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Abstract Strong Swaves produce dynamic stresses, which bring the shallow subsur-
face into nonlinear anelastic failure. The construct of coulomb friction yields testable
predictions about this process for strong-motion records. Physically, the anelastic strain
rate increases rapidly with increasing dynamic stress, and dynamic stress is proportional
to the difference between total strain and anelastic strain. Nonlinear models of vertically
propagating S waves in layered media confirmed and illustrated analytical inferences.
The effective coefficient of friction bounds (clips amplitude) the resolved horizontal
acceleration normalized to the acceleration of gravity. There is a tendency for the
random signal from vertically propagating S waves to become transiently circularly
polarized at the maximum (clipped) resolved acceleration, as the acceleration compo-
nent perpendicular to the current acceleration adds weakly the resolved acceleration.
Frictional attenuation does not preferentially suppress high-frequency signal; it cannot
be modeled by increasing ordinary linear attenuation. In addition, an effect of shallow
cohesion is to allow brief pulses of strong high-frequency acceleration to reach the sur-
face. Frictional attenuation within deep overpressured aquifers suppresses shaking re-
corded at the surface, but does not simply clip amplitude at a given resolved
acceleration. The anelastic strain rate increases slowly with stress within shallow muddy
sediments. The accelerations from reverberations within such layers can exceed 1g.

Introduction

Horizontal motions from strong S waves are a major
concern for structural engineers. Strong shaking from large
events often continues over many cycles, allowing surface
shaking at the S-wave resonant frequency of the ground to
build up. Qualitatively with major earthquakes, the extensive
fault planes act as numerous high-frequency sources with
significant durations (e.g., Joshi et al., 2014; Sandeep et al.,
2014; Otarola and Ruiz, 2016).

The purpose of this article is to examine the approximate
rheology for nonlinear behavior when impinging S waves
generate high dynamic stresses and strains within the shallow
subsurface. Intuitively, shallow stiff rocks come into fric-
tional failure and dissipate energy. The nonlinear interaction
of S waves with other types of seismic waves provides evi-
dence on the reality of frictional behavior in the uppermost
tens of meters (Sleep and Nakata, 2015, 2016). A net effect is
that nonlinear attenuation reduces the overall wave ampli-
tude at the surface to less than it would have been in a fully
elastic medium. We give most of our attention to potentially
observable effects in the time domain that can be constrained
by scaling relationships. Observation of these effects would
support that shallow rocks in fact fail in friction. Mathemati-
cally, the frequency domain provides eigenfunctions for lin-
ear elastic waves, but not for nonlinear waves. We continue

to mention frequency with this caveat, because the term is
widely used and the concept is very useful for qualitative
discussions of nonlinear waves.

Approximate analytical and numerical modeling of shal-
low reverberations and nonlinearity of S waves is tractable
because they refract into nearly vertical paths in the low-
velocity shallow subsurface. Compact analytical expressions
and fast numerical methods arise for exactly vertical ray
paths and laterally homogeneous structure.

We obtain simple scaling relationships for complicated
situations that provide limits for peak ground acceleration
(PGA) for S waves. We begin by comparing the implications
of frictional rheology and flow-law rheology in general with
the widely used Masing rules. Then, we discuss simplifica-
tions that accrue with the approximation of vertically propa-
gating S waves. For tractable quantification, we apply a
nonlinear numerical model for vertically ascending S waves
modified from the works of Sleep and Erickson (2014) and
Sleep and Nakata (2015) to laterally stratified rocks with
wave motion in both horizontal directions. We consider the
effects of a deep overpressured aquifer and reverberation of
strong S waves in shallow soil as societal applications.

As a caveat, 3D structure often has significant effects on
surface shaking. For example, Thompson et al. (2012) found
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that laterally homogeneous layers often do not give accept-
able models of low-amplitude wave transfer functions be-
tween collocated borehole and surface stations in Japan.
Acceptable laterally homogeneous results are more frequent
for California sites within flat-lying sediments (Afshari and
Stewart, 2015). At the sites where laterally homogeneous
calculations fail to represent shaking, impinging S waves
may produce significant vertical motion and P waves may
produce significant horizontal motion. Fully 3D, nonlinear
codes are available (Roten et al., 2014) and applicable if
shallow seismic structure is well constrained. Our purposes
are to illustrate rheological behavior that could be incorpo-
rated in such models and to provide scaling relations that will
help in formulating models and understanding their results.

Rheology

Numerical codes exist for nonlinear propagation of
seismic waves in 3D (e.g., Roten et al., 2014). Such codes
represent frictional failure, but have not been used to model
high-frequency vertical S waves within the shallow subsur-
face. Our intent is to model rocks in which friction provides
plausible rheology to find testable implications and help in
planning more onerous 3D numerical models. We present
general features of flow-law rheology, which includes the
well-known case of coulomb frictional failure. Then, we
briefly discuss the widely used Masing rules for soil failure
to put our frictional models for vertical S waves into context.

Frictional Rheology

We introduce rheology beginning with the implications
of the Drucker and Prager (1952) failure criterion for a rock
mass in 3D. In general, this failure criterion depends on the
second invariant of the deviatoric stress tensor jτj and the
mean stress P≡ σii=3, in which σ is the full stress tensor
compression positive.

Vertical S waves do not change mean stress. They pro-
duce shear tractions in the horizontal x and y directions on
horizontal planes perpendicular to depth z, that is, τxz and τyz.
The failure criterion then reduces to

EQ-TARGET;temp:intralink-;df1;55;251jτj2 � τ2xz � τ2yz � τ2other ≤ �ρgμz� C�2; �1�

in which τother represents other (properly normalized) com-
ponents of the deviatoric stress tensor that are not zero at the
free surface including the effects of the near-field velocity
pulse, Love waves, and Rayleigh waves. The parameter C
is cohesion, the strength at zero vertical normal stress, ρ
is density, and μ is the coefficient of friction.

The plastic failure criterion in equation (1) (in which the
anelastic strain rate goes from immeasurably slow to exceed-
ingly fast at failure) is a special case of a flow-law rheology.
In general, components of the anelastic strain rate tensor
ε′ij;an are proportional to the components of deviatoric stress
tensor τij and thus have the sense to relax this stress. For

vertical S waves, the vertical displacement and its spatial
derivatives are zero. The vertical gradients of the horizontal
anelastic displacement U yield the nonzero components of
the anelastic strain rate tensor: 2ε′xz;an ≡ ∂2Ux;an=∂z∂t and
2ε′yz;an ≡ ∂2Uy;an=∂z∂t. These components are proportional
to the horizontal shear tractions: �ε′xz;an; ε′yz;an� ∝ �τxz; τyz�.
Roten et al. (2014) modeled plastic failure as flow-law fail-
ure over a small finite stress range for numerical tractability.

In a flow-law formulation, the deviatoric stress depends
linearly on the elastic strain, that is, on the difference be-
tween the total deviatoric strain eij and anelastic strain εij;an.
For vertical S waves, the horizontal shear traction for
simple shear on horizontal planes is τiz � 2G�eiz − εiz;an�,
in which i is a horizontal direction, and G is the shear modu-
lus. The rate of energy dissipation per volume is the product
of resolved anelastic horizontal strain rate and resolved hori-
zontal shear traction (which here have the same orientation)
jτjjε′j. Nonlinear attenuation of a seismic wave is thus
strongly linked to anelastic strain. These simple features
are readily generalized to 3D as in the calculations of Roten
et al. (2014), but with significant computational burden.
Alternative formulations in which nonlinear energy dissipa-
tion does not lead to macroscopic anelastic strains include
Masing rules discussed in the next section.

In a simple flow-law approximation, the shear modulus
G retains its initial value, yielding testable predictions. Our
code can represent a slight or even a moderate decrease in the
shear modulus from damage ∂G=∂t ∝ −jε′j and its sub-
sequent healing ∂G=∂t > 0. We consider effect within shal-
low muddy sediments in the Application to Reverberating
Signal within Soft Sediments section as an application in
which the strain rate increases gradually with shear traction.
Our numerical code in the Appendix cannot represent lique-
faction and transient strengthening of saturated sediments
associated with sudden dilatancy (e.g., Bonilla et al., 2011).

