposition 5.15. Viewing XE∞G (Γ) as a subset of ∆(∆Π
G(Γ)), we have

∆(NEG(Γ)) ⊆ XE∞G (Γ).

Proof. Let π ∈ ∆(NEG(Γ)). The map ∆(∆Π
G(Γ)) → ∆X

G×Sk(Π
kΓ) sends π to a

mixture of Nash equilibria of ΠkΓ by Propositions 5.7 and 5.8. In particular it
maps π into XEk

G(Γ) for all k, so π ∈ XE∞G (Γ).

� 5.5 Nash equilibria from higher order exchangeable equilibria

We have seen that Nash’s theorem leads to the existence of order k exchangeable
equilibria for finite k which in turn leads to the existence of order∞ exchangeable
equilibria. In this section we complete the loop, going from order∞ exchangeable
equilibria to Nash equilibria.

� 5.5.1 The player-transitive case

Theorem 5.16. If G acts player-transitively on Γ, then ∆(NEG(Γ)) = XE∞G (Γ).

Proof. One inclusion is Proposition 5.15. For the converse let R be a random
variable taking values in ∆Π

G(Γ) distributed according to π ∈ XE∞G (Γ). Let Xj
i ,
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1 ≤ i ≤ n, 1 ≤ j <∞, be random variables taking values in Ci with distribution
Ri which are conditionally independent given R. We must show that Ri is a best
response to R−i almost surely. We will do this by approximating Ri and R−i in
terms of the Xj

i .
For each k ∈ N the distribution of the finite collection of random variables Xj

i

with j ≤ k is an order k exchangeable equilibrium, so Proposition 5.6 states that
for any 1 ≤ j ≤ k the strategy Xj

i is a best response to the random conditional
distribution Prob(Xj

−i | X1
i , . . . , X

k
i ) almost surely.

By the last part of Proposition 5.5, Prob(Xj
−i | X1

i , . . . , X
k
i ) ≡ Prob(X1

−i |
X1
i , . . . , X

k
i ) for all i, j, and k. We define Pki to be this common random conditional

distribution. Let Yji be the random variable taking values in ∆(Ci) which is the
empirical distribution of X1

i , . . . , X
j
i . Then Yji is a mixture of best responses to

Pki whenever j ≤ k, hence Yji is itself a best response. We will show that Yji and
Pki converge to Ri and R−i, respectively, as j and k go to infinity.

Let Σi be the completion of the σ-algebra generated by X1
i , X

2
i , . . . and define

P∞i := Prob(X1
−i | Σi). Then Pki → P∞i almost surely as k goes to infinity

(Theorem 10.5.1 in [23]). Therefore Yji is a best response to P∞i for all j almost
surely. By the strong law of large numbers, Yji converges almost surely to Ri as
j goes to infinity, so Ri is a best response to P∞i almost surely. Furthermore, Ri

is measurable with respect to Σi because the Yji are.
The Xj

i are conditionally independent givenR, so we have P∞i = E(Prob(X1
−i |

R) | Σi). Since G acts player-transitively, for any player j we have Rj = Ri · g for
some g ∈ G, hence Rj is measurable with respect to Σi and so is R. In particular
Prob(X1

−i | R) is measurable with respect to Σi and we obtain

P∞i = E(Prob(X1
−i | R) | Σi) = Prob(X1

−i | R) = R−i.

This shows thatRi is a best response toR−i almost surely for all i, soR ∈ NEG(Γ)
almost surely and π ∈ ∆(NEG(Γ)).

Therefore if G is player transitive we get convergence in (5.1). If G is the trivial
group then any correlated equilibrium π ∈ CE(Γ) lifts to

∑
s∈C π(s)δδs ∈ XE∞G (Γ),

so the image of XE∞G (Γ) in ∆(Γ) is CE(Γ) whereas the image of ∆(NEG(Γ)) is
conv(NE(Γ)). These sets are different for some games (e.g., chicken), so the above
theorem can fail without the player-transitivity assumption.

We can recover Nash’s theorem in the player-transitive case from the above
theorem, but we stress that this does not give a new proof of Nash’s theorem;
rather, it is a proof that the existence of Nash equilibria is equivalent to the
existence of higher order exchangeable equilibria.

Nash’s Theorem (player-transitive case). A game with player-transitive sym-
metry group G has a G-invariant Nash equilibrium.
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Proof. Combine Proposition 5.14 with Theorem 5.16, noting that ∆(∅) = ∅.

� 5.5.2 Arbitrary symmetry groups

In this section we show how to embed an arbitrary game Γ with symmetry group G
in a game ΓSym with a player-transitive symmetry group, preserving the existence
of G-invariant Nash equilibria. This allows us to drop the player-transitivity
assumption from the previous section, completing the cycle of implications:

NEG(Γ) 6= ∅ XEk
G(Γ) 6= ∅

XE∞G (Γ) 6= ∅NEG(Γ) 6= ∅
(player transitive G)

There are a variety of ways to symmetrize games. The one we have chosen is
a natural n-player generalization of von Neumann’s tensor-sum symmetrization
discussed in [28]. The idea is that each of the n players in ΓSym plays all the roles
of the players in Γ simultaneously. The players in ΓSym play n! copies of Γ, one
for each assignment of players in ΓSym to roles in Γ. A player’s utility in ΓSym is
the sum of his utilities over the copies.

Viewing the game Γ as the actual situation faced by a society, considering
ΓSym amounts to each player forgetting his true role and imagining all the roles
he could have taken in the society. Behind this so-called veil of ignorance [60],
the players face a symmetric situation.

Definition 5.17. Given an n-player game Γ with strategy sets Ci and utilities ui
we define its symmetrization ΓSym to be the n-player game with strategy sets
CSym
i := C (with typical strategy si = (si1, . . . , s

i
n)) and utilities

uSym
i (s) :=

∑
τ∈Sn

uτ(i)

(
d(τ ? s)

)
,

where s = (s1, . . . , sn) ∈ CSym = Cn, ? : Sn × CSym → CSym is defined by
(τ ? s)k := sτ

−1(k), and d : CSym → C is defined by [d(s)]k := skk.

We now show that ΓSym is a game with player-transitive symmetry group. We
will use ? to denote the action on ΓSym to distinguish it from the action · on Γ.
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Proposition 5.18. If Γ is a game with symmetry group G then ΓSym is a game
with player-transitive symmetry group G× Sn, where σ ∈ Sn acts by ? as defined
above and g ∈ G acts by

g ? (s1, . . . , sn) 7→ (g · s1, . . . , g · sn).

Proof. Note that ? defines an action of G on CSym. Also, for σ, τ ∈ Sn we have(
τ ? (σ ? s)

)k
= (σ ? s)τ

−1(k) = sσ
−1(τ−1(k)) = s(τσ)−1(k) =

(
(τσ) ? s

)k
,

so ? is an action of Sn on CSym as well. These actions commute, so together they
define an action ? of G× Sn on CSym. Note that the induced actions on players
are g ? i = i and σ ? i = σ(i).

To show that this is an action of G× Sn on ΓSym it suffices to show that the
utilities of ΓSym are invariant under the action of any σ ∈ Sn and any g ∈ G. To
see the former, let σ ∈ Sn. Then we have

uSym
σ?i (σ ? s) =

∑
τ∈Sn

uτ(σ(i))

(
d
(
τ ? (σ ? s)

))
=
∑
τ∈Sn

u(τσ)(i)

(
d
(
(τσ) ? s

))
=
∑
τ∈Sn

uτ(i)

(
d(τ ? s)

)
= uSym

i (s),

where we have used in the penultimate equation the fact that Sn is a group, so
the map τ 7→ τσ is a bijection. To see the latter, let g ∈ G and let γ ∈ Sn
be the permutation induced by g on the set of players in Γ. Then we have
d(g ? s) = g · d(γ−1 ? s), so

uSym
g?i (g ? s) =

∑
τ∈Sn

uτ(i)

(
d
(
τ ? (g ? s)

))
=
∑
τ∈Sn

uτ(i)

(
d
(
g ? (τ ? s)

))
=
∑
τ∈Sn

uτ(i)

(
g · d

(
γ−1 ? (τ ? s)

))
=
∑
τ∈Sn

u(γ−1τ)(i)

(
d
(
(γ−1τ) ? s

))
=
∑
τ∈Sn

uτ(i)

(
d(τ ? s)

)
= uSym

i (s),

where the fourth equation follows because g is a symmetry of Γ. Clearly Sn acts
transitively on the set of players.

Nash’s Theorem. A game with symmetry group G has a G-invariant Nash
equilibrium.

Proof. Let Γ be a game with symmetry group G. Then ΓSym is a game with
player-transitive symmetry group G×Sn by Proposition 5.18, so it has a (G×Sn)-
symmetric Nash equilibrium by the player-transitive version of Nash’s Theorem.
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By definition of the action of G × Sn on ΓSym, this Nash equilibrium is of the
form (ρ, . . . , ρ), with ρ ∈ ∆G(Γ). Notice that for each player i, each utility
uSym
k (s1, . . . , sn) is a sum of functions which only depend on sij for a single value of
j. Thus ρ is payoff equivalent to the product of its marginals ρ1×· · ·×ρn ∈ ∆Π

G(Γ).
Therefore we can take the Nash equilibrium (ρ, . . . , ρ) to be such that ρ ∈ ∆Π

G(Γ)
by Proposition 2.15.

It remains to verify that ρ ∈ NEG(Γ). For any si ∈ C we can compute

uSym
i (ρ, . . . , ρ, si, ρ, . . . , ρ) =

∑
τ∈Sn

uτ(i)

(
ρ1, . . . , ρτ(i)−1, s

i
τ(i), ρτ(i)+1, . . . , ρn

)
= (n− 1)!

n∑
j=1

uj(ρ1, . . . , ρj−1, s
i
j, ρj+1, . . . , ρn).

For each value of j we can vary the sij component of si independently and it is a
best response for player i to play ρ in ΓSym if the rest of the players play ρ, so we
must have

uj(ρ1, . . . , ρj−1, sj, ρj+1, . . . , ρn) ≤ uj(ρ)

for all players j and all sj ∈ Cj, i.e., ρ ∈ NEG(Γ).



Chapter 6

Asymmetric Exchangeable Equilibria

In this chapter we take up the question of what an exchangeable equilibrium of
a game which is not (necessarily) symmetric should be. Throughout we will use
the term asymmetric as shorthand to mean “not necessarily symmetric,” so
for example asymmetric games will include symmetric games and asymmetric
exchangeable equilibria will include symmetric exchangeable equilibria.

To simplify notation, we restrict attention to a bimatrix game Γ throughout.
The row player chooses a strategy in C1 = {1, . . . , r} and the column player
chooses a strategy in C2 = {1, . . . , c}. The matrices A and B denote the utilities
of the row and column players, respectively.

Before we begin let us recall what an exchangeable equilibrium of Γ should not
be. As shown in Example 3.2, conv{xyT | x ∈ Rr

≥0, y ∈ Rc
≥0} = Rr×c

≥0 . Therefore
CE(Γ) ∩ conv{xyT | x, y ≥ 0} = CE(Γ) does not yield an interesting definition of
asymmetric exchangeable equilibrium.

� 6.1 Partial exchangeability

We will generalize the notion of exchangeable equilibrium to bimatrix games by
analogy with the sealed envelope implementation in the symmetric case. There
we had an infinite number of indistinguishable envelopes from which the players
could choose, each containing an element from their common strategy space.
Now it is natural to have two pools of envelopes, one containing elements of
C1 and the other containing elements of C2. The two types of envelopes will
be distinguishable (perhaps each has C1 or C2 written on the outside), but the
infinitely many instances of each will not be distinguishable from each other. What
does exchangeability mean in this context?

We model the contents of the envelopes as an infinite sequence of random
variables R1, S1, R2, S2, . . . with the Ri taking values in C1 and the Si taking
values in C2. Indistinguishability means that we can tell from looking at an
envelope if its contents are an Ri or an Si, but not the value of i. In particular R1

119
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has no more connection with S1 than it does with S37; the index i is meaningless.
That is to say, of the following two definitions the first more closely captures what
we mean by exchangeability of two pools of random variables; at times we will
also need the second, weaker definition. These both fall under the general heading
of partially exchangeable random variables [19] (this subject is much broader
and the terms below are not standard, just convenient for the present discussion).

Definition 6.1. We say that a sequence R1, S1, R2, S2, . . . of two types of random
variables is individually exchangeable if the distribution is invariant under
permuting finitely many Ri or finitely many Si. That is to say, whenever g : N→ N
is bijective and fixes all but finitely many numbers then the distributions of

R1, S1, R2, S2, . . . ,

Rg(1), S1, Rg(2), S2, . . . ,

R1, Sg(1), R2, Sg(2) . . .

are all the same. If the distribution of Rg(1), Sg(1), Rg(2), Sg(2), . . . is the same as that
of R1, S1, R2, S2, . . . for all such g then we say the sequence is simultaneously
exchangeable.

Example 6.2. If the sequence R1, S1, R2, S2, . . . is simultaneously exchangeable
then the subsequence R1, S2, R3, S4, . . . is individually exchangeable. Indeed, per-
muting the odd-numbered pairs in the first sequence permutes the R2i−1 in the
second while fixing the S2i, and permuting the even-numbered pairs does the
opposite. ♦
Example 6.3. An example of an individually exchangeable sequence is a sequence
of independent random variables with all the Ri sharing a distribution and all
the Si sharing a distribution, which may be different from that of the Ri. In
other words, the pairs (Ri, Si) are i.i.d. according to some distribution in ∆Π(Γ).
For simultaneously exchangeable random variables an example is when the pairs
(Ri, Si) are i.i.d. according to some distribution in ∆(Γ). The sets of both types
of exchangeable distributions are convex (invariance under a given permutation
is a linear condition), so mixtures of such distributions give examples without
independence. ♦

Applying the definition twice, observe that if R1, S1, R2, S2, . . . is individually
exchangeable we may permute the Ri and Si in two different ways without affecting
the distribution. In particular we may choose to permute them in the same way,
so the sequence is simultaneously exchangeable. Simultaneous exchangeability is
the same as exchangeability of the sequence of pairs (R1, S1), (R2, S2), . . . in the
usual sense of Section 2.2. This in turn implies that the sequences R1, R2, . . . and
S1, S2, . . . are both exchangeable. The converse statements are false.
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Example 6.4. A simultaneously exchangeable sequence need not be individually
exchangeable. Suppose C1 = C2 = {1, 2} and the Ri are i.i.d. uniform with
Si ≡ Ri for all i. Then the pairs (R1, S1), (R2, S2), . . . are i.i.d. so this sequence is
simultaneously exchangeable. Note that in a individually exchangeable sequence,
the joint distribution of R1 and S1 is the same as the joint distribution of R1 and

S2. However in this case the joint distribution of R1 and S1 is
[

1/2 0
0 1/2

]
, while

the joint distribution of R1 and S2 is
[

1/4 1/4
1/4 1/4

]
. Therefore this sequence is not

individually exchangeable. ♦
Example 6.5. The sequences R1, R2, . . . and S1, S2, . . . can both be exchangeable
without R1, S1, R2, S2, . . . being simultaneously exchangeable. For example take
the Ri to be i.i.d. and Si ≡ Ri+1. Then the joint distribution of R1, S1, R2, S2

is not the same as that of R2, S2, R1, S1 because S1 = R2 almost surely but
S2 6= R1 with positive probability. Therefore the sequence R1, S1, R2, S2, . . . is not
simultaneously exchangeable. ♦

Let us see what De Finetti’s theorem tells us about these two new notions
of exchangeability. First suppose that we have a simultaneously exchangeable
sequence. We can view this as arising by first choosing a random distribution
P in ∆(Γ) according to some distribution in ∆(∆(Γ)). We then choose pairs
(Ri, Si) i.i.d. according to P . The empirical distribution of (R1, S1), . . . , (Rn, Sn)
must converge almost surely to P as n goes to infinity by the strong law of large
numbers.

Now suppose the sequence is individually exchangeable. If we swap R1 and R2,
the empirical distributions will change by at most O

(
1
n

)
, so almost surely their

limit P will not change. Therefore conditioned on P we have that (R1, S1) and
(R2, S2) are i.i.d. according to P , but also (R2, S1) and (R1, S2) are i.i.d. according
to P . In particular, conditioned on P , R1 and S1 are independent. That is to
say, P ∈ ∆Π(Γ) almost surely. In summary, we have proven that the two types
of exchangeable random variables in Definition 6.1 are always mixtures of the
independent distributions in Example 6.3:

Proposition 6.6. Just as the set of exchangeable distributions taking values in C1

can be naturally identified with ∆(∆(C1)), the set of simultaneously exchangeable
distributions can be identified with ∆(∆(Γ)) and the set of individually exchange-
able distributions can be identified with ∆(∆Π(Γ)).

We used the corresponding result for exchangeable distributions, De Finetti’s
Theorem, to show that the marginal distribution of n variables in an exchangeable
sequence takes the form

∑
k λk x

⊗n
k for a probability vector λ and xk ∈ ∆(C1)

(Propositions 2.45 and 2.46). The same proof works in this context.
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Proposition 6.7. The joint distribution of R1, S1, . . . , Rn, Sn of a truncated indi-
vidually exchangeable sequence or simultaneously exchangeable sequence takes the
form ∑

k

λk (xk ⊗ yk)⊗n or
∑
k

λkW
⊗n
k ,

respectively, for a probability vector λ, xk ∈ ∆(C1), yk ∈ ∆(C2), and Wk ∈ ∆(Γ).
Conversely any such distribution is the truncation of an exchangeable sequence of
the corresponding type.

