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ABSTRACT
Engineered structures, such as bridges, are excited by earthquakes at the base of the tow-
ers and the endpoint of decks. The different structural units of bridges, such as the towers
and decks, are coupled. We extract the response of the towers and decks of the Bay Bridge
in California from the motion of the bridge that is caused by earthquakes. This constitutes
a multichannel deconvolution problem, which is, in general, ill-posed. We use the redun-
dancy of the western half of the Bay Bridge, with near-identical towers and decks, to esti-
mate the response of the upper towers, lower towers, and decks, from the transverse
motion recorded in the bridge after four earthquakes. The extracted response functions
for the four earthquakes show consistent wave arrivals that correspond to the waves that
propagate through the towers and the decks. This method can, in principle, be used to

monitor changes in the structural response.

KEY POINTS

¢ We examine the structural response of the Bay Bridge,
San Francisco, from earthquake recordings.

¢ \We extract the response of the towers and decks using
multichannel deconvolution.

e The method can, in principle, be used for structural mon-
itoring over time.

INTRODUCTION

Earthquakes and ambient noise have been used to extract the
mechanical properties of bridges and buildings. Early studies
of buildings used resonant frequencies (Carder, 1936). One of
the early studies of the vibrations in bridges was applied to
the Bay Bridge (Carder, 1937), which is also the object of this
study. Many studies of bridges and buildings (e.g., Udwadia and
Trifunac, 1974; Luco et al., 1987; Kohler et al., 2005; Clinton
et al., 2006; Lynch et al, 2006) focused on the resonances
and changes in the resonant frequencies. An overview of testing
and monitoring of buildings and bridges is given in recent books
(Wenzel, 2009; Conte et al., 2018). The resonant frequency is a
property of the whole structure, but it does not necessarily pro-
vide information about subunits such as the towers or decks of a
bridge.

Extracting the response of systems from ambient vibrations
took a leap forward with the development of seismic interfer-
ometry (Curtis et al, 2006; Larose et al, 2006; Snieder and
Larose, 2013) in which the cross correlation of ambient noise

Volume XX Number XX —2020 www.bssaonline.org

recorded at two locations gives the Green’s function that char-
acterizes the response between these locations. Because ambient
noise is present most of the time, this technique is particularly
useful for monitoring time-lapse changes. An application to
bridge monitoring is shown by Salvermoser et al. (2015).

In addition to cross correlation, deconvolution of the
recorded motion in structures has been used to extract the
response of buildings. This was applied to the recordings of
earthquakes (Snieder and Safak, 2006; Kohler et al, 2007;
Nakata et al, 2013) and to measurements of ambient noise
(Prieto et al., 2010; Nakata and Snieder, 2014). One of the advan-
tages of this technique is that it makes it possible to retrieve the
structural response under boundary conditions different from
those of the real structure (Snieder et al., 2006). Recent studies
relate the resonances of buildings to the response obtained from
deconvolution (Bindi et al., 2015; Sun et al., 2017). Recordings of
ambient noise, or of subsequent earthquakes, have been used to
detect time-lapse changes in buildings or bridges (Trifunac et al.,
2003; Nakata et al., 2015; Salvermoser et al., 2015) that are essen-
tially 1D on the scale of the used wavelength. Our work extends
the extraction of the response of a building by deconvolution
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Figure 1. Geometry of the west and east sections of the western half of the Bay Bridge with the location of the used
accelerometers, and the structural units the transfer function of which we solve for. LT, lower towers; SD, short
decks; UT, upper towers. The color version of this figure is available only in the electronic edition.

the structural response of the
Bay Bridge by assuming that
comparable structural elements
of the Bay Bridge are similar.
For example, we assume that
the two towers on the western

(Snieder and Safak, 2006) to the Bay Bridge, which cannot be
treated as a 1D structure.