Frictional failure of rock masses is likely to behave as
(flow-law) stress-dependent creep rather than sharp plastic
failure in equation (1). The construct of rate and state friction
strives to represent the anelastic part of this process, tradi-
tionally for sliding on a fault plane (e.g., Dieterich, 1979;
Ruina, 1983). Following Sleep and Nakata (2015), the 1D
anelastic strain rate (at the start of failure at given constant
normal traction P) is

EQ-TARGET;temp:intralink-;df2;313;217ε′ � ε′ref exp
�
τ − μrefP

aP

�
ψ−b=a
old ; �2�

in which ε′ref is the reference strain rate, μref is the reference
coefficient of friction, τ is the dynamic shear traction, and a
and b are dimensionless physical parameters of the order of
10−2. The parameter ψold is the state variable at the start of
shaking. The slip rate increases as the exponential of τ=aP.
A small relative change in τ changes the strain rate from
immeasurably slow to very fast. The state variable decreases
once slip begins, further increasing the strain rate at a given
stress. The net effect is that an individual fracture in the rock
either fails or stays intact. Near-total stress drop may occur on
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some fractures. A rock with a large number of identical hori-
zontal fractures might fail plastically, maintaining the failure
stress, or it might fail to a low stress with a large stress drop.

A more realistic rock model should represent numerous
fractures with different state variables, orientations, and dif-
ferent coefficients of friction. Some of these fractures likely
have prestresses leftover from residual stresses failure in pre-
vious seismic events. These fractures fail preferentially when
they are favorably oriented with respect to the new dynamic
stress. Still, the macroscopic (potentially predictable) strain
rate (averaged over many fractures) is expected to go from
very slow to quite fast over a range of dynamic tractions, but
more gradually than predicted by equation (2). The anelastic
strain rate is then formally

EQ-TARGET;temp:intralink-;df3;55;565ε′iz;an �
�
τiz
jτj

�
F�jτj=P�; �3�

in which F is a steep monotonic function with dimensions of
strain rate. The bracket indicates that anelastic deformation
occurs with the sense to relieve the deviatoric stress.

Masing Rules

For comparison, engineers and seismologists often use
Masing rules to model nonlinear failure of the shallow sub-
surface during strong shaking (e.g., Hartzell et al., 2004; As-
simaki et al., 2008, 2011; Phillips and Hashash, 2009; Tobita
et al., 2010; Santisi d’Avila et al., 2012; Kaklamanos et al.,
2015; Zalachoris and Rathje, 2015; Groholski et al., 2016).
This construct has different implications than flow-law rheol-
ogy, as it relates dynamic stress τ to dynamic strain ε.
Numerical modeling of failure using Masing rules is beyond
the scope of this article, as the code in the Appendix is
unsuitable for that task.

We continue qualitatively with the implications for ver-
tically ascending S waves. Horizontal tractions on horizontal
planes produce strain, that is, vertical gradients in the hori-
zontal displacement U. If the system is started at rest from an
unstressed τ � 0 and unstrained ε � 0 state, the initial low-
amplitude strain in one horizontal dimension is proportional
to the stress

EQ-TARGET;temp:intralink-;df4;55;245τ � Gintε; �4�
in which Gint is the elastic shear modulus (Fig. 1a). The dif-
ferential shear modulus Gdiff ≡ ∂τ=∂ε decreases at large
strains. The differential shear modulus returns to the elastic
shear modulus on strain reversal at point A. In Figure 1, this
sense of strain continues to point B. Strain reversal occurs
again and the strain returns to point A. Attenuation during
a cycle from A to B to A is proportional to the area bounded
by the hysteresis curve. The formalism can be extended to
account for more complicated stress–strain histories. Gener-
alization to 3D is feasible (Santisi d’Avila et al., 2012). In
addition, the stress for significant nonlinear behavior may
be based on coulomb friction and hence increase with depth

(Hartzell et al., 2004). (This modification retains the feature
of frictional attenuation discussed in the remaining sections,
that dynamic acceleration normalized to the acceleration of
gravity is bounded by the effective coefficient of friction.)
Some formulations are based on the rheology of unconsoli-
dated sand (e.g., Tobita et al., 2010).
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Figure 1. (a) Schematic diagram of Masing rules. The material
starts at zero stress and strain (point 0). For small strains, the
material behaves elastically and the stress–strain point moves par-
allel to the dashed line that extrapolates in normalized strain–strain
units (in which Gint ≡ 1) to (1,1). The slope of the curve decreases
with increasing strain. At point A, the sense of strain change re-
verses. The initial deformation is parallel to the dashed elastic line.
The strain and stress go to point B by following the lower thin curve.
On strain reversal, the strain–stress path returns to point A (upper
thin curve). (b) The path (thick dashed line) for a plastic material is
similar. The material reaches its yield stress at point F and continues
at this stress to point A. The sense of strain reverses and the material
deforms elastically to point −F in which the stress remains constant
until the sense of strain reverses at point B. The loops for power-law
deformation are similar to the plastic curve and differ slightly be-
tween sinusoidal strain rate (SSR, thin dashed line) and constant
strain rate (CSR, solid line). The color version of this figure is avail-
able only in the electronic edition.
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Masing rules, however, have unattractive features for a
physics based, as opposed to a semiempirical, model of non-
linear attenuation that motivate consideration of flow-law
alternatives. First, various formulations with numerous param-
eterizations are available to fit theoretical curves (as in Fig. 1a)
to experimental data (e.g., Assimaki et al., 2011; Groholski
et al., 2016). It is not obvious how these formulations relate
to the microphysics of fractured rock and thus how to extrapo-
late from the laboratory to the field. More importantly, strain
rate is not involved. The theoretical curve in Figure 1a is the
same if the material is driven at 100 or 0.01 Hz. In rheological
terms, no further strain occurs when soil is maintained at con-
stant stress and the stress remains constant if the soil is main-
tained at constant strain. Yet, one might expect real soil to flow
viscously under a large constant load and stress to relax under
constant strain. With regard to rocks, the anelastic strain rate
depends on stress in the formalism of rate and state friction in
equation (2) (e.g., Dieterich, 1979; Ruina, 1983). In both fric-
tional cases unlike Masing rules, a slight drop in the magni-
tude of deviatoric stress does not change the sense of the
anelastic strain rate. These features would become evident in
laboratory experiments. We are not aware of any suitable stud-
ies on relevant earth materials.

Conversely, Masing rules do provide similar predictions
to flow-law rheologies in simple experiments in which the
material is driven back and forth between macroscopic dis-
placements of �D, that is, strains of �ε as in Figure 1a. For
two examples, we consider that a material is driven around a
simple hysteresis loop for plastic and flow-law rheologies.

The stress–strain loop for a plastic material is a special
case of Masing rules (Fig. 1b). The strain remains constant if
the stress is maintained slightly below the failure stress. It is
also a special case of a flow law, in which the strain rate goes
from extremely slow to extremely fast at the failure stress so
that there is no explicit rate dependence in the loop in
Figure 1b. Thus, rapid strain would continue indefinitely,
if the material were driven at a stress infinitesimally greater
than the yield stress. The material behaves elastically until
the failure stress is reached at point F and this stress is main-
tained with further strain until point A. This is equivalent to
Gint � 0 at the failure stress. The sense of strain then reverses
and the failure stress in the opposite direction is reached at
point −F. Further strain continues until point B where the
sense strain reverses again. The material then follows a par-
allelogram-shaped hysteresis loop.

A flow-law material follows a similar hysteresis loop
when driven with these simple strain conditions. In the
example, the strain rate is proportional to the stress to the
third power (Fig. 1b). The imposed strain rate is constant
with either strain sense or varies sinusoidally. In both cases,
the initial deformation is essentially elastic. In the former
case, stress increases until the anelastic strain rate balances
the imposed strain rate. In the latter, the imposed strain rate is
low near the peak stress allowing anelastic strain to modestly
reduce the stress. The Masing curves in Figure 1a could be

made to more closely resemble the flow-law curves in
Figure 1b by adjusting the parameters of either simulation.

