This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
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Abstract— With the dramatic growth of seismic data volume,
efficient and accurate seismic source location has become a
significant challenge to seismologists. Recently, time reversal
imaging (TRI) has been widely applied in automatic seismic
source location for its robustness and accuracy, but its wave-
equation-based implementation is usually computationally expen-
sive. To achieve an efficient in sifu and real-time source location,
the emerging sensor network is a good option. In this article,
we propose a simplified Gaussian beam TRI (SGTRI) method
to implement the seismic source location in a distributed sensor
network. Gaussian beam (GB) is a high-frequency asymptotic
solution of the wave equation, which can help reduce the compu-
tation costs of the wavefield extrapolation in conventional TRI.
Traditionally, the GB construction for reflection seismic imaging
covers the entire subsurface space. However, for certain source
localization, only limited areas contribute. Thus, we propose
a beamforming-technique-based simplified GB construction to
further boost efficiency. Then, we propose an imaging condition
for the SGTRI to construct the final source location map. Using
synthetic experiments, we demonstrate the accuracy, robustness,
and efficiency of the proposed method compared with conven-
tional TRI. In the end, a field application also shows promising
results.

Index Terms— Beamforming, distributed, Gaussian beam
(GB), seismic source location, time reversal imaging (TRI).

I. INTRODUCTION

EISMIC source properties are important for analyzing
Snatural and human activities, including earthquakes [1],
geysers [2], volcanic activities [3], and human activities [4].
Thus, accurate, robust, and efficient seismic source location
methods always draw researchers’ attentions [5].
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Recently, time reversal imaging (TRI) becomes popular in
passive source location using seismic data [6]-[10], as well
as borehole radar [11], ground-penetrating radar (GPR) [12],
and ultrawideband (UWB) antenna array [13]. Compared
with other methods based on arrival time difference [14],
cross correlation [15], range difference [16], double time
difference [17], and so on, TRI is advantageous as it is
free of arrival-picking [18], which is usually the major fac-
tor for introducing uncertainties. TRI has been applied on
low signal-to-noise ratio (SNR) data such as microseismic
records or earthquake data, where the arrival times are not
easy to pick [7].

Conventional TRI uses a finite-difference time domain
(FDTD) algorithm to solve the wave equation [12], which
has high computational cost due to the large iteration times
of discrete wave equation calculation and the complexity of
constructing absorbing boundary condition [19]. In addition,
FDTD is sensitive to velocity errors because all wave equation-
based wavefield reconstruction methods depend on a suffi-
ciently accurate wavefield. Gaussian beam migration (GBM)
is based on high-frequency approximation of wave equa-
tions [20], [21]. Because Gaussian beam (GB) is less influ-
enced by the complex structure of velocity model [22],
it has been applied in seismic source localization [23], [24].
Although GBM’s accuracy is not as good as that of
FDTD-based TRI, GB-based methods have obvious advan-
tages in computation efficiency. In addition, for the source
location purpose, only the wave propagation paths from
receivers to sources need to be considered. Thus, a small
portion of wavefield computation suffices.

Nowadays, to efficiently obtain in situ and real-time seis-
mic imaging results, advanced wireless sensor networks
with distributed computing algorithms have been utilized
[51, [25]-[28]. For example, to monitor live volcano activities,
wireless sensors were deployed using an air-dropped way [29].
In addition, the possibility of implementing TRI in a distrib-
uted sensor network has been investigated [30]. Fig. 1 shows
a schematic example of a seismic source location based on
TRI using a distributed sensor network.

In this article, we propose a simplified Gaussian beam
TRI (SGTRI) algorithm to locate seismic sources. The pro-
posed algorithm combines the efficiency of GB and the robust-
ness of TRI. To further improve the efficiency to construct GBs
with less computational resources, we apply the beamforming
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Fig. 1. TRI-based seismic source location.

technique, which is an efficient direction of arrival (DOA)
estimation method [31]. Simplified seismic wave propagation
paths from sources to receivers are obtained, which take
limited portions of the entire wavefield. We present synthetic
and field experiments to validate the robustness, accuracy,
computation/communication efficiency of our algorithm.