We use multichannel deconvolution to extract the struc-
tural response of the towers and decks of the western half of
the Bay Bridge in California. The western half of the Bay Bridge
extends from San Francisco to Yerba Buena Island, whereas the
eastern half of the bridge connects Yerba Buena Island to
Oakland. The western half of the Bay Bridge consists of two
suspension bridges with two towers each that are separated
by a rock pillar. In the following, we analyze the response of
the western half of the Bay Bridge. The western half consists of
two parts, each with two towers, and we refer to these two parts
as the west section and the east section (Fig. 1).

In deconvolution studies applied to structures, one decon-
volves the recorded motion at two locations to retrieve the trans-
fer function of the structure between those locations (Snieder
and Safak, 2006). In this approach the deconvolution has one
input and one output, which gives one transfer function. For
tall buildings, where the wave propagation at low frequencies
is approximately 1D, this approach is applicable because the
waves propagate only upward and downward between these
points. In a bridge with different structural elements, however,
the motion at one point depends on waves coming in from dif-
ferent directions. For example, the motion in the middle of the
bridge deck depends on waves being launched at pillars on both
sides of the deck. The motion in the pillars, in turn, depends on
the waves coming in from the subsurface, from the decks on
both sides of the pillar, and possible from the towers above
the bridge deck. In this case there is not a single transfer func-
tion, but a transfer matrix that relates the response in the differ-
ent structural units of the bridge.

The estimation of the transfer matrix corresponds to multi-
channel deconvolution. Suppose one has Nj, input channels and
Ny output channels, then one has Ny, + N pieces of infor-
mation. The transfer function has Ny, x N, unknowns. For
normal deconvolution N;, = N, = 1, and there is one trans-
fer function. But when there are more channels the number of
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part of the bridge have an iden-

tical response, and that the two
halves of the long decks (LDs) between the towers and the mid-
point of the decks also have the same response. We show that
this assumption leads to a system of five linear equations with
four unknowns; thus, the system is overdetermined rather than
underdetermined. We solve this system in the least-squares
sense and apply Tikhonov regularization to prevent instabilities
in the extracted bridge response.

In this study, we use the motion of the bridge excited by
earthquakes to extract the response of the bridge. Internal
noise, such as wind noise or traffic on the deck, complicates the
analysis. For example, noise generated by vehicles on the deck
at the midpoint between two sensors arrives simultaneously at
these two sensors and will, therefore, give a contribution at
zero lag time to the extracted response. Because the wave veloc-
ity is finite, this does not correspond to a wave that propagates
between these sensors. For this reason, we limit the analysis to
earthquake-induced motion that is excited externally at the
points of contact of the bridge with the subsurface. Nakata and
Snieder (2014) show how to use internal noise for the extrac-
tion of the response of a building.

We first present the used earthquake data and then show
how a system of linear equations can be used to extract the
transfer function of the Bay Bridge from recorded vibrations.
We then show the extracted transfer functions of the upper
towers (UTs), lower towers (LTs), and different decks.

USED DATA

The motion of the Bay Bridge is measured with 77 accelerom-
eters, and we used the motion in the bridge caused by the
earthquakes shown in Table 1. The data were made available
by the Center for Engineering Strong Motion Data. In this
study, we only analyze the recorded motion in the transverse
direction, the horizontal motion perpendicular to the direction
of the bridge. Thus, the extracted transfer functions are for the
transverse motion of the bridge. The reason for this restriction
is that we ignore the influence of the cables in our analysis. As
shown in Figure 2, a vertical motion of the deck is transmitted
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Figure 2. Schematic that illustrates how the vertical motion of the deck is
coupled by the support cables to the vertical and horizontal inline motion at
the top of the towers. The figure is not to scale, and for simplicity we show
only one vertical cable.
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by the cables to a motion of the top of the towers that has both
a horizontal and vertical component in the vertical plane
through the bridge. The theory presented here does not
account for the coupling of the motion at different locations
of the bridge by the cables. In fact, if one were to develop such
a theory one would need to record the vertical motion at the
base of each cable. In addition, at the intersection of the towers
and the decks, the vertical motion and the inline horizontal
motion is coupled, which also necessitates modifications to
the theory we present. These complications are avoided when
using the motion in the transverse direction, for which the cou-
pling to the motion in vertical direction and inline horizontal
direction can be ignored.