Thus, the differences between flow laws andMasing rules
become evident in the laboratory only when the material is
driven in a complicated manner (see Kausel and Assimiki,
2002). Conversely, the Masing rules may provide an adequate
description of nonlinear behavior in shallow subsurface for
simple earthquakewaves, especially if one seeks only the over-
all diminution of energy. This article concerns the complicated
signal and its details in the time domain, in which friction-
based flow-law rheologies provide testable predictions.

Frictional Failure of Shear Waves in the Shallow
Subsurface

We continue with the well-known theory of frictional
failure for vertical S waves. Our presentation is intended to
apply to originally stiff exhumed sedimentary and crystalline
rocks and likely to gravel. The mathematics apply to soft
mud with the caveat that the anelastic strain rate may increase
slowly with stress. Our intent is to have simple general
implications that can be tested against earthquake records.

Following Sleep and Erickson (2014), the laterally
homogeneous momentum equation in the horizontal direc-
tions indicates that acceleration is everywhere proportional
to the vertical gradient of the horizontal shear traction

EQ-TARGET;temp:intralink-;df5;313;425ρAi �
∂τiz
∂z ; �5�

in which i is the tensor index for a horizontal direction, ρ is
the density, A is the acceleration, τ is the stress tensor, and z
is the depth. We use equation (5) to present a general deri-
vation for failure stresses to illustrate the expected behavior
of flat-lying sedimentary rocks. The failure stress is propor-
tional to the effective stress

EQ-TARGET;temp:intralink-;df6;313;313τfail � μ�Plith − Pfluid� ≈ μ

Z
z

0

�ρ − ρfluid�gdZ; �6�

in which μ is the coefficient of friction, Plith is lithostatic
pressure, Pfluid is the fluid pressure, and g is the acceleration
of gravity. The first equality is general and includes the case
of artesian fluid pressure. The approximate equality assumes
that fluid pressure depends on the density of the overlying
fluid ρfluid, which is a function of Z, the dummy variable
for depth.

The vertical derivative of the approximate failure stress
in equation (6) is

EQ-TARGET;temp:intralink-;df7;313;164

∂τfail
∂z � μ�ρ − ρfluid�g�

∂μ
∂z

Z
z

0

�ρ − ρfluid�gdZ: �7�

The ∂μ=∂z term represents that some beds may have higher
coefficients of friction than other beds. For example, clay-
rich sedimentary units are expected to have lower coeffi-
cients of friction than clay-poor ones (e.g., Ikari et al.,
2009; Kohli and Zoback, 2013). However, horizontal shear
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tractions are continuous between the beds. For quarter-
wavelengths longer than the thicknesses of a few beds, the
weak beds with low coefficients of friction μweak fail first and
the failure stress is not reached within the strong beds with
high coefficients of friction. The effective coefficient of fric-
tion of a depth range of beds is approximately that of the
weakest beds. In 3D, the coefficient of friction of a rock mass
is approximately that of the weakest throughgoing cracks.

The vertical gradient of shear traction in equation (5) is
thus approximately limited by the vertical gradient of failure
stress for weak beds in equation (7):

EQ-TARGET;temp:intralink-;df8a;55;601ρjAj ≤ μweak�ρ − ρfluid�g; �8a�
in which absolute value sign indicates the resolved maximum
component of horizontal acceleration. (The gradient term in
equation (7) is assumed to be ∼0, because a series of beds
fails at the frictional strength of its weakest member. Our
numerical code in the Appendix can represent depth-
dependent coefficients of friction.) Solving equation (8a)
yields the well-known result that (at failure) the normalized
maximum acceleration (acceleration in g’s) is the effective
coefficient of the rock mass

EQ-TARGET;temp:intralink-;df8b;55;464

jAj
g

≤ μweak

�
ρ − ρfluid

ρ

�
: �8b�

The densities and the coefficient of friction in equations (8a)
and (8b) pertain to conditions at a given depth within the rock
mass where weak beds exist, rather than depth averages from
the surface.

We continue with vertical S waves that reflect off the
free surface. We assume isotropy, constant density, constant
shear modulus, no fluid pressure, and constant coefficient of
friction μ to compact notation. For the ith component of a
monochromatic wave, the displacement is

EQ-TARGET;temp:intralink-;df9;55;313Ui � U0i�cos�ωt� kz� � cos�ωt − kz��; �9�
in which the first term is the upcoming wave, the second term
is the downgoing wave, U0i is the upcoming maximum
amplitude at great depth, ω is the angular frequency, t is
the time, and k is the wavenumber. The shear traction is

EQ-TARGET;temp:intralink-;df10;55;236τiz � −G
∂Ui

∂z � GkU0i�sin�ωt� kz� − sin�ωt − kz��;
�10�

in whichG is the shear modulus. The shear traction reaches its
overall maximum of 2τ0i ≡ 2GkU0i � 2ρV0iβ, in which quar-
ter-wavelength depth π=�2k�, sin�kz� � 1, and β �

���������
G=ρ

p
�

ω=k is the S-wave velocity. (The quarter-wavelength depth
maximum is obtained from sin�ωt� kz� � sin�ωt� cos�kz��
cos�ωt� sin�kz�, which leaves the cos�ωt� sin�kz� term from
the difference in equation 10.) In the final equality, V0i is the
peak particle velocity of the ascending wave from differentia-
tion of equation (9) by time and applying β � ω=k.

At shallow depths in which kz < 1, the first term of the
Taylor series expansion of equation (10) (sin�kz� ≈ kz)
yields the well-known result that the peak shear stress is

EQ-TARGET;temp:intralink-;df11;313;697jτj � 2U0k2Gz � 2ρV0βkz � 2ρA0z ≤ ρgμz; �11�

recovering the result in equation (8b) at the failure stress.
Thus, a circle bounds observed values of �Ax; Ay�:

EQ-TARGET;temp:intralink-;df12;313;640

�
Ax

g

�
2

�
�
Ay

g

�
2 ≤

�
μ� C

ρgz

�
2

−
�
τother
ρgz

�
2

; �12�

in which the left side is the square of the resolved acceler-
ation in equation (8b). The right side generalizes the fric-
tional strength on the right side of equation (8b) to the
more general expression in equation (1) with cohesion and
other sources of deviatoric stress. The cohesion term in-
creases the diameter of the circle and the appropriate depth
in equation (12) is crudely the quarter-wavelength depth of
the dominant frequency on an acceleration seismogram. The
τother term reduces the diameter of the predicted circle at
times in which surface waves and the near-field velocity
pulse are significant.

This relationship (12) is approximately applicable for
the Lucerne record of the 1992 Landers earthquake (Fig. 2a).
Strong accelerations continued for ∼6 s at Lucerne (Fig. 2b).
Sleep and Nakata (2015) noted that the near-field velocity
pulse likely produced additional dynamic stresses in equa-
tion (12) and hence complicated nonlinearity beneath
Lucerne. The deviatoric stress increased as the rupture tip
approached Lucerne and then decreased as fault slip occurred
adjacent to Lucerne. In addition, strong P waves may have
transiently affected the normal traction on vertical planes
(Sleep and Nakata, 2015) and the structure is not fully
laterally homogeneous (Sleep, 2012).

Figure 2 still serves to show simple ways to examine real
data. We use it to qualitatively discuss expected features with
regard to numerical models. From equation (12), cohesion is
likely to be important very near the free surface where the
lithostatic stress is small. In addition, real seismographs are
moored at a finite depth, which has the net effect of cohesion.
Both of these features suppress failure from and nonlinear
attenuation of high-frequency waves with very shallow
quarter-wavelength depths.

Numerical Calculations

We modify the numerical model of Sleep and Erickson
(2014) and Sleep and Nakata (2015) to compute the anelastic
strain rate in equation (3) in two horizontal dimensions in the
Appendix. The code requires constant density, which is here
2250 kg=m3, appropriate for gravel and perhaps hard-rock
regolith. This value is too low for more or less intact crys-
talline rocks. The time step Δt is 0.00025 s, which oversam-
ples the uppermost layer at 0.1-m grid spacing in the
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Appendix. Failure cracks in a real rock could well be spaced
further apart than 0.1 m.