As Example 6.2 might suggest, if we are only interested in the marginals
corresponding terms in the sequence with different indices then the conditions we
obtain are the same for simultaneously and individually exchangeable sequences.
The following instance of this principle will be important in the next section.

Proposition 6.8. Let R1, S1, R2, S2, . . . be a simultaneously exchangeable se-
quence (so in particular it could be individually exchangeable) with marginal dis-
tributions W ∈ ∆(Γ) of R1 and S2, X ∈ ∆S2(C

2
1 ) of R1 and R2, and Y ∈ ∆S2(C

2
2 )

of S1 and S2. Then [
X W
W T Y

]
is completely positive,[

X W
W T Y

] [
e
−e

]
= 0, and[

e
e

]T [
X W
W T Y

] [
e
e

]
= 4.

(6.1)

Conversely, any X, W , and Y for which the matrix
[
X W
WT Y

]
has these prop-

erties arise as the marginals of an individually exchangeable sequence.

Proof. First suppose R1, S1, R2, S2, . . . is simultaneously exchangeable. By Propo-
sition 6.7 the joint distribution of R1, S1, R2, and S2 is of the form

∑
k λkWk⊗Wk.

Let xk = Wke and yk = W T
k e be the marginals of Wk. Then X =

∑
k λk xk ⊗ xk,

Y =
∑

k λk yk ⊗ yk, and W =
∑

k λk xk ⊗ yk, so altogether[
X W
W T Y

]
=
∑
k

λk

[
xk
yk

] [
xk
yk

]T
is a completely positive matrix. Since the marginal distributions of X, W , and Y
agree this matrix also has [ e

−e ] in its kernel. The matrix contains four probability
distributions, so its elements sum to 4.
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Conversely suppose that
[
X W
WT Y

]
satisfies the conditions. By the usual scaling

technique, we can write [
X W
W T Y

]
=
∑
k

λk bkb
T
k ,

where each bk ∈ Rr+c is a nonnegative column vector whose components sum
to 2. This scaling makes the elements of bkb

T
k sum to 4, so λ is a probability

vector. Dropping any zero terms, we may assume without loss of generality that
all components of λ are strictly positive. Then

0 =

[
e
−e

]T
0 =

[
e
−e

]T [
X W
W T Y

] [
e
−e

]
=
∑
k

λk

[
e
−e

]T
bkb

T
k

[
e
−e

]
=
∑
k

λk

∥∥∥∥bTk [ e−e
]∥∥∥∥2

,

so bTk [ e
−e ] = 0 for all k. Therefore we can write bk = [ xkyk ] for some nonnegative

vectors xk ∈ Rr and yk ∈ Rc with xTk e = yTk e and xTk e + yTk e = 2. That is to
say, xk ∈ ∆(C1) and yk ∈ ∆(C2). If we choose a random k according to the
distribution λ and conditioned on that choose Ri and Si all independently with
distributions xk and yk, respectively, the result is an individually exchangeable
sequence R1, S1, R2, S2, . . . whose appropriate marginals are X, W , and Y .

Example 6.9. If we relax complete positivity in (6.1) to elementwise nonnegativ-
ity, the resulting conditions are necessary for there to exist four random variables
R1, S1, R2, and S2 whose appropriate marginals are X, W , and Y . In the absence
of complete positivity these conditions are not sufficient. The matrix

[
X W
W T Y

]
:=


1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 0 1/2
0 1/2 1/2 0


cannot correspond to any such distribution on these four random variables, because
this would mean S2 = R1 = R2 = S1 6= S2 almost surely, a contradiction. ♦

� 6.2 Defining asymmetric exchangeable equilibria

For a natural extension of the sealed envelope implementation of symmetric ex-
changeable equilibria to the asymmetric case, let us suppose there is an individually
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exchangeable sequence of random variables R1, S1, R2, S2, . . . with the Ri taking
values in C1 and the Si taking values in C2. Each player is allowed to choose one
envelope and base his play on its contents. To define asymmetric exchangeable
equilibria, we will ask that it be a Nash equilibrium of this extended game for
player i to choose one of the envelopes containing a recommendation from Ci
and play its contents. We may call the distribution of R1, S1, R2, S2, . . . an “∞-
exchangeable equilibrium”. As in the symmetric case such an infinite-dimensional
object is useful conceptually for interpretations, but for concreteness and compu-
tational purposes we define exchangeable equilibrium as the finitely-describable
counterpart of this.

If player 1 chooses Ri and player 2 chooses Sj then the joint distribution
W ∈ ∆(Γ) of their recommendations does not depend on i and j by the individual
exchangeability assumption. For concreteness we will suppose player 1 chooses R1

and player 2 chooses S2. We consider only unilateral deviations: if player 1 decides
to instead take envelope S1 then the joint distribution of recommendations will be
Y ∈ ∆S2(C

2
2 ); if player 2 switches to R2 the joint distribution of recommendations

will be X ∈ ∆S2(C
2
1 ). The matrices X, W , and Y satisfy (6.1) by Proposition 6.8,

from which we see that the sequence R1, S1, R2, S2, . . . could just as well have been
taken to be simultaneously exchangeable if we added the extra constraint that
the players’ choices of envelopes could not have the same index.

All the incentive constraints for an exchangeable equilibrium can be defined in
terms of X, W , and Y . We want it to be in both players’ best interests to choose
the envelope with their label and play its contents, so they cannot improve by
deviating to any function of its contents or any function of the contents of the
alternative envelope they could have chosen. In symbols the conditions are:∑

ij

u1(f(i), j)Wij ≤
∑
ij

u1(i, j)Wij for all f : C1 → C1,∑
j1j2

u1(f(j1), j2)Yij ≤
∑
ij

u1(i, j)Wij for all f : C2 → C1,∑
ij

u2(i, f(j))Wij ≤
∑
ij

u2(i, j)Wij for all f : C2 → C2,∑
i1i2

u2(i1, f(i2))Xij ≤
∑
ij

u2(i, j)Wij for all f : C1 → C2,

(6.2)

where indices i run over C1 and indices j run over C2. Note that two of these are
exactly the conditions for W to be a correlated equilibrium. The other two relate
W to X and Y . Just as the original Definition 2.5 of correlated equilibrium had
exponentially many inequalities and we replaced these with polynomially many
in Proposition 2.6, we will see in the next section that the conditions (6.2) can be
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expressed with polynomially many inequalities.
Putting these things together:

Definition 6.10. The triple (X,W, Y ) is an (asymmetric) exchangeable
equilibrium of the bimatrix game Γ if it satisfies (6.1) and (6.2). The set of
such is denoted XE−(Γ).

The dash subscript on XE−(Γ) serves two purposes: to emphasize that no
symmetries of Γ have been used in the construction and to make it clear that
the symmetric exchangeable equilibria are not the same as the symmetric ele-
ments of the set of asymmetric exchangeable equilibria (Example 6.14 below).
This definition has many properties in common with the symmetric notion (cf.
Proposition 3.9):

Proposition 6.11. The set of exchangeable equilibria of a bimatrix game is con-
vex, compact, and semialgebraic. The map (X,W, Y ) 7→ W sends exchangeable
equilibria to correlated equilibria. The map (x, y) 7→ (xxT , xyT , yyT ) sends Nash
equilibria to exchangeable equilibria. The images of Nash equilibria are (among
the) extreme points of XE−(Γ).

Proof. The first two sentences follow from the discussion above. If (x, y) is a Nash
equilibrium then

[
X W
WT Y

]
= [ xy ] [ xy ]T is completely positive and satisfies the other

conditions of (6.1) because x and y are probability vectors. The correlated equi-
librium conditions in (6.2) follow as usual from the definition of Nash equilibrium.
The other incentive constraints hold automatically because X and Y are inde-
pendent distributions, so the players cannot take advantage of these alternative
signals in any way. As for extremality, [ xy ] [ xy ]T is an extreme point of the larger
set of (r + c) × (r + c) completely positive matrices with entries summing to 4
(Proposition 2.49), and so must also be extreme in XE−(Γ).

Example 6.12. Correlated equilibria can achieve higher social welfare W •(A+B)
than asymmetric exchangeable equilibria. Let Γ be the symmetric bimatrix game
“Chicken” with utilities

A = BT =

[
4 1
5 0

]
.

We first compute the unique correlated equilibrium which maximizes social welfare.
Since the game is symmetric the set of correlated equilibria is invariant under
swapping players. The social welfare is also invariant under this action, so the
maximum social welfare is achieved by a symmetric correlated equilibrium W =
[ a bb c ]. The correlated equilibrium incentive constraints are b ≥ a, c. The social
welfare is 8a + 12b and normalization requires a + 2b + c = 1. We can always
move mass from c to b while remaining a correlated equilibrium and increasing



126 CHAPTER 6. ASYMMETRIC EXCHANGEABLE EQUILIBRIA

social welfare, so an optimal symmetric correlated equilibrium has c = 0. The
social welfare is then 2a+ 6, which is maximized by making a as large as possible:
a = b = 1

3
.

Thus W ∗ =
[

1/3 1/3
1/3 0

]
is a correlated equilibrium of maximum social welfare

and the only such among symmetric correlated equilibria. Any not necessarily
symmetric correlated equilibrium Ŵ of maximum social welfare has 1

2
Ŵ + 1

2
Ŵ T =

W ∗. In other words it is of the form Ŵ =
[

1/3 1/3+p
1/3−p 0

]
for some p ∈ [−1/3, 1/3].

The only p such that Ŵ is a correlated equilibrium is p = 0. Therefore W ∗ is the
unique correlated equilibrium with maximum social welfare.

If there were an exchangeable equilibrium (X,W, Y ) achieving this maximum
social welfare, W would in particular be a correlated equilibrium, making W = W ∗.
By symmetry (Y,W ∗T , X) would also be an exchangeable equilibrium achieving the
same social welfare, so by averaging there would be an asymmetric exchangeable
equilibrium of the form (X,W ∗, X). We will show that there is no X =

[
X11 X12
X12 X22

]
such that (X,W ∗, X) is an exchangeable equilibrium.

The marginalization conditions give

X11 +X12 = W ∗
11 +W ∗

12 =
2

3

X12 +X22 = W ∗
21 +W ∗

22 =
1

3
.

Putting these together we get X11 = X22 + 1
3
. Suppose for a contradiction that

X22 > X12. If the column player were to choose an envelope from his opponent’s
pile and play the opposite of its contents, his expected utility would be∑

i1i2

u2(i1, f(i2))Xij = 4X12 +X22 + 5X11

> 5X12 + 5X11 = 5(X12 +X11) =
10

3
=
∑
ij

u2(i, j)W ∗
ij,

contradicting the incentive conditions. Therefore X22 ≤ X12.
Since X is positive semidefinite, X22 = 0 would mean X12 = 0, contradicting

the fact that these numbers sum to 1
3
. So X22 > 0. The lower right 3× 3 minor of

[ X W ∗
W ∗ X ] must be nonnegative and is equal to X22(X11X22−X2

12)− 1
9
X22. Dividing

by X22 we obtain

1

9
≤ X11X22−X2

12 =

(
X22 +

1

3

)
X22−X2

12 = X2
22 +

1

3
X22−X2

12 ≤
1

3
X22 ≤

1

3
X12,

so X12 ≥ X22 ≥ 1
3
. This contradicts X12 +X22 = 1

3
.
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Therefore there is no such asymmetric exchangeable equilibrium achieving the
maximum social welfare achieved by correlated equilibria. In fact MATLAB com-
putes that in this case the maximum social welfare over asymmetric exchangeable
equilibria is achieved by the two pure Nash equilibria. ♦

We now look at connections with the notion of symmetric exchangeable equi-
libria.

Proposition 6.13. Let Γ be a symmetric bimatrix game. Then W 7→ (W,W,W )
maps XES2(Γ) into XE−(Γ). Conversely if (W,W,W ) ∈ XE−(Γ) then W ∈
XES2(Γ).

Proof. If W is completely positive we can write W =
∑

k wkw
T
k , in which case[

W W
W W

]
=
∑
k

λk

[
wk
wk

] [
wk
wk

]T
is also completely positive and satisfies the other constraints of (6.1). This corre-
sponds to the situation when R1, S1, R2, S2, . . . is exchangeable in the usual sense.
In particular no player can gain by choosing a different envelope because the joint
distribution between his envelope and his opponents will be the same regardless.
Since W is a correlated equilibrium, all the conditions of (6.2) are met.

For the converse note that if (W,W,W ) ∈ XE−(Γ) then W is a correlated
equilibrium by (6.2). Also [W W

W W ] is completely positive and the corresponding
factorization thereof restricts to a factorization of its upper left block W , so it too
is completely positive.

Example 6.14. If Γ is a symmetric bimatrix game, it can happen that W is
symmetric and (X,W, Y ) ∈ XE−(Γ), but W 6∈ XES2(Γ). For example, let Γ be
the anti-coordination game in Example 3.19. Let e1 and e2 denote the standard
unit column vectors in R2. Then (e1, e2) and (e2, e1) are Nash equilibria of Γ, so

(e1e
T
1 , e1e

T
2 , e2e

T
2 ), (e2e

T
2 , e2e

T
1 , e1e

T
1 ) ∈ XE−(Γ)

by Proposition 6.11. Since XE−(Γ) is convex, the average of these two is an

exchangeable equilibrium with W =
[

0 1/2
1/2 0

]
, which is not completely positive,

so not a symmetric exchangeable equilibrium. ♦
Another connection with symmetric exchangeable equilibria comes from pass-

ing from the asymmetric bimatrix game Γ to its symmetrization ΓSym. Recall
from Section 5.5.2 that ΓSym is a symmetric bimatrix game in which two copies
of Γ are played simultaneously, with each player in ΓSym taking different roles in
the two copies. Therefore each player’s strategy space is CSym

i = C. A symmetric
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exchangeable equilibrium of ΓSym is therefore a joint distribution over random
variables R1, S1, R2, S2 which factors as

∑
k λkWk ⊗Wk, and hence by Proposi-

tion 6.7 a truncation of a simultaneously exchangeable sequence R1, S1, R2, S2, . . ..
Player i receives the pair (Ri, Si) and the incentive condition is that using all this
information he cannot do better than playing Ri and Si in the appropriate copies
of Γ.

These are stronger incentive constraints than those imposed in asymmetric
exchangeable equilibria: If R1 is a best response against S2 even given the extra
information S1, then R1 is still a best response without this extra information,
and it is also at least as good as any response formulated in terms of S1 only
without R1. On the other hand the exchangeability constraints are weaker; only
simultaneous exchangeability rather than individual. However by Proposition 6.8
the relevant marginals still satisfy the conditions (6.1), and therefore they are an
asymmetric exchangeable equilibrium. In other words, we can trade the stronger
incentive constraints for the stronger exchangeability property. This proves:

Proposition 6.15. For distributions π ∈ ∆(C2) over random variables R1, S1,
R2, and S2, the triple marginalization map

π 7→ (µR1R2(π), µR1S2(π), µS1S2(π))

maps XES2(Γ
Sym) into XE−(Γ).

Combining this with Theorem 3.16 we get:

Theorem 6.16. A bimatrix game has an asymmetric exchangeable equilibrium.

Example 6.17. Not all asymmetric exchangeable equilibria arise in this way from
symmetric exchangeable equilibria of the symmetrization. Consider the bimatrix
game Γ shown in Table 6.1. The matrix

[
X W
W T Y

]
:=

1

55


0 0 0 0 0 0
0 30 5 20 15 0
0 5 15 10 0 10
0 20 10 24 6 0
0 15 0 6 9 0
0 0 10 0 0 10



=
1

11


0
1
1
2
0
0




0
1
1
2
0
0



T

+
1

55


0
5
0
2
3
0




0
5
0
2
3
0



T

+
2

11


0
0
1
0
0
1




0
0
1
0
0
1



T (6.3)
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is completely positive and one can check that it satisfies the incentive conditions
so (X,W, Y ) ∈ XE−(Γ).

Let

π :=
1

55



0 0 0 0 0 0 0 0 0
0 9 5 0 6 0 0 0 0
0 5 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 6 0 0 9 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 10



=
1

11



0
1
1
0
0
0
0
0
0





0
1
1
0
0
0
0
0
0



T

+
1

55



0
2
0
0
3
0
0
0
0





0
2
0
0
3
0
0
0
0



T

+
2

11



0
0
0
0
0
0
0
0
1





0
0
0
0
0
0
0
0
1



T

∈ ∆X
S2

(ΓSym),

where the rows and columns are indexed by strategies in ΓSym as in Table 6.1.
Then (X,W, Y ) is the image of π under the triple marginalization map of Propo-
sition 6.15. Note that π is not a correlated equilibrium of ΓSym: if a player is told
to play cf , he believes his opponent will play cf , in which case he can do strictly
better by deviating to af .

In fact π is the only such lift of (X,W, Y ) to ∆X
S2

(ΓSym). Let π′ be any lift. The
entries of X, W , and Y are sums of certain entries of π′, so zeros in (X,W, Y ) force
the corresponding summands to be zero. This forces π′ to have zeros everywhere
that π does except at π′bd,ce = π′ce,bd. Since π′ must be completely positive and
the diagonal entry π′ce,ce = 0, Proposition 2.50 then yields π′bd,ce = π′ce,bd = 0 as
well. With these zeros in place, the marginalization conditions fix the remaining
elements so π′ = π.