Examples of the transverse motion after the Alum Rock earth-
quake are shown in Figure 3. To eliminate high-frequency noise
in the data, we applied a low-
pass Butterworth filter at 40 Hz.
A Tukey window is applied to
10 taper the first and last 10% of
each recording, and zeros were
padded at the end of each
recording to obtain a uniform
record length of 116 s. The
motion recorded for the South
Napa earthquake was sampled
at a lower sampling rate than
the other earthquakes (Table 1)
and was interpolated so that all
time series had a uniform sam-
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5 pling rate of 200 Hz. As shown

in Figure 3, the used waveforms

are complicated and consist of
0 a combination of P waves, S
waves, and surface waves, which
have been scattered and mode-
converted. Apart from low-pass
filtering, we simply use the
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full waveforms in the analysis,
because it does not matter which

Figure 3. Transverse motion at three accelerometers (in centimeters per second) caused by the Alum Rock earth-
quake recorded at the intersection of (a) the deck and the west tower of the east section, (b) the small deck on the
west of the west section, and (c) the connection of the east section with the shore. The color version of this figure is
available only in the electronic edition.

wave type excites the bridge;
only the net motion at the points
of contact of the bridge with the
subsurface is important.

TABLE 1

Earthquakes Used with Origin Time, Epicentral Distance, Magnitude, the Data Length, and Sampling Rate of the Used Time Series

Earthquake Time (yyyy/mm/dd hh:mm:ss) Distance (km) Magnitude

Alum Rock 2007/10/31 03:04:54 67.74 5.6 58
Berkeley 2011/10/20 21:41:04 12.04 4.0 56
Piedmont 2015/08/17 13:49:17 11.05 4.0 56
South Napa 2014/08/24 10:20:44 46.32 6.0 78

Data Length (s)

Sampling Rate (Hz)

200
200
200
100
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TABLE 2
Structural Units of the West Section the Transfer Function of
which We Estimate

Structural Unit Name Segment Length (m) Velocity (m/s)
Short deck SD aA, dC 1785, 176.8 n/a
Long deck LD AB, CB 352.1, 3521 651
Lower tower LT bA, cC 43.0, 46.5 895
Upper tower uTt AD, CE 83.0, 93.0 510

The structural units refer to Figure 1.

EXTRACTING THE RESPONSE OF STRUCTURAL
UNITS

In contrast to a tall building, which essentially is a 1D structure,
a bridge consists of a number of structural elements, and the
motion of these structural elements is, in general, coupled.
Instead of a transfer function, one thus has to solve for a trans-
fer matrix, and as shown in the Introduction, this leads, in gen-
eral, to an ill-posed linear system of equations. We avoid this
ill-posedness by assuming that the mechanical response of the
different towers and decks is identical. We describe below the
retrieval of the response of the west section of the bridge (upper
panel in Fig. 1), but we apply the same analysis to the east sec-
tion of the bridge (lower panel in Fig. 1). A comparison of the
response of the structural units in the west section and the east
section provides a consistency check of the used analysis.

In the following, we retrieve the response of the UTs, the
LTs, the LDs, and the short decks (SDs), in which the different
structural units are shown in Figure 1. For the west section, the
properties of these units are summarized in Table 2. In reality,
the corresponding structural units at different locations, such
as the different UTs, differ in length by less than 10%. Because
of the finite bandwidth of the used data, the retrieved time-
domain response of the units shows peaks the width of which
is more than 10% of the arrival time of these peaks. The error
in the travel time caused by the differences in the length of the
structural units can thus not be resolved anyhow with the
bandwidth of the used data.