The numerical method is free of dispersion when the
product Δtβ of the time step and the shear-wave velocity is
the depth range in each numerical element in the Appendix.
Here, the shear modulus within each numerical element
remains constant during the calculations. Thus, we ignore
the modest effects of any new cracks produced when the rock
fails in friction in the majority of our calculations. Our
method by allowing the shear modulus within elements to
vary during shaking can represent the large dynamic
decreases in stiffness that sometimes occur in soils (e.g., As-
simaki et al., 2011; Nakata and Snieder, 2011; Wu and Peng,
2011). The appropriate failure criterion and recovery rheol-
ogy for such soil materials are discussed in the Application to
Reverberating Signal within Soft Sediments section. Lique-
faction is beyond the scope of this article.

The rate and state formulation in equation (2) implies that
cracks that have just failed should be weaker for later failure
during subsequent strong shaking. Rubinstein and Beroza
(2004) resolved this effect by observing decreases in the
low-amplitude seismic velocity after the Mw 6.9 Loma Prieta
mainshock and later ML 5.4 Chittenden earthquake. Rocks
that had already been shaken in the earlier event were dam-
aged by weaker shaking in the later event. In our case, we
would predict that PGA in equation (8b) would decrease dur-
ing prolonged shaking as the state variable in equation (2) de-
creased. We do not see this effect for the Lucerne record in
Figure 2b in which the strongest resolved acceleration oc-
curred late in the shaking. Thus, we did not includeweakening
in our numerical model, even though we could have done so.

We make additional approximations to keep the numeri-
cal approach simple. We ignore changes in normal tractions
and hence the behavior of friction during changes in normal
traction (Linker and Dieterich, 1992; Perfettini et al., 2001;
Wang et al., 2014), appropriately for vertical S waves. We
make no attempt to include changes in the rake direction of
horizontal shear traction and horizontal strain rate in the rheol-
ogy, that is, damage tensors (Sleep, 1998). The finite mass,
overburden weight, and elastic properties of buildings are not
included (e.g., Petrovic and Parolai, 2016). Qualitatively, the
mass per area of the building becomes important in the subsur-
face when compared with the mass per area of rock above
the quarter-wavelength depth. Where feasible, engineers often
remove compliant soil to place foundations of large edifices
on stiffer bedrock or insert pilings into bedrock. The effects in
this paragraph could be included in more sophisticated
numerical codes in 3D, productively to model strong waves
that impinge on a dense borehole array or a large structure.

We present two idealized models of the shallow Earth that
are loosely based on the structure at the Lucerne station near
the Landers earthquake rupture (Sleep, 2012; Fig. 3). In the
layer model, the S-wave velocity is 400 m=s above 9.95 m
depth and 3000 m=s below that. In the gradient model, the
S-wave velocity is 400 m=s above 0.55 m depth and increases
to 3000 m=s at 99.15 m depth. The layer model is intended to
produce strong resonances and the gradient model weak ones.

Impinging Signal

With regard to the impinging signal, ordinary attenuation
at depth is expected to suppress high frequencies if the earth-
quake source is far from the station. However, strong earth-
quake waves sometimes trigger small earthquakes in the
shallow subsurface (Fischer, Peng, et al., 2008; Fischer, Sam-
mis, et al., 2008; Fischer and Sammis, 2009). High-frequency
signal from these events does reach surface stations that are
immediately above the events. The dynamic acceleration
may even exceed 1g (Aoi et al., 2008; Sleep and Ma, 2008;
Tobita et al., 2010). Our numerical code does not attempt to
model such events, which occur over a finite lateral area and
hence require 3D calculations. We include some high-
frequency signal to represent this effect in the boundary
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Figure 2. (a) Polar plot of horizontal acceleration from the 1992
Landers earthquake recorded at Lucerne station. Circles show resolved
acceleration normalized to the acceleration of gravity. Several excur-
sions are between 0.6 and 0.8. (b) The resolved horizontal acceleration
versus time. In a simple model, the resolved normalized acceleration
would clip at the effective coefficient of friction. Data and origin of
time are from Iwan and Chen (1995) and Chen (1995). The color
version of this figure is available only in the electronic edition.
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condition at the base of the model in the Appendix. This
numerical signal ascends without ordinary attenuation toward
the surface where it encounters nonlinear effects. We provide
examples with sinusoidal and broadband ascending waves.

Synthetic Sinusoidal Signal

We begin with an unrealistic model of the ascending
waves to illustrate basic features of nonlinear attenuation that
might be observed with more realistic broadband signal. We
define our orthogonal components as north–south and east–
west for convenience. Our ascending wave consists of 10-Hz
circularly polarized waves with north–south and east–west
components 90° out of phase. High-frequency (160 Hz)
waves ascend only on the east–west component (Fig. 4d).
The 10 Hz waves are in resonance with the layer in Figure 3
and the 160 Hz waves are out of resonance. The upcoming
east–west signal begins 0.025 s before the north–south signal
and ends 0.025 before the north–south signal. We give atten-
tion to the circularly polarized signal when both components
are present.

The computed acceleration of the nonlinear waves is less
than that in the elastic model, as expected (Fig. 4a). In detail,
behavior differs from that of ordinary attenuation, which pref-
erentially suppresses high-frequency waves (Fig. 4c). From
equation (12), high-frequency stresses persist briefly and do
not have time to cause large anelastic strains. In terms of
stresses, the linear low-frequency ωL component ascending
with peak dynamic velocity VL and peak dynamic accelera-
tion AL generates a peak stress of 2ρβAL=ωL � 2ρβVL at the
quarter-wavelength depth. An out-of-phase high-frequency
ωH component generates stress of ρβAH=ωH � ρβVH below
its quarter-wavelength depth, in which VH and AH are the
ascending dynamic velocity and acceleration. In the case that
the high-frequency and low-frequency components generate

similar accelerations and hence comparable dynamic stresses
very near the free surface, the low-frequency component
dominates the dynamic stress at its quarter-wavelength depth
because VL > VH in which AL ≈ AH and by assumption
ωL ≪ ωH. In addition, elastic and kinetic energy of the wave
scale with particle velocity squared. The high-frequency wave
transports little wave energy to damage subsurface rock and
aboveground structures.

High frequencies on the east–west component are dimin-
ished near the times of overall high east–west acceleration, as
expected. High frequencies are also present on the north–south
component, although they are not present in the upcoming
north–south signal. Mathematically, both the east–west and
north–south signals contribute to the resolved horizontal ac-
celeration in equation (10). The north–south component is
suppressed when the high-frequency east–west component
adds to the resolved acceleration.

In 2D, as viewed on a polar plot (Fig. 4b), the acceler-
ation is to the first order circularly polarized near the maxi-
mum resolved acceleration as intended. High-frequency
accelerations perpendicular to the low-frequency accelera-
tion (tangential to the circle) do not add greatly to the
resolved acceleration in equation (10) and hence are not
strongly suppressed.

In general, clipping at a given acceleration has a differ-
ent overall effect on wave amplitude than on linear attenu-
ation. For a simple example, we compare the sinusoid
A0 sin�ωt�, in which A0 is 1g acceleration clipped to �0:7g,
with the unclipped sinusoid A1 sin�ωt�, in which A1 is 0:7g.
Both have the same PGA 0:7g. However, the integral of the
clipped sinusoid and hence peak ground velocity (PGV) is
greater for the clipped sinusoid than the unclipped sinusoid.
The root mean square amplitude and the peak displacement
are also larger for the clipped sinusoid. This exercise shows
that the constructs of PGA, PGV, and linear damping factor
provide incomplete understanding of frictional attenuation.

