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1.1 Stress, strain, and displacement ! wave equation
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Figure 1.1: Relationship of each parame-
ter.

From the relationship between stress, strain, and displacement, we
can derive a 3D elastic wave equation. Figure 1.1 shows relationships
between each pair of parameters. In this section, I will show each
term in Figure 1.1.

1.1.1 Displacement

Displacement, characterizes vibrations, is distance of a particle from
its position of equilibrium:

u(x, t) =

0

B@
u1(x, t)
u2(x, t)
u3(x, t)

1

CA . (1.1)

1.1.2 Stress
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Figure 1.2: Stresses.

Stress characterizes forces applied to a material:

sij = s =

0

B@
s11 s12 s13
s21 s22 s23

s31 s32 s33

1

CA , (1.2)

which is a tensor, and the first subscript indicates the surface applied
and the second the direction (Figure 1.2).

1.1.3 Strain

Strain characterizes deformations under stress. If stresses are applied
to a material that is not perfectly rigid, points within it move with
respect to each other, and deformation results.
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Figure 1.3: Displacement includes
parallel translation, rotation, and
deformation (strain).

Let us consider an elastic material which moves u(x) (Figure 1.3).
When the original location of the material is x, the displacement of a
nearby point originally at x + dx can be written as

ui(x + dx) ⇡ ui(x) +
∂ui(x)

∂xj
dxj = ui(x)| {z }

parallel translation

+ dui|{z}
rotation+de f ormation

,

(1.3)
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Therefore, in the first-order assumption,

dui =
∂ui(x)

∂xj
dxj

=
1
2

 
∂ui
∂xj

+
∂uj

∂xi

!
dxj +

1
2

 
∂ui
∂xj

�
∂uj

∂xi

!
dxj

=
1
2
(ui,j + uj,i)dxj +

1
2
(r⇥ u ⇥ dx)i

= (eij + wij)dxj, (1.4)

where wij is a rotational translation term (diagonal term is zero,
wij = �wji). Then eij = e is the strain tensor, which contains the
spatial derivatives of the displacement field. With the definition of eij,
the tensor is symmetric and has 6 independent components.

eij =

0

B@
u1,1 1/2(u1,2 + u2,1) 1/2(u1,3 + u3,1)

1/2(u2,1 + u1,2) u2,2 1/2(u2,3 + u3,2)

1/2(u3,1 + u1,3) 1/2(u3,2 + u2,3) u3,3

1

CA (1.5)

If the diagonal terms of eij are zero, we do not have volume
changes. The volume increase, dilatation, is given by the sum of
the extensions in the xi directions:

eii =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= tr(e) = r · u = q (1.6)

This dilatation gives the change in volume per unit volume associ-
ated with the deformation. ∂ui/∂xi mentions displacement of the xi
direction changes along the direction of xi.
✓
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∂u2
∂x2
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∂u3
∂x3

◆
dx1dx2dx3 = (1 + q)V = V + DV,

(1.7)

where q = DV/V.

1.1.4 Geometric law

Relationship between displacement and strain, which represents
geometric properties (deformation).

As we have already found in equation 1.4,

e =
1
2

⇣
ru + (ru)T

⌘
(1.8)

1.1.5 Equation of motion

Relationship between displacement and stress, which represents
dynamic properties (motion).
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We write Newton’s second law in terms of body forces and
stresses. When I consider the stresses in the x2 direction (the red
arrows in Figure 1.2),

{s12(x + dx1n̂1)� s12(x)} dx2dx3

+ {s22(x + dx2n̂2)� s22(x)} dx1dx3

+ {s32(x + dx3n̂3)� s32(x)} dx1dx2

+ f2dV = r
∂2u2
∂t2 dV (1.9)

where dV = dx1dx2dx3. With a Taylor expansion,
✓

∂s12
∂x1

+
∂s22
∂x2

+
∂s32
∂x3

◆
dV + f2dV = r

∂2u2
∂t2 dV (1.10)

We also have similar equations for x1 and x2 directions, and by using
the summation convention,

sij,j(x, t)
| {z }

sur f ace f orces

+ fi(x, t)
| {z }

body f orces

= r
∂2ui(x, t)

∂t2

r · s + f = rü. (1.11)

This is the equation of motion, which is satisfied everywhere in a
continuous medium. When the right-hand side in equation 1.11 is
zero, we have the equation of equilibrium,

sij,j(x, t) = � fi(x, t), (1.12)

and if no body forces are applied, we have the homogeneous equa-
tion of motion

sij,j(x, t) = r
∂2ui(x, t)

∂t2 . (1.13)

1.1.6 Constitutive equations

Relationship between stress and strain, which represents material
properties (strength, stiffness). Here, we consider the material has a
linear relationship between stress and strain (linear elastic). Linear
elasticity is valid for the short time scale involved in the propagation
of seismic waves.