This means any exchangeable lift of (X,W, Y ) is not a correlated equilib-
rium, so the asymmetric exchangeable equilibrium (X,W, Y ) of Γ does not lift
to a symmetric exchangeable equilibrium of ΓSym. Approximations of the sets of
equilibrium payoffs illustrating this are shown in Figure 6.1. ♦
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Figure 6.1. Inner and outer approximations to the sets of utilities achievable by exchangeable
equilibria of the games Γ and ΓSym shown in Table 6.1. The point singled out corresponds to the
asymmetric exchangeable equilibrium (X,W, Y ) shown not to lift to a symmetric exchangeable
equilibrium of the symmerization. Note how this point lies inside the inner approximation to
XE−(Γ) but outside the outer approximation to XES2

(
ΓSym

)
. This gives a computational proof

of the lack of a lift.
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� 6.3 Convex relaxations of Nash equilibria

Just as in the symmetric case (Section 3.4), the exchangeable equilibrium condi-
tions can be derived mechanically as convex relaxations of Nash equilibria. We
again begin with the complementarity characterization of Nash equilibria, now for
general bimatrix games. Define the auxiliary matrix

P :=


e 0 0 −A
0 e −BT 0
0 0 I 0
0 0 0 I

 ∈ R2(r+c)×(2+r+c),

where e, 0, and I denote column vectors, zero matrices, and identity matrices of
appropriate sizes.

Proposition 6.18. The pair (x, y) of vectors x ∈ Rr and y ∈ Rc is a Nash
equilibrium if and only if these vectors are normalized and there exist u, v ∈ R
such that

z := P


u
v
x
y

 =


ue− Ay
ve−BTx

x
y

 ∈ R2(r+c)

is elementwise nonnegative and complementary in the sense that zizi+r+c = 0 for
1 ≤ i ≤ r + c.

Let

h :=


u
v
x
y

 ∈ R2+r+c

and

f :=


0
0
e
−e

 ∈ R2+r+c,

with blocks of equal size. Note that fTh = eTx − eTy = 1 − 1 = 0. This is an
extra linear constraint which we did not have in the symmetric case, but which
we will use in the relaxations. If we express this proposition in terms of H = hhT

we get:



Sec. 6.3. Convex relaxations of Nash equilibria 133

Proposition 6.19. The matrix W ∈ ∆(Γ) is a Nash equilibrium if and only if
the other entries of the symmetric matrix

H :=


α β γ δ
β ε ζ η
γT ζT X W
δT ηT W T Y


can be filled in so that Hf = 0 and Z := PHP T (see Figure 6.2) satisfies:

• Z has rank 1,

• Z ≥ 0 elementwise, and

• Zi,i+r+c = 0 for 1 ≤ i ≤ r + c.

Having already covered the symmetric game versions of the relaxations, the
easiest to extend to this context is the generalization of Theorem 3.32:

Theorem 6.20. The set conv(NE(Γ)) is obtained by relaxing the rank 1 condition
in Proposition 6.19 to complete positivity of Z.

We omit the proof, which is almost identical to that of Theorem 3.32. The
only change is that now once we show that H =

∑
hih

T
i and we wish to show

that Hi = hih
T
i , when suitably scaled, satisfies the conditions of Proposition 6.19,

we must also show that hTi f = 0. But this follows immediately from

0 = fT0 = fTHf =
∑
i

(hTi f)2.

Before approaching the other two relaxations, let us unpack the conditions in
Proposition 6.19 a bit, starting with the meaning of X and Y . To fit into H, the
matrix X must be r× r and symmetric; similarly Y must be c× c and symmetric.
The lower right quadrant of Z (a 2 × 2 block of blocks) is equal to

[
X W
WT Y

]
, so

nonnegativity of this means X and Y must be elementwise nonnegative. The
condition Hf = 0 in particular means that Xe = We and eTW = eTY . That
is to say, X ∈ ∆S2(C

2
1) and Y ∈ ∆S2(C

2
2) are probability distributions and

furthermore, their marginals agree with the two marginals of the (asymmetric)
probability matrix W .

The other two relaxations we consider will consist of dropping the rank con-
straint entirely and replacing it with the condition that

[
X W
WT Y

]
be completely

positive. In both cases we can make the entries in the upper left quadrant of
Z (see Figure 6.2) nonnegative by making α, β, and ε large enough. No other
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constraints are placed on these variables, so we can remove them entirely along
with any consideration of the upper left quadrant of Z. The remaining constraints
we have to understand are:

eγ ≥ AW T with equality on the diagonal,

eη ≥ BTW with equality on the diagonal,

eδ ≥ AY,

eζ ≥ BTX,

γe = δe,

ζe = ηe,

where the first four come from the nonnegativity and complementarity constraints
on Z and the last two come from Hf = 0.

The same analysis as in the proof of Proposition 3.30 (which shows that in the
symmetric case dropping the rank condition yields symmetric correlated equilibria)
shows that the existence of γ and η satisfying the first two constraints listed above
are exactly the conditions for W to be a correlated equilibrium of Γ.

These conditions also imply γe = Tr(AW T ) =
∑

ij AijWij is the expected
utility for the row player under W , so the condition γe = δe reduces to

∑
j δj =∑

ij AijWij and we can eliminate γ once we constrain W to be a correlated
equilibrium. The constraint eδ ≥ AY means that δj ≥ [AY ]ij for all 1 ≤ i ≤ r
and 1 ≤ j ≤ c, or equivalently, δj ≥ maxi[AY ]ij for all j. These constraints can
simultaneously be satisfied for all j within the budget

∑
j δj =

∑
ij AijWij if and

only if ∑
j

max
i

[AY ]ij ≤
∑
ij

AijWij.

This in turn is equivalent to the condition that∑
j1j2

u1(f(j1), j2)Yj1j2 ≤
∑
ij

u1(i, j)Wij

for all functions f : C2 → C1. This is one of the constraints from (6.2).
Rewriting the constraints in this way allows us to eliminate δ. We can similarly

eliminate ζ and η and replace them with the condition that∑
i1i2

u2(i1, f(i2))Xi1,i2 ≤
∑
ij

u2(i, j)Wij

for all f : C1 → C2, the last of the conditions in (6.2). Going backwards, the
exponentially many incentive constraints (6.2) can be rewritten using only polyno-
mially many linear inequalities by introducing the auxiliary variables δ and ζ and
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constrainting these to satisfy the elementwise nonnegativity and complementarity
constraints in Proposition 6.19. We have shown:

Proposition 6.21. The matrix
[
X W
WT Y

]
is completely positive and there exist

values of the Greek variables satisfying all the conditions of Proposition 6.19
except the rank condition if and only if (X,W, Y ) is an asymmetric exchangeable
equilibrium.

This is indeed a relaxation because Z being elementwise nonnegative and
having rank one automatically implies that

[
X W
WT Y

]
is completely positive. As

expected removing the rank condition entirely yields the correlated equilibria,
analogously to Proposition 3.30 in the symmetric case.

Proposition 6.22. The matrix W ∈ ∆(Γ) is a correlated equilibrium of Γ if and
only if there exist values for the remaining variables satisfying all the conditions
of Proposition 6.19 except the rank condition.

Proof. We have dealt with the Greek variables already. For any W , we can set
X = WeeTW T and Y = W T eeTW . This corresponds to distributing R1 and
S2 according to W and independently distributing R2 and S1 according to W .
In particular this means that S1 is never informative about S2 and R2 is never
informative about R1, so it is in neither player’s best interest to choose these –
the associated conditions are satisfied automatically. The only conditions which
remain are those which say that W is a correlated equilibrium.



Chapter 7

Computation of Symmetric
Exchangeable Equilibria

This chapter is divided into two sections. In the first we address questions of
theoretical computational complexity. We show that, appropriately formulated,
the problem of computing or approximating a single exchangeable equilibrium of a
game can be solved in polynomial time. We focus on symmetric exchangeable equi-
libria, but note that we can use the same algorithm to approximate asymmetric
exchangeable equilibria of bimatrix games efficiently by computing symmetric ex-
changeable equilibria of the symmetrization (this only yields a polynomial blowup)
and applying the natural approximate version of Proposition 6.15. The compu-
tational complexity of the corresponding problem for higher order exchangeable
equilibria is not known. We close the first section by showing that optimizing a
linear functional over (approximate) exchangeable equilibria is NP -hard, even in
the symmetric bimatrix case.

In the second section we discuss linear and semidefinite relaxations as practical
approaches to these problems. These relaxations can be solved efficiently in
practice but do not yield a priori guarantees about approximation error. Unlike the
provably efficient methods, these extend immediately to higher order exchangeable
equilibria.

� 7.1 Computational complexity

In their seminal paper [55], Papadimitriou and Roughgarden show how to convert
the Hart-Schmeidler argument from an existence proof for correlated equilibria
into an efficient algorithm for computing correlated equilibria in large games
(polynomially many players, exponentially many strategy profiles – for smaller
games any linear programming algorithm is sufficient). Since the Hart-Schmeidler
argument can be modified to preserve symmetry and prove the existence of ex-
changeable equilibria (Theorem 3.16) it is natural to ask whether Papadimitriou
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and Roughgarden’s “Ellipsoid Against Hope” algorithm can be similarly modified
to compute exchangeable equilibria.

Mathematically the same modification seems to apply (being ellipsoid-based,
these algorithms are entirely theoretical and impractical, so it is difficult to actually
implement it). However, there is a problem. The ellipsoid method runs for finitely
many steps and uses rational1 arithmetic, so produces rational output. On the
other hand a rational exchangeable equilibrium need not exist, as in Example 3.27.

In this section we review the Ellipsoid Against Hope algorithm, note how it
can be symmetrized to compute exchangeable equilibria, and then address this
paradox by isolating a flaw in the treatment of numerical precision issues in [55]. By
introducing explicit bounds on the variables, we show how to resolve the problem
and efficiently compute approximate correlated and exchangeable equilibria to an
arbitrary degree of accuracy. In the case of exchangeable equilibria, this is the best
we could hope for (at least in rational numbers) because of Example 3.27. Finally,
we show that optimizing a linear functional over the (approximate) exchangeable
equilibria is NP-hard.

� 7.1.1 Background

Definitions from [55] As much as possible we will build on the notation of [55]; we
offer a brief summary here and refer the reader to that paper for more details. The
primary exceptions are our use of δ for rounding resolution where Papadimitriou
and Roughgarden use ε and our use of ‖U‖∞ in place of u. In this chapter we
reserve ε for talking about ε-correlated equilibria, defined below, and u is reserved
for utilities throughout the thesis. For this chapter we will assume further that
utilities are integer-valued.

Define m := maxi |Ci| and let N := |C| ≤ mn be the number of strategy profiles.
Since N is exponential in n we must avoid writing down utility functions in full as
n grows. To do so we consider succinct games of polynomial type with the
polynomial expectation property as defined in [55], or just succinct games
for short.

The condition that a probability distribution x is a correlated equilibrium
can be expressed with one homogeneous linear constraint for each player i and
pair of strategies si, ti ∈ Ci which says it is not profitable to play ti when si is
recommended. This yields a total of M ≤ nm2 linear inequalities in x. We write
these as Ux ≥ 0, where U ∈ RM×N is a matrix defined in terms of the utilities.
The magnitude ‖U‖∞ of the largest entry of U is at most twice the absolute value
of the largest utility of the game.

1We use “rational” in the algebraic sense in this chapter, rather than the game- or decision-
theoretic sense. A vector, matrix, or tensor is rational if its components are.
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A correlated equilibrium is a tensor with exponentially many components, so
we do not expect to be able to write it out in full. We are interested in games
with a polynomial correlated equilibrium scheme, i.e. an efficient way of
computing and expressing a correlated equilibrium so we can sample from it
repeatedly in randomized polynomial time.

The type of polynomial correlated equilibrium scheme we consider consists
of computing a convex combination of polynomially many product distributions
(with all numbers rational and of polynomial description length) which is a corre-
lated equilibrium. Note that a product distribution over the strategy spaces can
be expressed using

∑n
i=1 |Ci| ≤ mn numbers. We can sample from such a joint

distribution without computing all N probabilities explicitly using a two stage
process. Viewing the weights in the convex combination as defining a probabil-
ity distribution over these product distributions, we randomly choose a product
distribution. Then we sample from the chosen product by sampling from each
component of the product independently.

Further definitions An ε-correlated equilibrium is a weakening of a correlated
equilibrium in which no player can expect to improve his utility by more than ε by
deviating from his recommendation. A probability distribution x is an ε-correlated
equilibrium if and only if

ε ≥ max
i

∑
si∈Ci

max
ti∈Ci

(−[Ux]si,ti).

The strategy ti at which the inner maximum is achieved for each si defines a
function ti : Ci → Ci. The best player i can do in response to recommendation si
is to play ti(si), in which case his expected utility gain is the sum above.

When discussing computation of ε-correlated equilibria, “the input” will refer
to the description of a (succinct) game instance as well as ε written in binary. To
say something can be computed in polynomial time then means that the run time
is polynomial jointly in the description length of the game and log 1

ε
. Relaxing

correlated equilibrium to ε-correlated equilibrium and adopting this new notion of
input, we obtain the notion of a polynomial ε-correlated equilibrium scheme.

An ε-exchangeable equilibrium of a symmetric game with symmetry group
G is an ε-correlated equilibrium which is exchangeable. To talk about computing
such things, we must specify how the symmetric game is to be represented as
input. Each element of G acts by permuting the elements of

⊔
Ci and such a

permutation can be written in a number of bits polynomial in the size of the
game. One of our main cases of interest is when G = Sn acts by permuting the
players, but this group has n! elements so requiring them all to be listed as part
of the input is unreasonable. Rather, we will assume the input contains a list
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of generators of the group G identified with specific permutations of
⊔
Ci. This

solves the problem: Sn is generated by polynomially many transpositions.
We will assume the game is specified succinctly as usual, and satisfies the poly-

nomial expectation property. We will assume further that the utilities are promised
to be invariant under the given generators, and therefore under G. With this
representation for symmetric games, we define a polynomial ε-exchangeable
equilibrium scheme in the natural way.

� 7.1.2 The Ellipsoid Against Hope algorithm

To set up for the algorithm we rewrite Hart and Schmeidler’s minimax proof of
existence of correlated equilibria, reviewed in Section 2.1.2, in the language of
linear programming, as done in Section 3.1 of [55].

First, we write linear constraints expressing that x, a vector of variables indexed
by strategy profiles (actually a tensor which we view as being “flattened” into
one long vector), is a correlated equilibrium of the input game. The constraints
come in three types: incentive constraints which say that no player can improve
by deviating from his recommendation, nonnegativity constraints on the variables,
and a normalization constraint making x a probability measure. All the constraints
except normalization are homogeneous (have zero constant term).

Second, we remove the normalization constraint and replace it with an objective
of maximizing the sum of the elements of x, forming the primal linear program

maximize
x∈RC

∑
s∈

∏
Ci

xs

subject to Ux ≥ 0

x ≥ 0.

(P )

The zero vector is always feasible and any nonzero feasible solution can be normal-
ized to give a correlated equilibrium. Therefore (P ) is unbounded if and only if
a correlated equilibrium exists, and finding one amounts to computing a nonzero
feasible solution.

Third, we dualize (P ) to produce the linear program2

minimize
y∈RtiCi×Ci

0

subject to UTy ≤ −e
y ≥ 0,

(D)

2Strictly speaking this is what one gets by replacing all variables in the usual dual (see [6])
with their negatives. We will use this convention for all duals in the present chapter to agree
with the notation of [55].
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with the goal of showing (D) is infeasible. By strong linear programming duality
this would suffice to prove (P ) unbounded. To prove (D) infeasible we must show
that any given y ≥ 0 violates UTy ≤ −e.

Rather than exhibiting a particular violated constraint, we give a convex
combination of these constraints which is not satisfied. The Hart-Schmeidler
argument shows that for any y ≥ 0 one can find an explicit probability distribution
x over outcomes of the game (viewed for now as a row vector) such that xUTy = 0.
Furthermore, x can be taken to be a product distribution, i.e., xs = x1

s1
· · · xnsn .

The vector y of dual variables splits into a vector yi for each player i dualizing that
player’s incentive constraints. The factor xi of the product can be any steady-state
distribution of a certain Markov chain defined only in terms of yi, so we can take
xi to be rational in yi. We refer to such a choice x(y) as a Hart-Schmeidler
separation oracle.

To turn this into an algorithm, Papadimitriou and Roughgarden employ the
ellipsoid method, going through the above existence proof in reverse. They run
the ellipsoid algorithm on (D) using a Hart-Schmeidler separation oracle (x can
be computed efficiently by solving a linear program of polynomial size), which
necessarily concludes that the problem is infeasible. Such a run of the ellipsoid
algorithm produces a sequence of cuts of the form xUTy ≤ −1 for various values
of x. These cuts may be taken directly from the oracle, or may be rounded first to
avoid exponential blowup of the number of bits required after polynomially many
iterations3. (In fact the −1 on the right hand side must be relaxed slightly when
rounding, but this will not be important here.)