Synthetic Broadband Signal

Current dynamic earthquake rupture calculations of
large earthquakes do not resolve high-frequency signal. Lav-
allée and Archuleta (2005) related the statistics of PGA to the
statistics of high stress-drop asperities on the fault plane.
Semiempirical methods predict statistically ascending
high-frequency signal at hard-rock sites (e.g., Stewart et al.,
2015). Empirical methods to predict shaking duration are
available (Afshari and Stewart, 2016). For large events in-
cluding the 2011 Tohoku mainshock, one may sum waves
from numerous strong-motion generation areas on the fault
plane (e.g., Joshi et al., 2014; Sandeep et al., 2014; Otarola
and Ruiz, 2016). We bypass these approaches and assume
that the impinging waves are strong enough to produce shal-
low nonlinear behavior.

Thus, we do not explicitly consider the earthquake
source, because we are interested in the physics-based limits
that shallow nonlinear frictional attenuation places on PGA.
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Intuitively, it is unlikely that there is anything special in the
earthquake source region with regard to the local site thresh-
old in wave amplitude for shallow nonlinear behavior, so
waves exceeding this threshold should sometimes ascend to-
ward the surface. Our main criterion in generating synthetic
ascending signal is that it has high enough amplitude that the
predicted effects of nonlinearity become evident in the
calculations. Other criteria are that the signal has duration
similar to the recording at Lucerne in Figure 2b and that it
is random with the two components uncorrelated. We used

the Gaussian white noise “wgn” function in MATLAB to
generate uncorrelated east–west and north–south broadband
upcoming time series (Fig. 5a). The plotted upcoming wave
has been filtered to have a realistic frequency range (Fig. 5b)
that might represent strong waves from a nearby event in
analogy to the Lucerne record (Fig. 2). The ends of the signal
were tapered to avoid sharp initial and final accelerations.
The mean accelerations are zero so that the dynamic velocity
returns to zero at the end of shaking. The signals are approx-
imately symmetric near the middle so that the dynamic
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displacements return to zero. This processing scheme yielded
stronger low-frequency signal on the north–south component
than on the east–west component because of the vagaries of
the initial white noise time series for the two components.

A high-frequency side lobe exists between 25 and 45 Hz
(Fig. 5b). We retained this feature to illustrate the fate of any
earthquake-generated high-frequency signal, as well as high
frequencies generated by very shallow triggered earthquakes
just beneath the station. Our method for generating the signal
also caused the acceleration at every fifth time step to differ
slightly from its neighbors. Such an 800 Hz signal (=1=5Δt)
would not likely be present in real events, and conventional

seismographs would not detect it. We retained this feature as
it shows that the numerical method is not dispersive. The
small kinks also serve as 0.00125 s time marks.

Figure 6a shows the response for the layered model.
There is the expected tendency for ∼10 Hz signals to be am-
plified. The signal on both components appears clipped.
Clipping at a resolved acceleration is more evident on the
polar plot (Fig. 7a). As with the sinusoidal model, the signal
is transiently circularly polarized near the maximum resolved
acceleration (here, in either direction), as higher frequency
accelerations perpendicular (tangential) to the main acceler-
ation are not strongly suppressed. The waves continued to
reverberate linearly for some time after upcoming signals
ceased to arrive (Fig. 6a). These reverberations retained
the phase they had at that time. This effect produced mod-
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erate amplitude northeast–southwest movement visible in
Figure 7a.

It is conceivable that rock cohesion and the moorings of
the seismograph suppress very shallow nonlinear attenua-
tion. Shallow muddy soils have a similar effect when the ane-

lastic strain rate increases gradually with the resolved shear
traction as discussed in the Application to Reverberating Sig-
nal within Soft Sediments section. We simply modeled shal-
low cohesion by turning off frictional failure arbitrarily
within the uppermost 1.475 m. The quarter-wavelength
frequency for this depth is 67.8 Hz. As expected, this modi-
fication allows high-frequency signal with shallow quarter-
wavelength depths to reach the surface. Arrows mark strong
high-frequency pulses in Figure 6b. Brief episodes of strong
high-frequency acceleration are much more evident on the
polar plot (Fig. 7b).

There is only weak resonance in the gradient model
(Fig. 8a). The tendency for clipping from equation (10) at a
resolved acceleration is evident in the polar plot (Fig. 9a).
There is a tendency for transient circular polarization
near the maximum resolved acceleration. We represented
shallow cohesion by turning off frictional failure in the
uppermost 0.0037 s of travel time from the surface, as
was done in the layer model. High frequencies reach the sur-
face as expected in the model with no shallow attenuation
(Figs. 8b and 9b).

Overpressured Aquifer

Artesian aquifers existed beneath the Los Angeles basin
(Mendenhall, 1905a,b,c,d, 1908; Johnson and Chong, 2005)
and the Santa Clara basin (Clark, 1924; Poland and Ireland,
1988; Iwamura, 1995) during preindustrial times. Such over-
pressure would have reduced the frictional strength within
the aquifers and suppressed impinging S waves. This process
is potentially relevant to preindustrial earthquakes, such as
the 1857 Fort Tejon event as felt in downtown Los Angeles
(Agnew and Sieh, 1978). We are not aware of any relevant
recording by a modern instrument above a strongly overpres-
sured aquifer.

In principle, one might overpressure a deep aquifer to
intentionally suppress impinging S waves. Such a societal
application would need to account for detailed seismic veloc-
ity, density, and hydrological structure. Numerical hydrolog-
ical models exist for the Los Angeles basin (Reichard et al.,
2003). Some detailed borehole information is available for
the Los Angeles basin (Hayashi et al., 2013) and the Santa
Clara Valley (Newhouse et al., 2004; O'Connell and Turner,
2011; Wentworth et al., 2015). Three-dimensional numerical
calculations (Roten et al., 2014) would be needed to confirm
that the modified fluid pressure did not inadvertently in-
crease shaking from other types of seismic waves. Seismic
hazard is already a criterion on managing groundwater in
California (Metropolitan Water District of Southern Califor-
nia, 2007). Human activities have already increased the haz-
ard from S waves in downtown Los Angeles by increasing
the effective coefficient of friction in equation (6) and hence
the maximum acceleration at the surface in equation (8b).
The preindustrial water table was essentially at the surface
and the current water table is at ∼60 m depth (Johnson
and Chong, 2005).
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Figure 7. Polar plots of the nonlinear layer model in Figure 6,
as in Figure 2a. (a) Shallow attenuation is included. The signal is
approximately bounded by a normalized acceleration of 0.7. The
signal is transiently circularly polarized. (b) Shallow attenuation
is turned off. High-frequency excursions occur. The jitter is
800 Hz, which was left in to show that the method is nondispersive
and to provide time marks. The color version of this figure is avail-
able only in the electronic edition.
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Applying simple theory, there are significant differences
between deep nonlinear attenuation and nonlinear attenua-
tion near the free surface. At depth, the scale stress is ρβjVj,
in which jVj is the resolved horizontal particle velocity. For
broadband signal, both the upcoming and downgoing waves
contribute randomly to the particle velocity. Strong down-
going signal leads to nonlinear attenuation of the upcoming
signal. The dynamic stress is higher within beds of high
S-wave velocity at a given particle velocity.

We present idealized calculations to show that an over-
pressured aquifer has its expected effect within laterally
homogeneous structure (Fig. 10). We retain the broadband
signal in Figure 5. We modify the velocity structure to be
crudely representative of a sedimentary basin. This layer
model has 400 m=s above 9.95 m depth and 1500 m=s below

that depth. We retain the density of 2250 kg=m3, which is
appropriate for sediments. An excess artesian head of 100 m
is applied between 100 and 150 m depth, so that the gradient
of pore pressure in the layer is hydrostatic. The effective
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Figure 9. Polar plots of the nonlinear gradient model in
Figure 8, as in Figure 7. The jitter is 800 Hz, which was left in
to show that the method is nondispersive and to provide time marks.
(a) Shallow attenuation is included. The signal is approximately
bounded by a normalized acceleration of 0.65. The signal is tran-
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stress for that interval ranges between 0.24 at the top and
0.86 MPa at the bottom. The fluid pressure is zero in the rest
of the model.

