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ABSTRACT

The Groningen gas field in the northern Netherlands is subject
to production-induced earthquakes and has quickly become
one of the seismologically best-instrumented areas on Earth.
Accurate quantification of seismic hazard from potential future
earthquakes requires accurate shallow velocity structure for
ground-motion prediction. Toward this end, we present a
shear-wave velocity model developed through the joint inver-
sion of multimode Love- and Rayleigh-wave dispersion curves
(DCs) and H/V spectral ratio (HVSR) measurements. We ob-
tain local DCs from azimuthally averaged frequency–time
analysis of the cross correlation of the ambient seismic field
(ASF) between pairs of stations. HVSR is measured at each
station from the directional energy density, that is, the auto-
correlation of the ASF for all components. We simultaneously
fit these observables at each station of the dense Loppersum
array to infer a 1D velocity model from the surface to a depth
of ∼900 m. In the frequency range considered (∼1–7 Hz),
Rayleigh-wave DCs show high modal complexity, which makes
clear identification of the modes challenging and leads us to
downweight their contribution to the result. Fundamental-
and higher-mode Love-wave dispersion is much clearer. We
find good agreement between our model and independently
derived models of shallow structure, which validates our ap-
proach and supports the value of HVSR analysis as a tool to
map subsurface properties.

Electronic Supplement: Frequency–time diagrams, theoretical kx ,
omega diagrams, example joint inversion for site 235587, and
example of horizontal-to-vertical (H/V) spectral ratio (HVSR)
at station site 235587.

INTRODUCTION

The Groningen area in the northern Netherlands (Fig. 1a)
hosts one of the world’s largest onshore natural gas fields. Since

the beginning of its exploitation in 1963, it has been an im-
portant source of energy for western Europe. Its long-term ex-
ploitation has led to compaction at reservoir depth, and the
resulting subsidence induces earthquakes (van Thienen-Visser
and Breunese, 2015). In response to recent concerns about in-
duced seismicity in this region, the field operator, Nederlandse
Aardolie Maatschappij [NAM], along with the Royal Nether-
lands Meteorological Institute (KNMI) are leading an exten-
sive data acquisition and modeling program to quantify seismic
hazard and risk in the region (e.g.,van Elk et al., 2017). Part of
this response includes the construction of a permanent shallow
borehole microseismic network (the G-array; Fig. 1b) and the
deployment of temporary nodal seismic experiments involving
up to ∼415 three-component sensors (e.g., Spica et al., 2018).

Site characterization is an essential component of inte-
grated hazard assessment in the Groningen area (Bommer et al.,
2017; Rodriguez-Marek et al., 2017). The deltaic deposits cov-
ering most of the area with an average shear-wave velocity of
about 200 m=s are expected to have an appreciable influence
on ground motions by increasing the amplitude and duration
of shaking and by responding nonlinearly to incident seismic
waves in the event of strong shaking. Since the installation of
the G-array in late 2015 (Fig. 1b), several studies have devel-
oped region-specific models of the subsurface, with the goal of
reducing epistemic uncertainty in ground-motion prediction
models (Hofman et al., 2017; Kruiver et al., 2017; Spica, Per-
ton et al., 2017; Zhou and Paulssen, 2017; Noorlandt et al.,
2018). This study pursues this same objective through a novel
technique to develop a high-resolution near-surface VS model
of the Loppersum area (Fig. 1c), which currently has the high-
est induced-seismicity rate observed in the Groningen region.

Ambient seismic field (ASF) tomography (Shapiro et al.,
2005) is a widely used method to image seismic velocities at
regional (e.g., Sabra et al., 2005; Stankiewicz et al., 2012; Spica,
Legrand, et al., 2015; Spica, Perton, and Legrand, 2017) or
continental scales (e.g., Lin et al., 2008; Spica et al., 2016).
The method relies on the cross correlation of ASF recorded
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at different locations to approximate the Green’s function be-
tween seismic sensors (Shapiro and Campillo, 2004). The fre-
quency bandwidth of the retrieved Green’s functions (typically
0.05–0.5 Hz) depends both on the source characteristics and
the interstation distance. Because high frequencies attenuate
quickly with distance, most ASF results lack resolution of
the near surface. Small-aperture arrays, with short interstation
distances, are required to constrain the near-surface velocity
structure. Arrays with sufficiently small interstation distances
can be used to recover high-frequency dispersion curves (DCs)
that constrain the local 1D velocity structure for the upper few
hundred meters, and subsets of stations forming small-aperture
subarrays can be used to achieve good horizontal resolution.