Let L be the number of iterations for which the ellipsoid algorithm runs on
(D). Stacking the row vectors x corresponding to these L cuts into a matrix
X ∈ RL×N , we can write a modified dual

minimize
y∈RtCi×Ci

0

subject to XUTy ≤ −e
y ≥ 0,

(D′)

The claim is that (D′) is infeasible (we will see below why this is incorrect), so

3In a response to a preprint of this chapter Jiang and Leyton-Brown [41] have shown how to
efficiently go from such an x to an explicit violated inequality of the linear program, avoiding
such rounding issues. They can thus compute an exact correlated equilibrium of a large game
efficiently, but their procedure breaks symmetry so cannot be used for our main goal of computing
exchangeable equilibria.
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the modified primal

maximize
α∈RL

L∑
k=1

αk

subject to UXTα ≥ 0

α ≥ 0

(P ′)

with variables αk is unbounded. This implies that a correlated equilibrium can
then be computed by solving (P ′) for any nonzero solution, say by the ellipsoid
algorithm again.

� 7.1.3 Paradox

Proposition 7.1. Given a symmetric game as input, the Ellipsoid Against Hope
algorithm claims to compute a rational exchangeable equilibrium.

Proof. Suppose an iteration of the ellipsoid algorithm on the dual (D) correspond-
ing to a symmetric n-player game begins with a symmetric ellipsoid, i.e., one
invariant under the induced action of G on the dual variables. The center point of
the ellipsoid is also symmetric. Therefore the same method for extending the Hart-
Schmeidler argument to prove existence of exchangeable equilibria in Theorem 3.16
applies here and we may take x to be a symmetric product distribution4.

If we use a symmetric cut on a symmetric ellipsoid, symmetry will not be
broken and the ellipsoid for the next iteration will also be symmetric. Thus if we
start with a symmetric ellipsoid, we can take the cut x to be a symmetric product
distribution at each iteration. The algorithm then outputs a convex combination of
symmetric product distributions. The ellipsoid algorithm for linear programming
uses rational arithmetic and a Hart-Schmeidler oracle gives rational output on
rational input, so the end result is rational.

This contradicts Example 3.27, which shows that such an equilibrium need
not exist.

� 7.1.4 Resolution

In this section we pinpoint the issue with the analysis of the Ellipsoid Against
Hope algorithm in [55]. While the contradiction derived above depends on the
parameters of the algorithm being chosen in a symmetric fashion, in this section
we do not need such assumptions.

4Jiang and Leyton-Brown’s [41] derandomization procedure breaks this symmetry, thereby
avoiding Proposition 7.1 and the associated algebraic obstruction of Example 3.27.
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To see why the algorithm fails, we must recall some details of the ellipsoid
algorithm for determining infeasibility of a system of linear inequalities. The
input is specified by giving coefficients and right hand sides, assumed integral.
Perturbing the problem in the standard way, we can assume it is either infeasible
or strictly feasible.

Using a bound in terms of problem data, we can find an ellipsoid E large
enough that if there were a feasible solution there would be one in E. We can also
compute a small volume v, so that if the problem were feasible then the feasible
set would have volume at least v inside E.

The algorithm then runs, shrinking the volume of the ellipsoid at each iteration.
Assuming the problem is infeasible, the ellipsoid will eventually have volume less
than v. At this point we know that the problem was infeasible, so the algorithm
can terminate.

If we run this algorithm on the dual problem (D), which we know is infeasible,
the algorithm will of course tell us this. The problem lies in claiming that the
modified dual (D′) will also be infeasible.

The rationale given in [55] for this statement is that the run of the ellipsoid
algorithm on (D) is a valid run of the ellipsoid algorithm on (D′). This is true
insofar as the cuts made at each iteration are valid for (D′). But the initial
ellipsoid and volume v need not be valid choices for (D′). So this run of the
ellipsoid algorithm tells us that the intersection of E and the feasible set of (D′)
has small volume. But we cannot conclude from this that (D′) is infeasible.
Depending on the size of the coefficients in (D′) (after clearing denominators to
make them integer) such a conclusion may require a much larger starting ellipsoid
E and a much smaller final volume v .

One can try to patch up this problem by starting with a bigger ellipsoid E
and smaller volume v before running the ellipsoid algorithm on (D), hoping that
the these parameters will be good enough to ensure that the run of the ellipsoid
algorithm is valid for (D′) as well. But the corresponding run of the ellipsoid
algorithm may produce even larger coefficients in (D′).

To try to get around this, one can also round the constraints of (D′) so that
the coefficients do not get so large as to invalidate the conclusion of the ellipsoid
algorithm. But the larger the starting ellipsoid, the more delicate the rounding
must be to try to avoid making the problem feasible, as shown below. It turns out
that there is no combination of initial ellipsoid and rounding scheme which can
ensure that (D′) will be infeasible. Thus the modified primal linear program (P ′)
need not be unbounded, so we cannot necessarily compute a correlated equilibrium
by solving it.

For example, suppose we try to tweak the parameters of Section 3.3 in [55]
(“The Issue of Arithmetic Precision”). Recall that ‖U‖∞ denotes the magnitude of
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the largest coefficient in (D) (all coefficients are assumed integer), and n,M,N ≥ 2
are other parameters depending on the dimensions of the problem. At each
iteration we round the elements of the xi for each cut to multiples of some5 δ = 1

K
,

K ∈ N.
Let R be the radius of the ball with which we start the ellipsoid algorithm.

To be able to certify infeasibility of (D), we must take R to be large; in [55] the
bound R ≥ ‖U‖N∞ is used. With the unspecified R in place of ‖U‖N∞ the analysis
in [55] states6 that to avoid introducing errors when rounding, we should take
δ ≤ (4nMNR ‖U‖∞)−1, so

δR ≤ (4nMN ‖U‖∞)−1 < 1. (7.1)

The size of the largest coefficient in (D′) will still be at most ‖U‖∞, being convex
combinations of the coefficients in (D), but these coefficients are no longer integer.

The bound on R needed to ensure that the ellipsoid algorithm correctly de-
termines infeasibility assumes that the coefficients are integer. The coefficients of
(D′) have common denominator δ−n = Kn, so at least if we clear denominators in
the näıve fashion the largest coefficient of the equivalent integer version of (D′)
will be of order ‖U‖∞ δ−n. Using the same type of bound on R as before to ensure

that the ellipsoid algorithm works correctly on (D′), we obtain R ≥ (‖U‖∞ δ−n)
N

,
so

δR ≥ ‖U‖N∞ δ
1−nN ≥ ‖U‖N∞ (4nMNR ‖U‖∞)nN−1

≥ ‖U‖N∞ (4nMN ‖U‖N+1
∞ )nN−1 � 1, (7.2)

contradicting (7.1). Thus we cannot choose δ and R so the run of the ellipsoid
algorithm on (D) guarantees infeasibility of (D′).

Example 7.2 (continues Example 3.27). Let us see how this problem manifests
itself when the Ellipsoid Against Hope algorithm is applied to the game in Exam-
ple 3.27. As shown in the proof of Proposition 7.1 we can take the x for each cut
to be a rational symmetric product distribution. We will show that regardless of
the sequence of rational symmetric cuts, the modified dual (D′) is feasible.

It suffices to show that there exists a symmetric feasible solution, i.e., one with
y1 = y2 = y3. Since each player has two strategies, each yi has four components,
one representing each possible choice of deviation from a strategy for player i to
another strategy for player i. The two components representing trivial deviations
(from a strategy to itself) have coefficient zero in all dual constraints, so we can
drop these two dual variables as irrelevant.

5We use δ where [55] uses ε to avoid confusion with the ε in “ε-correlated equilibrium”.
6The error analysis in [55] seems to include an extra factor of 2 so that the 4 in the expression

for δ could safely be replaced with a 2, but that will not make a significant difference here.
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This leaves two variables for the symmetrized dual:

(constraint for strategy profile with s1 + s2 + s3 = 0) 1 ≤ 3c

(constraint for strategy profiles with s1 + s2 + s3 = 1) 1 ≤ 2c− d
(constraint for strategy profiles with s1 + s2 + s3 = 2) 1 ≤ −2c− 2d

(constraint for strategy profile with s1 + s2 + s3 = 3) 1 ≤ 6d,

(SymD)

where c represents the likelihood of a player to deviate from strategy 0 to strategy
1 and d represents the reverse. Note that the first and last constraint imply that
c, d > 0, while the third implies c+ d < 0, so (SymD) is infeasible as expected.

Now let us compute the modified dual constraint produced by taking a convex
combination of these constraints weighted according to a symmetric product

distribution of the form
[ p

1−p
]⊗3

for 0 ≤ p ≤ 1. Multiplying the constraint

corresponding to s1 + s2 + s3 = k by
(

3
k

)
pk(1− p)3−k and summing over k yields

1 ≤ −3p(3p2 − 6p+ 2)c+ 3(1− p)(3p2 − 6p+ 2)d.

The only way for the coefficient of c and the coefficient of d to simultaneously
vanish is to have 3p2 − 6p + 2 = 0. Unsurprisingly, the unique solution to this
equation with 0 ≤ p ≤ 1 is p = p∗ := 1 − 1√

3
, the value corresponding to the

unique exchangeable equilibrium. Any other value of p leads to a nondegenerate
linear inequality in c and d.

Let c = (1− p∗)θ and d = p∗θ. Then this inequality becomes

1 ≤ 3
[
(1− p)p∗ − p(1− p∗)

]
(3p2 − 6p+ 2)θ.

The bracketed term has the same sign as 3p2 − 6p + 2 within the interval [0, 1],
so the coefficient of θ is positive for all p ∈ [0, 1] \ {p∗}. We can simultaneously
satisfy any finite number of such inequalities arising from values p ∈ [0, 1] \ {p∗}
by making θ large enough. In particular, as long as we use cuts for which x is a
rational symmetric product distribution, the linear program (D′) will be feasible.
For an example see Figure 7.1. ♦

In the rounded version of (D′) discussed in Section 3.3 of [55], the weaker
constant term −e

2
is used in (D′) instead of −e when X is rounded. In the present

section we considered arbitrary rational X, so we can view these as coming from
some rounding scheme if we wish. This means that the conclusion that (D′) is
feasible also applies to the rounded version with weaker constant term.

� 7.1.5 Approximate Ellipsoid Against Hope

We can use an algorithm similar to the Ellipsoid Against Hope algorithm to
compute an ε-correlated equilibrium of a succinctly-representable game in time
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jointly polynomial in the description length of the game and log 1
ε
. The corrected

version of Theorem 4.1 from [55] (expanded to include exchangeable equilibria) is:

Theorem 7.3. If Γ is a succinct game of polynomial type and has the polynomial
expectation property, then it has a polynomial ε-correlated equilibrium scheme. If
Γ is symmetric then it has a polynomial ε-exchangeable equilibrium scheme.

The goal of this section is to prove this theorem. The idea is as follows.
While we cannot be sure that (D′) is infeasible, we can guarantee that all feasible
solutions are large. This means that (P ′) is almost unbounded, in the sense
that there is a normalized solution which only violates the constraints by a small
amount. This is an ε-correlated equilibrium.

Algorithm Assume ε > 0 is specified by giving an integer R = 1
ε

in binary as part
of the input. Form the bounded dual

minimize
y∈RtCi×Ci

0

subject to UTy ≤ −e
Re ≥ y ≥ 0,

(DR)

and run the ellipsoid algorithm on it, starting from the ball centered at zero of
radius7 R

√
N , which contains the box [0, R]N .

At iteration k, let yk be the center of the current ellipsoid and choose the cut
as follows. If yk 6∈ [0, R]N , choose one of the violated box constraints as a cut. If
yk ∈ [0, R]N , let xk be a cut from a Hart-Schmeidler oracle (symmetric if the game
is), so xkU

Tyk = 0. Round each of the terms xik of the product xk to a probability
distribution x̃ik whose components are multiples of

δ := (2nMNR ‖U‖∞)−1

and form the distribution x̃k which is the product of the x̃ik (rounding consistently
preserves symmetry). Use x̃kU

Ty ≤ −1 as the cut.
Run the ellipsoid algorithm until the ellipsoid has volume at most

v := N−N(N ‖U‖∞ δ
−n)−N

2(N+1).

After L (to be specified below) iterations, stack the L row vectors x̃k into one
large matrix X. There is a probability vector α such that XTα is an ε-correlated

7This square root is not a problem – the ellipsoid algorithm only needs the squared radius
R2N as input.
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equilibrium and one can be computed in polynomial time by solving the linear
program

minimize
α∈RL, ξ, ξ·,·∈R

ξ

subject to
[
UXTα

]
siti
≥ −ξi,si , players i ∈ P, strategies si, ti ∈ Ci,∑

si∈Ci

ξi,si ≤ ξ, players i ∈ P,

L∑
k=1

αk = 1,

α ≥ 0.

(P ∗)

Correctness There are two parts. First we must show that the above cuts are a
legal run of the ellipsoid algorithm on (DR). There is clearly no problem with the
box cuts, so it remains to show that the rounded Hart-Schmeidler cuts are valid.
Such a cut x̃kU

Ty ≤ −1 is a convex combination of the constraints of (DR), so it
is a valid inequality. To see that it is violated at yk, note that ‖x̃k − xk‖∞ ≤ nδ
by the triangle inequality, so∣∣x̃kUTyk

∣∣ =
∣∣(x̃k − xk)UTyk

∣∣ ≤ ‖x̃k − xk‖∞MN ‖U‖∞ ‖yk‖∞

≤ δnMNR ‖U‖∞ =
1

2
,

and the cut is valid.
Second, we must show that solving (P ∗) produces an ε-correlated equilibrium.

The fact that a feasible solution with value ξ is a ξ-correlated equilibrium follows
from the definitions. It remains to show that (P ∗) has a feasible solution with
objective value at most ε. If we form (D′) as in Section 7.1.2 from the run of the
ellipsoid algorithm and this problem happens to be infeasible, then the arguments
of that section show that (P ∗) has optimal value zero and we are done. We will
assume for the remainder of this section that (D′) is feasible.

Form the bounded modified dual

minimize
y∈RtCi×Ci

0

subject to XUTy ≤ −e
Re ≥ y ≥ 0,

(D′R)

The above run of the ellipsoid algorithm is also valid for (D′R) – in this context the
idea behind the Ellipsoid Against Hope algorithm is correct. The upper bounds
on the y variables ensure that the initial ellipsoid is valid and all the cuts used
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are actually constraints of this problem. The ellipsoid algorithm certifies that the
volume of the feasible set of (D′R) is at most v.

Clearing the denominator δ−n in the constraints XUTy ≤ −e yields equivalent
constraints with integer coefficients, all bounded in absolute value by ‖U‖∞ δ−n ≥
R. By Lemma 8.4 in [6], if the feasible set of (D′R) were full-dimensional it
would have volume greater than v, contradicting the analysis above. Therefore
we conclude that the feasible set is not full-dimensional.

Fix ρ > 1. Perturbing the constraints of (D′R), we get an infeasible problem

minimize
y∈RtCi×Ci

0

subject to XUTy ≤ −ρe
Re ≥ y ≥ 0,

The dual of this problem,

maximize
α∈RL, β∈RM

ρ
L∑
k=1

αk −R
M∑
j=1

βj

subject to UXTα + β ≥ 0

α, β ≥ 0,

is feasible (α, β = 0), hence unbounded by strong linear programming duality.
Thus there exist α and β satisfying

ρ
L∑
k=1

αk > R
M∑
j=1

βj

UXTα + β ≥ 0

α, β ≥ 0.

The first and last constraints give
∑
αk > 0. Normalizing, we get α, β such that

M∑
j=1

βj <
ρ

R

L∑
k=1

αk = 1

UXTα + β ≥ 0

α, β ≥ 0.

Letting ξi,si = maxti∈Ci β
i
si,ti

and ξ = maxi
∑

si∈Ci ξi,si we get a feasible solution
of (P ∗) with ξ being a sum of some of the elements of β. Thus ξ < ρ

R
≤ ρε. Since

ρ > 1 was arbitrary, an optimal solution of (P ∗) will have value at most ε.
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� 7.1.6 Run time

First we check that the number of iterations L of the ellipsoid algorithm is
polynomial in the input. For concreteness, we use the fixed-precision version
of the ellipsoid algorithm presented in Theorem 3.2.1 of [34]. The volume of
the initial ellipsoid is vol(E1) ≤ (2R

√
N)N and we run until the volume is

vol(EL) ≤ v = N−N(N ‖U‖∞ δ−n)−N
2(N+1). By Lemma 3.2.10 in [34], we can

take log vol(Ei+1) ≤ log vol(Ei)− 1
5N

. Thus it suffices to take

L = 5N

[
N log

2
√
N

ε
+N logN +N2(N + 1) log(N ‖U‖∞)

+N2(N + 1)n log
2nMN ‖U‖∞

ε

]
,

which is polynomial in the input size.
Having worked around the error in [55], the rest of the analysis from that paper

goes through in this new setting. In particular, the assumption that a succinct
game has polynomial type and the polynomial expectation property implies that
each element of the matrix product UXT , and in particular each coefficient of the
cuts made in the ellipsoid algorithm, can all be computed in polynomial time in
the size of the input.

The ellipsoid method therefore runs in polynomial time on (DR). From the
history of this computation we can form the linear program (P ∗) in polynomial
time. We use the ellipsoid algorithm again to solve this in polynomial time,
computing an ε-correlated equilibrium which is a polynomial sum of products. If
the game is symmetric all these products can be taken to be symmetric, since the
algorithm starts with a symmetric ellipsoid. This proves Theorem 7.3.