As expected, the resolved surface acceleration is typi-
cally less than that of a model with no fluid pressure (Fig. 10).
The aquifer model signal is not simply clipped in accelera-
tion, because the attenuation occurs well away from the free
surface. Some strong acceleration pulses do occur. Unlike
shallow clipping in equation (8b) with the resolved normal-
ized acceleration at the effective coefficient of friction, the
effect of the pressurized aquifer would be difficult to recog-
nize from surface seismic records without some prior knowl-
edge of local hydrology.

These results provide a reality check on overpressuring
deep aquifers to base-isolate a city within a sedimentary ba-
sin. The excess model head of 100 m at 100 m depth brought
the effective pressure down to 0.24 MPa, approximately that
at 11 m depth with no water pressure. Bringing fluid pressure
closer to lithostatic might trigger liquefaction in unlithified
sediments. Continual pumping would be needed to maintain
the fluid pressure unless elevated recharge areas exist.

Application to Reverberating Signal within Soft
Sediments

Strong S waves reverberate within shallow compliant
soil layers. Damage from nonlinear behavior may lower the
S-wave velocity within the layer and hence the resonant fre-
quency. Nonlinear attenuation then diminishes the amplitude
of the seismic wave. The numerical methods discussed in the
Appendix represent these effects and the subsequent healing
of that damage once shaking has ceased. As an example ap-
plication, we consider the records recorded at KiK-net station
FKSH10 (latitude 37°9′30.0″ N, 140°5′46.0″ E) from the
2011 Tohoku mainshock. This station along with IBRH11,
MYGH10, and TCGH16 experienced strong horizontal
accelerations (Fig. 11).

The geological column at FKSH10 consists of 4 m of
gravelly soil (likely human-made rubble) with an S-wave
velocity of 150 m=s, over 4 m of gravel with an S-wave
velocity of 650 m=s, with Quaternary and Neogene tuffa-
ceous rocks with S-wave velocities of 850–1300 m=s in the
rest of the hole to 203 m depth. The nominal resonance fre-
quency is 9.375 Hz. The resonance frequency before strong
shaking was ∼7 Hz, indicating that the nominal structure is
somewhat imprecise (Fig. 12). In addition, the dominant fre-
quency decreased to ∼5 Hz and then recovered somewhat
after the shaking waned (Nakata and Snieder, 2011; Wu and
Peng, 2011). This behavior occurred at other strongly shaken
stations in the Tohoku mainshock (e.g., Ghofrani et al.,
2013). The dominant frequency for P waves behaved simi-
larly (Han et al., 2015). Comparison of the surface seismo-
grams with the borehole seismograms indicates that the
resonant frequency of the shallow layer in fact changed
(Fig. 13c).

Analysis of low-amplitude seismograms indicates that
the structure at FKSH10 is approximately laterally homo-
geneous (Thompson et al., 2012). Thus, we make the
assumption of vertical S waves through laterally homo-
geneous structure for qualitative discussion and numerical
modeling. We provide caveats where appropriate. The shal-
low layer is likely above the water table (Han et al., 2015), so
liquefaction and sudden drops in fluid pressure within it are
unlikely.

Qualitatively, nonlinearity during strong shaking of the
soil layer modifies the surface signal from that within a linear
medium in three ways. It is not a priori clear which effect will
dominate. (1) Nonlinear attenuation directly diminishes the
signal. (2) The change in the resonance peak from ∼7 to
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Figure 10. The normalized resolved acceleration for layer
models with no fluid pressure (thin lines) and an artesian aquifer
between 100 and 150 m depth (thick lines). Time origin is arbitrary.
Both models include shallow nonlinear attenuation. (a) The deep
aquifer generally suppresses the amplitude. High peak accelerations
still occur at points A and B. The model signal without the aquifer is
approximately clipped at 0.65. (b) Detail between 3 and 4 s. Signal
with attenuation in the deep aquifer is not well correlated with the
signal without an aquifer. The color version of this figure is avail-
able only in the electronic edition.
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∼5 Hz brings the resonance into a stronger part of the spec-
trum for the arriving signal (Fig. 13a), which increases the sur-
face acceleration. Physically, the signal arriving at FKSH10 is
the sum of waves from numerous strong-motion generation
areas on the fault plane (e.g., Joshi et al., 2014; Sandeep et al.,
2014). The distal area on the fault plane is greater than the
nearby area, so both nearby and distal regions contribute
comparably. (The effect is analogous to Olbers’ paradox for
starlight, in which the light arriving from any one star
decreases inversely with the square of its distance as r2, but
the number of stars in a spherical shell of distance r is propor-
tional to r2.) From a naive corner-frequency model, the
upcoming acceleration spectrum in our range of interest
should be approximately flat in the absence of intrinsic linear
attenuation along the ray path to the borehole station. How-
ever, the borehole signal at say 3 Hz includes signals from
both nearby and distal regions that are not significantly attenu-
ated. At say 10 Hz, the distal signal is attenuated and only the
nearby signal is significant. The 3 Hz signal is thus mildly
stronger than the 10 Hz signal. (3) The linear resonance at
5 Hz is stronger than the resonance at 7 Hz (Fig. 14). In this
model, the top layer is 4.5 m thick with an S-wave velocity of

125 or 90 m=s. The half-space velocity is
1000 m=s. The layer and half-space den-
sities are 2000 and 2400 kg=m3, respec-
tively. The resonances f are at 6.9 and
5 Hz. The amplitude decay times tA are
0.126 and 0.231 s. The linear resonant
Q � πtAf is 2.76 and 3.63. The ratios
of surface-to-borehole acceleration allow
qualitative appraisal of these effects
(Fig. 13c).

First, the borehole record is only a
proxy for the upcoming signal because
this seismogram also includes the down-
going signal. It is in principle possible
to separate upcoming and downgoing sig-
nals for a horizontally stratified linear
material (e.g., Cadet et al., 2012; Ghofrani
et al., 2013; Finn and Ruz, 2016). We
attempted to use small earthquakes for
which the upcoming and downgoing sig-
nals arrived separately to construct spec-
tral transfer functions, but this method did
not provide a reliable representation of the
mainshock data. One reason for this is that
the structure is not precisely laterally
homogeneous. The spectral-ratio method
in Figure 13c should remove source ef-
fects and path effects on the borehole sta-
tion. The overtones are then predicted to
have the same amplitudes as the primar-
ies. The observed overtones are much
less, indicating that the structure is locally
homogenous on the ∼4 m quarter-

wavelength of the primary, but heterogeneous on the
4=3 � 1:33 m quarter-wavelength of the overtone.

It is in principle possible to use small aftershocks and
foreshocks and the concept of numerous strong-motion gen-
eration areas on the fault plane of the mainshock to disen-
tangle the arriving signal from many directions and the
shallow structure (e.g., Joshi et al., 2014; Sandeep et al.,
2014; Otarola and Ruiz, 2016). Then, it might be feasible
but difficult to iterate for sources and shallow structures in-
cluding the transient effects of nonlinearity. Our calculations
illustrate features that would need to be present in a 3D
numerical model local to the station.

Continuing qualitatively, spectral ratios adjust for the
effect that the arriving 5 Hz signal was stronger than the
arriving 7 Hz in Figure 13b. Thus, they provide information
on the relative importance of nonlinear attenuation and res-
onance. The peak of the spectral ratio is centered at ∼7 Hz
before strong shaking started (Fig. 13c). This observation
constrains the initial linear properties of the resonance of
the model in Figure 14. The peak frequency during strong
shaking is ∼5 Hz. The amplification at this peak should be
increased above that of the 7 Hz resonance by the stronger
linear amplification in Figure 14 but decreased by nonlinear
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Figure 11. The normalized acceleration as in Figure 2b for the 2011 Tohoku main-
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attenuation. The effects approximately cancel, because both
amplifications are similar. The peak after strong shaking is
at ∼6 Hz (indicating healing is already underway). Nonlin-
ear attenuation should be much weaker than at peak shaking
and the observed amplification is a proxy for that of a linear
resonance. As expected from the linear model in Figure 14,
the 6 Hz amplification is greater than the 7 Hz amplifica-
tion. The observed 6 Hz amplification is also greater than
the 5 Hz amplification unlike the linear prediction. This is
further evidence that nonlinear attenuation suppressed am-
plification of the 5 Hz resonance during the strongest
shaking.