The possibility of retrieving the Green’s function from the
average time-domain correlation of ambient field records has
led to a new interpretation of Nakamura’s H/V spectral ratio
(HVSR) measurements (Nakamura, 1989). Sánchez-Sesma
et al. (2011) used the diffuse field assumption (DFA) to link
the H/V of the autocorrelated signal (i.e., the directional en-
ergy densities in Perton et al., 2009) to the ratio of the imagi-
nary parts of the 1D Green’s functions. This formulation
naturally allows for inversion of the structure at a site, and
the inversion of the full spectrum of the H/V ratio has emerged

as a powerful technique that has been applied to
diverse data sets and geological settings (Salinas
et al., 2014; Spica, Caudron, et al., 2015; Lontsi
et al., 2015, 2016; Rivet et al., 2015; García-
Jerez et al., 2016; Piña-Flores et al., 2016; Per-
ton et al., 2017; Wu et al., 2017). It has also
proven its potential to give a reliable velocity
model of the shallow subsurface using shallow
borehole observations from the G-array (Spica,
Perton, et al., 2017).

A drawback of the method, however, is that
H/V at the surface is insufficient to characterize
shallow properties uniquely because layer veloc-
ities and thicknesses trade off and lead to a similar
HVSR (Piña-Flores et al., 2016). Independent in-
formation such as surface-wave DCs (Scherbaum
et al., 2003; Lontsi et al., 2016; Piña-Flores et al.,
2016) or HVSRmeasurements recorded at differ-
ent depths (Lontsi et al., 2016; Spica, Perton,
et al., 2017) are two possible strategies for reduc-
ing this nonuniqueness. DCs extracted from the
ASF are sensitive to the absolute velocity; how-
ever, they suffer from their own nonuniqueness,
because the broad sensitivity kernels of surface
waves sample a wide range of depths, depending
on their frequency. In contrast, HVSR is pri-
marily sensitive to sharp shear-wave velocity
contrasts and vertical travel times, offering a com-
plimentary measurement.

We use data from the Loppersum array,
which is the first phase of the temporary three-
component nodal deployment (Fig. 1c), to

characterize the subsurface with high resolution using a novel
joint inversion of HVSR and Love-wave plus Rayleigh-wave
dispersion, as measured from seismic interferometry with
small-aperture array techniques. The ASF in the Groningen
area is remarkably rich in higher-mode surface waves (Spica
et al., 2018). Although higher modes are often considered as
a problem and then avoided, they provide strong constraints on
the velocity model because they are sensitive to different depths
than the fundamental mode at the same frequency (e.g., Tomar
et al., 2018). In the specific case of Groningen, we show that
Love-wave DCs are more clearly expressed than Rayleigh-wave
DCs, which leads us to downweight the contribution of the
latter in our joint inversion.

We construct the velocity model in three steps. First, we
extract the multimode group velocity DCs for Rayleigh and
Love waves at each position from azimuthally averaged cross
correlations for small subarrays. Second, we compute HVSR
at each station from its directional energy density. Third, we
fit the three sets of observables at each station of the array to
constrain the local shear-wave velocity structure from the sur-
face to a depth of ∼900 m. Finally, we reconcile the resulting
1D-layered profiles into a velocity model suitable for ground-
motion prediction at Groningen.

(a)

(c)

(b)

▴ Figure 1. (a) Location of the Groningen gas field in the northern Netherlands.
(b) Map view of the Groningen gas field area. Blue contour shows the boundary of
the gas field. Orange triangles depict the shallow borehole sites of the G-array,
which consists of 70 accelerographs at the surface collocated with a borehole
in which three to four geophones are installed at depth intervals of 30, 50, or
75 m. Small red triangles depict stations of the Loppersum array, reported as Trans-
portable Array (TA) in the legend. (c) Loppersum array (black triangles) and the
surrounding stations of the G-array (orange triangles). The two green triangles
depict the deep borehole locations: ZRP (western) and SDM (eastern). The line
of five stations close to the shallow borehole G18 are shown in red. Inversion re-
sults for these stations are highlighted in Figure 3. A detailed description of some of
the seismic arrays in the Groningen area is provided in Spica et al. (2018).
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DATA

The Loppersum array (Fig. 1c) is composed of 415 temporary
three-component stations with 5 Hz natural frequency almost
evenly spaced at ∼350 m. Stations were deployed for 45 days
(Julian days 284 to 329, 2016) around the town of Loppersum.
To compute the cross-correlation functions, we used the entire
available data set. HVSRs (see HVSR Analysis section) were
computed with 24 hrs of data that have been observed to
be long enough for their convergence in the frequency range
analyzed in this study (Spica, Perton, and Beroza, 2017).