� 7.1.7 Hardness of optimizing over exchangeable equilibria

Suppose we would like to minimize a linear function (to some desired degree of
accuracy) over the set XEG(Γ) of exchangeable equilibria of a game or perhaps
over the ε-exchangeable equilibria for a given epsilon. The Approximate Ellipsoid
Against Hope algorithm no longer applies directly: it can identify a subset of
∆X
G (Γ) guaranteed to contain a single ε-exchangeable equilibrium, but this set

need not contain all the ε-exchangeable equilibria.
It stands to reason that the Approximate Ellipsoid Against Hope algorithm,

which is based on linear programming and duality, could be modified to optimize
a linear function over the ε-exchangeable equilibria in polynomial time. It turns
out this is false, at least assuming P 6= NP , because this problem is NP-hard.
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To formalize this we must view the task as a decision problem, so we can ask
whether the minimum of the linear function (specified by its rational coefficients)
is at least some rational number q.

Let θ denote the zero game with two players having m strategies each. This is a
symmetric bimatrix game. Any distribution in ∆(Γ) is an ε-correlated equilibrium
for any ε, so the set of ε-exchangeable equilibria is the set of normalized m×m
completely positive matrices. Suppose we are given a matrix A ∈ Qm×m and we
would like to optimize the linear function A •X over X in this set of equilibria.
This is exactly the optimization problem (2.1), so if q = 0 we are asking whether
A is a copositive matrix, a co-NP-complete problem [50].

This is a special case of the problem of optimizing over ε-exchangeable equi-
libria, so that problem is NP-hard.

� 7.2 Linear and semidefinite relaxations

Although the Approximate Ellipsoid Against Hope algorithm finds ε-exchangeable
equilibria efficiently in theory, its use of the ellipsoid method makes running it
impractical. While the ellipsoid method runs in polynomial time, the exponent and
constants are large enough that it is prohibitively slow in practice. Furthermore,
the numerical issues, discussed in some detail above, make it necessary to keep
track of many bits of precision at each iteration to ensure convergence. The
inability to use standard fixed or floating point arithmetic makes this method
even slower. If we are willing to give up guaranteed bounds on the error ε, there
are more practical heuristics available.

The Approximate Ellipsoid Against Hope algorithm works by computing a
polynomially-sized representation of a (polyhedral) subset of ∆X

G (Γ) which con-
tains an ε-correlated equilibrium by construction. We can skip this step and
instead choose any subset of ∆X

G (Γ) with a small description in terms of linear
or semidefinite constraints. Finding the ε-correlated equilibrium in this set with
minimum ε is then a linear or semidefinite program which can be solved efficiently
(in theory and practice) by interior point methods.

We have seen this technique in action in many of the examples above which
were chosen to be small enough so that complete positivity coincides with double
nonnegativity and the set of exchangeable equilibria is exactly describable by a
semidefinite program. For larger games the situation is not so straightforward,
but we can still provide inner approximations to the completely positive matrices.

Let us see how this might work in the case of symmetric bimatrix games. A
known polyhedral inner approximation to the completely positive matrices is the
set of nonnegative diagonally dominant matrices. These are the matrices for
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which the diagonal element in each row is at least as large as the sum of all other
elements. It is easy to show that the extreme rays of the diagonally dominant
matrices are of the form v ⊗ v where v is a vector with at most two 1 entries and
zeros elsewhere. These are all nonnegative symmetric rank one matrices, so conic
combinations of these are completely positive as claimed.

We can form tighter polyhedral approximations by merely choosing any finite
set of vectors v which are in some sense “evenly spaced” throughout ∆(C1). Conic
combinations of tensor powers of these are automatically completely positive, and
the denser the set of vectors is chosen, the tighter the relaxation.

There is a semidefinite generalization of this approach, which is most easily
described for matrices. If X =

∑
xkx

T
k , xk ∈ Rl

≥0 is a completely positive matrix
and P ∈ Rm×l is an elementwise nonnegative matrix, the conjugate PXP T =∑

(Pxk)(Pxk)
T ∈ Rm×m is also completely positive. Choosing several X and

P matrices in this way we also get that sum
∑

i PiXiP
T
i is completely positive

whenever the Xi are and the Pi are elementwise nonnegative. If we take l = 1
then the Xi are scalars and constraining these to be nonnegative yields exactly
the polyhedral approximation above.

If the Xi are 4× 4 or smaller their complete positivity is equivalent to double
nonnegativity and the set of matrices of the form

∑
i PiXiP

T
i is an inner semidef-

inite approximation to CP2
m. For example, if we let e1, . . . , em denote the unit

column vectors in Rm and we let the Pi vary over all
(
m
4

)
ways of choosing four of

these and concatenating them into an m× 4 matrix (the order does not matter),
constraining Xi ≥ 0 and Xi � 0, then we get a semidefinite description of:{∑

i

PiXiP
T
i

∣∣∣∣∣ Xi ≥ 0, Xi � 0

}
= conv

{
vvT | v ∈ Rm

≥0 has at most four nonzero entries
}
⊆ CP2

m,

where the containment is strict if and only if m > 4 by Proposition 2.49 on extreme
rays of the set of completely positive matrices.

These methods can be used just as well to approximate higher order exchange-
able equilibria as well as asymmetric exchangeable equilibria, and in some cases
will find exact equilibria. Example 6.17 of an asymmetric exchangeable equilibrium
which does not lift to a symmetric exchangeable equilibrium of the symmetrization
was found using this inner approximation of CP2

6 to give an inner approximation
to XE−(Γ) and comparing it to the outer approximation of XES2(Γ

Sym) given
by relaxing CP2

9 to DNN2
9 (see Figure 6.1). Note that none of the factors in the

completely positive factorization (6.3) has more than four nonzero entries.
We can also give outer approximations of the set of exchangeable equilibria by

replacing completely positive tensors with an outer approximation, such as doubly
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nonnegative tensors. Recall that these were constructed in terms of the sum of
squares relaxation of positive polynomials, so we can use tighter relaxations of
positive polynomials to construct tighter relaxations of completely positive tensors
if necessary. Such relaxations in general are not exact, but we can easily minimize
linear functionals over these to get lower bounds on the NP-hard problem of min-
imizing linear functionals over the exchangeable equilibria, and these techniques
again apply equally to higher order and asymmetric exchangeable equilibria.

We can theoretically use the inner approximations to completely positive ten-
sors to give upper bounds for the minimum of a linear functional over the exchange-
able equilibria, but the corresponding inner approximation of the exchangeable
equilibria may be empty, yielding a trivial bound of +∞. In such cases we will
still be able to give upper bounds to the minimum over ε-exchangeable equilibria,
for sufficiently large ε.





Chapter 8

Structure of Extreme Correlated
Equilibria

In finite games the set of correlated equilibria is a compact convex polytope, and
therefore seemingly much simpler than the set of Nash equilibria, which can be
essentially any algebraic variety [17]. Even in the simple case of two-player finite
games, the set of Nash equilibria is a union of finitely many polytopes: seemingly
more complicated than the set of correlated equilibria. The relationship between
these two sets is that all the extreme points of the polytopes making up the Nash
equilibria, viewed as product distributions, are extreme points of the correlated
equilibrium polytope. This result, discovered independently by Evangelista and
Raghavan [25] and Cripps [14], is reviewed in Section 8.1.1.

In this chapter1 we construct two-player zero-sum games in which the set of
correlated equilibria has many more extreme points than the set of Nash equilibria
has. This behavior does not seem to be pathological in any way: it occurs in very
simple finite games and the simplest of infinite games. We take this as evidence
that this complexity is likely to be quite common.

A polynomial game is one with compact intervals for strategy spaces and
polynomial utility functions. Polynomial games are one of the simplest classes of
games with infinite strategy sets, and formally similar to finite games in many
ways [20, 21, 43, 44, 68, 69]. One of the most important connections is that the set
of Nash equilibria of a polynomial game, which is a priori an infinite-dimensional
object, can be given a finite-dimensional description in terms of fixed points of
a certain self-map defined on compact, convex, but nonpolyhedral subsets of Rk.
Geometrically this looks like the finite case, though there the sets are simplices.

Given this representation it is natural to ask whether the set of correlated

1A version of this chapter has been published as [71]. It is logically independent of Chapters 3
through 7 on exchangeable equilibria. In fact its development precedes that of exchangeable
equilibria. Thematically this material is closer to the author’s master’s thesis [68], but it was
not completed in time for inclusion therein. Nonetheless there are connections to exchangeable
equilibria under the surface. These are discussed in the final chapter.

155
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equilibria of a polynomial game also admits a finite-dimensional characterization.
The finite-dimensional description of Nash equilibria is in terms of moments so it
is natural to consider whether a similar characterization of correlated equilibria
in terms of joint moments exists. In this chapter we show that in a very general
sense such a characterization does not exist. We do so by exhibiting an example
polynomial game with extreme points which are not finitely supported; a convex
set of measures characterized by finitely many conditions on its (generalized)
moments cannot have such extreme points.

Outline The remainder of this chapter is organized as follows. We cover back-
ground material in Section 8.1. Section 8.2 introduces the examples to be studied.
The two types of examples are closely related – the finite game examples are just
restrictions of the strategy spaces in the infinite game example to fixed finite sets.
This allows us to analyze both examples on equal footing. In Section 8.3 we define
and compute the extreme Nash equilibria of these examples, counting them in the
finite game example. Then we define and analyze the extreme correlated equilibria
in Section 8.4, comparing the results with those about Nash equilibria as we go.

� 8.1 Background

First we fix notation. When T is a topological space, ∆∗(T ) will denote the set
of regular finite Borel measures on T . In particular ∆(T ) is the set of measures
in ∆∗(T ) with unit mass. If T is finite it will be given the discrete topology by
default so ∆(T ) is a simplex and ∆∗(T ) is an orthant in RT .

� 8.1.1 Extreme equilibria in finite games

In this section we present shorter, less computational proofs of the main results
in [39], [14], and [25] on the structure of the Nash and correlated equilibrium sets
of two-player finite games. In [39] Heuer and Millham define maximal Nash sets
and give a characterization which leads to the notion of extreme Nash equilibria.
Evangelista and Raghavan [25] and Cripps [14] independently show the same result
relating these to extreme points of the correlated equilibrium polytope.

Definition 8.1. Let Γ by a bimatrix game. A product set E1 × E2 ⊆ NE(Γ)
with Ei ⊆ ∆(Ci) is called a Nash set. A maximal Nash set is one which is
maximal with respect to inclusion.

Example 8.2. If (σ, τ) ∈ NE(Γ) then {(σ, τ)} is a Nash set but need not be
maximal. If this is the unique Nash equilibrium then this Nash set is maximal. ♦
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Example 8.3. If Γ is a zero-sum game, then NE(Γ) = Mm(Γ) × mM(Γ), the
product of the sets of maximin and minimax strategies, so NE(Γ) is the unique
maximal Nash set. ♦

Proposition 8.4 ([39]). Let E1 × E2 be a maximal Nash set of a bimatrix game.
Then the Ei are convex polytopes defined by a set of inequalities of the form (8.1)
below with Ci = Bi ∪ Zi.

Proof. Let Bi ⊆ Ci be the set of pure strategies which are best responses to all
strategies in E−i. Let Zi ⊆ Ci be the set of pure strategies which are not chosen
with positive probability under any mixed strategy in Ei. Only best responses are
chosen with positive probability in a Nash equilibrium, so Ci = Bi ∪ Zi.

Define a set Fi ⊆ ∆(Ci) to be the collection of τi satisfying the linear constraints∑
si∈Ci

[u−i(s−i, si)− u−i(t−i, si)]τi(si) = 0 for s−i, t−i ∈ B−i,∑
si∈Ci

[u−i(s−i, si)− u−i(t−i, si)]τi(si) ≥ 0 for s−i ∈ B−i, t−i ∈ C−i,

τi(si) = 0 for si ∈ Zi,
τi(si) ≥ 0 for si ∈ Ci,∑

si∈Ci

τi(si) = 1.

(8.1)

Then F1 × F2 ⊇ E1 × E2 is a Nash set, so Ei = Fi.

Definition 8.5. A pair (σ1, σ2) is an extreme Nash equilibrium if there is a
maximal Nash set E1×E2 with σi an extreme point of Ei for i = 1, 2. A π ∈ ∆(Γ)
is an extreme correlated equilibrium if it is an extreme point of CE(Γ).

Proposition 8.6 ([14, 25]). If (σ1, σ2) is an extreme Nash equilibrium of a bima-
trix game then σ1 × σ2 is an extreme correlated equilibrium.

Proof. Let E1 × E2 be a maximal Nash set with σi an extreme point of Ei for
i = 1, 2. We can assume the Ei are defined by the conditions (8.1) for some Bi and
Zi. An extreme point of a polytope defined by linear equations and inequalities
is a point where certain inequalities are tight these inequalities are not all tight
at any other point. Therefore we can enlarge the sets Bi and Zi to B∗i and Z∗i ,
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making σ1 and σ2 the unique pair satisfying the homogeneous conditions∑
si∈Ci

[u−i(s−i, si)− u−i(t−i, si)]τi(si) = 0 for s−i, t−i ∈ B∗−i,∑
si∈Ci

[u−i(s−i, si)− u−i(t−i, si)]τi(si) ≥ 0 for s−i ∈ B∗−i, t−i ∈ C−i,

τi(si) = 0 for si ∈ Z∗i ,
τi(si) ≥ 0 for si ∈ Ci,

(8.2)

which are also normalized
∑
σi(si) = 1. Dropping normalization, any τi satisfying

(8.2) is of the form τi = λiσi for some λi ≥ 0.
The following constraints are the correlated equilibrium conditions with some

extra inequalities made tight:∑
si∈Ci

[u−i(s−i, si)− u−i(s−i, ti)]π(si, s−i) = 0 for s−i, t−i ∈ B∗−i∑
si∈Ci

[u−i(s−i, si)− u−i(s−i, ti)]π(si, s−i) ≥ 0 for s−i, t−i ∈ C−i

π(s) = 0 if s1 ∈ Z∗1 or s2 ∈ Z∗2 ,
π(s) ≥ 0 for all s ∈ C,∑

s∈C

π(s) = 1.

(8.3)

We will show that (8.3) defines a unique π. For each s−i ∈ C−i, π(·, s−i) satisifes
(8.2), so there is a λ−i(s−i) ≥ 0 such that π(si, s−i) = λ−i(s−i)σi(si) for all s ∈ C.
Summing over all s ∈ C we get

∑
si∈Ci λi(si) =

∑
s∈C π(s) = 1, so λi ∈ ∆(Ci) for

i = 1, 2. We have π = σ1×λ2 = λ1×σ2, so σi = λi for each i and any distribution
satisfying (8.3) must equal σ1 × σ2. This distribution does in fact satisfy these
conditions, so it is the unique correlated equilibrium at which these particular
constraints are tight. Therefore it is extreme.

The final example in Nash’s paper [52] is a three player game with rational util-
ities and a unique Nash equilibrium. This equilibrium uses irrational probabilities,
so viewed as a product distribution at least one of the probabilities is irrational.
On the other hand the set of correlated equilibria is a polytope defined by linear
inequalities with rational coefficients, so all its extreme points are rational and in
particular not equal to the Nash equilibrium.

Therefore this result does not generalize in the obvious way to finite games
with more than two players. A weaker statement which does generalize is given
in [53], but we do not use this result in this work.
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� 8.1.2 Ergodic theory

To prove that certain correlated equilibria of a polynomial game are extreme
(Proposition 8.26) we will need some ideas from ergodic theory. The first is the
standard definition of compatibility between a measure and a transformation on
a space. The second expresses one notion of what it means for a transformation
to “mix up” a space – in this case that the space cannot be partitioned into two
sets of positive measure which do not interact under the transformation. Using
these we state the main ergodic theorem and a corollary which is key to the proof
of Proposition 8.26.

Definition 8.7. Given a measure µ ∈ ∆∗(S) on a space S, a measurable function
g : S → S is called (µ-)measure preserving if µ(g−1(A)) = µ(A) for all
measurable A ⊆ S. Note that if g is invertible (in the measure theoretic sense that
an almost everywhere inverse exists), then this is equivalent to the condition that
µ(g(A)) = µ(A) for all A.

Definition 8.8. Given a measure µ ∈ ∆∗(S), a µ-measure preserving transforma-
tion g is called ergodic if µ(A4 g−1(A)) = 0 implies µ(A) = 0 or µ(S \ A) = 0,
where A4B denotes the symmetric difference (A \B) ∪ (B \ A).

Example 8.9. Fix a finite set S and a function g : S → S. Let µ be counting
measure on S. Then g is measure preserving if and only if it is a permutation. In
this case a set T satisfies µ(g−1(T )4 T ) = 0 if and only if g−1(T ) = T if and only
if T is a union of cycles of g. Therefore g is ergodic if and only if it consists of a
single cycle. ♦
Example 8.10. Fix α ∈ R. Let S = [0, 1) and let µ be Lebesgue measure on
S. Define g : S → S by g(x) = (x + α) mod 1 = (x + α) − bx + αc. Then g is
µ-measure preserving because Lebesgue measure is translation invariant. It can
be shown that g is ergodic if and only if α is irrational. For a proof and more
examples, see [66]. ♦

The following is one of the core results of ergodic theory. We will only use it
to prove the corollary which follows, so it need not be read in detail. The proof
can be found in any text on ergodic theory, e.g. [66].