Based on Hooke’s law, the relationship between stress and strain is

sij = cijklekl

s = c e, (1.14)

where constant cijkl is the elastic moduli, which describes the proper-
ties of the material.
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Not all components of cijkl are independent. Because stress and
strain tensors are symmetric and thermodynamic consideration;

cijkl = cjikl = cijlk = cklij. (1.15)

Therefore, we have 21 independent components in cijkl . With Voigt Strain energy is defined by

W =
1
2

Z
sijeijdV

=
1
2

Z
cijkl eijekldV,

Therefore, cijkl = cklij.

recipe, we change the subscripts with

11 ! 1, 22 ! 2, 33 ! 3, 23 ! 4, 13 ! 5, 12 ! 6,

and we can write the elastic moduli as cij (i, j = 1, 2, · · · , 6). With
these 21 components, we can describe general anisotropic media.

1.1.7 Wave equation (general anisotropic media)
geometric law e = 1

2
�
ru + (ru)T� (eq

1.8)

• small perturbation

equation of motion r · s = rü (eq 1.11)

• small perturbation

• continuous material

constitutive law s = c e (eq 1.14)

• small perturbation

• continuous material

• elastic material

Wave equation describes vibrations (u) at each space (x) and time (t)
under material properties (c, r);

f (u, x, t, r, c) = F. (1.16)

In homogeneous case (F = 0),

f (u, x, t, r, c) = 0. (1.17)

We eliminate s and e by plugging in equations 1.8, 1.11, and 1.14.

r ·
⇢

c

✓
1
2

h
ru + (ru)T

i◆�
= rü (1.18)

This is a general wave equation for anisotropic elastic media.

1.1.8 Elastic moduli in isotropic media

On a large scale (compared with wave length), the earth has approxi-
mately the same physical properties regardless of orientation, which
is called isotropic. In the isotropic case, cijkl has only two indepen-
dent components. One pair of the components are called the Lamé
constants l and µ, which are defined as

cijkl = ldijdkl + µ(dikdjl + dildjk). (1.19)

µ is called the shear modulus, but l does not have clear physical
explanation. By using the Voigt recipe, equation 1.18 can be written
with a matrix form;

cij =

0

BBBBBBBB@

l + 2µ l l 0 0 0
l l + 2µ l 0 0 0
l l l + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

1

CCCCCCCCA

(1.20)
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In the isotropic media, equation 1.14 becomes

sij = lekkdij + 2µeij = lqdij + 2µeij

s = ltr(e)I + 2µe (1.21)

where q is the dilatation.
There are other elastic moduli, which are related to the Lamé

constants, such as bulk modulus (K), Poisson’s ratio (n), and Young’s
modulus (E) (Table 1.1.8).

(l, µ) (l, n) (K, l) (E, µ) (K, µ) (E, n) (µ, n) (K, n) (K, E)

K l + 2
3 µ l(1+n)

3n
Eµ

3(3µ�E)
E

3(1�2n)
2µ(1+n)
3(1�2n)

n l
2(l+µ)

l
3K�l

E
2µ

3K�2µ
2(3K+µ)

3K�E
6K

E µ(3l+2µ)
l+µ

l(1+n)(1�2n)
n

9K(K�l)
3K�l

9Kµ
3K+2µ 2µ(1 + n) 3K(1 � 2n)

l

µ

Table 1.1: Elastic moduli

1.1.9 Wave equation in isotropic media
geometric law e = 1

2
�
ru + (ru)T� (eq

1.8)

equation of motion r · s = rü (eq 1.11)

constitutive law s = ltr(e)I + 2µe (eq
1.21)

Using equation 1.21 instead of equation 1.14, we can derive the wave
equation in an isotropic medium.

From equations 1.8, 1.11, and 1.21, the isotropic wave equation is

rü = (l + 2µ)r(r · u)� µr⇥r⇥ u, (1.22)

with an assumption of slowly-varying material (rl ⇡ 0 and rµ ⇡
0).

r · u volumetric deformation

r⇥ u shearing deformation
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2.3.11 Principal stresses

For any stress tensor, we can always find a direction of n̂ that defines
the plane of no shear stresses. This is important for earthquake
source mechanisms.