AMBIENT SEISMIC FIELD CROSS CORRELATIONS

We obtained cross-correlation functions by computing power-
normalized cross correlations (cross coherence) between all
receiver pairs in the frequency domain (e.g., Nakata et al., 2013).
Prior to correlation, we removed instrument response and then
computed the vertical–vertical (ZZ) component along with the
radial–radial (RR) and the transverse–transverse (TT) cross cor-
relations, for which we applied a tensor rotation (Lin et al.,
2008). Examples of these correlations are shown and discussed
in Spica et al. (2018).

Surface-Wave Dispersion Analysis
To characterize surface-wave propagation, we employ the fre-
quency–time analysis (FTAN; e.g., Dziewonski et al., 1969;
Levshin et al., 1989), which is widely used to estimate group
velocity and DCs from interferograms (Bensen et al., 2007). At
each station, we use all available correlations within a radius of
600 m and average over FTAN diagrams between each station
pair to suppress the azimuthal dependency. We individually
apply FTAN to the ZZ, RR, and TT components of the cor-
relation functions.

Typically, we expect the fundamental mode of the surface
wave to be expressed most energetically as the global maximum
at each frequency in the FTAN diagrams. Curves with dis-
tinctly irregular behavior might either be rejected using formal
criteria or smoothed through small glitches by selecting realistic
local rather than global absolute maxima (e.g., Bensen et al.,
2007). This approach can be biased by osculation (touching)
of the fundamental and higher-mode DCs, by scattered arriv-
als, or by glitches and jumps due to noise.

The ASF recorded by the Loppersum array is rich in
higher modes (up to the second and third higher mode for
the Rayleigh and Love waves, respectively) as observed in
the FTAN diagrams (Fig. 2). To avoid incorrect assignment
of the group velocities and to take advantage of all possible
modes, we consider all local maxima rather than focusing
the global maximum. We obtain a series of different points,
some of which are related to surface-wave dispersion, while
others are artifacts. Our approach is to consider all of them
in the inversion process to fit as many modes as possible
and by doing so to improve constraints on the depth depend-
ence of the velocity model. Examples of FTAN diagrams with

multimaxima selection are shown in Figure 2 andⒺ Figure S1
(available in the electronic supplement to this article).

As observed in several studies (e.g., Lin et al., 2008; Spica,
Perton, and Legrand, 2017), the surface waves observed in the
TT correlations are Love waves, whereas both the ZZ and RR
correlations contain Rayleigh waves. If the medium is homo-
geneous and isotropic, both ZZ and RR should give similar
results. In our data, the small differences between ZZ and
RR FTAN diagrams (Ⓔ Fig. S1) are likely due to the different
strength of excitation between the components, local lateral
heterogeneities, and/or the presence of body waves in the small-
offset correlations (Spica et al., 2018). To reduce these effects, we
stack the ZZ and RR diagrams (Fig. 2 and Ⓔ Fig. S1c). As
shown inⒺ Figure S1c, this enhances the quality of the analysis
because it gives a clearer identification of the multimode DCs
with more continuous lines and fewer glitches (e.g., Campillo
et al., 1996).