We continue with a feature of the record that is evident in
the time domain. The horizontal PGA approaches and even
exceeds to 1g in the stations in Figure 11. This observation is
not expected from equation (8b) in the normalized acceler-
ation and should not exceed the intrinsic coefficient of fric-
tion above the water table. An exceptionally large coefficient
of friction for the soil layer at FKSH10 is unlikely. The soil
began to fail with damage at a modest acceleration (Fig. 12).
The same reasoning applies to the possibility of very cohe-
sive soil.

Most likely the soil behaved as a mildly nonlinear sub-
stance rather than as a plastic or frictional material in which
strain rate increases rapidly with stress (Fig. 15). A mixture
of soft clay and gravel might have a viscous Bingham rheol-

ogy. The gravel grains lock at small stresses but slide over
each other at a constant stress above a threshold once their
friction is overcome. The clay supports an increasing frac-
tion of the macroscopic stress as it deforms viscously at
high strain rates. At a microscopic level, frictional sliding
of gravel occurs at real contacts that cover a small part of the
macroscopic surface area. Real stresses are a few gigapas-
cals in which strain rate depends exponentially on contact
shear traction. Real stresses in the soft clay are low, the real
contact area is high, and strain rate depends mildly on
stress.

We used the numerical code in the Appendix to calculate
an example model based on the nominal properties of
FKSH10 to illustrate features that are visible in the time
domain. A 3.915-m thick layer with an S-wave velocity of
150 m=s overlies a half-space with a velocity of 1000 m=s.
The density is 2250 kg=m3. Numerically, the grid spacing
in the layer is 0.03 m; the time step is 0.2 ms. The frictional
failure properties of the half-space are modified from the pre-
vious models so that little nonlinear attenuation occurs in that
region; the half-space parameters used in the Appendix are
m � 5, μM � 0:9, ζ � 1, and μB � 0:4. The anelastic strain
rate increases slowly with resolved shear traction in the soil
layer (Fig. 15); the soil layer parameters are m � 2,
μM � 0:9, ζ � 0:001, and μB � 0:1.

The change in the shear modulus during a time step in
the soil is assumed to be

EQ-TARGET;temp:intralink-;df13;313;394ΔG � G
�
1 − ΛjΔεj �H

�
G0 −G
G0

�
3
�
; �13�

in which the dimensionless coefficient Λ is 37, the dimen-
sionless coefficient H is 2 × 10−4, Δε is the additional
resolved horizontal strain in the time step, andG0 is the origi-
nal elastic shear modulus. We calibrated our coefficients to
provide results similar to observations, in which the calcu-
lated elastic and nonlinear accelerations are similar. The form
of equation (13) is arbitrary, but does have some intuitive
aspects. (1) The shear modulus cannot go to zero or become
negative. (2) The relative rate of change of the shear modulus
is linearly proportional to the anelastic strain rate. (3) The
shear modulus heals toward its original value. Our method
is not intended to represent the long-term evolution of the
shear modulus, only evolution during and immediately after
shaking. (4) The shear modulus heals rapidly when it is much
less than the original shear modulus.

We obtained our assumed upcoming signal by repeating
the signal used in the main article to obtain an ∼13-s time
series (Fig. 16). The broadband spectra are similar to the
observed borehole spectrum (Fig. 12). It was not tractable
to have a long duration of weak signal before and after
the strong signal as in the real record (Fig. 12).

The computed surface acceleration (Fig. 17) exhibits
the expected properties. The resonant frequency of the non-
linear signal progressively became lower as damage re-
duced the shear modulus of the layer. The nonlinear
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Figure 12. Frequency changes at the FKSH10 surface station
during the Tohoku mainshock. The resolved horizontal spectral am-
plitude (background image) is the square root of the sum of the
squares N–S and E–W components. The thick line indicates
frequencies at the maximum spectral amplitude. The surface E–W
seismogram for the Tohoku mainshock at FKSH10 is shown for
reference. The arrow indicates the approximate time in which
the peak frequency started to decrease. Horizontal 7 and 4.8 Hz
lines are shown for reference. Vertical lines indicate the duration
of strong shaking. The dominant frequency began to recover toward
its previous value once strong shaking ceased. The color version of
this figure is available only in the electronic edition.
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signal is stronger than the reference linear signal at times.
That is, the combined effects of stronger resonance and sto-
chastically stronger signal at the lower resonant frequency
overcame the direct effect of increased attenuation. The res-
onant period dominates, so the computed signals of the lin-
ear and nonlinear time series in Figure 17b look quite
different. The computed absolute acceleration approached
1g (Fig. 18).

The computed change in the shear modulus increased
rapidly with time at the start of strong shaking (Fig. 19a).
The rate of modulus change decreased as healing became
important. The curve is irregular because some healing

occurred at times of low resolved shear
traction and low anelastic strain rate. Dam-
age and healing did not come to equilib-
rium in this calculation, as would occur
if the positive and negative terms in equa-
tion (13) offset each other. It is not clear
whether this equilibrium occurred in the
real data in Figure 12, because one cannot
finely resolve resonant frequency over
small time windows.

The computed damage was concen-
trated in the lower part of the layer
(Fig. 19b). Physically, dynamic stresses
and, hence, dynamic strain rates, are small
near the free surface. As a matter of inter-
pretation, it is then difficult to tell whether
the real nonlinear behavior depended on
the coulomb stress ratio, because the nor-
mal traction did not vary a lot over the
lowermost 2 m of the soil layer. The bore-
hole and surface stations are too far apart
(203 m) to resolve the detailed structure of
the soil layer. The ∼1g bound on acceler-
ation in Figure 11 from equation (8b)
shows that a coulomb-based failure cri-
terion may be relevant.

Conclusions

Our basic testable assumption is that
coulomb friction provides a reasonable
representation of failure of the shallow
subsurface from strong S waves. The shear
traction on horizontal planes depends on
the product of the elastic strain and the
shear modulus. A flow law represents
the anelastic strain rate, which increases
rapidly with resolved horizontal shear
traction. This construct differs from the
widely used Masing rules that represent
strain as a function of stress.

Simple scaling relationships arise for
the predicted signal in the time domain
that would be cloaked by a purely spectral

treatment. The resolved horizontal acceleration normalized
to the acceleration of gravity is bounded by the effective co-
efficient of friction in equation (8b). This feature may be seen
with real data by plotting �Ax; Ay� or resolved acceleration
versus time (Fig. 2). In more detail, very shallow cohesion
increases the maximum acceleration amplitude at high
frequencies. Such arrivals are not harbingers of sustained
(lower frequency) horizontal accelerations above 1g in future
events. Numerical calculations confirmed these expected fea-
tures and are intended as a guide to fully 3D calculations
(Roten et al., 2014) in which real seismograms are available
and the near-surface structure is well constrained. Analyti-
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cally, other deviatoric stresses, as from the near-field velocity
pulse and surface waves, decrease the maximum resolved
acceleration.

Numerical calculations illustrated other expected
features of frictional attenuation that are predicted to occur

on real seismograms. (1) There is a tendency for strong
signal to become transiently circularly polarized near the
maximum resolved acceleration. Higher frequency signal
perpendicular to the ambient acceleration does not add
greatly to the resolved acceleration and is thus not sup-
pressed. There are not enough excursions to high amplitude
in the Lucerne data in Figure 2a to perform a meaningful
statistical test (see McKinnon, 2002) for transient circular
polarization. (2) Unlike ordinary attenuation, frictional at-
tenuation does not preferentially suppress high frequencies.
A high-frequency signal on one horizontal component that
adds to the resolved acceleration also increases the attenua-
tion of the other component, even if it is initially free of high
frequencies. An equivalent linear model would not resolve
either effect.
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As an application, frictional attenuation within a deep
overpressured aquifer does suppress signal at the surface.
The effect, however, is complicated because upcoming and
downgoing waves interact. The predicted surface signal does
not clip at a given acceleration. Again, the constructs of PGA
and damping factor provide an incomplete description.