In the following, we denote the response of the UTs by Gyr
and use a similar notation for the LTs, the SD, and the LD. The
derivation below is in the frequency domain and applies to the
west section of the bridge, but the same reasoning applies to the
east section. Consider, for example, the motion in sensor 20 at
the intersection of the westmost tower and the deck (Fig. 1).
The motion at sensor 20 is influenced by waves propagating to
the right from the SD, by waves propagating to the left in the
LD, by waves propagating downward from the UT, and propa-
gating upward in the LT. Consider, as an example, the waves
propagating rightward from the SD. The contribution of these
waves to the motion u,,(w) at the intersection of the westmost
tower and the deck is given by the motion u;y(w) recorded in
the SD times the response Ggp(w) of the SD, giving a total con-
tribution Ggp(w)u;o(w) to the motion uyy(w). Adding the
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contributions of the four waves that move toward sensor 20
gives the top equation of the following system:

tz0(w) = Gsp(w)uip(w) + Grr(w)uis(w) + Grp(@)usg(w)
+ Gur(w)ty5(w),
Uys(w) = ﬁ”zo (w),
Uy (w) = GLD (@) ———— (@) + ——— GLD () o (),
tgo(w) = Gsp(w)ty7(w) + Grr(w)uss(w) + Grp(w)uys(w)
+ Gur(w)ugy(w),
O e ()

The transfer function between the motion at points A and B is
defined as Gp(w) = uy(w)/up(w). It follows from this defi-
nition that

Gap(w) = 1/Gpp(w). ()

The response of the UT is, in the frequency domain, defined as
the ratio of the motion at base of the UT to the motion at the
top of the UT. For the western tower of the west section this
gives with the property (2) the second equation in the sys-
tem (1). The response Gip of the long deck is defined as
the ratio of the motion at the point of intersection of the
tower-end of the deck to the motion in the middle of the deck.
With property (2), this implies that 1/Gyp is the ratio of the
motion in the middle of the deck to the motion at the endpoint
of the deck. Referring to Figure 1, this gives for the western
long deck the third equation of the system (1), in which we
used that the motion in the middle of the long deck is influ-
enced by the waves coming in from both towers. The last two
equations of the system (1) follow by applying the same rea-
soning to the eastern half of the west section of bridge.
The linear system (1) can be rewritten as

y = Ax, (3)
with
Usg(w)
() o
Y= | tho(w) + ugy(w) | X= GLT (@) (4)
Uyg (w) GLD
tyo(w) ur(@)
and
up(w) tg(w) tg(w) Us(w)
0 0 0 Uys(w)
A= 0 0 Uyg(w) 0 . (5)
Uy (W) Uus(w)  Uyg(w) Uy (w)
0 0 0 Uy (W)
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Equation (3) constitutes a
linear system of equations in
which y and the matrix A are
determined by the data, and
that contains the transfer func-
tions in the vector x. This sys-
tem is overdetermined; thus,
we compute the damped least-
squares solution

X5 = (ATA + 81)_1ATy, (6)

in which the dagger denotes the
Hermitian adjoint and I is the
identity matrix. The regulariza-
tion parameter is chosen to
be € = pA, . in which A, is
the largest eigenvalue of ATA
for all the frequencies consid-
ered. In the examples shown
here we used y = 5% because
we found empirically that this
leads to stable solutions that
do not depend much on varia-
tions in the used value of y.
This regularization extends the
water-level regularization used
by Snieder and Safak (2006)
to the system of equations that
we solve in the multichannel
deconvolution used here. We
compute the least-squares solu-
tion x;5(w) for all frequencies.
A Fourier transform then gives
the time-domain transfer func-
tions Ggp(f), Grr(t), Grp(b),
and Gyr(t). We repeat the
process for the east section to
retrieve the structural responses
of that section as well.

RETRIEVED TRANSFER
FUNCTIONS

The extracted transfer function
for the UTs is shown in
Figure 4. The transfer function
shows two peaks at travel time
t = £0.170 s. This response
can be compared with the trans-
fer function shown in figure 5
of Snieder and Safak (2006)
obtained by deconvolving the
motion at the bottom of the
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Figure 4. Transfer functions Gy;(t) for the UTs on the west section (W) and the east section (E) retrieved from the
four different earthquakes. Bottom panel shows the average of these eight waveforms. The vertical lines show the
time of the maximums in the average waveforms at t = —0.170 and 0.175 s. The color version of this figure is
available only in the electronic edition.