A striking feature in Figure 2 is that the modal content of
the Rayleigh waves appears more complex than that of the Love
waves. To understand this behavior, we analyzed the expected
surface-wave dispersion based on the velocity model of Kruiver
et al. (2017) at borehole G18 site (Ⓔ Figs. S2 and S3).
The velocity model is shown in the first column in Figure 3.
As shown in the theoretical kx;ω diagram of Ⓔ Figure S2,
several Rayleigh modes are present, but they appear sporadi-
cally in the FTAN diagram because their energy is distributed
over at least three first higher modes. Because U � �∂ω=∂kx�,
Ⓔ Figures S2 and S3 cannot be expressed directly in the U
domain; however, the energy of the modes can be identified,
and points of osculation (touching) are apparent. In the U
domain (Fig. 2 andⒺ Fig. S1), the osculation points are clearly
identifiable through the complex interference pattern of the
modal energy maxima. The fundamental mode appears for
frequencies higher than 3 Hz, the first overtone from 2.5 to
3.5 Hz, and the second higher mode from 1 to 3 Hz (Fig. 2
andⒺ Fig. S1). In contrast, the fundamental Love-wave mode
is expected to be the most energetic for the entire spectrum and
is well separated from the higher modes (Ⓔ Fig. S3). A pos-
teriori analysis of the multimode DC in the �U; f � domain
based on one velocity model obtained from our inversion
scheme shows similar characteristics. In Ⓔ Figure S4, Love-
wave DC shows more-separated fundamental and first modes,
whereas Rayleigh-wave DC shows complex fundamental and
first. For both Rayleigh- and Love-wave DC, complex modal
patterns are observed for modes higher than the first.

The large number of higher modes and their crossings in
the �U; f � domain makes unambiguous identification of
particular mode branches challenging, and misidentification
of the modes would compromise the accuracy of the surface-
wave tomography (e.g., Jay et al., 2012). The local 1D ap-
proach considered here, with no a priori mode identification,
is an alternative that still takes advantage of the depth sensi-
tivity kernel of each mode in the inversion, while attempting
to avoid misidentifying modal contributions, to the extent
possible.
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HVSR Analysis
Following Sánchez-Sesma et al. (2011), we interpret the HVSR
recorded at a receiver in terms of the imaginary part of the
Green’s function:

EQ-TARGET;temp:intralink-;df1;52;400

H
V
�x;ω� �

��������������������������������������������������������
hju1�x;ω�j2i � hju2�x;ω�j2i

hju3�x;ω�j2i

s

�
������������������������������
Im�G11 � G22�

Im�G33�

s
; �1�

in which ui�x;ω� is the displacement spectrum component in
the direction i generated by a source applied in direction i when
source and receiver are superimposed at x and for frequency
f � ω=2π. Im refers to the imaginary part of the Green’s func-
tion (Gii), and the symbol hi denotes the average over multiple
time windows. Components 1 and 2 are in the horizontal plane
whereas component 3 is the vertical. In the first term of equa-
tion (1), the ju2�x;ω�j2 are the directional energy densities (Per-
ton et al., 2009). They correspond to the average autocorrelations
of the ASF, which under a DFA are proportional to the imagi-
nary part of the Green’s function. They are therefore treated as
classical ASF cross correlations but for the special case when the
source and receiver are coincident. Accordingly, we apply spectral
whitening to enhance equipartitioning of the wavefield (e.g., Ben-
sen et al., 2007; Spica, Caudron, et al., 2015; Perton et al., 2017;
Spica, Perton, et al., 2017). Because several sources can act in
different frequency bands, the whitening consists of normalizing
the signals by the source energies computed in each time window
(i.e., source deconvolution) and in several frequency bands as in
Perton et al. (2017). In addition to the whitening, Spica et al.

(2018) showed that high-frequency (> 1 Hz)
ASF at Groningen approximates equipartioning
in the near surface, making the DFA pertinent
for this study.

Equation (1) requires that the averaging is
performed separately for each component, so in
this respect the procedure differs from the usual
HVSR method (Nakamura, 1989). The average
is computed on the spectra obtained over one
day of continuous data that are windowed into
sections of 100 s duration with an overlap of
20%. Each time window is de-meaned, de-
trended, and band-pass filtered from 0.1 to
10 Hz. Examples of HVSRs along a line of sen-
sors are shown in Figure 3.

Attenuation might be a limitation for a
field to become diffuse and then equiparti-
tioned. Several studies have shown this limita-
tion for cross correlation with large interstation
distance (e.g., Lawrence and Prieto, 2011).
However, for HVSR the interstation distance
is null, and the attenuation has a similar effect
on waves in all directions. Provided that there
are sufficient nearby sources of noise, attenua-

tion should not be a strong limitation. Furthermore, Perton
and Sánchez-Sesma (2014) have shown theoretically that, in
the presence of attenuation, the autocorrelation is proportional
to the Im�G� for the same media but without attenuation.
In this contribution, the attenuation is not considered but
would be an interesting direction for future research.