Theorem 8.11 (Birkhoff’s ergodic theorem). Fix a probability measure µ and a
µ-measure preserving transformation g. Then for any f ∈ L1(µ):

• f̃(x) := limn→∞
1
n

∑n−1
k=0 f(gk(x)) exists µ-almost everywhere,

• f̃ ∈ L1(µ),

•
∫
f̃ dµ =

∫
f dµ,
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• f̃(g(x)) = f̃(x) µ-almost everywhere, and

• if g is ergodic then f̃(x) =
∫
f dµ µ-almost everywhere.

Corollary 8.12. Suppose µ and ν are probability measures such that ν is abso-
lutely continuous with respect to µ. If a transformation g preserves both µ and ν
and g is ergodic with respect to µ, then ν = µ.

Proof. Fix any measurable set A. Let f be the indicator function for A, i.e.
the function equal to unity on A and zero elsewhere. Applying Birkhoff’s ergodic
theorem to f and µ yields f̃(x) = µ(A) µ-almost everywhere. Since ν is absolutely
continuous with respect to µ, f̃(x) = µ(A) ν-almost everywhere also. If we now
apply Birkhoff’s ergodic theorem to ν we get:

ν(A) =

∫
f dν =

∫
f̃ dν =

∫
µ(A) dν = µ(A).

� 8.2 Description of the examples

We focus on two related examples, one with finite strategy sets and one with
infinite strategy sets. We develop these in parallel by analyzing arbitrary games
satisfying the following condition. The condition does not have any game theoretic
content; it was merely chosen for simplicity and the results to which it leads.

Assumption 8.13. The game is a zero-sum strategic form game with two players,
called X and Y . The strategy sets CX and CY are compact subsets of J := [−1, 1],
each of which contains at least one positive element and at least one negative
element. Player X chooses a strategy x ∈ CX and player Y chooses y ∈ CY . The
utility functions2 are uX(x, y) = xy = −uY (x, y).

Example 8.14. Fix an integer l > 0. Let CX and CY each have 2l elements, l of
which are positive and l of which are negative. If we take l = 1 and CX = CY =
{−1, 1} then we recover the matching pennies game shown in Table 2.1 (up to
relabeling). ♦
Example 8.15. Let CX = CY = [−1, 1]. Then the game is essentially the mixed
extension of matching pennies. That is to say, suppose two players play matching
pennies and choose their strategies independently, playing 1 with probabilities

2By inspection of the utilities we can see that for any CX and CY , the rank of this game in
the sense of [69] is (1, 1) (and in fact also in the stronger sense of Theorem 3.3 of that paper).
The notion of the rank of a game is related to the rank of the payoff matrices and will not play
a significant role in this thesis; we merely wish to note that under this definition of complexity
of payoffs, the games we consider are uniformly simple.
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p ∈ [0, 1] and q ∈ [0, 1]. Define the utilities for the mixed extension to be the
expected utilities under this random choice of strategies. Letting x = 2p− 1 and
y = 2q− 1, the utility to the first player is xy and the utility to the second player
is −xy. Therefore this example is the mixed extension of matching pennies, up
to an affine scaling of the strategies. ♦

Usually one looks at pure equilibria of the mixed extension of a game; these
are exactly the mixed equilibria of the original game. We will instead be looking
at mixed Nash equilibria and correlated equilibria of the mixed extension itself, a
game with a continuum of actions. The relationship between correlated equilibria
of the mixed extension and those of the original game is much more complicated
than the corresponding relationship for mixed Nash equilibria. This drives the
results of this chapter.

� 8.3 Extreme Nash equilibria

We now characterize and count the extreme points of the sets of Nash equilibria in
games satisfying Assumption 8.13. Since the games are zero-sum, the set of Nash
equilibria can be viewed as a Cartesian product of two (weak*) compact convex
sets, the sets of maximin and minimax strategies [31]. The Krein-Milman theorem
[62] completely characterizes such sets by their extreme points, explaining our
focus on extreme points throughout.

The Nash equilibria of games satisfying Assumption 8.13 take the following
particularly simple form.

Proposition 8.16. A pair (σ, τ) ∈ ∆(CX) ×∆(CY ) is a Nash equilibrium of a
game satisfying Assumption 8.13 if and only if

∫
x dσ(x) =

∫
y dτ(y) = 0.

Proof. If
∫
x dσ(x) = 0 then uY (σ, y) = 0 for all y ∈ CY , so any τ ∈ ∆(CY ) is a

best response to σ. If
∫
y dτ(y) = 0 as well then σ is also a best response to τ , so

(σ, τ) is a Nash equilibrium.
Suppose for a contradiction that there exists a Nash equilibrium (σ, τ) such

that
∫
x dσ(x) > 0; the other cases are similar. Player y must play a best response,

so
∫
y dτ(y) < 0, which is possible by assumption. Player x plays a best response

to that, so
∫
x dσ(x) < 0, a contradiction.

For games which are zero-sum but not necessarily finite, we extend Defini-
tion 8.5 as follows.

Definition 8.17. A Nash equilibrium (σ, τ) of a zero-sum game is called extreme
if σ and τ are extreme points of the maximin and minimax sets, respectively.
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Applying Proposition 8.16 to this definition, we can characterize the extreme
Nash equilibria of games satisfying Assumption 8.13.

Proposition 8.18. Consider a game satisfying Assumption 8.13. A pair (σ, τ) ∈
∆(CX)×∆(CY ) is an extreme Nash equilibrium if and only if σ and τ are each
either δ0 or of the form αδa + βδb where a < 0, b, α, β > 0, α + β = 1, and
αa+ βb = 0.

Proof. By Proposition 8.16 we must show that these distributions are the extreme
points of the set of probability distributions having zero mean. Since δ0 is an
extreme point of the set of probability distributions, it must be an extreme point
of the subset which has zero mean. To see that αδa + βδb is also an extreme
point, suppose we could write it as a convex combination of two other probability
distributions with zero mean. The condition that both be positive measures
implies that both must be of the form α′δa + β′δb. But α and β as specified
above are the unique coefficients which make this be a probability measure with
zero mean. Therefore α′ = α and β′ = β, so αδa + βδb cannot be written as a
nontrivial convex combination of probability distributions with zero mean, i.e., it
is an extreme point.

Suppose σ were an extreme point which was not of one of these types. Then
σ could not be supported on one or two points, so either [0, 1] or [−1, 0) could
be partitioned into two sets of positive measure. We will only treat the first case;
the second is similar. Let [0, 1] = A ∪ B where A ∩ B = ∅ and σ(A), σ(B) > 0.
Since σ has zero mean we must have σ([−1, 0)) > 0 as well.

For a set D we define the restriction measure σ|D by σ|D(C) := σ(D∩C) for all
measurable C. Then σ = σ|A + σ|B + σ|[−1,0). Let a =

∫
A
x dσ(x), b =

∫
B
x dσ(x),

and c =
∫

[−1,0)
x dσ(x). Since σ([−1, 0)) > 0 and x is less than zero everywhere on

[−1, 0), we must have c < 0 and similarly a, b ≥ 0. By assumption a+ b+ c = 0.
Therefore we can write:

σ =

(
σ|A +

a

|c|
σ|[−1,0)

)
+

(
σ|B +

b

|c|
σ|[−1,0)

)
Being an extreme point of the set of probability measures with zero mean, σ

must be an extreme ray of the set of positive measures with first moment equal
to zero. But this means that we cannot write σ = σ1 + σ2 where the σi are
positive measures with zero first moment unless σi is a multiple of σ. Neither of
the measures in parentheses above is a multiple of σ, a contradiction.

We illustrate this proposition on both examples introduced in Section 8.2.

Example 8.19 (continues Example 8.14). In this case neither CX nor CY contains
zero, so the only extreme Nash equilibria are those in which σ and τ are of the
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form αδa +βδb for a < 0 and b > 0. For any choice of a and b simple algebra gives
unique α and β satisfying the conditions of Proposition 8.18. There are l possible
choices for each of a and b for each of the two players, so there are l4 extreme
Nash equilibria. ♦
Example 8.20 (continues Example 8.15). Since CX = CY = [−1, 1], there are
infinitely many extreme Nash equilibria in this case. However, they are all finitely
supported and the size of the support of each player’s strategy is always either one
or two. Furthermore the condition that (σ, τ) be a Nash equilibrium is equivalent
to both having zero mean. This illustrates the general facts that in games with
polynomial utility functions the Nash equilibrium conditions only involve finitely
many moments of σ and τ (in this case, only the mean) and the extreme Nash
equilibria (when defined, say for zero-sum games) have uniformly bounded support
[43]. ♦

� 8.4 Extreme correlated equilibria

In this section we will show that in bimatrix games, the number of extreme corre-
lated equilibria can be much larger than the number of extreme Nash equilibria.
It is meaningful to compare these because all extreme Nash equilibria of a bima-
trix game, viewed as product distributions, are automatically extreme correlated
equilibria (Proposition 8.6).

In the case of polynomial games we will show that there can be extreme
correlated equilibria with arbitrarily large finite support and with infinite support.
This implies that the set of correlated equilibria cannot be characterized in terms
of finitely many joint moments.

Roadmap The analysis proceeds in several steps which will be technical at times,
so we start with an outline of what follows.

• We begin by defining correlated equilibria in games satisfying Assumption 8.13
using a characterization from [70].

• Proposition 8.23 shows how this characterization can be simplified under our
choice of utility functions.

• We use this simpler characterization to construct a family of finitely supported
extreme correlated equilibria in Proposition 8.24.

• Then we note that all extreme correlated equilibria of the games in Exam-
ples 8.14 and 8.19 are of this form, so this allows us to count the extreme
correlated equilibria and determine their asymptotic rate of growth as the
number of pure strategies grows.
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• Using the ergodic theory introduced in Section 8.1.2 we construct in Proposi-
tion 8.26 a large family of extreme correlated equilibria without finite support
for the game in Examples 8.15 and 8.20.

• Finally we show that if a set can be represented by finitely many moments
then all its extreme points have uniformly bounded finite support. This shows
that the set of correlated equilibria of the game in Examples 8.15 and 8.20
cannot be represented by finitely many moments and completes the analysis.

Having completed the roadmap, we are ready to begin. Defining correlated
equilibria in games with infinite strategy sets such as polynomial games requires
a bit more care than defining these in finite games. The standard definition as in
e.g. [38] is to modify Definition 2.5 by only requiring the incentive condition hold
for measurable functions ζi. This definition is not well suited for computation, so
we use the following equivalent characterization.

Proposition 8.21 ([70]). A probability distribution µ ∈ ∆(CX × CY ) is a corre-
lated equilibrium of a game satisfying Assumption 8.13 if and only if∫

A×J
(xy − x′y) dµ(x, y) ≥ 0 and

∫
J×A

(xy − xy′) dµ(x, y) ≤ 0

for all x′ ∈ CX , y′ ∈ CY , and measurable A ⊆ J .

Proof. When µ is finitely supported this is clearly equivalent to Definition 2.5.
The general case is part (1) of Corollary 2.14 in [70] with the present utilities
substituted in.

Note that these conditions are homogeneous (that is, invariant under positive
scaling) in µ. The only condition on µ that is not homogeneous is the probability
measure condition µ(J × J) = 1. We will often ignore this condition to avoid
having to normalize every expression, referring to a measure µ ∈ ∆∗(CX × CY )
satisfying the conditions of the proposition as a correlated equilibrium.

Definition 8.22. When we need to distinguish these notions, we will refer to
a measure µ ∈ ∆∗(CX × CY ) satisfying the conditions of Proposition 8.21 as
a homogeneous correlated equilibrium and a measure µ ∈ ∆(CX × CY )
satisfying the conditions as a proper correlated equilibrium. In the context
of homogeneous correlated equilibria the term extreme will refer to extreme rays;
for proper correlated equilibria it will refer to extreme points.

When µ 6= 0 is a homogenous correlated equilibrium, 1
µ(J×J)

µ is a proper
correlated equilibrium. The set of homogenous correlated equilibria is a convex
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cone. The extreme rays of this cone are exactly those measures which are positive
multiples of the extreme points of the set of proper correlated equilibria.

The following proposition characterizes correlated equilibria of games satisfying
Assumption 8.13 and is analogous to Proposition 8.16 for Nash equilibria. Note
how the Nash equilibrium measures were characterized in terms of their moments
but the correlated equilibria are not. Whereas the Nash equilibria are pairs of
mixed strategies with zero mean for each player, condition (3) of this proposition
says that the correlated equilibria are joint distributions such that regardless
of each player’s own recommendation, the conditional mean of his opponent’s
recommended strategy is zero.

Proposition 8.23. For a game satisfying Assumption 8.13 and a measure µ ∈
∆∗(CX × CY ) such that xy 6= 0 µ-a.e., the following are equivalent:

1. µ is a correlated equilibrium;

2.

κx(A) :=

∫
A×J

xy dµ(x, y) and κy(A) :=

∫
J×A

xy dµ(x, y)

are both the zero measure, i.e., equal zero for all measurable A ⊆ J ;

3.

λx(A) :=

∫
A×J

y dµ(x, y) and λy(A) :=

∫
J×A

x dµ(x, y)

are both the zero measure.

Proof. (1 ⇒ 2) We will consider only κx; κy is similar. The conditions of Propo-
sition 8.21 with A = J imply that

x′
∫
J×J

y dµ(x, y) ≤
∫
J×J

xy dµ(x, y) ≤ y′
∫
J×J

x dµ(x, y)

for all x′ ∈ CX , y′ ∈ CY . By assumption it is possible to choose x′ and y′ either
positive or negative, so

∫
J×J xy dµ(x, y) = 0. A similar argument with any A

implies that
∫
A×J xy dµ(x, y) ≥ 0. Therefore we have

0 =

∫
J×J

xy dµ(x, y) =

∫
A×J

xy dµ(x, y) +

∫
(J\A)×J

xy dµ(x, y) ≥ 0 + 0 = 0

for all A, so the inequality must be tight and we get
∫
A×J xy dµ(x, y) = 0 for all

A.
(2 ⇔ 3) By definition dκx = x dλx and by assumption λx(0) = 0. If one of

these measures is zero then so is the other, and respectively with y in place of x.
(2 & 3 ⇒ 1) The integrals in Proposition 8.21 vanish.
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Proposition 8.24. Fix a game satisfying Assumption 8.13. Let k > 0 be even
and x1, . . . , x2k and y1, . . . , y2k be such that:

1. xi ∈ CX and yi ∈ CY are all nonzero;

2. the sequence x1, x3, . . . , x2k−1 has distinct elements and alternates in sign;

3. the sequence y1, y3, . . . , y2k−1 has distinct elements and alternates in sign;

4. x2i = x2i−1 and y2i = y2i+1 for all i when subscripts are interpreted mod 2k.

Then µ =
∑2k

i=1
1
|xiyi|δ(xi,yi) is an extreme correlated equilibrium.

Proof. To show that µ is a correlated equilibrium define dκ(x, y) = xy dµ(x, y).
Then κ =

∑2k
i=1 sign(xi) sign(yi)δ(xi,yi). Defining the projection κx as in Proposi-

tion 8.23, we have

κx =
2k∑
i=1

sign(xi) sign(yi)δxi =
k∑
i=1

sign(x2i) (sign(y2i) + sign(y2i−1)) δx2i

=
k∑
i=1

sign(x2i)(0)δx2i = 0,

because x2i = x2i−1 and y2i differs in sign from y2i−1 by assumption. The same
argument shows that κy = 0, so µ is a correlated equilibrium.

To see that µ is extreme, suppose µ = µ′ + µ′′ where µ′ and µ′′ are correlated
equilibria. Clearly µ′ =

∑2k
i=1 αiδ(xi,yi) for some αi ≥ 0. Define dκ′ = xy dµ′(x, y),

so κ′ =
∑2k

i=1 αixiyiδ(xi,yi). By assumption

κ′x =
k∑
i=1

x2i (α2i−1y2i−1 + α2iy2i) δx2i

is the zero measure. Since the x2i are distinct and nonzero we must have
α2i−1y2i−1+α2iy2i = 0 for all i. Similarly since κ′y = 0 we have α2i+1x2i+1+α2ix2i =
0 for all i (with subscripts interpreted mod 2k).

The xi and yi are all nonzero, so fixing one αi fixes all the others by these equa-
tions. That is to say, these equations have a unique solution up to multiplication
by a scalar, so µ′ is a positive scalar multiple of µ. But the splitting µ = µ′ + µ′′

was arbitrary, so µ is extreme.

An argument along the lines of the proof of Proposition 8.24 shows that any
finitely supported correlated equilibrium µ whose support does not contain any
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Figure 8.1. The support of an extreme correlated equilibrium. In the notation of Proposi-
tion 8.24, k = 2, x1 = 0.4, x3 = −0.6, y1 = 0.2, and y3 = −0.8.
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Figure 8.2. The support of another extreme correlated equilibrium. In the notation of
Proposition 8.24, k = 4, x1 = 0.4, x3 = −0.4, x5 = 0.6, x7 = −0.6, y1 = 0.6, y3 = −0.4,
y5 = 0.4, and y7 = −0.6.

points with x = 0 or y = 0 can be written as µ = µ′ + µ′′ where µ′ 6= 0 is a
correlated equilibrium and µ′′ 6= 0 is a correlated equilibrium of the form studied
in Proposition 8.24. Therefore a finitely supported µ cannot be extreme unless it
is of this form.

Example 8.25 (continues Example 8.19). For some examples of the supports of
extreme correlated equilibria of games of this type, see Figures 8.1 and 8.2.