To find the direction n̂ is an eigenvalue problem:

sn̂ = ln̂

(s � lI)n̂ = 0, (2.57)

where l is eigenvalues, not a Lamé constant. To find l, we need to
solve Relationship between the original

stress tensor s and principle stresses.
0

@
s1 0 0
0 s2 0
0 0 s3

1

A =

0

@
l1 0 0
0 l2 0
0 0 l3

1

A = R

TsR

where R is the rotational matrix based
on the eigenvectors:

R =

0

B@
n(1)

1 n(2)
1 n(3)

1
n(1)

2 n(2)
2 n(3)

2
n(1)

3 n(2)
3 n(3)

3

1

CA

det[s � lI] = 0, (2.58)

and obtain three eigenvalues l1, l2, and l3 (|l1| � |l2| � |l3|),
which are the principal stresses (s1, s2, and s3, respectively). Corre-
sponding eigenvectors for each eigenvalue define the principal stress axes
(n̂(1), n̂

(2), and n̂

(3)).

2.3.12 Traction on a fault

The traction at an arbitrary plane of orientation (s) is obtained by
multiplying the stress tensor by s:

T(n̂) = sn̂. (2.59)

Using this relationship, we can compute a traction on a fault.
In the 2D case, the stress tensor is

s =

 
s11 s12
s21 s22

!
. (2.60)

When the fault is oriented q (clockwise) from the x1 axis, the normal
vector is

n̂ =

 
sin q

cos q

!
. (2.61)

Therefore, from equation 2.59, the traction on the fault is

T(n̂) =

 
s11 s12
s21 s22

! 
sin q

cos q

!
, (2.62)

which indicates the direction and strength of the traction on the
fault. We can decompose the traction into normal (TN) and shear TS
tractions on the fault:

f̂ = Rn̂

where

R =

✓
cos(p/2) sin(p/2)
� sin(p/2) cos(p/2)

◆
=

✓
0 1
�1 0

◆
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TN = T(n̂) · n̂ =

 
s11 s12
s21 s22

! 
sin q

cos q

!
·
 

sin q

cos q

!

TS = T(n̂) · f̂ =

 
s11 s12
s21 s22

! 
sin q

cos q

!
·
 

cos q

� sin q

!
, (2.63)

where f̂ is the unit vector parallel to the fault direction.

2.3.13 Deviatoric stresses

Because in the deep Earth, compressive stresses are dominant, only
considering the deviatoric stresses is useful for many applications.
For example, the deviatoric stresses result from tectonic forces and
cause earthquake faulting.

When the mean normal stress is given by M = (s11 + s22 + s33)/3,
the deviatoric stress is

sD = s � MI (2.64)
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2.4 Seismic waves

With components, the 3D isotropic wave equation can be written as

r

0

BB@

∂2u1
∂t2

∂2u2
∂t2

∂2u3
∂t2

1

CCA = (l + 2µ)

0
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∂
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∂x2

+ ∂u3
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⌘

∂
∂x2

⇣
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

⌘

∂
∂x3

⇣
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

⌘

1

CCCA
� µ

0

BBB@

∂
∂x2

⇣
∂u2
∂x1

� ∂u1
∂x2

⌘
� ∂

∂x3

⇣
∂u1
∂x3

� ∂u3
∂x1

⌘

∂
∂x3

⇣
∂u3
∂x2

� ∂u2
∂x3

⌘
� ∂

∂x1

⇣
∂u2
∂x1

� ∂u1
∂x2

⌘

∂
∂x1

⇣
∂u1
∂x3

� ∂u3
∂x1

⌘
� ∂

∂x2

⇣
∂u3
∂x2

� ∂u2
∂x3

⌘

1

CCCA

(2.67)

2.4.1 P- and S-wave velocities

We can separate equation 2.65 into solutions for P and S waves by
calculating the divergence and curl, respectively. Equation 2.65:

rü = (l + 2µ)r(r · u)� µr⇥r⇥ u,When we compute the divergence of equation 2.65, we obtain

r
∂2(r · u)

∂t2 = (l + 2µ)r2(r · u)

r2(r · u)� 1
a2

∂2(r · u)
∂t2 = 0, (2.68)

where a is the P-wave velocity:

a =

s
l + 2µ

r
. (2.69)

r⇥ (rf) = 0

r · (r⇥ g) = 0

r⇥r⇥ u = rr · u �r2
u

By computing the curl of equation 2.65, we obtain

r
∂2(r⇥ u)

∂t2 = �µr⇥r⇥r⇥ u

r
∂2(r⇥ u)

∂t2 = µr2(r⇥ u)

r2(r⇥ u)� 1
b2

∂2(r⇥ u)
∂t2 = 0, (2.70)

where b is the S-wave velocity:

b =
r

µ

r
. (2.71)

Using a and b, we can rewrite equation 2.65 as

ü = a2r(r · u)| {z }
P wave

� b2r⇥ (r⇥ u)
| {z }

S wave

(2.72)

2.4.2 Potentials

A vector field can be represented as a sum of curl-free and divergence-
free forms 1 (so called Helmholtz decomposition), 1 Keiiti Aki and Paul G. Richards.

