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Geophysical inversion versus machine learning 
in inverse problems

Abstract
Geophysical inversion and machine learning both provide 

solutions for inverse problems in which we estimate model param-
eters from observations. Geophysical inversions such as impedance 
inversion, amplitude-variation-with-offset inversion, and travel-
time tomography are commonly used in the industry to yield 
physical properties from measured seismic data. Machine learning, 
a data-driven approach, has become popular during the past 
decades and is useful for solving such inverse problems. An 
advantage of machine learning methods is that they can be imple-
mented without knowledge of physical equations or theories. The 
challenges of machine learning lie in acquiring enough training 
data and selecting relevant parameters, which are essential in 
obtaining a good quality model. In this study, we compare geo-
physical inversion and machine learning approaches in solving 
inverse problems and show similarities and differences of these 
approaches in a mathematical form and numerical tests. Both 
methods aid in solving ill-posed and nonlinear problems and use 
similar optimization techniques. We take reflectivity inversion 
as an example of the inverse problem. We apply geophysical 
inversion based on the least-squares method and artificial neural 
networks as a machine learning approach to solve reflectivity 
inversion using 2D synthetic data sets and 3D field data sets. A 
neural network with multiple hidden layers successfully generates 
the nonlinear mapping function to predict reflectivity. For this 
inverse problem, we test different L1 regularizers for both 
approaches. L1 regularization alleviates effects of noise in seismic 
traces and enhances sparsity, especially in the least-squares method. 
The 2D synthetic wedge model and field data examples show that 
neural networks yield high spatial resolution.

Introduction
An inverse problem is the process of predicting the causal 

factor from the outcome of measurements, given a partial descrip-
tion of a physical system. The inverse problem is a reverse process 
that predicts an observation out of a model of the system (Tarantola, 
2005). Application of inverse theory is applied widely in science 
and engineering — for example, in geophysics, signal processing, 
medical imaging, optics, and computer vison. In the field of 
geophysics, inverse problems aim to retrieve subsurface physical 
properties from measured geophysical data such as exploration 
seismic data, magnetotelluric data, and controlled-source elec-
tromagnetic (CSEM) data. Full-waveform inversion, simultaneous 
inversion, and amplitude-variation-with-offset (AVO) inversion 
are common inversion methods used to recover physical properties 
such as P- and S-wave velocities or impedance using prestack 
seismic data.

Yuji Kim1 and Nori Nakata1

Geophysical inverse problems are often ill-posed, nonunique, 
and nonlinear problems. A deterministic approach to solve inverse 
problems is minimizing an objective function. Iterative algorithms 
such as Newton algorithm, steepest descent, or conjugate gradients 
have been used widely for linearized inversion. Geophysical 
inversion usually is based on the physics of the recorded data such 
as wave equations, scattering theory, or sampling theory. Machine 
learning is a data-driven, statistical approach to solving ill-posed 
inverse problems. Machine learning has matured during the past 
decade in computer science and many other industries, including 
geophysics, as big-data analysis has become common and com-
putational power has improved. Machine learning solves the 
problem of optimizing a performance criterion based on statistical 
analyses using example data or past experience (Alpaydin, 2009). 
Machine learning uses two major approaches to solve problems 
— supervised and unsupervised approaches, which we will discuss 
later. Artificial neural networks, naïve Bayes, and support vector 
machines are popular supervised learning methods for classification 
and regression. Previous studies show that machine learning and 
conventional geophysical inversion can be combined to solve 
inverse problems. Ray et al. (2014) introduce joint inversion of 
marine CSEM data using Bayesian methods. The Bayesian pos-
terior seafloor resistivity model is constrained by CSEM inversion 
data. The joint inversion could avoid subjective regularization in 
deterministic inversion and reduce computation for Bayesian 
methods. Reading et al. (2015) apply a random forest classifier 
with remote-sensed geophysical data to constrain and supplement 
a geophysical inversion method. Kuzma and Rector (2004) imple-
ment nonlinear AVO inversion aided by a support vector machine 
to yield the nonlinear inverse operator. Reflectivity inversion, or 
impedance inversion, has also been implemented using machine 
learning methods such as neural networks (Röth and Tarantola, 
1994; Calderon-Macias et al., 2000; Baddari et al., 2010), support 
vector machines (Rojo-Álvarez et al., 2008), and Bayesian learning 
(Ji et al., 2008; Yuan and Wang, 2013). The machine learning 
methods are proven to be effective when non-linearity or noise 
exist in the data.