To count the number of extreme correlated equilibria of this game we must
count the number of essentially different sequences of xi and yi of the type men-
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tioned in Proposition 8.24. Fix k and let k = 2r where 1 ≤ r ≤ l. Note that
cyclically shifting the sequences of xi’s and yi’s by two does not change µ, nor does
reversing the sequence. Therefore we can assume without loss of generality that
x1, y1 > 0. We then have l possible choices for x1, y1, x3, and y3, l − 1 possible

choices for x5, x7, y5, and y7, etc., for a total of
(

l!
(l−r)!

)4

possible choices of the

xi and yi. These will always be essentially different (i.e., give rise to different
µ) unless we cyclically permute the sequences of xi and yi by some multiple of
four, in which case the resulting sequence is essentially the same. The number of
such cyclic permutations is r. Therefore the total number of extreme correlated
equilibria is

e(n) =
n∑
r=1

1

r

(
l!

(l − r)!

)4

.

We will see that e(l) = Θ
(

1
l
(l!)4

)
. That is to say, e(l) is asymptotically upper

and lower bounded by a constant times 1
l
(l!)4. The expression 1

l
(l!)4 is just the

final term in the summation for e(l), so the lower bound is clear. Define

f(l) :=
e(l)

1
l
(l!)4

=
l−1∑
r=0

l

l − r
· 1

(r!)4
,

where the second equality is by reindexing. Then f(l) ≥ 1 for all l. We will now
show that f(l) is also bounded above. Intuitively this is not surprising since the
terms in the summation for f(l) die off extremely quickly as s grows.

For all 1 ≤ r < l− 1 we have that the ratio of term r+ 1 in the summation to
term r is:

l
l−r−1

· 1
((r+1)!)4

l
l−r ·

1
(r!)4

=
l − r

l − r − 1
· 1

(r + 1)4
≤ 1

8
,

so for l > 1 we can bound the sum by a geometric series:

f(l)− 1 =
l−1∑
r=1

l

l − r
· 1

(r!)4
≤ l

l − 1

∞∑
r=0

1

8r
=

8l

7(l − 1)
≤ 16

7
.

Therefore 1 ≤ f(l) ≤ 23
7

for all l, so e(l) = Θ
(

1
l
(l!)4

)
as claimed. Comparing

this to the results of the previous section in which we saw that the number
of extreme Nash equilibria of this game is l4, we see that in this case there
is a super-exponential separation between the number of extreme Nash and the
number of extreme correlated equilibria. This implies, for example, that computing
all extreme correlated equilibria is not an efficient method for computing all
extreme Nash equilibria, even though all extreme Nash equilibria are extreme
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correlated equilibria and recognizing whether an extreme correlated equilibrium
is an extreme Nash equilibrium is easy. There are simply too many extreme
correlated equilibria. ♦

Next we prove a more abstract version of Proposition 8.24 which includes
certain extreme points which are not finitely supported. To do so we use the
ergodic theory concepts introduced in Section 8.1.2.

Proposition 8.26. Fix measures ν1, ν2, ν3, and ν4 ∈ ∆∗((0, 1]) and maps fi :
(0, 1] → (0, 1] such that νi+1 = νi ◦ f−1

i (interpreting subscripts mod 4). The
portion of the measure µ in the ith quadrant of J × J will be constructed in terms
of fi and νi. Define ji : (0, 1]→ J × J by j1(x) = (x, f1(x)), j2(x) = (−f2(x), x),
j3(x) = (−x,−f3(x)), and j4(x) = (f4(x),−x). Let |κ| =

∑4
i=1 νi ◦ j

−1
i . If

Assumption 8.13 is satisfied, supp|κ| ⊆ CX × CY , and 1
|xy| ∈ L

1(|κ|) then dµ =
1
|xy| d|κ| is a correlated equilibrium.

By assumption f4 ◦ f3 ◦ f2 ◦ f1 : (0, 1]→ (0, 1] is ν1-measure preserving. If it
is also ergodic with respect to ν1, then µ is extreme.

Proof. First we must show that µ is a correlated equilibrium. It is a finite measure
by the assumption 1

|xy| ∈ L
1(|κ|) and xy 6= 0 µ-a.e. by definition. Define g : J×J →

J × J as follows.

g(x, y) =



j1(x) if x > 0, y < 0

j2(y) if x > 0, y > 0

j3(−x) if x < 0, y > 0

j4(−y) if x < 0, y < 0

arbitrary otherwise

The function g is |κ|-measure preserving. To see this fix any measurable set
B ⊆ (0, 1] × (0, 1]. Let A = j−1

1 (B). Then |κ|(B) = |κ|(A × (0, 1]) = ν1(A) by
definition of |κ|. But g−1(B) = g−1(A× (0, 1]) = A× [−1, 0), so

|κ|(g−1(B)) = |κ|(A× [−1, 0)) = ν4(j−1
4 (A× [−1, 0))) = ν4(f−1

4 (A))

= ν1(A) = |κ|(B).

Therefore g is measure preserving for subsets of (0, 1]× (0, 1]. The arguments for
the other quadrants are similar and since g maps each quadrant into a different
quadrant, g is measure preserving on its entire domain.

Define the signed measure κ by dκ = xy dµ = sign(x) sign(y) d|κ|. We have
seen that |κ|(A × (0, 1]) = |κ|(A × [−1, 0)), so κ(A × (0, 1]) = −κ(A × [−1, 0)).
Since κ(A × {0}) = 0, we have κ(A × J) = 0, or using the terminology of
Proposition 8.23, κx(A) = 0. A similar argument implies κx(A) = 0 if A ⊆ [−1, 0).
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Clearly κx(0) = 0 by definition of κx, so κx is the zero measure. In the same
way we can show that κy is the zero measure, so µ is a correlated equilibrium by
Proposition 8.23.

Now we will show via several steps that µ is extreme. Write µ = µ1 +µ2 where
the µi are nonzero correlated equilibria. Since these are all positive measures,
the µi are absolutely continuous with respect to µ. Define d|κi| = |xy| dµi and
dκi = xy dµi.

Next we show that g is |κi|-measure preserving. We will demonstrate this
fact for B ⊆ (0, 1] × (0, 1]. As above, we define A = j−1

1 (B). Then |κi|(B) =
|κi|(A× (0, 1]) since (A× (0, 1])4 B has |κ| measure zero and |κi| is absolutely
continuous with respect to |κ|. Furthermore, |κi|(g−1(B)) = |κi|(A × [−1, 0)).
But µi is a correlated equilibrium so κi(A × (0, 1]) = −κi(A × [−1, 0)). Hence
|κi|(g−1(B)) = |κi|(A × [−1, 0)) = |κi|(A × (0, 1]) = |κi|(B). Again, the proof is
the same for B contained in other quadrants, so g is |κi|-measure preserving.

For the second-to-last step we prove that g is ergodic with respect to |κ|.
Suppose B ⊆ J × J is such that |κ|(g−1(B)4B) = 0. Let Qi be the intersection
ofB with the ith quadrant. Then |κ|(g−1(Qi+1)4Qi) = 0, so |κ|(g−4(Q1)4Q1) = 0.
Let A = j−1

1 (Q1). Then |κ|(g−4(Q1)4Q1) = ν1((f4◦f3◦f2◦f1)−1(A)4A) = 0. By
assumption the map f4 ◦f3 ◦f2 ◦f1 is ergodic, so ν1(A) = 0 or ν1(A) = ν1((0, 1]) =
|κ|((0, 1]× (0, 1]). Therefore |κ|(Q1) = ν1(A) = 0 or |κ|(Q1) = |κ|((0, 1]× (0, 1]).
In either case since g is |κ|-measure preserving we get |κ|(Qi) = |κ|(Q1) for all i.
Therefore |κ|(B) = 0 or |κ|(B) = |κ|(J × J), so g is ergodic with respect to |κ|.

Normalizing |κ| and |κi| to be probability measures, we can apply Corollary 8.12

to obtain |κi| = |κi|(J×J)
|κ|(J×J)

|κ|. By definition the set on which |xy| is zero has µ
measure zero. Therefore

dµi =
1

|xy|
d|κi| =

|κi|(J × J)

|κ|(J × J)

1

|xy|
d|κ| = |κi|(J × J)

|κ|(J × J)
dµ,

so µi = |κi|(J×J)
|κ|(J×J)

µ and µ is extreme.

Above we have constructed µ and g so that g maps the quadrants counter-
clockwise – quadrant 1 to quadrant 2, etc. However, the same argument would go
through if g mapped the quadrants clockwise.

To view Proposition 8.24 as a special case of Proposition 8.26, let each νi be a
uniform probability measure over a finite subset of (0, 1]. The function g is defined
by g(xi, yi) = (xi+1, yi+1) and the fi are defined to be compatible with this. The
map f4 ◦ f3 ◦ f2 ◦ f1 is a permutation on the support of ν1, which is precisely the
positive values of xi. By construction this permutation consists of a single cycle,
hence it is ergodic.
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Figure 8.3. The support set of an extreme correlated equilibrium which is not finitely supported.
Extremality of this equilibrium depends sensitively on the choices of endpoints for the line
segments. In this case there are segments connecting: (0.2,−0.2) to (0.8,−0.8); (−0.2,−0.2) to

(−0.8,−0.8); (−0.2, 0.2) to (−0.8, 0.8);
(

0.2, 0.2 + 1√
5

)
to
(

0.8− 1√
5
, 0.8

)
; and

(
0.8− 1√

5
, 0.2

)
to
(

0.8, 0.2 + 1√
5

)
.

Example 8.27 (continues Example 8.20). We can combine Example 8.10 and
Proposition 8.26 to exhibit extreme points of the set of correlated equilibria for
this game which are not finitely supported. Let 0 < a < b < 1. Let νi be
Lebesgue measure on [a, b) for all i. Fix α such that α

b−a is irrational. Define
f1 : [a, b) → [a, b) by f(x) = (x − a + α mod (b − a)) + a. This is just an
affinely scaled version of Example 8.10 so f1 is νi-measure preserving and ergodic.
Define f1 on (0, 1] \ [a, b) arbitrarily, because that is a set of measure zero. Let
f2, f3, f4 : (0, 1] → (0, 1] be the identity. These data satisfy all the assumptions
of Proposition 8.26. In particular, since 0 < a < b < 1, xy is bounded away
from zero on the support of |κ|. Therefore 1

|xy| ∈ L
1(|κ|). Since νi is not finitely

supported, µ is an extreme correlated equilibrium which is not finitely supported.
The support of µ is shown in Figure 8.3 with parameters a = 0.2, b = 0.8, and
α = 1√

5
. ♦

Definition 8.28. Given a compact Hausdorff space K we say that a set of mea-
sures M ⊆ ∆∗(K) is describable by moments if there exists an integer d,
bounded Borel measurable maps g1, . . . , gd : K → R, and a set M ⊆ Rd such that
a measure µ is in M if and only if

(∫
g1 dµ, . . . ,

∫
gd dµ

)
∈M .

The results of [43] show that the maximin and minimax strategy sets of
a two-player zero-sum polynomial game can always be described by moments.
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Introducing a similar notion for n-tuples of measures, the set of Nash equilibria
can always be described by moments in any polynomial game [69]. However,
combining this example with the following proposition we see that the set of
correlated equilibria of a polynomial game cannot in general be described by
moments.

This is important because the finite-dimensional representation in terms of
moments is the primary tool for computing and characterizing Nash equilibria of
polynomial games. One is therefore naturally drawn to try to find such a repre-
sentation for the set of correlated equilibria. The example and this proposition
show that no such representation exists in general.

Proposition 8.29. LetM⊆ ∆∗(K) be a set of measures describable by moments.
Then all extreme points of M have finite support and this support is uniformly
bounded by d, where d is the integer associated with the description of M by
moments.

Proof. Let g1, . . . , gd : K → R be the maps describing M. Suppose there exists a
measure µ ∈M which is extreme and supported on more than d points, so we can
partition the domain of µ into d + 1 sets B1, . . . , Bd+1 of positive measure. For
c = (c1, . . . , cd+1) ∈ Rd+1

≥0 , define µc =
∑d+1

i=1 ciµ|Bi . The map c 7→ µc is injective.
Define

K =

{
c ∈ Rd+1

≥0

∣∣∣∣ ∫ gi dµc =

∫
gi dµ for i = 1, . . . , d

}
,

so (1, 1, . . . , 1) ∈ K. Linearity of integration implies that the nonempty set K
is the intersection of an affine space of dimension at least one with the positive
orthant. By Carathéodory’s theorem (or equivalently the statement that a feasible
linear program has a basic feasible solution), the extreme points of K each have at
most d nonzero entries [5]. Thus (1, 1, . . . , 1) is not an extreme point of K, so we
can write (1, 1, . . . , 1) = λc+ (1− λ)c′ for 0 < λ < 1 and (1, 1, . . . , 1) 6= c, c′ ∈ K.
Therefore µ = µ(1,1...,1) = λµc + (1− λ)µc′ is not extreme.



Chapter 9

Future Directions

The motivation for the work presented in this thesis has been to push the concept
of correlated equilibrium and its associated machinery as far as possible. We have
focused on correlated equilibria which possess extra structure, and when such
equilibria can be proven to exist or even be computed using techniques designed
for correlated equilibria. A simple source of such structures is results about games
of a particular type having Nash equilibria of a special form.

The main motivating example of this thesis has been symmetric games, which
have symmetric Nash equilibria. We have observed that these have extra structure,
in the sense that even if we ignore their product form, they lie in the convex
set ∆X

G (Γ) which is smaller than the convex set ∆G(Γ) in which the symmetric
correlated equilibria lie. Indeed ∆X

G (Γ) may even have additional symmetries which
∆G(Γ) does not have, and so be lower-dimensional than ∆G(Γ). An example not
based on symmetry is polynomial games, discussed in Chapter 8. Nash equilibria
in polynomial games are tuples of probability distributions over [−1, 1], but such
games admit Nash equilibria with finite support, i.e., in which only finitely many
strategies are played with positive probability. These are in particular correlated
equilibria with finite support.

The existence of Nash equilibria of these special forms is easy to prove us-
ing the same fixed point techniques traditionally used to prove the existence of
Nash equilibria. Forgetting about the product structure, we can instead try to
prove weaker statements about existence of the corresponding types of correlated
equilibria, using convex methods such as the Minimax Theorem (or equivalently
separating hyperplanes or linear programming duality).

This is more than just a mathematical exercise. When such proofs do work,
as in the case of exchangeable equilibria, they can lead to efficient algorithms for
computing the corresponding equilibria, and such algorithms are generally believed
not to exist for Nash equilibria. Furthermore, they make stronger predictions
about the play of the game than correlated equilibria under weaker assumptions
on the players’ behavior than is required for Nash equilibria.

173
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In other cases, such as higher order exchangeable equilibria of symmetric
games and finitely supported correlated equilibria of polynomial games, such
proofs remain elusive. Of course, it is difficult to draw positive conclusions from
such a negative statement – perhaps this reflects nothing more than a limitation
of the author’s creativity. However, there is a common thread between these two
difficult cases which suggests that something deeper may be involved.

� 9.1 Open questions

We close with a discussion of this and other future research directions suggested
by the results of this thesis.

� 9.1.1 Higher order exchangeable equilibria

As shown in Chapter 5, the existence of higher order exchangeable equilibria
implies Nash’s theorem in full generality. So a new, perhaps convexity-based,
proof of the existence of higher order exchangeable equilibria would lead to a new
proof of Nash’s theorem. This would likely also yield algorithms for computing
order k exchangeable equilibria efficiently for fixed k, and so extend both the
existence and computational results for exchangeable equilibria proven in this
thesis.

Since the resulting proof of Nash’s theorem would use a limiting argument in k,
this would not necessarily contradict the evidence that computing Nash equilibria
is hard [10, 11, 13, 15, 16, 30, 63]. On a related note, all questions about the rate of
convergence of [say, projections of] XEk

G(Γ) to ∆(NEG(Γ)) remain open, including
the question of whether this convergence always or at least generically happens
at finite k. It is plausible that genericity may be relevant because separation of
the Nash equilibria (and so finiteness thereof) may play a role.

� 9.1.2 Finitely-supported correlated equilibria in polynomial games

To our knowledge no direct proof of the existence of finitely supported correlated
equilibria in polynomial games is known. One can prove the existence of a Nash
equilibrium whose support cardinality is bounded a priori in terms of the degrees
of the utility functions, then derive bounds for correlated equilibria from this,
but we know of no proof for correlated equilibria which does not go through the
existence of Nash equilibria. In Chapter 8 we showed that attempts to prove such
results by showing that any extreme correlated equilibrium has bounded or even
finite support must fail.

Again, convexity-based proofs of these true statements could yield provably
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efficient algorithms for computing or approximating such equilibria. Several heuris-
tics are known which seem to converge quickly in practice [70], but none is proven
to run in polynomial time. This is a somewhat surprising state of affairs since
in most ways polynomial games seem to behave like finite games [68], for which
correlated equilibria can be computed easily.

� 9.1.3 The correlated equilibrium conundrum

The proof that every polynomial game has a finitely supported Nash equilibrium
proceeds by identifying two mixed strategies in ∆([−1, 1]) if they are payoff
equivalent, i.e., yield the same payoff regardless of the actions of the opponents.
One then observes that the space of equivalence classes is finite-dimensional and
each contains a finitely supported distribution.