%1074
12 I Alum Rock (W) ||
| Alum Rock (E) ||
0 vwocx)g
=51 %1073
2
Berkeley (W)
Berkeley (E) pd g
7 v
o 0.01F -2
ke Piedmont (W)
é 0 - ‘Pliedmont (\E,) =
3 3
x10™
< -0.01
| South Napa (W) | | ’
South Napa (E) | |
70
1072 11
di — Average |
0
_1 L 1 1 1 ]
-2 -1 0 1 2

Time (s)

Figure 5. Transfer functions G, (t) for the LTs on the west section (W) and the east section (E) retrieved from the four
different earthquakes. Bottom panel shows the average of these eight waveforms. The vertical black line shows the
time of the maximums in the average waveforms at t = 0.05 s. The color version of this figure is available only in
the electronic edition.
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Millikan Library at Caltech with x1073

the motion at the top floor. As 1 Alum Rock (W) |
in that application, the pulse at 0 Alum Rock (E) [
negative time corresponds to -1 1073
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the deck to the top of the tower, Berkeley (W)

. Berkeley (E) 0
whereas the pulse at positive 7 2
time corresponds to the wave %1073
that propagates from the top of .8 5F Piedmont (W) | | -
the tower to the deck. Given the 2 0 WMJ\&OW\ Piedmont (E)
height of the UTs, the arrival Q 5t 1. .3
. S x10
times of these waves correspond <€ _qqg | 1o
to a shear velocity of about South Napa (W) ’[ 0
510 m/s. | South Napa (E)

The transfer functions

retrieved from the four different
earthquakes, the upper four
panels of Figure 4, all show the
peaks around t = #0.170 s,

1 1

even though the earthquake -2
data for the four events are
independent.  Similarly, the
peaks in the response functions
for the towers in the west sec-
tion (W) and on the east section
(E) are similar. This redun-
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Time (s)

Figure 6. Transfer functions G, (t) for the long decks on the west section (W) and the east section (E) retrieved from
the four different earthquakes. Bottom panel shows the average of these eight waveforms. The vertical lines show
the time of the minimums in the average waveforms at t = —0.545 and 0.535 s. The color version of this figure is
available only in the electronic edition.

dancy provides a consistency
check on the retrieval of the
transfer function. The average
of the eight retrieved transfer functions is shown in the bottom
panel of Figure 4; the averaging reduces the noise in the retrieved
transfer functions while enhancing the upward and downward
propagating waves. The noise level in the deconvolved wave-
forms in Figure 4 is higher than it is in the deconvolved wave-
forms of Snieder and $afak (2006) for the Millikan Library. We
attribute this noise to the vibrations that are generated within
the bridge, for example, by wind or traffic. Because these internal
sources are not accounted for in the theory, this leads to inco-
herent background noise. The extracted response of the UTs in
Figure 4 is slightly larger for the west section than for the east
section. This could be caused by a different level of excitation of
the two sections of the bridge by the earthquakes that, because
of the used regularization, leads to a different strength of the
extracted response.

For the Millikan Library, the ratio of the amplitude of the
upgoing and downgoing waves could be used to estimate the
attenuation in the building (Snieder and Safak, 2006). In con-
trast, Figure 4 does not show a clear difference in the amplitude
of the upgoing and downgoing waves. Given the used frequen-
cies, the peaks corresponding to the upgoing and downgoing
waves are at most two periods apart. For a quality factor
Q = 30, this would lead to a reduction in amplitude given
by exp(-wt/2Q) = exp(-nt/TQ) = 0.8, in which T denotes
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the period. Given the noise level of about 20% in the decon-
volved waveforms in Figure 4, such a reduction in amplitude
cannot be resolved.

We show the extracted transfer function for the LT in
Figure 5. The estimated transfer functions for the different
earthquakes and the LTs on the east and west side all show
a pulse at a time t = +0.05 s. For other times, the extracted
transfer functions are not coherent. Given the height of the LT,
this pulse corresponds to an upward propagating wave that
travels with a shear velocity of about 900 m/s (Table 2).
This velocity is higher than the shear velocity in the UT, which
can be attributed to the stiffer construction of the LT compared
to the UT. In contrast to the transfer function for the UT that
consists of pulses at positive and negative times (Fig. 4), the
transfer function for the LT shows a pulse at positive time only
(Fig. 5). The top of the UT is stress free; thus, waves are
reflected with a reflection coefficient R = 1, and thus a down-
going wave is generated that is comparable to the upgoing
wave. In contrast, the top of the LT is at the bridge deck,
and an upward propagating wave will partly continue upward
in the UT, and it will partly propagate outward along the decks,
so that little energy propagates downward.