The contributions and innovations of this article are as
follows.

1) We combine GB and TRI in the seismic source loca-
tion. The innovative design takes advantages of both
approaches and achieves accuracy and efficiency at the
same time.

2) We propose to use a simplified beamforming-based
GB construction and a distributed imaging condition to
further improve the efficiency for the implementation in
a sensor network, which can achieve in sifu computing.

3) We propose a novel distributed seismic source location
mechanism, which is tested through synthetic and field
applications, showing promising results in terms of
efficiency, robustness, and accuracy.

The remainder of this article is organized as follows.
In Section II, we introduce the theoretical principles of TRI,
GB construction, beamforming technique, and imaging con-
dition. In Section III, we describe the proposed SGTRI algo-
rithm in detail. Using the synthetic examples in Section IV,
we analyze the image quality, robustness, and computa-
tion/communication complexity of our algorithm, compared
with conventional algorithms. Later, a field application exam-
ple is shown in Section V. Finally, conclusions are drawn
in Section VI.

II. THEORY
A. TRI for Seismic Source Location

The data d(x,, Xy, t) are recorded at a receiver located at
X,, where X is the space coordinate. ¢ is in the range [0, T']

d(Xp, Xs, 1) = G(X, Xg, 1) * S(1) €))

where S(r) is a source, G(X,,Xs,?) denotes the Green’s
function which represents an impulse response observed at a
receiver X, due to a source at Xy, and the symbol ‘*’ represents
the convolution operator.

The principle of TRI states that wavefields backward prop-
agating in time from receivers focus at the source locations,
as shown in Fig. 2. It consists of three steps: 1) reversing
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Fig. 2. Schematic plots of TRI source location. (a) Seismic wave forward
propagation from a source to receivers. (b) Procedure of the TRI source
location method, which back propagates the recorded data from receivers
simultaneously into the subsurface and searches for a focusing point.

the recorded data in time; 2) backward-propagating the time-
reversed data; and 3) applying the focusing imaging condition.

The backward propagation of recorded seismic data d(x,, t)
can be written as

Wax,t) = G(X, X, t) *d(xX,, T —1). )
Thus, the seismic source location map can be obtained by
Itri(x) = [[Wa(x, D) ll1¢ 3)

where || - ||;¢ denotes the focusing imaging condition, e.g.,
maximum amplitude. Various imaging conditions can be used
to obtain the source image Itri(x) [71], [30], [32].

B. GB Construction

A GB is the high-frequency asymptotic solution to the wave
equation in the ray centered coordinate system. We decompose
Green’s function by GBs

T 27
GGB(X/,X, t)=/ d@/ d¢®(9,¢,t)uGB(X/,X,9,¢,t)
0 0
4)

where Ggp(X/, X, 1) represents Green’s function constructed
by summing GB wavefield ugg (X, x, 0, ¢, t) from the source
point x to field point x" with the central-ray takeoff angles
6 and ¢; (0, ¢, t) is the initial amplitude factor for weighting
the GBs to match the wavefield in the vicinity of the source
location.

In the ray-centered coordinate system, the GB wavefield can
be expressed as [20]

ugs(x',x,0,¢,1) = ugs(s, q1, 92, X, p, 1) )

where s is the distance along the raypath; g1 and ¢» represent
the two perpendicular distances from the raypath in the local
ray-centered coordinates to the field point; p = (px, py, pz)
is the ray parameter vector. The details of the formula and
the choice of the initial parameters for GBs, such as initial
beamwidth, beam center interval, ray takeoff angle interval,
and weighting factor can be readily found in the literature [20].