Geophysical inversion and machine learning methods both 
are useful for solving inverse problems. In this study, we compare 
geophysical inversion based on a least-squares method and a neural 
network as a supervised machine learning method with examples 
of reflectivity inversion and make clear the similarities and dif-
ferences between them. Least-squares minimizes the sum of the 
squared error difference between the desired and the actual signal. 
The least-squares framework is the most popular method not only 
to retrieve reflectivity but also to recover geophysical properties 
using other inversion. A neural network, which is used extensively 
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in machine learning, can model nonlinear and complex relation-
ships between input and output (Kappler et al., 2005). We first 
evaluate the resolution of these methods on thin beds using a 2D 
wedge reflectivity model. Regularization is a key factor to aid 
gradient descent to converge in an ill-posed problem. We present 
how a regularization term operates in two algorithms, especially 
in the presence of Gaussian noise. We also test sensitivity with 
regard to noise in the data. Finally, we apply these algorithms to 
field data sets and discuss the results.

Similarities and differences between geophysical  
inversion and machine learning approaches

Both geophysical inversion and machine learning involve a 
process that converts input data from the data space to the model 
space (Constable et al., 2015). An inverse problem can be formu-
lated as

y = Hx + w,                                      (1)

where H is a forward operator, y is observed data, and w is the 
noise component of the data. The objective of the inverse problem 
is to obtain an unknown model x. Typically in contexts of geophysi-
cal inversion, H and y are presumably known, and w and x are 
unknown to investigators. The objective function (also known as 
cost function) of the inverse problem in least-squares manner is

L = y −Hx̂
2

2
,                                  (2) 

where x $ is an estimate of model x.
Machine learning techniques are frequently classified depend-

ing on whether the technique is unsupervised or supervised. 
Unsupervised learning analyzes input data based on the distribu-
tion or underlying structure of the input data. The training data 
set in the supervised algorithm, on the other hand, includes input 
data and labels that are response values of input. In the machine 
learning approach, the forward operator H can be unknown. 
Instead, some portion of input data set xn and output data set yn 
are provided in the supervised learning case as a training data set. 
Machine learning approaches to inverse problems can be denoted as

Llearn = xn −HΘ
† yn 2

2
,                            (3) 

where Θ is a parameter set optimized during the learning process, 
and H †

Θ is a pseudoinverse operator or mapping function that 
is given by Θ (Adler and Öktem, 2017). For instance, neural 
networks approximate the inverse mapping from the data space 
into the model space using a nonlinear basis function with 
weights and biases. In this case, weights and biases that are 
determined during the learning process are equivalent to param-
eter set, Θ. The set of weights and biases in neuron layers defines 
the pseudoinverse operator.

Similarities
Ill-posed and nonunique problem. Inverse problems in geophys-

ics are likely under- or overdetermined, which means fewer or 

more equations exist than unknowns in a system. For instance, 
reflectivity inversion is an underdetermined problem because 
convolving reflectivity with the seismic wavelet has the effect of 
applying a low-pass filter. Applying a low-pass filter then causes 
the seismic traces to miss high-frequency content. The underde-
termined problem can have an infinite number of solutions if 
constraints are not provided. Because inverse problems can be 
illposed and/or nonunique, a regularization method or a priori 
information is adopted to reconstruct a feasible model and prevent 
amplifying noise. In both geophysical inversion and machine 
learning, overfitting is also avoided by adding regularization terms 
such as L1 or L2 regularizers.