Quantitative Seismology. Univ. Science
Books, CA, USA, 2 edition, 2002
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u = rf +r⇥ Y

r · F = 0, (2.73)

where f is P-wave scalar potential and Y is S-wave vector potential.
Therefore, we have

r · u = r2f (2.74)

r⇥ u = r⇥r⇥ Y = �r2Y (2.75)

Inserting equations 2.74 and 2.75 into equations 2.68 and 2.70, we
obtain two equations for these potentials:

r2f � 1
a2

∂2f

∂t2 = 0 (2.76)

r2Y � 1
b2

∂2Y

∂t2 = 0, (2.77)

and P- and S-wave displacements are given by gradient of f and curl Equation 2.76 is exactly the same as the
3D scaler wave equation we expected
from the 1D one (equation 2.23).

of Y in equation 2.76.

2.4.3 Plane waves

Because of the shape of wave equations (equations 2.70, 2.76, and
2.77), elastic wave equations also have plane waves as solutions.
Plane-wave solution is a solution to the wave equation in which the
displacement varies only in the direction of wave propagation and
constant in the directions orthogonal to the wave propagation. The
solution can be written as

u(x, t) = f(t � ŝ · x/c)

= f(t � s · x)

= Ae�i(wt�k·x) (2.78)

where s is the slowness vector and c is the velocity. The slowness
vector shows the direction of the wave propagation. k = ws is the
wavenumber vector.

2.4.4 Spherical waves

A spherical wave is also a solution for 3D scalar wave equation (equa-
tion 2.76). For convenience, we consider the spherical coordinates,
and equation 2.76 becomes

r2f(r) =
1
r2

∂

∂r

✓
r2 ∂f

∂r2

◆
1
r2

∂

∂r

✓
r2 ∂f

∂r

◆
� 1

a2
∂2f

∂t2 = 0. (2.79)

For r 6= 0, a solution of equation 2.79 is

f(r, t) =
f (t ± r/a)

r
, (2.80)

which indicates spherical waves.
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2.4.5 Polarizations of P and S waves

Let us consider P plane waves propagating in x1 direction. A plane-
wave solution for equation 2.76 is

f(x1, t) = Aei(wt�kx1), (2.81)

and the displacement is

u(x1, t) = rf(x1, t) = (�ik, 0, 0)Aei(wt�kx1). (2.82)

Because the compression caused by this displacement is nonzero
(r · u(x1, t) 6= 0), the volume changes. From equation 2.82, the
direction of wave propagation and the direction of displacements are
the same (longitudinal wave).

For S waves, a plane-wave solution for equation 2.77 is a vector:

Y(x

1

, t) = (A1, A2, A3)ei(wt�kx1), (2.83)

and the corresponding displacement is

u(x1, t) = r⇥ Y(x1, t) = (0,�ikA3, ikA2)ei(wt�kx1). (2.84)

In contrast to P waves, S waves have no volumetric changes (r ·
u(x1, t) = 0) and the direction of displacements differ from the
direction of wave propagation.



10 geophysics 130: introduction to seismology

1.1 Plane wave reflection and transmission

1.1.1 Introduction
This means that we consider wave

propagation on a plane, which is
perpendicular to the x2 axis.

When we consider the propagating waves are plane waves, we can
find a coordinate system which has ∂ui/∂x2 = 0. From equation , if
we choose these axes, we obtain

r

0

BB@

∂2u1
∂t2

∂2u2
∂t2

∂2u3
∂t2

1

CCA = (l + 2µ)

0

BB@

∂
∂x1

⇣
∂u1
∂x1

+ ∂u3
∂x3

⌘

0
∂

∂x3

⇣
∂u1
∂x1

+ ∂u3
∂x3

⌘

1

CCA� µ

0

BBB@

� ∂
∂x3

⇣
∂u1
∂x3

� ∂u3
∂x1

⌘

� ∂
∂x3

⇣
∂u2
∂x3

⌘
� ∂

∂x1

⇣
∂u2
∂x1

⌘

∂
∂x1

⇣
∂u1
∂x3

� ∂u3
∂x1

⌘

1

CCCA

= (l + 2µ)

0

BB@

∂
∂x1

⇣
∂u1
∂x1

+ ∂u3
∂x3

⌘

0
∂

∂x3

⇣
∂u1
∂x1

+ ∂u3
∂x3

⌘

1

CCA+ µ

0

BBB@

∂
∂x3

⇣
∂u1
∂x3

� ∂u3
∂x1

⌘

∂2u2
∂x2

3
+ ∂2u2

∂x2
1

� ∂
∂x1

⇣
∂u1
∂x3

� ∂u3
∂x1

⌘

1

CCCA
.