C. Simplified GB Construction Based on Beamforming

GB is based on ray-tracing, which is computationally more
efficient than wave equation methods but can be still expen-
sive. As shown in Fig. 3, we propose to use beamforming to
initialize the directions of GBs, and relatively wide GBs are
constructed to ensure the source is within the beam ranges.
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Fig. 3. Schematic plots of (a) GB-based and (b) simplified GB-based
source location. In (a) GBs are constructed based on the ray tracing, while in
(b) GB centers are obtained by beamforming, which simplifies GB construc-
tions and saves computations. Red curves: GB centers. Black dashed curves:
GB ranges.

Given a set of M sensors, with location coordinates

[(x05 ¥0)> (X1, Y1) - - » (Xm—1, Ym—1)]7, the array response
vector or the steering vector a(f) can be expressed as [31]

a(f) — [efiZEfro, e*iZﬂfrl e, e*iZirfrm_|] (6)

where 7, = X, p cOS @ + v, p sin ¢ is the time delay for signal
to reach the mth sensor from the origin, and p, ¢ are the
slowness and the angle of propagation, respectively.

A frequency-domain beamforming method is implemented
to estimate the phase velocities and directions of propagation.
Conventional beamforming methods make use of the data
covariance matrix to obtain the power associated with a
steering vector [33]. In the time domain, it can be interpreted
as a simple method of delay and sum. The power of the stacked
signal provides information about the accuracy of the delay
applied. The beampower BP(f) corresponding to a steering
vector a (f) is computed as

BP(f) :a;ck(f)Rxx(f)ak(f) @)

where * represents the complex conjugate, R, = X (f)X*(f)
is the frequency domain data covariance matrix. The largest
obtained BP indicates the wave propagation direction ¢.

D. Source Imaging Condition

Using the simplified GB (SGB) construction in
Sections II-B and II-C, the SGTRI backward propagation
from a single sensor node r can be written as

W3S (x, ) = usep(X, X, 1) ¥ d(x,, T —1). ®)

Then, combining wavefields generated from all sensor nodes
in the network, the source location map can be expressed as

Isgtri(x) = || WiSB(x, )], ©)

To generate the source location image, the stacked/cross cor-
relation imaging condition [30] and geometric mean imaging
condition [7] have been proposed. Here, we propose a novel
imaging condition designed for distributed sensor networks

Iserrix) = > > [ Wit x. 0

K T M

(10)

where the N receivers are divided into K clusters, and each
cluster has M receivers, so N = K x M. Note that it involves a
two-level communication: first, the raw data in the same cluster
are sent to the sink node!; second, the SGBs from different

TAll the communication in a sensor network takes place between source
and destination. The destination is called sink.
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Fig. 4. Schematic plots of SGTRI-based source location. (a) Conventional
TRI imaging condition proposed in [30] needs to calculate the wavefield
extrapolation of the whole subsurface space. (b) SGTRI only computes the
shadowed SGB areas, which save computations. Note that the source location
is the position, where all wavefields coincide.

clusters will be transmitted over the network for the final
imaging. Because SGBs cover smaller portion of subsurface
than wavefield extrapolation methods, the computation and
communication costs can be reduced.

Fig. 4 shows the comparison between the conventional TRI
imaging condition proposed in [30] and our SGTRI method.
Instead of calculating the wave extrapolation in the entire
space, only the SGB areas are used in our method, which
reduces the computation significantly.

III. ALGORITHM

Compared with the conventional TRI shown in Fig. 1,
SGTRI has the following differences: 1) backward propagated
wavefields reconstructed by GB rather than, e.g., FDTD,
which is often adopted in conventional TRI; 2) only the wave
propagation trace area is considered and an even simplified
solution is adopted; 3) the image condition is hierarchical with
two levels; and 4) the absorbing boundary condition and the
scattering effect of velocity model are avoided as a smooth
velocity model is employed. Algorithm 1 describes the detailed
steps of the proposed algorithm. In addition, the “multiple
sources” situations can be inferred following [10] and [34].

Algorithm 1 Proposed SGTRI Algorithm

1: Locally cluster sensor nodes.

2: Data transmission to the sink node in the cluster.

3: Apply beamforming to initialize the GBs.