Nonlinearity. Many geophysics inverse problems are nonlinear. 
Linear problems have a single minimum when solved with a misfit 
function. Nonlinear inverse problems, on the other hand, have 
multiple local minima (Snieder, 1998). It is challenging to search 
for a global minimum in large-scale nonlinear inverse problems. 
A deep neural network (DNN) in machine learning is an artificial 
neural network with multiple hidden layers between the input 
and output layers. A DNN can build a nonlinear mapping function 
with such hidden layers and nonlinear activation function (e.g., 
sigmoid function).

Optimization techniques. Machine learning approaches such 
as neural networks are similar to geophysical inversion that has 
a general framework of iterative error minimization using Newton 
method, conjugate gradient, or steepest descent. Both geophysical 
inversion and the training process in machine learning methods 
(e.g., full-waveform inversion and neural network) use forward 
propagation and back propagation to minimize error in gradient 
descent. Back propagation can be computed from a partial deriva-
tive of objective function. The goal of optimization is to reach the 
global minimum, the smallest value over the entire range of error 
functions. However, most inverse or machine learning problems 
are nonconvex, and thus gradient descent likely converges at local 
minima (Van der Baan and Jutten, 2000). Both the step size in 
gradient descent and learning rate in the neural network affect 
the speed of convergence. An adaptive step size or learning rate 
can converge the inversion efficiently.

Differences
To implement geophysical inversion, a forward operator should 

be given to investigators based on parametric equations such as 
Zoeppritz equations (AVO inversion) or wave equations (full-
waveform inversion) describing a specific physical relation of data 
and model space. Machine learning uses statistical techniques 
and makes decision boundaries for classification based on data 
distribution and density for unsupervised learning or human 
intervention and/or a priori information for supervised learning. 
Because machine learning methods are data-driven approaches, 
the feasibility of the method depends on training data sets and 
hyperparameters that are selected before the learning process.

Regarding reflectivity inversion as an example, when geophysi-
cal inversion is applied, a wavelet matrix is assumed to be known 
as a forward operator. However, machine learning does not use 
the forward operator or wavelet matrix explicitly. Only sets of 
seismic traces and reflectivity are used as training data. A machine 
learning model, which acts as a pseudoinverse operator, can be 
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generated in an infinite number of different cases depending on 
an investigator’s choice of hyperparameters.

Comparison of two methods applied to reflectivity inversion
Methodology. The seismic trace s(t) can be considered as a 

convolution of the seismic wavelet and earth’s reflectivity, which 
is denoted by

s(t) = h(t) * r(t) + w(t ),                           (4)

where h(t) is seismic wavelet, r(t) is reflectivity, and w(t) is 
seismic noise.

We implement supervised learning to recover true reflectivity 
r(t) using a DNN and compare it with conventional least-squares 
inversion (explained later). The advantage of using multiple layers 
in a neural network is to generate nonlinear mapping functions 
with high complexity. For the neural network problem, first we 
need to optimize parameter set Θ and build a pseudoinverse 
operator H †

Θ from training data sets. The objective function for 
this operator building is

Llearn =
1
2
rn t( )−HΘ

†sn t( )
2

2
+ λ θ ,                (5) 

where rn(t) is modeled reflectivity as training output data, and 
sn(t) is measured seismic traces as training input data. The L1 
weight penalty or regularization term λ||θ|| is applied to lead 
sparsity of reflectivity and to prevent overfitting, where θ is a 
parameter set to be optimized, which is equivalent to a set of 
weight and bias values in the neural network. λ is a nonnegative 
regularization parameter.

The learning process of the DNN generates a nonlinear map-
ping function H †

Θ, which is equivalent to the pseudoinverse of 
the forward operator. One can use any existing or synthetic data 
sets as the training data sets for the DNN if they represent the 
observed data well. We synthetically generate the training data 
sets from convolving a 25 Hz Ricker wavelet and reflectivity. The 
total number of training samples is equivalent to the multiplication 
of the number of reflectivity models and the number of observations 
in a reflectivity model (266,200 × 30 observations). Seismic traces 

are modeled from each reflectivity model and include 30 time 
samples with 2 ms intervals. A value of feature corresponds to a 
seismic sample with a time window that ranges from –40 to 40 ms 
at the current observation (Figure 1), thus the number of features 
is 41. The training output is the reflectivity value that corresponds 
to the seismic traces. In each reflectivity model, three reflectors 
vary in location and magnitude. Location changes with 2 ms 
increments, and magnitude ranges from –1.0 to 1.0 with 
0.2 increments for synthetic data sets. For field data sets, reflectivity 
magnitudes range from –1.0 to 1.0 with 0.1 increments. When 
the source wavelet is not close to 25 Hz, we can squeeze or stretch 
the signals and still use the mapping function for different data sets.