(1.1)

The displacement on the x2 direction is independent from x1 and x3,
and only contain S waves, which are called SH waves. The waves
described by u1 and u3 are called P-SV waves.

1.1.2 SH wave

From equation 1.1 with replacing u2 to v, r/µ as 1/b2, and x1x2x3 to
xyz, we obtain

1
b2

∂2v
∂t2 =

∂2v
∂x2 +

∂2v
∂z2 , (1.2)

which is a 2D scaler wave equation. The waves represented by v are
called SH wave. We consider a plane-wave solution of equation 1.2 as

v = e�iw(t�px�hz), (1.3)

where p is the ray parameter (and p is the horizontal slowness and h

the vertical slowness). With p and b, h is Slownesses and wavenumbers are also
related.

kx = pw, kz = hwh2 =
1
b2 � p2. (1.4)

Based on the incident angle of the wave f (angle from the z axis),
horizontal and vertical slownesses are

p =
sin f

b
, h =

cos f

b
. (1.5)
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1.1.3 Reflection and transmission of SH wave
x

z

A B

r, b
f f

Figure 1.1: Reflection at the free surface.

Let us consider the reflection at the free surface (Figure 1.1). The
general solution of SH waves reflected at the free surface is given by

v = Ae�iw(t�px�hz)
| {z }

incoming

+ Be�iw(t�px+hz)
| {z }

re f lection

, (1.6)

where A and B are constants. As a boundary condition at the free
surface, stresses szx, syz, and szz are zero (because we are considering
only the y direction, we use only the condition of syz); therefore at
z = 0,

syz = szy = µ
∂v
∂z

, (1.7)

where the first equation naturally satisfies by our coordinate system.
From the second equation, we obtain the relationship that

(A � B)e�iw(t�px) = 0
B
A

= 1, (1.8)

which is the reflection coefficient for SH waves at the free surface.
SH waves bounce at the free surface with the same amplitude. From
equation 1.8, the displacement at the free surface is v(z = 0) =

2Aexp(�iw(t � px)), which means twice as large as the incoming
wave (and the reflected wave).

x

z

A1 B1

A2

r1, b1

r2, b2

f1 f1

f2

Figure 1.2: Reflection and transmission
at a boundary.

Next, we consider the reflections at a boundary (Figure 1.2). This
derivation is similar to the string case (1D scaler wave equation). We
simply extend it to the 2D case. Now, we set z = 0 as a boundary,
and medium 1 (r1, b1) is at z < 0 and medium 2 (r2, b2) z > 0.
When the incoming wave propagation from medium 1, plane-wave
solutions are why is p in equation 1.9 common for

media 1 and 2?
v1 = A1e�iw(t�px�h1z) + B1e�iw(t�px+h1z), (z < 0)

v2 = A2e�iw(t�px�h2z), (z > 0) (1.9)

where the first term in v1 is the incoming wave, the second term in
v1 the reflected wave, and v2 the refracted wave. Define f1 and f2 are
the angle of the incident and refracted waves, respectively, slownesses
are

p =
sin f1

b1
=

sin f2
b2

, h1 =
cos f1

b1
, h2 =

cos f2
b2

(1.10)

At z = 0, the displacement satisfies a boundary condition, in which
displacements and stresses at the boundary are continuous:

v1 = v2, µ1
∂v1
∂z

= µ2
∂v2
∂z

. (1.11)
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From these conditions, we obtain

A1 + B1 = A2, µ1h1(A1 � B1) = µ2h2 A2 (1.12)

and reflection and transmission coefficients are µ/r = b2, hi = cos fi/bi

R12 =
B1
A1

=
µ1h1 � µ2h2
µ1h1 + µ2h2

=
r1b1 cos f1 � r2b2 cos f2
r1b1 cos f1 + r2b2 cos f2

T12 =
A2
A1

=
2µ1h1

µ1h1 + µ2h2
=

2r1b1 cos f1
r1b1 cos f1 + r2b2 cos f2

. (1.13)

The impedance for SH waves at media 1 and 2 are r1b1 and r2b2,
respectively.

Now, we show the energy is preserved during these reflection and
transmission. The energy at a unit volume (at steady state) can be
written by

E = rw2X2, (1.14)

where X is the amplitude of waves. When the plane wave propagat-
ing with velocity b, the energy flux at a unit area (perpendicular to
the propagation) is

F = bE = rbw2X2. (1.15)

We apply this relationship to the reflection and transmission of SH
waves. The energy of the incoming wave at are S is Sr1b1w2 cos f1
and the sum of the reflection and transmission waves are S|R12|2r1b1w2 cos f1 +

S|T12|2r2b2 cos f2, and these energy should be equal:

Sr1b1w2 cos f1 = S|R12|2r1b1w2 cos f1 + S|T12|2r2b2 cos f2

1 = |R12|2 +
r2b2 cos f2
r1b1 cos f1

|T12|2, (1.16)

where equation 1.13 satisfies equation 1.16.

x

z

H

r1, b1

r2, b2

Figure 1.3: Reflection and transmission
at a medium which has the free surface
and a finite layer.