Figure 6 shows the extracted transfer function of the long
deck. As in the case for the UT (Fig. 4), the transfer functions
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obtained from different earth-

quakes and for the east and

west sections show two coher- 0 {\/\/\A/"\/\/\‘ Ny
ent arrivals that are superposed

Alum Rock (B) | |

on incoherent fluctuations.
The coherent waves arrive at
t = +0.540 s,

sponds to a shear velocity of

which corre-

0.01

651 m/s. The incoherent
waves in the response for the

long deck (Fig. 6) are stronger

Amplitude

-0.01

than for the UT (Fig. 4). This is
likely due to the fact that traffic
acts as a noise source on the
decks. Because internal sources

are not included in the system 2
(1), this internal noise produ-
ces incoherent arrivals in the

L 1

extracted transfer functions.
For the east section, the
extracted transfer function of
the SD is shown in Figure 7.
As with the long deck, two
coherent waves arrive, now at
t = £0.530 s. This arrival time
corresponds to a shear-wave

edition.

0 1 2
Time (s)

Figure 7. Transfer functions Gsp(t) for the SD on the east section retrieved from the four different earthquakes.
Bottom panel shows the average of these four waveforms. The vertical lines show the time of the minimums in the
average waveforms at t = —0.520 and 0.540 s. The color version of this figure is available only in the electronic

velocity of 689 m/s (Table 3).

This velocity is within 5% of the shear velocity for the long
decks, which is not surprising because the decks have a similar
structure. For the west section, the extracted response for the
SD is so noisy that a coherent wave does not stand out. This
may be caused by the noise that is generated by the traffic in
this section. Together with the shorter travel times of waves
traversing that deck, this noise masks coherent arrivals.

DISCUSSION

Although multichannel deconvolution is in general ill-posed,
we show that we can use the fact that the Bay Bridge consists
of near-identical units (e.g., towers) with the same structure to
set up a linear system of equations for the transfer function of
these units that is well-posed. The response of the UTs, LTs,
and two types of decks extracted from recordings of different
earthquakes is similar, and the extracted response for the
western section and eastern section of the bridge is similar
as well, which provides a consistency check on the estimated
transfer functions. The more rigid LT has the largest shear
velocity.

The details of the matrix and vectors in equation (1) depend
on the mechanical connections within the structure that is
studied, as well as on the location and availability of acceler-
ometers. As shown in the Introduction, multichannel decon-
volution is, in general, ill-posed. In this study, we used the fact
that the Bay Bridge has near-identical towers and decks to
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make the multichannel deconvolution possible. Whether this
is possible for a general instrumented structure depends on the
mechanical connections in the structure, the presence of iden-
tical elements in the structure, and the locations where the
motion is recorded.

We limited the analysis to the motion in the horizontal
direction perpendicular to the bridge (the transverse direc-
tion). Applying the theory in its current form to the motion
in the vertical and inline horizontal directions needs a modi-
fication of the theory, and additional sensors. As shown in
Figure 2, the cables couple the vertical motion of the deck to
the vertical and inline horizontal motion at the top of the towers.
This coupling is not taken account in the vectors (equation 4)
and the matrix (equation 5). In addition, the motion in the

TABLE 3
Structural Units of the East Section the Transfer Function of
which We Estimate

Structural Unit Name Segment Length (m) Velocity (m/s)
Short deck SD aA, dC 379.5, 352.1 689
Long deck LD AB, CB 352.1, 352.1 651
Lower tower LT bA, cC 477, 43.4 910
Upper tower uT AD, CE 91.9, 82.7 505

The structural units refer to Figure 1.
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vertical direction and in the inline horizontal direction is, in
general, coupled at the intersection of the towers and the decks.
This coupling also needs to be incorporated into the matrix of
expression (5). This means that the theory, in its current form,
cannot be applied to the motion in the vertical direction and
the inline horizontal direction. The theory can be extended to
include the motion in these directions, but additional sensors—
for example, at the base of the vertical cables—may be needed
to arrive at a system of equations that has stable solutions.