Attempting to replicate this result for correlated equilibria fails; as we have
seen the set of correlated equilibria of a polynomial game is not so easily reduced
to a finite-dimensional object. The reason is that for the purposes of correlated
equilibria, the distinction between two payoff equivalent strategies cannot be
ignored.

Example 9.1. Let Γ be the following symmetric bimatrix game:

A = BT =

1 1 1
1 1 1
0 0 2

 .
Let player i’s strategy set be Ci = {ai, bi, ci}. The first two columns of A are
equal, as are the first two rows, so a1 is payoff equivalent to b1. Symmetrically, a2

is payoff equivalent to b2. Define two distributions over outcomes of Γ:

W 1 =
1

4

1 0 1
0 0 0
1 0 1

 and W 2 =
1

4

1 0 0
0 0 1
0 1 1

 .
One can verify that W 1 is a correlated equilibrium, and W 2 is obtained from
W 1 by moving some mass from (a1, c2) and (c1, a2) to (b1, c2) and (c1, b2), which
are profiles of payoff equivalent strategies. Nonetheless, W 2 is not a correlated
equilibrium.

Why does this happen? The reason is that when we consider correlated
strategies, we are interested not only in what utility our recommendations give
us, but also in what information they give. While we may not care from a payoff
perspective whether strategy ai or bi has been suggested, the two possibilities
may allow us to make completely different inferences about the behavior of our
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opponent. It is this information which may be payoff-relevant. If player 1 receives
the recommendation b1 under W 2 then he knows with probability one that player
2 has received the recommendation c2, hence it is in the interest of player 1 to
deviate to c1.

This corresponds to the fact that in Hart and Schmeidler’s associated zero-sum
game Γ0 we have

u0
M((a1, a2), (a1, c1)) = 1 6= 0 = u0

M((b1, b2), (a1, c1)),

so (a1, a2) and (b1, b2) are not payoff equivalent in Γ0. ♦
This same issue blocks a natural attempt to prove the existence of higher order

exchangeable equilibria. In ΞkΓ the additive separability of the utilities means
that any mixed strategy in ∆(Ck

i ) for player i is payoff equivalent to the product of
its marginals. Applying this transformation to the strategies of each player maps
∆Π
G×Sk(Ξ

kΓ) to ∆Π
G×Sk(Π

kΓ). If this transformation changed strategies for the
maximizer in (ΞkΓ)0 to payoff equivalent strategies, then we could apply it within
the proof of Theorem 3.16 to get correlated equilibria of ΞkΓ in ∆X

G×Sk(Π
kΓ), i.e.,

order k exchangeable equilibria of Γ. But as we have seen moving mass between
payoff equivalent strategies in Γ can “break” correlated equilibria, and this proof
attempt fails.

Perhaps there is some subclass of correlated equilibria bigger than the Nash
equilibria but without this fragility – maybe correlated equilibria arising from a
particular type of correlation scheme. An appropriate definition and constructive
proof of existence of such equilibria could resolve the questions raised in the
previous subsections. On the other hand the nonexistence of such a class would
point to a strange fundamental lack of robustness in game-theoretic correlation.

� 9.1.4 Rational exchangeable equilibria

Another example of a statement which follows easily from Nash’s Theorem for
which we know of no other proof is the existence of rational exchangeable equilibria
in bimatrix games. The symmetric case is Theorem 3.17 and a similar proof works
in the asymmetric case. Therefore there is no algebraic obstruction to computing
such equilibria exactly, but we do not know whether this can be done in polynomial
time.

The Approximate Ellipsoid Against Hope algorithm can compute completely
positive matrices which are almost correlated equilibria, and by rounding could
compute correlated equilibria which are almost completely positive. It is not clear
how to modify it to do both simultaneously.

Related questions for multiplayer games such as the complexity of determining
whether a game admits a rational exchangeable equilibrium or computing one if
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it does are similarly open. Is there an obstruction to the existence of a rational
exchangeable equilibrium which can be seen from the utilities directly, without
resorting to computing all the exchangeable equilibria explicitly?

� 9.1.5 Symmetric identical interest games

An identical interest game is one in which all players receive the same utility at
every outcome. Finding Nash equilibria of such games is trivial; any maximum of
the utility function will do. But when the game is also symmetric, it is not clear
that this will help find symmetric Nash equilibria. Many of the examples in this
thesis are symmetric identical interest games, and illustrate that the structure of
the symmetric equilibria is less trivial than that of the asymmetric equilibria. Can
symmetric Nash equilibria of symmetric identical interest games be computed more
efficiently than Nash equilibria in general, or is this problem also PPAD-complete?

On a related note, a computer search of 10, 000 randomly generated 4 × 4
symmetric identical interest games did not find any in which the (generically
unique) exchangeable equilibrium of maximum expected utility was not in fact a
symmetric Nash equilibrium. Is the natural conjecture true, and does it general-
ize? For larger games, computational experiments would be difficult due to the
difficulty of optimizing over exchangeable equilibria. Can exchangeable equilibria
nonetheless help compute symmetric Nash equilibria of identical interest games?

� 9.1.6 Further computational questions

As shown in Section 7.1.7 it is NP-hard to optimize an arbitrary linear functional
over exchangeable equilibria. What about optimizing utility (equivalent to social
welfare by symmetry)?

Generally speaking ellipsoid-based algorithms are good for proving that a prob-
lem is solvable in polynomial time but are not effective in practice. Is there a more
practical polynomial time algorithm for approximating exchangeable equilibria
than the Approximate Ellipsoid Against Hope algorithm?

Is there some sort of “rounding” technique to go from exchangeable equilibria
to ε-Nash equilibria? Complexity results such as [12] suggest that the resulting
ε would be strictly positive, but even for fixed small positive ε the complexity of
computing such equilibria is open.

Are there generally applicable sufficient conditions for the uniqueness of ex-
changeable equilibrium which can be checked directly from the utilities? These
would immediately imply uniqueness and polynomial-time computability of the
symmetric Nash equilibrium.
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� 9.1.7 Applications of exchangeable equilibria

Which symmetric games arise in practice and what does the notion of exchangeable
equilibria say about these? It would be particularly interesting to find natural
classes of games for which we know XEG(Γ) ( CEG(Γ) (either by Theorem 3.11 or
some other means) or XEG(Γ) = conv(NEG(Γ)). One possible approach would be
to extend the notion of exchangeable equilibria to games of incomplete information.
Many games such as auctions can be viewed as symmetric if analyzed from the
perspective of players who have not yet learned their values / types.

However, the definition of exchangeable equilibrium rests on the definition
of correlated equilibrium, and it is not clear what this should be in games of
incomplete information [26, 27]. Or rather, there are a variety of possibilities
depending on which information structures one wishes to allow. One must address
questions like whether the correlating device should be correlated with the players’
types, etc. Different kinds of correlated equilibrium will lead to different notions
of exchangeable equilibrium and it remains to be seen what predictions these will
make and to what extent they share the properties of the complete information
case covered in this thesis.

� 9.1.8 Structuralist game theory

The motivation for much of the work in this thesis has been to put together a
picture of game theory analogous to the picture mathematicians have of their
more traditional subjects, such as algebraic topology. That is to say, the goal is
to understand games through structure-preserving maps and their effects on equi-
libria. Though much of the work in game theory is mathematically sophisticated,
this viewpoint is not currently1 widespread, or at least not overtly discussed.

There appears to be an immediate roadblock for this approach: a category of
games would need a notion of a map between games, but it is not obvious what
that should mean. There is a reasonable definition of isomorphism, but these
alone do not give an interesting category. Attempts have been made to add other
morphisms [75], but so far these seem forced and have limited applicability.

Functorial transformations Nonetheless, the approach is not dead in the water.
There are various transformations one can apply which “should” be analogous to
functors, if only games formed a category. The behavior of these can tell us a lot.

For example, given a game Γ one can form its mixed extension Γ∆, whose
pure strategies are the mixed strategies of Γ and whose utilities are extended

1This perspective is implicit in the early work on game theory by pure mathematicians, such
as Dresher, Gale, Shapley, Gross, Karlin, etc., before game theory became a major field in its
own right. This view seems to have faded as game theory was subsumed by economics.
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by linearity. If Γ is a finite game then Γ∆ has simplices for strategy spaces and
multilinear utility functions. In Chapter 8 we analyzed the mixed extension of
matching pennies.

The behavior of Nash equilibria under the transformation (−)∆ is straightfor-
ward. By definition the pure Nash equilibria of Γ∆ are the mixed Nash equilibria
of Γ. The mixed Nash equilibria of Γ∆ are related to those of Γ in a simple
way. The game Γ∆ has a unique Nash equilibrium if and only if the unique Nash
equilibrium of Γ is in pure strategies.

The behavior of correlated equilibria under (−)∆ is subtler. A canonical map
sends correlated equilibria of Γ∆ to correlated equilibria of Γ and this is onto;
every correlated equilibrium of Γ lifts to a correlated equilibrium of Γ∆ in a
simple way. But this map also sends many distributions which are not correlated
equilibria of Γ∆ to correlated equilibria of Γ. Even in simple cases, such as when
Γ is “Matching Pennies,” the set of correlated equilibria of Γ∆ can be extremely
complex as discussed in Chapter 8 above.

Another “functor” takes a standard symmetric game Γ and produces the sym-
metric N -player game Γ(N) introduced in Section 4.3. The behavior of symmetric
Nash equilibria is easy to understand: x⊗n is a symmetric Nash equilibrium of Γ
if and only if x⊗N is one of the N -player extension Γ(N).

Again a natural map sends symmetric correlated equilibria of Γ(N) to symmetric
correlated equilibria of Γ. This time, however, the map need not be onto; some
symmetric correlated equilibria of Γ may not lift to Γ(N). Those which do lift for
all N are exactly the exchangeable equilibria.

A variety of transformations have been introduced in the literature, such as
symmetrizations which form symmetric games out of arbitrary games and products
which combine multiple games into one. Typically the effects of such operations
on the Nash equilibria are well-understood by design, but the effects on other
solution concepts, in particular correlated equilibria, less so. It would be fruitful
to study such examples in detail.

At a deeper level, is it possible to understand the entire collection of such
“functorial” transformations? Doing so would require fleshing out the intuitive
idea of naturality possessed by the examples above. One approach would be to
solve the problem of turning the collection of games into an honest category, rather
than merely an analogy.

Formal solution concepts Another approach would consider transformations which
respect strategic structure in the sense that they take games for which all solution
concepts agree to games for which all solution concepts agree. Formalizing this
would require a precise definition of solution concept. Beyond being a map from
games to objects of some type (a formal solution concept, perhaps), solution
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Γ

BR(Γ) CE(Γ) NE(Γ)

T (Γ)

BR(T (Γ)) CE(T (Γ)) NE(T (Γ))

T fT ?? ?

Figure 9.1. Schematic commutative diagram showing the effect of a transformation T , such
as the mixed extension (−)∆ or the N -player extension (−)(N) on solutions of a game Γ. The
effect on the best response correspondence (BR) is predictable, and the effect on Nash equilibria
(NE) is typically easy to understand. The effect on correlated equilibria (CE) tends to be the
most interesting part. Note how Nash equilibria are a function of (subordinate to) correlated
equilibria, which are in turn a function of the best response correspondence.

concepts are usually an “I know it when I see it” kind of thing.
To see that such a definition may be possible, define a formal solution concept

Q to be subordinate to P if Q factors through P . For example, Nash equilibria
are subordinate to correlated equilibria: the Nash equilibria are the independent
correlated equilibria. If a transformation T and formal solution concept P are
such that P ◦T = fT ◦P for some fT , we might say T determines P , because fT
shows how P varies when T is applied. When P (Γ) = P (Γ′) we have Q(T (Γ)) =
Q(T (Γ′)).

If all “reasonable” solution concepts were subordinate to a fixed “master”
solution concept P , we could take P -determining as the definition for “respecting
strategic structure.” One P (not usually considered a solution concept in its own
right) to which the most common solution concepts are all subordinate is the best
response correspondence BR, which associates with a game the set of strategies
for each player which are best responses to each probability distribution over
opponents’ strategies.

For example, Nash equilibria are the fixed points of the best response corre-
spondence, hence subordinate to BR. Iterated elimination of strictly dominated
strategies is subordinate to BR because it is equivalent to correlated rationalizabil-
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ity, which is more obviously subordinate to BR. Both (−)∆ and (−)(N) determine
BR. For a schematic picture of these ideas see Figure 9.1.

For a non-example, the transformation which multiplies all utilities by −1 does
not determine BR. We do not view a player acting to minimize his utility as
rational when his preference is to maximize. In other words the backwards variants
of standard solution concepts in which we replace maximization by minimization
are not subordinate to BR.

Desired outcomes Far from just being “abstract nonsense,” such work could have
important consequences for our understanding of computational game theory. In
particular, the PPAD-completeness proofs [10, 11, 15, 16] which give the state-of-
the-art understanding of the complexity of computing Nash equilibria are based
on reductions which do not seem to be natural in the senses discussed above. Is
this a necessary feature of such reductions? Or is there a game-theoretic way
to understand the reduction from n player games to 4 player games (say)? An
answer to this question, particularly a negative one, requires a concrete notion of
naturality for transformations between games, and the strength of such an answer
depends on the strength of this notion of naturality.

Another problem where these ideas could have an impact is finding classes of
games for which equilibria can be computed efficiently. For example Kannan and
Theobald’s notion of the rank of a bimatrix game [42] defines classes of games
for which we can compute equilibria, but these classes are not natural in even
the most basic sense: they are not closed under positive affine transformations.
Closing under such operations gives more natural classes, but it becomes hard
to test membership in these classes. A better understanding of naturality may
show how to expand these classes in a way which is natural, makes is easy to
test membership, and does not increase the complexity of computing equilibria.
Alternatively it may turn out that in this setting naturality and computation are
fundamentally at odds.





References

[1] R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal
of Mathematical Economics, 1(1):67 – 96, 1974.

[2] R. J. Aumann. Correlated equilibrium as an expression of Bayesian rationality.
Econometrica, 55(1):1 – 18, January 1987.

[3] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer, 2nd edition, 2006.

[4] A. Berman and N. Shaked-Monderer. Completely positive matrices. World
Scientific Publishing Co. Pte. Ltd., River Edge, NJ, 2003.
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Notation

end of a proof
♦ end of an example
:= is defined to be equal to
N natural numbers {1, 2, . . .}
Z integers {0,±1,±2, . . .}
Q rational numbers
R real numbers
R≥0 nonnegative real numbers
C complex numbers
‖−‖p `p norm

• Euclidean inner product
X closure of X
conv(X) convex hull of X
conv(X) closure of the convex hull of X
cone(X) conic hull of X
∆(T ) set of regular Borel probability measures on T
δt Dirac measure / point mass at t
Prob(Y | X) conditional probability distribution of Y given X
Γ a game
P set of players
n number of players
Ci pure strategy set of player i
mi number of strategies for player i
m maximum number of strategies for any player
C set of pure strategy profiles / outcomes
si strategy of player i
s−i profile of strategies for all players except i
ui utility / payoff function for player i
∆(Γ) distributions over outcomes
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∆Π(Γ) product distributions over outcomes
NE(Γ) Nash equilibria of Γ
CE(Γ) correlated equilibria of Γ
Mm(Γ) maximin strategies of the zero-sum game Γ
mM(Γ) minimax strategies of the zero-sum game Γ
Γ0 Hart and Schmeidler’s zero-sum game associated to Γ
γ(yi) Hart and Schmeidler’s auxiliary game associated to yi
G a group
〈g1, . . . , gk〉 subgroup generated by g1, . . . , gk
Sn group of permutations of n letters
Zn group of integers mod n
· a group action
(−)G G-invariant elements of G action on (−)
µn→m marginalization ∆Sn(T n)→ ∆Sm(Tm)
⊗ tensor product
(−)⊗n nth tensor power
Symn(−) symmetric tensors in (−)⊗n

CPn
m completely positive tensors in (Rm)⊗n

∃ there exists
V ∗ dual of vector space V
K∗ dual of cone K
R[x1, . . . , xm]n homogeneous polynomials of degree n in x1, . . . , xm
Ψm,2n nonnegative polynomials in R[x1, . . . , xm]2n

Σm,2n sums of squares in R[x1, . . . , xm]2n

DNNn
m double nonnegative tensors in (Rm)⊗n

∆X
G (Γ) generalized exchangeable distributions

XEG(Γ) (symmetric) exchangeable equilibria of Γ
e all ones column vector
I identity matrix
XEG(Γ, N) N -exchangeable equilibria of Γ
Γ(N) N -player extension of Γ
XEk

G(Γ, N) order k N -exchangeable equilibria of Γ
ΠkΓ kth power of Γ
ΞkΓ contracted kth power of Γ
XEk

G(Γ) order k exchangeable equilibria of Γ
ΓSym symmetrization of Γ
r number of strategies of the row player in a bimatrix game
c number of strategies of the column player in a bimatrix game
XE−(Γ) asymmetric exchangeable equilibria of bimatrix game Γ
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N number of strategy profiles
M number of correlated equilibrium constraints
U matrix of correlated equilibrium constraints
‖U‖∞ largest value in correlated equilibrium constraints
ε error tolerance
δ quantization for rounding
R radius of bounding ball for ellipsoid algorithm
v stopping volume for ellipsoid algorithm
∆∗(T ) set of finite Borel measures on T
J interval [−1, 1]
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