We construct our DNN model with an input layer, three 
hidden layers, and output layers. The three hidden layers have 
200, 100, and 50 neuron units, respectively. In a neural network, 
an activation function decides whether to convert an input signal 
of a node to an output signal or not. A rectified linear unit (ReLU) 
is efficient for DNN training with large data sets (Schmidhuber, 
2015). Here, we use ReLU as an activation function. To minimize 
the objective function (equation 5), adaptive moment estimation 
is adopted as a gradient-descent optimization algorithm. During 
the training process, 10% of neuron units are dropped to prevent 
overfitting of the DNN model.

After pseudoinverse operator H †
Θ is generated during the 

training process, we can estimate reflectivity for actual data s(t) using

r t( )! = HΘ
†s t( )  ,                                  (6) 

where r t( )!  is estimated reflectivity.
The inversion scheme we compare with the machine learning 

method is least squares with an L1 regularizer denoted as

L = 1
2
s t( )− h t( )∗r t( )!

2

2

+ λ r t( )! ,                    (7) 

where λ is a nonnegative regularization parameter. We invert r t( )!  
by minimizing the objective function (equation 7). The convolved 
wavelet is the same as what we use for the neural network method. 
The L1-norm regularizer recovers a sparse solution and is called 
basis pursuit (Chen et al., 2001; Wipf and Rao, 2004; Zhang and 

Castagna, 2011) in signal processing 
and least absolute shrinkage and selec-
tion operator in statistics.

Results and discussion
Synthetic models. The wedge model 

was tested to evaluate the predictability 
on thin beds for each approach. Figure 2 
shows inverted reflectivity using neural 
network and least-squares methods. The 
dominant frequency of the source wave-
let is 25 Hz, and hence the tuning 
thickness is 20 ms (Chung and Lawton, 
1995). Reflected waves of two reflectors 
in Figure 2c constructively interfere and 
produce a single event when wedge Figure 1. Description of training input and output data for reflectivity inversion using neural network methods.
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of the neural network and least-squares methods are 4.2 and 
5.4 ms, respectively. They are below the tuning thickness. (The 
peak frequency of the data is 25 Hz, yielding a one-quarter 
wavelength resolution of about 20 ms.) The neural network model 

classifies reflectivity based on features 
that are equivalent to the amplitude of 
seismic traces in each time sample of 
training data. The amplitude of two 
reflectors in Figure 3b can be differenti-
ated from  the amplitude of a single 
reflector, which is resolvable with the 
neural network method. Seismic traces 
of different polarities (Figure 2d) 
destructively interfere when reflectors 
are closely spaced. Figure 2f shows the 
neural network result, which resolves 
two reflectors even when the reflectors 
are closer than the tuning thickness. In 
the least-squares result, two reflectors 
are separated as two events at tuning 
thickness, but the locations of these 
events are wrong (Figure 2h).

In the case that the forward opera-
tor, which is equivalent to the wave 
matrix, is convolved with the reflectiv-
ity series, the problem becomes  
underdetermined and ill posed. 
Underdetermined problems can give 
rise to a nonunique solution. For 
instance, two closely spaced reflectors 
and one single reflector can lead to the 
same solution in this inversion. The 
neural network approach, on the other 
hand, has a sufficient number of dimen-
sions or features to build the inverse 
operator that can resolve thin beds 
(Figures 2e and 2f). A potential limita-
tion of the machine learning method 
arises when training data do not rep-
resent the problem because the data 
set is not sufficient for solving the 
problem and/or because input and 
output are not related. Also, an appro-
priate hyperparameter should be 
selected for good quality of model 
building. The machine learning method 
also suffers from the overfitting prob-
lem, which occurs when a function is 
closely fit to a limited set of data.