When medium 2 has a finite thickness (H) and the free surface
exists on top of it, waves reverberate. The solution in medium 1 is
the same as equation equation 1.9. Because we have another reflected
waves from the boundary at z = H, the solution in medium 2 is

v2 = A2e�iw(t�px�h2(z�H)) + B2e�iw(t�px+h2(z�H)). (1.17)

Because the stress syz is 0 at the free surface z = H, we obtain
A2 = B2. Therefore, equation 1.17 becomes

v2 = 2A2e�iw(t�px�h2(z�H)). (1.18)

The boundary condition at z = 0 is the same as equation 1.11 and we
obtain

A1 + B1 = 2A2 cos wh2H

iµ1h1(A1 � B1) = 2µ2h2 A2 sin wh2H. (1.19)
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From equation 1.19, we can compute reflection and transmission
coefficients: Different from equations 1.8 or 1.13,

equation 1.20 is a function of the
frequency. This is because the reflection
and transmission depend on the
thickness H.

Proof |R| = 1.

T =
A2
A1

=
µ1h1

µ1h1 cos wh2H � iµ2h2 sin wh2H
,

R =
B1
A1

=
µ1h1 cos wh2H + iµ2h2 sin wh2H
µ1h1 cos wh2H � iµ2h2 sin wh2H

. (1.20)

Waves are amplified because of the surface layer. The amplitude ra-
tio between the incident wave and the wave represented by equation
1.17 is

����
v2(z = H)

A1

���� =
����
2A2
A1

���� = 2|T|. (1.21)

Compared with the ratio without the surface layer (2 due to equation
1.8), |T| relates to the amplification of the waves.

If hi is real, the denominator of T is following an ellipse on the
real-imaginary domain with principal axes on the real and imaginary
axes when w changes. Therefore, the maximum and minimum T
should be on the real or imaginary axes. On the real axis (sin wh2H =

0 and cos wh2H = ±1),

|T| = 1, (1.22)

and on the imaginary axis (sin wh2H = ±1 and cos wh2H = 0),

|T| = µ1h1
µ2h2

=
r1b1 cos f1
r2b2 cos f2

. (1.23)
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Figure 1.4: Site amplification caused
by a soft surface layer for SH waves
for different incident angles (line
colors). The normalized frequency is
f H/b2 and the vertical axis |T|. In
this example, I use r1/r2 = 1.2 and
b1/b2 = 2.

When we consider the vertical incident wave (f1 = f2 = 0), the
maximum |T| is on the real axis (equation 1.22) when the surface
layer is harder than below (r1b1 < r2b2). On the other hand, when
the surface layer is softer (r1b1 > r2b2), the maximum |T| is on the
imaginary axis (equation 1.23) and |T| > 1, which is the reason of
amplification at the soft structure (e.g., figure 1.4). The frequency
at the maximum amplification satisfies cos wh2H = 0 ! wh2H =

(2n + 1)p/2.
The T and R (equation 1.20) include all reverberations (p101-102,

Saito).
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Postcritical reflection When b2 > b1, f2 can be 90

� and f1 in this
condition is called critical angle:

fc = sin�1 b1
b2

. (2.101)

When the incident angle is larger than fc, we have postcritical
reflection, in which waves are perfectly reflected. In this case,

h2 =
q

b2
2 � p2 is imaginary. To avoid divergence of refracted waves

of v2 (equation 2.93) at z ! +•, the sign of h2 should be

h2 = iĥ2 = i
q

p2 � b�2
2 (w > 0) (2.102)

x

z

H

r1, b1

r2, b2

Figure 2.9: Reflection and transmission
at a medium which has the free surface
and a finite layer.

When medium 2 has a finite thickness (H) and the free surface
exists on top of it, waves reverberate. The solution in medium 1 is the
same as equation equation 2.93. Because we have another reflected
waves from the boundary at z = H, the solution in medium 2 is

v2 = A2e�iw(t�px�h2(z�H)) + B2e�iw(t�px+h2(z�H)). (2.103)

Because the stress syz is 0 at the free surface z = H, we obtain
A2 = B2. Therefore, equation 2.103 becomes

v2 = 2A2 cos wh2(z � H)e�iw(t�px). (2.104)

The boundary condition at z = 0 is the same as equation 2.95 and we
obtain

A1 + B1 = 2A2 cos wh2H

iµ1h1(A1 � B1) = 2µ2h2 A2 sin wh2H. (2.105)

From equation 2.105, we can compute reflection and transmission
coefficients: Different from equations 2.92 or

2.97, equation 2.106 is a function of
the frequency. This is because the
reflection and transmission depend on
the thickness H.