In another application, surface accelerations above 1g
can occur above a shallow layer of compliant soil. The
resonant frequency of the layer then decreases as damage
reduces its S-wave velocity. The layer begins to heal once
strong shaking ceases. The high-frequency accelerations
can occur because the anelastic strain rate in the ductile layer

increases slowly with dynamic shear traction, so scaling re-
lationship (8b) that the coulomb stress ratio is proportional to
the acceleration in g’s does not imply a sharp limit on accel-
eration. Still anelastic strain precludes much larger acceler-
ations. Observation of such rogue accelerations (Fig. 11) is
thus not a harbinger of future extreme accelerations.

Data and Resources

Corrected horizontal Lucerne records were provided in
text format by Consortium of Organizations for Strong Mo-
tion Observation Systems (COSMOS) Virtual Data Center.
They are available upon request from that source. Japanese
seismograms and subsurface station information are publi-
cally available from the National Research Institute for Earth
Science and Disaster Resilience in Japan. The rest of the data
used in this article came from published sources listed in the
References. We used the white noise function “wgn” in
Matlab version R2015b to generate random time series. It is
available commercially from www.mathworks.com/products
/matlab (last accessed May 2016).
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Appendix

Numerical Model

Our tractable numerical method follows those of Sleep
and Erickson (2014) and Sleep and Nakata (2015). We nu-
merically evaluate the time history (in steps of Δt) of ground
motions and anelastic strains from vertical S waves in two
horizontal dimensions. We modify the code to allow the
shear modulus, the coefficient of friction, and fluid pressure
to vary with depth. The density remains constant with depth
at 2250 kg=m3.

The method is essentially finite difference with some
aspects of finite elements over depth intervals. We use stag-
gered elements and nodes. The shear traction, elastic strain,
and anelastic strain nodes are evaluated at nodes at the center
of elements. The shear modulus, the coefficient of friction,
the shear-wave velocity β, and the effective pressure are con-
stant within these elements. The depth range of elements is
ΔZ � βΔt; the code remains stable but becomes mildly dis-
persive if βΔt is less than the depth interval. Displacement,
velocity, acceleration, and the density for the momentum
equation (2) are evaluated at intermediate nodes at the boun-
daries of the strain elements. The shear traction and anelastic
strain are zero at the free surface, the location of the shallow-
est strain node. The surface acceleration is hence evaluated at
the very shallow depth of βΔt=2, 0.05 and 0.015 m in the
models.

The initial anelastic strains, displacements, velocities,
and accelerations are all zero. We start a pulse by imposing
displacements on the bottom node over many time steps in
both horizontal directions. Once the pulse has been gener-
ated, the displacement on the basal node remains at zero. We
stop the calculation before the surface-reflected wave im-
pinges on the artificial basal boundary and ascends back to
the shallow region of interest. The method kinematically

propagates waves through a linear elastic medium with the
local velocity without dispersion. The nonlinear calculation
is also nondispersive.

At the start of the time step at time t0, the program knows
displacement at the spatial grids Uift0g and the displacement
field at the previous time step Uift0 − Δtg, in which curly
brackets indicate time steps and i is a horizontal
direction. The difference between these quantities is the
velocity a half-step before t0, Vift0 − Δt=2g � �Uift0g−
Uift0 − Δtg�=Δt. The code finds the new velocity at a half
time step ahead from the acceleration at each grid point at time
step t0, Vift0 � Δt=2g � Vift0 − Δt=2g � Aift0gΔt. The
new displacement at t0 � Δt is Uift0 � Δtg � Uift0g�
Vift0 � Δt=2gΔt.

We illustrate spatial derivatives using an example group
of adjacent displacement nodes (U, up; C, center; and D,
down). The objective is to find the acceleration at time t0.
The shear traction between two nodes (down and center) is

EQ-TARGET;temp:intralink-;dfa1;313;517τiz�D;C�ft0g �GU

�
Ui;D−Ui;C

ΔZ

�
ft0g

−GUεi�D;C�ft0g; �A1�

in which GU is the shear modulus in the upper element, the
first term represents elasticity, and εi�D;C� is anelastic
engineering strain. (This notation averts confusion with
tensor indexes.) The acceleration of the center node from
equation (5) is

EQ-TARGET;temp:intralink-;dfa2;313;409Ai;C � 1

ρ

�
τiz�D;C� − τiz�C;U�

ΔZ

�
ft0g

: �A2�

The shear modulus G and anelastic strain εi in general de-
pend on the current stress and history of the rock.

We represent anelastic strain with a coulomb-based flow
law, qualitatively following Barbot and Fialko (2010). By
assumption, many cracks are already present in the rock. The
coefficient of friction of these cracks varies from low values to
that of intact rock. Some cracks likely have prestress and fail
at relatively low dynamic stresses of the right orientation
(Marsan, 2005; Sleep, 2010). Macroscopic anelastic strain
and, by assumption, the anelastic strain rate thus increase over
a range of dynamic stresses, rather than at one plastic limit.

The numerical method seeks the smoothly varying pre-
dictable part of the particle velocity as would be recorded by
surface seismograms and borehole arrays along with the dis-
tribution of anelastic strain at depth. It does not resolve the
fate of individual cracks. That is, we exclude failure with
sudden decreases of frictional strength and hence dynamic
stress drop and brief pulses of seismic energy associated with
crack failure. We do not attempt to resolve brief strong ac-
celerations associated with this process.

Equation (A1) implies an anelastic strain rate at each
node in which failure occurs. One requires that the rate of
anelastic strain in equation (A1) be consistent with computed
stress. Formally,
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EQ-TARGET;temp:intralink-;dfa4;55;729

τizft0g � GU

�
Ui;D − Ui;C

ΔZ

�
ft0g

−GUεift0 − Δtg

− GU

�
τizft0g
jτft0gj

�
Δεi�jτft0gj�; �A3�

in which Δεi�jτft0gj� is the anelastic strain during the time
step; the expression is general and does not imply any
specific rheology. The bracket in the third term causes the
horizontal anelastic strain rate to be proportional to the com-
ponents of the horizontal shear traction τiz. The shear traction
(as τiz and jτft0gj) appears on both sides of equation (A3).
The equation is readily solved by iteration if the anelastic
strain rate increases smoothly and monotonically with stress.
We let the anelastic strain (in the i direction and explicitly
including the bracket in equation A3) per time step Δt
function be

EQ-TARGET;temp:intralink-;dfa4;55;535Δεi � ε′Δt � ζ

�
τizft0g
jτft0gj

��
τM
G

��jτft0gj − τB
τM

�
m
; �A4�

in which anelastic strain has the sign to relieve stress, ζ is a
dimensionless constant, τM � ρgμMz is a stress in which
frictional creep becomes fast at the coulomb stress ratio
μM, τB � ρgμBz implies that no anelastic strain occurs below
a Bingham coefficient of friction of μB (ε′ � 0; jτj ≤ τB), and
m is an exponent that represents rapid transition between
slow and fast deformation as dynamic stress increases. Equa-
tion (A4) approaches a plastic yield surface in the limit of
large m. The constant ζ then may be adjusted to obtain
the desired transition stress between very slow and very fast
creep. It is 1 in our calculations in the main article. We let

m � 5 so that the models in the main article differ from sim-
ple plasticity; μM is 0.8 and μB is 0.3. For reference, the tradi-
tional coefficient of friction for crystalline rocks in the near
surface is 0.85 (Byerlee, 1978). These parameters yield pre-
dicted peak ground velocity (PGV) similar to that observed
at Lucerne in Figure 2.

Any smooth-calibrated monotonic function that in-
creases slowly at low dynamic stresses and rapidly at large
ones would have these basic properties. There are qualita-
tively only two free parameters in equation (A4) for gener-
alization to a full 3D model: (1) the dynamic stress in which
the effect of nonlinear attenuation exceeds that of ordinary
attenuation and (2) the dynamic stress in which the anelastic
strain rate becomes high enough that further increases in dy-
namic stress do not occur. We are not aware of any field data
that would allow fine tuning equation (A4).
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