The current deployment of accelerometers does not make it
possible to decompose the wavefield into waves propagating in
opposite directions. An array of sensors with a spacing less
than a wavelength could be used to decompose the wavefield
into upgoing and downgoing waves in the towers and into left-
going and rightgoing waves in the decks. This could be used to
decouple the system of equations that one needs to solve. For
example, if one knows the leftgoing and rightgoing waves at
both ends of a deck, one can set up a system for the transmis-
sion of a reflection response of the deck without having to take
the coupling of the deck with the tower into account. Arrays of
sensors also make it possible to estimate the response of struc-
tures under different boundary conditions from those of the
real physical structure, and such an array can also be used to
estimate intrinsic attenuation. If sensors are available with a
spacing significantly less than a wavelength, one can estimate
the spatial derivative of the wavefield. Together with the wave-
field itself, this derivative can be used to decompose the wave-
field into waves that propagate in opposite directions (Robinson,
1999). When this decomposition is known on both sides of
structural elements such as a deck, one can determine the prop-
erties of that element. Consider for example a deck, as shown in
Figure 8, in which pairs of sensors on both ends of a deck are
used to decompose the wavefield into waves u;, that move into
the deck and waves u,,, that move out of the deck. Let the trans-
mission coefficient for a wave moving to the right be denoted by
T and the reflection coefficient for a wave coming in from the
right be denoted by R. Then in the frequency domain and in the
notation of Figure 8

UouR = Tthin1 + Ritipr. (7)
This expression presumes there are no sources in the deck,

because such source would generate additional outgoing waves.
Solving equation (7) for T gives

Uout,R uin,R u;;,L
r UinL |tin ] ®
in which the asterisk denotes complex conjugation. u;, gusi, |
gives the correlation of the waves coming in for the left and from
the right. When these waves are uncorrelated, or when the
reflection coefficient R vanishes, the last term in expression (8)
is equal to zero, and
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Uout, L Uin, R
h Deck h
AA AA
ﬁ q
Uin, L Uout, R

Figure 8. Decomposition of the wavefield propagating through a deck into
incoming and outgoing waves at two locations of the deck. Triangles
indicate the location of accelerometers. The color version of this figure is
available only in the electronic edition.

”out,R
T — )
The transmission operator of the deck thus follows from the
deconvolution u,, z with u;,;. The phase of the transmission
operator gives the wave velocity and its amplitude the attenu-
ation. If the reflection coefficient R is nonzero, one can retrieve
the reflection coefficient by solving expression (7) for R to give

R = uout,R _

uin,[ u. n,R
”in,R |lliI1,R|

When the incoming waves on both sides are uncorrelated,
U U g = 0, thus

u
R = -k, (11)
Uin,R

This reasoning can be applied to deck elements and towers, which
shows that deploying pairs of sensors would obviate the need for
the multichannel deconvolution presented in this work.

Using arrays with a sensor spacing much less than a wave-
length would provide more accurate estimates of the spatial
derivative of the wavefield, and such arrays can also be used
to measure the local wave velocity. Decomposing the wavefield
into waves propagating in opposite directions also make it pos-
sible to estimate the response of structures under different
boundary conditions from that of the real physical structure
(Snieder et al., 2006) and to estimate intrinsic attenuation
(Newton and Snieder, 2012).

Our work shows that the structural response of the Bay
Bridge can be estimated from the incoherent excitation of the
bridge by earthquakes. This can be used to monitor changes
in the response of the bridge by comparing the estimated
response functions over time.

DATA AND RESOURCES
We used the data from the Center for Engineering Strong Motion

Data (https://cesmd.org, last accessed September 2019).
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