Proof |R| = 1.

T =
A2
A1

=
µ1h1

µ1h1 cos wh2H � iµ2h2 sin wh2H
,

R =
B1
A1

=
µ1h1 cos wh2H + iµ2h2 sin wh2H
µ1h1 cos wh2H � iµ2h2 sin wh2H

. (2.106)

Waves are amplified because of the surface layer. The amplitude ra-
tio between the incident wave and the wave represented by equation
2.103 is

����
v2(z = H)

A1

���� =
����
2A2
A1

���� = 2|T|. (2.107)

Compared with the ratio without the surface layer (2 due to equation
2.92), |T| relates to the amplification of the waves.

If hi is real, the denominator of T is following an ellipse on the
real-imaginary domain with principal axes on the real and imaginary
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axes when w changes. Therefore, the maximum and minimum T
should be on the real or imaginary axes. On the real axis (sin wh2H =

0 and cos wh2H = ±1),

|T| = 1, (2.108)

and on the imaginary axis (sin wh2H = ±1 and cos wh2H = 0),

|T| = µ1h1
µ2h2

=
r1b1 cos f1
r2b2 cos f2

. (2.109)
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Figure 2.10: Site amplification caused
by a soft surface layer for SH waves
for different incident angles (line
colors). The normalized frequency is
f H/b2 and the vertical axis |T|. In
this example, I use r1/r2 = 1.2 and
b1/b2 = 2.

When we consider the vertical incident wave (f1 = f2 = 0), the
maximum |T| is on the real axis (equation 2.108) when the surface
layer is harder than below (r1b1 < r2b2). On the other hand, when
the surface layer is softer (r1b1 > r2b2), the maximum |T| is on the
imaginary axis (equation 2.109) and |T| > 1, which is the reason of
amplification at the soft structure (e.g., figure 2.10). The frequency
at the maximum amplification satisfies cos wh2H = 0 ! wh2H =

(2n + 1)p/2.
The T and R (equation 2.106) include all reverberations (p101-102,

Saito).

2.6.4 P-SV waves
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2.7 Surface waves

Surface and body waves are not very easy to distinguish because they
are related. We consider that surface waves are propagating around
the surface of media and the energy of them concentrate near the
surface. Generally, the main features of surface waves compared with
body waves are traveling slower, less amplitude decay, and velocities
are frequency dependent.

2.7.1 Dispersion

One important feature is that surface waves are dispersive (in con-
trast to body waves), which means that the depth sensitivity of
surface waves depends on frequencies of waves, and hence we can
obtain vertical heterogeneity of subsurface from surface waves.

The simplest example of dispersion may be the sum of two har-
monic waves with slightly different frequency and wavenumber
(Figure 2.11):
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Figure 2.11: Superimposed cosine
waves. Here, w = 1 ⇥ 2 ⇥ p (1/s),
k = 0.3 ⇥ 2 ⇥ p (1/km), dw = 0.1 (1/s),
and dk = 0.05 (1/km).

u(x, t) = cos(w1t � k1x) + cos(w2t � k2x), (2.110)

where w1 = w � dw, w2 = w + dw, k1 = k � dk, and k2 = k + dk.

cos(a + b) + cos(a � b) = 2 cos a cos b

Therefore,

u(x, t) = cos{(wt � kx)� (dwt � dkx)}+ cos{(wt � kx) + (dwt � dkx)}
= 2 cos(wt � kx) cos(dwt � dkx). (2.111)

The waveform of u(x, t) consists of a cosine curve with frequency
w (carrier) with a superimposed cosine curve with frequency dw

(envelope). From equation 2.111, the velocities for short (carrier) and
long (envelope) period waves are

c =
w

k
, U =

dw

dk
, (2.112)

respectively. In equation 2.112, we assume dw and dk approach to
zero. We call c as phase velocity and U as group velocity. The group
velocity U can be written as

dw = w � w1 = ck � c1k1 = ck � (c � dc)(k � dk)
⇡ cdk + kdc

dk = k � k1 =
w

c
� w1

c1
=

w

c
� w � dw

c � dc

⇡ w

c
� w � dw

c
� wdc � dcdw

c2 ⇡ dw

c
� wdc

c2

1
U

=
dk
dw

=
dw/c � wdc/c2

dw
=

1
c

✓
1 � k

dc
dw

◆

U =
dw

dk
= c + k

dc
dk

= c
✓

1 � k
dc
dw

◆�1
. (2.113)

Usually, because the phase velocity c of Love and Rayleigh waves
increase with period (i.e., velocity increasing with depth), dc/dw

is negative. Therefore, the group velocity is slower than the phase
velocity U < c.
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2.7.2 Love waves

x

z

H

r2, b2

r1, b1

Figure 2.12: Two-layer model. I should
follow the subscripts with Figure 2.9.
Love waves within a homogeneous

layer can result from constructive
interference between postcritical
reflected SH waves.