1D JOINT INVERSION

In the second term of equation (1), the Im�Gii� components
are associated with the shallow local structure, which we
approximate locally with a horizontally layered geometry hav-
ing material properties that vary only with depth. Among the
several methods that exist to compute HVSR under the DFA
(e.g., García-Jerez et al., 2016; Perton and Sánchez-Sesma,
2016; Perton et al., 2017), we use the discrete wavenumber
method (Bouchon, 2003), due to its efficiency in solving the
forward problem for H/V (Sánchez-Sesma et al., 2011; Perton
et al., 2017; Spica, Perton, et al., 2017). For calculation of the
theoretical DCs, we follow the scheme presented by Perton and
Sánchez-Sesma (2016).

Individually, the inversion of HVSR observations and the
inversion of DCs lead to nonunique solutions (e.g., Piña-Flores
et al., 2016), but this nonuniqueness can be reduced signifi-
cantly by joint inversion of both measurements, which exploits
the complementary sensitivity of the two types of measure-
ments (e.g., Arai and Tokimatsu, 2004; Parolai et al., 2005;
Zor et al., 2010; Dal Moro, 2011; Lontsi et al., 2016; Piña-
Flores et al., 2016). HVSR carries information associated with
velocity structure, such as strong V S contrasts, but is weakly
sensitive to the absolute velocity. The DCs, on the other hand,
are sensitive to absolute velocity variation with depth due to

▴ Figure 2. Azimuthally averaged frequency–time analysis (FTAN) diagram of the
Rayleigh and Love group velocity obtained for Station 235838. The position of
the reference station is highlighted as a red dot in the map in the small inset
in the upper middle of the figure. Blue dots in the map surrounding the reference
station are the other stations used for the analysis within a 600-m radius. Light blue
dots in the FTAN diagrams depict the global maximum, and black dots depict local
maxima used in the inversion. In this example, the modal content of the Rayleigh
wave is clearly more complex than that of the Love wave. Automatic picking of the
global maximum would fail to consistently identify the fundamental mode.
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their frequency dependence (i.e., the sensitivity kernels), but only
weakly sensitive to the details of the layering. Furthermore, these
two sets of measurements probe slightly different structures.
HVSR is a local measurement sampling the structure along
an essentially vertical path under the station (e.g., Maupin,
2017), whereas the DCs are expressed across small subarrays.
Azimuthally averaged DCs are therefore sensitive to the average
of the velocities below the area of all the stations used to com-
pute the local DCs. For laterally heterogeneous structure, the
joint inversion yields, at best, a smoothed version of the true
velocity structure.

Joint inversion of these two sets of measurements presents
several challenges because we must capture the available infor-
mation in the DCs and HVSR through appropriate weighting.
DCs and HVSR have different units, sampling rate, and scal-
ing. Indeed, as shown in Piña-Flores et al. (2016), HVSR
should be sampled logarithmically to cover a large frequency
bandwidth and preserve features. In contrast, DCs are smooth
and well suited to linear sampling because the depth sensitivity
is proportional to the surface-wave wavelength and hence

inversely proportional to frequency. Because the Rayleigh
and Love modes are of variable quality and only partially re-
covered, the number of modes extracted varies from one site to
another. As explained in the Surface-Wave Dispersion Analysis
section, the modes also interact at osculation points (Ⓔ
Fig. S1). Additionally, the bandwidth of the HVSR considered
in this study spans almost two orders of magnitude because all
HVSRs present peaks at both low and high frequencies (Fig. 3;
see Results and Discussion section). HVSR carries information
on both shallow (≤ 100 m) and deeper (∼800 m) velocity con-
trasts (e.g., Lin et al., 2012; Spica, Caudron, et al., 2015; Piña-
Flores et al., 2016). Proper fitting of the entire spectrum would
require a large number of layers to represent correctly the entire
velocity profile. The large number of degrees of freedom that
result would introduce numerical instabilities in the Green’s
function calculation (Perton and Sánchez-Sesma, 2016), con-
siderably slow the inversion, and increase the degree of
nonuniqueness. To address these issues, we simplify the repre-
sentation of the velocity structure at each frequency considered
during inversion according to the body- and surface-wave

▴ Figure 3. Examples of 1D joint inversions at different sites along a line of sensors highlighted in Figure 1. The ID of the stations used is
shown on top of each column along with their misfit. From top to bottom of each column we show the multimode Rayleigh dispersion
curves (DCs), the multimode Love DCs, the H/V spectral ratio (HVSR), and the estimated velocity model. In the first column of the velocity
model panel, we also show the velocity model of Kruiver et al. (2017) at borehole site G18.
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wavelengths and reduce it at the depth for which there is no
more sensitivity (typically five times the surface-wave wave-
length) (Perton et al., 2017). For this reason, at high frequency,
only the shallow part of the structure is considered, and at low
frequency the very small shallow layers are merged, while con-
serving propagation time of waves.