We examine the sensitivity of two 
methods for noisy data (Figures 4 and 5). 
We add white Gaussian noise to seismic 
traces with signal-to-noise (S/N) ratio of 
0, 2, and 4 dB. Here we measure the S/N 
as a ratio of signal power of the true 
reflectivity model compared to noise 
power. To test the sensitivity of the noise 

Figure 2. 2D wedge true reflectivity model with (a) two reflectors with positive impedance (even reflectivity pairs; red) 
and (b) two reflectors with positive impedance and negative impedance (odd reflectivity pairs; red and blue, respec-
tively). (c) and (d) Seismic traces modeled by convolving a source wavelet (25 Hz Ricker wavelet) and reflectivity shown 
in panels (a) and (b), respectively. (e) and (f) Predicted reflectivity using the neural network method from the data in 
panels (c) and (d), respectively. (g) and (h) Same as panels (e) and (f) but using the least-squares method.

Figure 3. Seismic traces adjacent to tip of wedge. Amplitude of two reflectors spaced (a) 4 ms and (b) 5 ms.

thickness is less than 20 ms. The neural network approach dis-
tinguishes two separate events narrower than the tuning thickness 
(Figure 2e), which shows better resolution than that of the least-
squares model (Figure 2g). In this example, the resolvable thickness 
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Table 1. Computation time of reflectivity inversion neural network and least-squares methods.

Inversion methods Number of 
processes

Elapsed time (in seconds)

Neural 
network

Training 1 837 s
Inversion 1 0.344 s/trace × (367 × 271) traces = 34,213 s

Least squares 1 1.89 s/trace × (367 × 271) traces – 187,973 s

Figure 4. (a) True reflectivity. (b) Seismic traces modeled from the true reflectivity. White Gaussian noise is added with different S/N levels: noise free, 4, 2, and 0 dB.  
(c) through (e) Recovered reflectivity using neural network method with the L1 regularization parameter (equation 5); (c) λ = 0, (d) λ = 3·10e-3, (e) λ = 5·10e-3. 
(f) through (h) Recovered reflectivity using the least-squares method with the L1 regularization parameter (equation 7): (f) λ = 10e-4, (g) λ = 10e-3, (h) λ = 10e-2.

Figure 5. Sensitivity of two algorithms with regard to the noise component of data. (a) Correlation coefficients between true reflectivity model and inverted model at 
different noise levels. White Gaussian noise is added with S/N level: noise free, 4, 2, and 0 dB. (b) and (c) Correlation coefficients for different L1 regularization coef-
ficients at each noise level using (b) neural network and (c) least-squares methods. We test 10 different models to compute the correlation coefficients, and the errorbars 
represent the standard deviation of different models.
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for two methods and evaluate an effect of L1 regularization with 
respect to the noise, we calculate the correlation coefficient between 
true reflectivity and inverted reflectivity for different regularization 
coefficients λ (Figure 5). We use 10 different models (one example 
is shown in Figure 4a) for estimating reliable correlation coefficients. 
For noise-free data, the neural network model yields high accuracy 
when the regularization term is not added (Figures 4c and 5a). This 
is because the regularization term induces underfitting, which reduces 
the accuracy for the data set. In the presence of noise, however, the 
proper value of the regularization term enhances the accuracy and 
suppresses noise (Figures 4d and 4e and 5a and 5b). The underfitted 
model means that the mapping function is smoother, and thus the 
model can recover the right solution in the wide range in noisy data 
sets. In the least-squares model, adding an L1-regularization term 
gives better results regardless of the existence of noise. Particularly 
for the least-squares model, because the inverse operator has the same 
effect as a bandwidth-broadening filter, the noise is amplified during 
the inversion process. The regularization term filters out these unde-
sired components when their Eigen values are small.