4: Construct the back-propagating wavefield within the GB
range.

5: Transmit GBs among sink nodes from different clusters in
the whole network.

6: Apply the proposed imaging condition to generate the
source location energy map.

7: Pick the strong energy area as the source location result.

IV. SYNTHETIC EXPERIMENTS

The numerical experiment is implemented on Marmousi
velocity model [35]. We selected a small area in Marmousi
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Fig. 5. Synthetic seismic source location example. (a) Velocity model with one seismic source located at (150, 800) with results from (b) TRI, (c) distributed

TRI proposed in [10], and (d) proposed SGTRI.
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Fig. 6. Wavefields generated by (a) distributed TRI and (b) SGTRI from the
first sensor cluster.

model which contains multiple layers, which is shown
in Fig. 5(a). The velocity field ranges from 1500 to 3500 m/s.
The size of the velocity model is 300 x 300, and the depth
interval dz and width interval dx are both 4 m. The surface
sensor array has the same deployment as the first test, which
consists of 41 sensors with an interval of 30 m. Each node
also receives raw data from six neighbors to initialize the
directions of GBs. We set up a single seismic source at
(x = 600 m,z = 800 m) with a time length of 0.6 s, and
the time interval is 0.5 ms.

Fig. 5(b) shows the TRI imaging result, where we can
easily find that the strong energy spot is on the true location
of the seismic source. Fig. 5(c) displays the distributed TRI
imaging result proposed in [10]. Although the solution saves
communication costs, the resolution is significantly sacrificed.
The proposed SGTRI method generates a satisfactory reso-
lution comparable with that of conventional TRI. Despite a
little more vertical smearing, the source location can be easily
pointed out.

The snapshots in Fig. 6 benchmark the wavefield produced
by SGTRI with that by TRI. It is clear that SGTRI cal-
culates only limited areas, whereas TRI needs to cover the
whole space, as the constructed wavefronts extrapolate widely
in Fig. 6(a). Furthermore, GB-based wavefield construction is
generally more efficient than FDTD-based TRI. Thus, SGTRI
is much more efficient than TRI. In sum, SGTRI is an efficient
tool for seismic source location with acceptable imaging
quality.

The robustness of TRI methods has been discussed by
previous researches [30], [34], [36], [37]. Here, we add
different levels of random noises to test the robustness of
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Fig. 7. Robustness tests of the proposed method with different SNRs.
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Fig. 8. 1-D seismic velocity model for testing the source location robustness
to the velocity errors.
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the proposed SGTRI method. Fig. 7 shows the final energy
maps with different noise levels at SNR = 10, 0, —10,
and —20 dB, respectively. It turns out that our proposed
method is robust even under an extremely noisy (—20 dB)
environment. Although low SNR may cause some unexpected
artifacts, the energy focusing at the actual source location
remains distinguishable from noise-induced artifacts.

To explore the tolerance of TRI and SGTRI to velocity
errors, we compare their imaging results (see Fig. 9) using
a 1-D velocity model in Fig. 8, which is extracted from the
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Fig. 9. Source location results based the 1-D velocity model in Fig. 8 using
(a) TRI and (b) SGTRI.
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Fig. 10.  Source location results based on SGTRI using different sensor
numbers in the cluster. (a) 12. (b) 3.

central position in Fig. 5(a). Compared with results shown
in Fig. 5, source location deviations of different methods
caused by velocity errors vary. SGTRI generates amore consis-
tent lateral location. In addition, the vertical resolution by TRI
is severely deteriorated [comparing Fig. 9(a) with Fig. 5(b)]
whereas it is preserved by SGTRI, demonstrating the less
sensitivity of SGTRI to velocity errors.

Next, since SGTRI is designed for a distributed applica-
tion, we investigate the influence of the number of traces
in the cluster. Fig. 10 displays results using surrounding 12
[see Fig. 10(a)] and 3 [see Fig. 10(b)] neighboring traces.
Compared with the original result using six neighboring traces
shown in Fig. 5(d), more traces in a cluster produce higher
energy concentration. However, even when based on a lim-
ited number of traces, the source location is still acceptable
as Fig. 10(b).