Although the joint inversion helps mitigate the non-
uniqueness of the problem, the problem remains highly non-
linear with numerous local minima. Perton et al. (2017)
showed that inverting several positions at the surface simulta-
neously and constraining the thickness and velocity variation
horizontally helps convergence toward a stable solution. Lontsi
et al. (2015) and Spica, Perton, et al. (2017) applied a similar
strategy but with stations at depth inside boreholes. In those
cases, the degree of heterogeneity and the relatively large sensor
spacing (i.e., ∼350 m) made this approach infeasible. Defini-
tion of an appropriate objective function is an important step
in converging to a stable result, and adding constraints, par-
ticularly accurate prior information if it is available, can also
help reduce the degree of nonuniqueness.

Objective Function
At each station, we use local group velocity DCs for the funda-
mental- and higher-mode Rayleigh and Love waves, as well as
HVSR measurements to estimate shallow velocities and layer
thicknesses. Because we carry out no explicit mode identifica-
tion, the data are not interpolated and only data points close
to the frequency sampled by the theoretical curves are consid-
ered. This approach is comparable to the one developed byMar-
aschini et al. (2010). After testing several objective functions, we
adopted one that includes the fundamental mode and two first
higher modes of the surface Rayleigh and Love waves along with
the HVSR curve as follows:

EQ-TARGET;temp:intralink-;df2;52;349

WHVSRCHVSR
1

NHVSR

Xf HVSR
max

f HVSR
min

�
Hcomputed

V
−
H observed

V

�
2

ϵ2 � �CDC
1
NU

�Xf Umax

f Umin

X1stRay
modes�0

AF2�U observed − U computed�

�
Xf Umax
f Umin

X1stLov
modes�0

AF2�U observed − U computed�
�

�2�

with

EQ-TARGET;temp:intralink-;;52;190 F�x� �
( x; if x < threshold
threshold if threshold < x < 2 × threshold
0; otherwise

:

The normalization factors CHVSR � 1=�2e−3� and CDC � 100
were adjusted so that the summed residuals, respectively,
for HVSR and for the DC are almost unitary at the end
of the inversion procedure for the best fit. The weight

WHVSR � 10 controls the relative influence of HVSR versus
DCs in the analysis. Here a higher weight is given to HVSR
to result in a better fit of HVSR and to use the DCs as a sort
of regularization. NHVSR and NDC are the number of sampled
frequencies logarithmically and linearly, respectively. U is the
group velocity. The function F�x� excludes spurious arrivals with
unrealistic high or low velocities. In the inversion, the weight A
given to the fundamental-mode Love wave is twice that given to
the Rayleigh (all modes) and Love higher modes. This weighting
factor is motivated by the analysis presented in the Surface-Wave
Dispersion Analysis section.

Parameterization
The only free parameter considered in our inversion is VS , the
shear-wave velocity. We focus on estimating the shear-wave
velocity for several reasons. Both Love- and Rayleigh-wave
dispersion are more sensitive to VS than to other parameters.
This is true for HVSR as well (Spica, Caudron, et al., 2015).
Moreover, strong ground motion prediction is most strongly
dependent on the shear-wave velocity structure, so our focus
follows also from our interest in strong ground motion predic-
tion. We need density and P-wave velocity too, of course, so we
infer the density and the compressional-wave velocity to V S
through empirical relationships of polynomial form (Berteus-
sen, 1977; Brocher, 2005).