We also add the different level of noise to training data and 
apply inversion to a noisy test set to test the effect of noise in 
neural network training. Noise in training data can alleviate the 
effect of noise in test data and enhance prediction accuracy 
(Figure 6) since it prevents overfitting in the training process. It 
is known that training with noise is equivalent to adding a regu-
larization factor (Bishop, 1995). In the case of noise-free test data, 
however, noisy training data reduce the accuracy of the inversion, 
which behaves similar to a regularizer.

Field data example. We apply two algorithms to the 2D volume 
extracted from 3D field poststack seismic data and evaluate resolution 
of the inverted reflectivity. The seismic volume includes 367 × 271 
traces (Figure 7a). Traces are sampled up to 2.5 s with a sample 
interval of 2 ms. We estimate the source wavelet using a statistical 
method (Figure 7b). We use the source wavelet to generate a training 
data set for the neural network. The forward operator in the least-
squares method is also computed using the wavelet. The L1 regu-
larization parameter λ for neural network 
and least-squares methods are 0 and 
1.5E-5, respectively, which provides the 
minimum error between measured seis-
mic traces and seismic traces modeled 
from the inverted reflectivity for each 
method. The total computation times of 
the two methods are compared in 
Table 1. Even if the neural network 
method requires computing time for 
training, the time elapsed for the inver-
sion process in the neural network 
method is comparatively shorter than 
that of the least-squares method. The 
inversion result using a neural network 
shows higher resolution compared to 
measured seismic traces (Figure 8). The 
least-squares method also resolves thin 
beds; however, the reflectivity is less 
definite than one inverted using the 
neural network method. Also, the 

Figure 6. Correlation coefficients for different levels of noise in training data used 
in the neural network method. Noise in training data can alleviate the effect of 
noise in test data. In a case of noise-free test data, however, noisy training data 
reduce the accuracy of the inversion.

Figure 7. (a) A representative vertical slice of 3D field poststack seismic data 
tested for reflectivity inversion. An enlarged image of seismic traces in a black 
box is in Figure 8a. (b) Seismic source wavelet used for reflectivity inversion. The 
wavelet is extracted using a statistical method.

Figure 8. (a) Observed seismic traces (input data), (b) inverted reflectivity model estimated by neural network 
method and (c) inverted reflectivity model computed by the least-squares method. Inverted reflectivity in panels 
(b) and (c) show higher resolution than that of seismic traces in (a). Especially the neural network method (b) bet-
ter recovers sparse reflectivity of stratigraphic boundaries, which is indicated by red arrows.
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least-squares method shows a ringing effect or noise, especially 
around traces 220–240. Comparing inverted reflectivity of a trace 
in a vertical slice, the neural network model recovers sparsity of 
reflectivity series better than the least-squares method (Figure 9). 
The limitation of the neural network is that the seismic traces 
modeled from inverted reflectivity show minor error in amplitude.

Conclusions
We examine conventional geophysical inversion and machine 

learning as a methodology to solve an inverse problem. We show 
the similarities and differences of such methods based on math-
ematical expression and take reflectivity inversion as an example 
of an inverse problem. Convolving reflectivity with seismic wavelet 
works as a low-pass filter, which results in reflectivity inversion 
as an underdetermined ill-posed problem. The least-squares 
methods fit the data points using a concept of normal equation. 
The least-squares fitting provides a compromised solution that 
minimizes perpendicular offset between data points and model. 
In the machine learning method, especially neural network in 
this case, a set of weight values is multiplied to each feature.

During the learning process, weights are optimized to be 
able to classify reflectivity even when small differences are 
observed between different input data samples. This explains 
why the neural network displays higher resolution in the thin 
beds example. However, enlarging the difference and yielding 
high accuracy in the neural network method does not necessarily 
guarantee that the quality of the estimated model will be good. 
The pseudoinverse operator generated in machine learning 
methods relies on training sets and hyperparameters. If training 
data do not represent the distribution of data sets in real-world 
problems, the problem of so-called overfitting occurs.

Algorithms combining two methods 
can be suggested for general inverse problem 
or reflectivity inversion. If physical equations 
or forward operators are known, the machine 
learning method can supplement geophysical 
inversion. For example, higher resolution in 
reflectivity inversion can be yielded using 
machine learning methods. 
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