We consider the medium shown in Figure 2.12, which contains a
finite thickness layer on top of a halfspace medium. Note that we
need a layer to obtain Love waves. The Love-wave problem can be
considered as that whether waves, which horizontally propagate with
velocity c and amplitude zero at z ! •, exist or not.

When we consider the condition b1 < c < b2 (which is the
condition that Love waves exist I will proof later.), a solution in the
medium 1 is

h1 =
q

b�2
1 � p2, c = 1/pv1(z) = cos wh1(z � H)e�iw(t�px), (2.114)

which is equal to equation 2.104 with A = 1/2. Based on equation
2.93, a solution in the medium 2 is

v2 = A2e�iw(t�px�h2z) + B2e�iw(t�px+h2z), (2.115)

where h2
2 < 0 when c < b2. When we choose =(h2) > 0 (w > 0), the

eiwh2z = eiw(<(h2)+i=(h2))z = eiw<(h2)z
| {z }
oscillation

e�w=(h2)z
| {z }

divergence(z=•)

Because h2 is complex number, the
reflected waves from the medium 1

perfectly reflect at the boundary z = 0.
Also from equation 2.121,

v1 = e�iw(t�px)
h
eiwh1(z�H) + e�iwh1(z�H)

i
,

which is the summation of upgoing
and downgoing plane waves (with
propagating to the +x direction. There-
fore, we can consider Love waves are
reverberation of SH waves.

first and second terms on the right-hand side of equation 2.115 are
diverse and converse to zero at z ! �•, respectively. By considering
the condition of amplitudes, we can write a solution in the medium 2

as

v2 = B2e�iw(t�px+h2z) = B2e�iw(t�px)ewĥ2z, (2.116)

where ĥ2 =
q

p2 � b�2
2 > 0.

Because the boundary condition at the free surface is already
satisfied in equation 2.114, the boundary condition at z = 0 should be
satisfied (displacements and stresses should be continuous):

v1 = v2, µ1
∂v1
∂z

= µ2
∂v2
∂z

cos wh1H = B2, µ1(wh1 sin wh1H) = µ2(wĥ2B2) (2.117)

where µi = rib
2
i . Therefore, to exist Love waves, waves satisfy

Dl(p, w) = µ2ĥ2 cos wh1H � µ1h1 sin wh1H = 0, (2.118)

or

tan wh1H =
µ2ĥ2
µ1h1

, (2.119)

which are called the characteristic equation for Love waves. With
equation 2.120, Love waves exist when h1 and ĥ2 are real positive
number for an angular frequency.

Mode The equation defines the dispersion curve for Love wave
propagation within the layer. On the plane of pw, for each p, we
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have multiple values of w satisfies equation 2.120 due to the tangent
function, and the smallest w defines the fundamental mode, and
the second smallest is the first higher mode, etc. Equation 2.120

cannot be solved analytically, but we can do numerically. When w

is small, we only have one solution, which is the fundamental mode
(Saito, p149). Also in the fundamental mode, c ! b2 (w ! 0) and
c ! b1 (w ! •).

The angular frequency of nth higher modes can be defined as

wn H
b1

=
npp

1 � (b1/b2)2
, (2.120)

and called cut-off angular frequency.
Depth variation of amplitude From equations 2.114, 2.116, and

2.117, the displacements of Love waves are

v1(z) = cos wh1(z � H)
| {z }

amplitude

e�iw(t�px)
| {z }

phase

v2(z) = cos wh1(H)ewĥ2z
| {z }

amplitude

e�iw(t�px)
| {z }

phase

. (2.121)

Group velocity We can estimate the group velocity of Love waves
by computing equation 2.113. The p(w) derivative of DL(p, w) = 0 is When f (x, y) = 0,

d
dx

f (x, y(x)) = 0

d f (x, y)
dx

+
d f (x, y)

dy
dy(x)

dx
= 0

∂DL(p, w)
∂w

+
∂DL(p, w)

∂p
∂p(w)

∂w
= 0

∂p(w)
∂w

= �∂DL/∂w

∂DL/∂p
(2.122)

For the two-layer case (equation 2.118),

c
U

= 1 +
h2

1
p2

"
1 +

(µ2/µ1)(b�2
1 � b�2

2
wĥ2 H[h2

1 + (µ2/µ1)2ĥ2
2 ]

#�1

2.7.3 Rayleigh waves
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