We use a harmonically averaged V S model from Kruiver
et al. (2017) at Station G18 (Fig. 3, first column) as the starting
velocity model for the inversion for all locations. We use a con-
strained nonlinear optimization procedure (gradient method;
Byrd et al., 1999) to minimize the misfit (ϵ); however, when
considering a large number of layers, the sensitivity to the
parameters decreases. To reduce this effect, the inversion is per-
formed iteratively following the approach described in Spica
et al. (2016); that is, a layer is inserted between the two layers
showing the highest sensitivity (misfit variation for a given
velocity variation), and only the parameters of the five sur-
rounding layers (two on each side of the inserted layer) are
estimated. This process is repeated iteratively until an accept-
able misfit (≤ 45), or a maximum number of layers (20), is
reached. Furthermore, to regularize the inversion, we limit the
velocity difference to 25% between adjacent layers and to 30%
relative to the initial model.

Despite these strong constraints and a good starting veloc-
ity model, 41 1D inversions did not succeed in lowering the
misfit to an acceptable level (Ⓔ Fig. S5). Most of these show
an unrealistic HVSR shape that might be caused by coherent
ASF sources, such as transients related to production. Indepen-
dent H and Vclearly show sharp peaks localized around several
frequencies (0.5, 1, 1.5, 2, 2.5,… Hz). These peaks generally
disappear in the HVSR but not at all locations. Because we
believe them to be spurious, we exclude them from further
analysis. A map of the repartition of the misfit values over
the Loppersum array and the rejected measurements are shown
in Ⓔ Figure S5.
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RESULTS AND DISCUSSION

Examples of the joint inversion results along a
line of sensors starting with Station 235859 is
shown in Figure 3. All the HVSRs present sim-
ilar characteristics and shape, that is, one broad
peak around 2–4 Hz that varies strongly in
shape and amplitude and two other peaks
around 0.15 (Ⓔ Fig. S6) and 0.4 Hz. The
0.15 and 0.4 Hz peaks are extremely stable fea-
tures over the entire array; however, the 0.15 Hz
peak amplitude was not calculated with suffi-
cient confidence to be used during inversion;
that is, large amplitude variations were found
when varying the number of the time windows
during autocorrelation (Ⓔ Fig. S6). The peaks
at 0.15 and 0.4 Hz are due to strong impedance
contrast at about ∼800 depth, which corre-
sponds to the transition between the Lower
North Sea Group and the Chalk Group (e.g.,
Spica et al., 2018). The large peak at 0.15 Hz
is due to the surface-wave contribution, and
the small peak at 0.4 Hz is due to the body-wave
contribution (Piña-Flores et al., 2016). As dis-
cussed below, this interface is not well con-
strained in our inversion.

In Figure 3, most of the spatial variability
in the velocity model is observed in the upper
∼200 m. Below that, the 1D models quickly
evolve toward a gradient-like structure, as in-
ferred in previous studies (Kruiver et al., 2017;
Spica, Perton, et al., 2017). Interestingly, all
velocity models in Figure 3 show an inversion
of velocity in the first ∼100 m. Because the har-
monically averaged starting velocity model removes small
velocity inversions in the velocity model of Kruiver et al.
(2017), this feature is not related to the initial starting model.
This feature has also previously been observed in the velocity
models of Spica, Perton, et al. (2017). Numerical simulation
shows that this velocity inversion leads to 20% amplification in
the HVSR around 1 s when compared with the case where the
velocity inversion is replaced by a gradient. This last point is
potentially important for ground-motion prediction.

In Figure 4, we show the distribution of estimated veloc-
ities for the entire array at different depth levels (30, 60, 100,
200, 300, and 500 m). In the upper panels of Figure 4, we show
the distribution of the velocity at each depth. From the lateral
distribution of the velocities, we are not able to identify any
clear geological structure at the scale of the array. Instead,
we observe a scattered pattern of velocities from site to site,
especially in the shallowest layers where the range of velocities
is as large as a factor of 2 (Fig. 3). The variability then decreases
with depth until 300 m, where it again increases. Several factors
might contribute to this pattern. The topmost ∼200 m of the
Groningen area comprises thick layers of unconsolidated sedi-
ments that contain strong vertical and lateral heterogeneity