We run all experiments using a computer with 8 cores
CPU, 3.40 GHz, and 31.3-GB memory. Table I shows the
computational cost of TRI and SGTRI. GB construction needs
only ray parameters and raw data, whereas FDTD needs
medium parameters of the whole velocity model and perfectly
matched layers. The GB configuration is ten times faster than
the FDTD method. The beamforming step is also efficient.
Because the imaging condition of SGTRI defined in (3) is
more complicated than TRI, the imaging computation time is
a little longer. In general, SGTRI is significantly faster than
TRI in computation, resulting in a potential real-time seismic
imaging solution.

Table IT shows the communication cost comparison. To gen-
erate the final imaging result, the backward wavefield should
be sent to the whole network through broadcast, which is the
most expensive part. The SGTRI calculates only the backward

TABLE I
COMPUTATION COST COMPARISON

Algorithm Memory(Mb)  Time(s)
TRI Wavefield solving 920 9.098
Imaging 100 0.072
SGTRI Beamforming 330 0.468
GB-based wavefield solving 440 0.836
Imaging 100 0.325
TABLE I
COMMUNICATION COST COMPARISON
Algorithm Broadcast Unicast
volume(Mb)  volume(Mb)
TRI Imaging 38400 0
SGTRI = Beamforming 0 15.4
Imaging 5900 0
0 0
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Fig. 11. (a) Field seismic data, which are filtered to 1 ~ 10 Hz to highlight

the signal and reduce high-frequency noise. Earthquake source location using
(b) TRI method and (c) proposed SGTRI method. (d) Comparison with the
location results from OGS (white star) and [38] (red star).

propagated wavefield in the range of one single GB, which
is only one-tenth or even less area of the whole wavefield,
as shown in Fig. 4. So SGTRI has less communication burdens
in the imaging stage. In addition, only raw data are transmitted
within each cluster, which is much smaller than wavefields
used in TRI. It is obvious that the proposed method has
advantages in saving both computation and communication
costs.

V. FIELD EXPERIMENT

To further evaluate the proposed SGTRI method, we apply
it to a field seismic data set. There was an M?2.3 earthquake
on July 11, 2016 in Enid, OK, USA, recorded by Incorporated
Research Institutions for Seismology (IRIS).? Fig. 11(a) shows

2The seismic data available at http://ds.iris.edu/mda/Y W ?timewindow=
2016-2016 (Last accessed June 7, 2019.)
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the recorded waveforms from 127 geophones on one around
12-km-long seismic line in the east-west direction with a
sampling interval of 4 ms. Using a 1-D velocity model
from Oklahoma Geological Survey (OGS), we apply TRI and
SGTRI to locate the earthquake source. The results are shown
in Fig. 11(b) and (c), respectively. It is clear that although
the resolution of SGTRI is little lower than that of TRI, the
earthquake source locations are very close. Considering the
computation and communication reduction, SGTRI has its own
advantages in specific applications.

For further validation, the source location result® from
OGS and a relocation result* from [38] using a modified
velocity model are plotted in Fig. 11(d) for comparison. Our
result is close to the reference location results. The minor
discrepancy comes from the differences in seismic source
location methods, velocity models, as well as data sets.? Thus,
SGTRI has a comparable source localization accuracy with
existing methods.

VI. CONCLUSION

In this article, we propose a seismic source location algo-
rithm named SGTRI, which is developed for distributed
sensor networks. The proposed method has advantages in
computation and communication costs. Instead of FDTD, GB
calculates the approximate solution of the wave equation and
deals with the uncertain velocity model issue. Beamforming
technique is used to construct simplified GBs. SGTRI also
inherits the robustness of conventional TRI. With the theoret-
ical derivations and results of numerical experiments, we can
conclude that the SGTRI algorithm is suitable for a real-time
distributed system because of its efficiency.
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