Calibration of Air-Coupled Transducers for Absolute Nonlinear Ultrasonic Measurements

Nicholas Selby1, Undergraduate Research Assistant
David Torello1, Jin-Yeon Kim2, Laurence J. Jacobs1,2

1G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
2School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332

Motivation

Absolute Nonlinear Ultrasounds (NLU)

• Absolute NLU has the potential to detect material degradation and provide quantitative information about substructural changes in a material
• Precipitates and dislocations form in material
• Generation of a second-harmonic component in a monochromatic signal

This leads to a change in the material nonlinearity

Air-Coupled Transduction

• Air-coupled transducers are preferable for their low cost and greater robustness over other receiver technologies due to lack of dependence on contact and surface conditions
• Air-coupled transducers must be calibrated in order to provide absolute measurement data
• Standard pulse-echo (self-reciprocity) calibration doesn’t work because of low power output from the transducer

Objectives

• Calibrate an air-coupled transducer by experimentally identifying its force/voltage transfer function with a model-based, pitch-catch experimental configuration
• Confirm calibration with laser interferometer measurements of excited material surface

Theoretical Background and Methods

Second Harmonic Generation

• Material nonlinearity is measured when material defects and microstructural effects cause a monochromatic wave to distort into a fundamental (ω) and second harmonic (2ω) component
• For longitudinal waves, material nonlinearity is denoted by β and adheres to the relationship:

\[
\beta = \frac{8 A_2}{A_1^2 \omega^2 x^2}
\]

where \(A_1 \) and \(A_2 \) denote absolute amplitudes of fundamental and first harmonic wave frequency components

Multiple Gaussian Beam Modelling

• Computationally efficient method to model longitudinal wave propagation
• Source velocity expressed as sum of Gaussians, which propagate as Gaussians:

\[
V_1(t) = \sum_m A_m \exp \left(-\frac{V_m^2}{2} \right)
\]

• Source velocity is translated to pressure via the following relationships:

\[
\beta(x) = \rho V_1 \omega^2 \exp (\omega x) \left[N_2(\beta(x), x) - N_2(\beta(0), 0) \right] \left[P_2(\beta(x), x) - P_2(\beta(0), 0) \right]
\]

\[
\frac{\partial P_{2m}(\beta, x)}{\partial x} = \int_0^\infty \int_0^\infty \frac{P_{2m}(\beta', x')}{2\pi} \exp \left(-\frac{(x-x')^2}{2\sigma^2} \right) \exp \left(-\frac{(\beta-\beta')^2}{2\sigma^2} \right) \, dx' \, d\beta'
\]

• Pressure is then integrated over transducer surface to calculate received force for calibration

Experimental Setup

(1) RITEC 2500GA: Sinusoidal signal generation (1.8 MHz, 12 cycles)
(2) Lithium niobate transducer: Excitation of longitudinal wave in material, oil-coupled
(3) Material Sample: Aluminum 2024 or Fused Silica
(4) Ultrasonic NCT4-D6 air-coupled transducer: Detection of plane wave
(5) Oscilloscope: Tektronix TDS5034B Digital Oscilloscope

Results and Discussion

Measurement Results

Aluminum Laser Scan Air Transducer Surface

Linear

Nonlinear

Data Fitting and Extraction of \(\beta \)

• Window time-domain waveform to extract steady state signal
• Waveform undergoes FFT to extract amplitudes \(A_1 \) and \(A_2 \), fundamental and first harmonic frequencies
• Plot transducer transfer function
• Employ best fit optimization to calibrate transducer parameters

Conclusions

• Air-coupled transducers can be calibrated inexpensively using a contact transducer and a material with known nonlinear properties
• A computational multiple Gaussian beam model is provided and confirmed by laser interferometer results from material surface vibrations
• Measurement of \(\beta \) matches expected value from literature

References