(e.g., De Mulder et al., 2003; Kruiver et al., 2017). It is likely
that the interstation distance of ∼350 m is larger than the vari-
ability of the geological structures. We also note that our in-
version scheme does not completely account for 3D structure.
Although all inversions begin with the same starting velocity
model, no physical smoothing is applied from station to
station, which makes the inversions largely independent. Fi-
nally, the DCs obtained from azimuthally averaged FTAN
sample frequencies ranging from ∼1 to ∼7 Hz are only weakly
sensitive to depths greater than ∼500 m (Spica et al., 2018).
For that reason, absolute velocities at depths deeper than
∼500 m are likely not well constrained by our observations.
That explains why the variability with depth increases again
at 500 m. This characteristic is well observed in Figure 5, which
shows all the velocity models obtained at each station and com-
pared with other velocity models obtained independently for
the Loppersum array. While the range of velocities and layer
thickness is relatively low in the first ∼500 m, these parameters
vary much more at greater depth, suggesting much lower sen-
sitivity of the method. The poor sensitivity of the parameters at
these depths is due to the fact that HVSR only carries infor-
mation below 1 Hz, and only weak constraints are added by the

[m/s]

[km/s] [km/s] [km/s] [km/s] [km/s] [km/s]

▴ Figure 4. Distribution of the velocities obtained from the 1D inversion at all lo-
cations and sorted by depth. The top panels depict the variability of the velocities
as probability density functions. The other panels depict the variation of the veloc-
ities as a function of depth and as a function of station location.
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DCs. A large range of solutions may then fit the observed
HVSR acceptably well (e.g., Piña-Flores et al., 2016); however,
prior knowledge of the shallow structure tends to help mitigat-
ing the nonuniqueness of the solution. Although highly vari-
able in each individual velocity model, the interface at ∼800 m
can still be approximated by considering the average velocity
model from all the 1D inversions (thick black line in Fig. 5).

The averaged V S model evolves gradually with depth and
features a major step at the depth of the Lower North Sea
Group and the Chalk Group interface. This contrast is not
as sharp as in other velocity models, but velocities and average
depth fit the other independent observations. This gradient-
like characteristic in the first ∼800 m is now well documented
for the region and is also documented by the velocity distribu-
tion in the upper panel of Figure 4. This feature is also in agree-
ment with the average shear-wave velocity versus depth for
marine sediments (Hamilton, 1976) An evident discrepancy
appears at about 500 m depth where the joint inversion does
not retrieve the Brussels sands layer. While this layer appears

with a strong velocity contrast in the SonicLog profile of the
SDM (eastern) borehole (Fig. 1c), the contrast is much weaker
in both the Kruiver et al. (2017) and in the NAM-gridded
velocity model. This feature is likely not retrieved in our in-
version due to the weak sensitivity of surface waves at these
depths. Moreover, it is not well expressed in the HVSR mea-
surements (i.e., no clear frequency peaks are observed in the
data), which suggest it may be a weak feature under most
of the Loppersum array. To enhance the sensitivity to the Brus-
sels sands and the ∼800 m velocity contrast in our inversion,
one possibility would be to merge our high-frequency DCs
with lower-frequency DCs obtained using larger-aperture sub-
arrays. Overall, our analysis demonstrates that the joint inver-
sion of local multimode surface-wave DCs along with full
spectrumH/Vcan retrieve the major characteristics of the shal-
low structure and also some deeper features.

CONCLUSIONS

Based on a DFA, we computed multimode DCs for both Ray-
leigh and Love waves and also HVSR. We extracted DCs from
cross correlation of ASF and HVSR from its autocorrelation.
These three sets of measurements were inverted jointly to assess
the 1D velocity structure at each of the 415 sites for a dense
large-N temporary array. The joint use of these measurements
helps reduce the degree of nonuniqueness.

The final product of this research is a new high-resolution
shallow velocity model of the Loppersum area in the Gro-
ningen gas field province. Individual 1D velocity models share
similar characteristics, especially in the first ∼500 m. These in-
clude an inversion of velocity at about 100 m, a gradient veloc-
ity structure from ∼200 to ∼800 m, and a sharp velocity
increase below. The inversion of velocity at ∼100 m depth
should be particularly relevant for ground-motion prediction.
The average velocity profile agrees well with previous results for
the Loppersum region. Although our analysis yields a single
consistent structural picture of the near surface in agreement
with the field data, it also highlights the large degree of vertical
and lateral heterogeneity in the shallow subsurface. The next
natural step for this study would be to integrate our results into
path-dependent ground-motion prediction for the Groningen.
For this reason, we provide along with this article in the Ⓔ
electronic supplement the inverted velocity models obtained
from the joint inversion at each station along with the average
velocity model.
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