
Geophysical Journal International
Geophys. J. Int. (2015) 203, 2049–2054 doi: 10.1093/gji/ggv421

GJI Seismology

Stochastic characterization of mesoscale seismic velocity
heterogeneity in Long Beach, California

Nori Nakata and Gregory C. Beroza
Stanford University, Stanford, CA, USA. E-mail: nnakata@stanford.edu

Accepted 2015 September 28. Received 2015 September 23; in original form 2015 July 23

S U M M A R Y
Earth’s seismic velocity structure is heterogeneous at all scales, and mapping that heterogeneity
provides insight into the processes that create it. At large scale lengths, seismic tomography
is used to map Earth structure deterministically. At small scale lengths, structure can be
imaged deterministically, but because it is impractical to image short-wavelength heterogeneity
everywhere, we often resort to statistical methods to depict its variability. In this study, we
develop random-field model representations of a 3-D P-wave velocity model at Long Beach,
California, estimated from dense-array recordings of the ambient seismic wavefield. We focus
on heterogeneity at the mesoscale, which is smaller than 10+ km scale of regional tomography
but larger than the micro scale of borehole measurements. We explore four ellipsoidally
anisotropic heterogeneity models, including von Kármán, Gaussian, self-affine and Kummer
models, based on their autocorrelation functions. We find that the von Kármán model fits the
imaged velocity model best among these options with a correlation length in the horizontal
direction about five times greater than in the vertical direction, and with strong small-scale
length variations. We validate our results by showing that our model accurately predicts
the observed decay of scattered waves in the coda of a nearby earthquake, suggesting that
quantitative measures of velocity variability will be useful for predicting high-frequency
ground motion in earthquakes.

Key words: Spatial Analysis; Fractals and multifractals; Probability distributions; Earth-
quake ground motions; Coda waves; Statistical seismology.

I N T RO D U C T I O N

The Earth’s interior contains heterogeneity at various scales. Seis-
mic tomography is the primary technique to estimate velocity
heterogeneity (Aki et al. 1976); however, it can also be mea-
sured more directly in the near surface using logging techniques
(Holliger 1996; Shiomi et al. 1997). For small-scale heterogeneities,
stochastic representations are a powerful method to extend interpre-
tation to volumes that are impractical to model deterministically.
Moreover, stochastic representations can yield additional insights.
For example, Holliger & Levander (1992) found that the small-
scale geologic features correlate with regional tectonics. Levander
& Holliger (1992) and Holliger & Levander (1994) estimated the
randomness of a medium from waves reflected in the lower crust
to understand how laminated structures, including the Moho, are
formed. Statistical properties of the seafloor morphology are re-
lated to processes of seafloor formation at the ridge crest, tectonics,
and post-depositional transport (Goff & Jordan 1988). Shiomi et al.
(1997) speculated that the difference in power-law behaviour of dif-
ferent regions is related to tectonics. Gudmundsson et al. (1990)
found that global traveltime residuals contain heterogeneities and
random errors, and that large heterogeneities tend to concentrate at

upper-mantle zones. Puster & Jordan (1997) developed a relation-
ship between tomographic velocity models and mantle dynamics,
such as the degree of stratification in mantle flow, using the corre-
lation length of heterogeneity. Becker et al. (2007) used stochastic
modelling of shear-wave splitting to characterize continental litho-
sphere and upper mantle, and found that the correlation length of
the heterogeneity of the splitting relates to geological features.

Such small-scale heterogeneities are also important to explain
seismic coda waves and wave propagation (Aki 1969; Aki &
Chouet 1975). The decay of the coda waves with lapse time, or
coda attenuation, is related to the distribution of scatterers (Sens-
Schönfelder et al. 2009; Carcolé & Sato 2010). Techniques to
simulate scattered waves and envelopes of the coda waves have
been developed using, for example, a single scattering approxi-
mation (Sato 1977), radiative transfer theory (Hoshiba 1994; We-
gler et al. 2006), and finite-difference methods (Frankel & Clayton
1986). The spatial sensitivity of seismic waves depends on wave-
length, and hence we should employ an effective medium theory
to model properly waveforms related to small-scale heterogeneities
(Jordan 2015).

Small-scale heterogeneity is important for strong ground mo-
tion prediction. The deterministic limit in high-frequency ground
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Figure 1. P-wave velocity model in 3-D view obtained from ambient seismic wavefields (Nakata et al. 2015). The colour illustrates the fractional fluctuation
of P-wave velocities given by eq. (3), and cool colours indicate faster and warm colours indicate slower velocities than the laterally averaged velocity (v̄(z)).
The grey area shows poorly resolved areas according to the ray coverage of traveltime tomography. The black dots are the location of the stations projected at
the depth of the horizontal slice (the stations are deployed at the ground surface). The red dot in the inset shows the location of the survey. The details of the
velocity model are explained by Nakata et al. (2015).

motion simulations stands at about 1 Hz (Olsen et al. 1995). Above
that, ground motions are typically simulated by assuming stochas-
tic behaviour of time series (Beresnev & Atkinson 1997). Small-
scale heterogeneities can be used for earthquake slip models to
explain observed strong motion radiation (Mai & Beroza 2002).
Recent studies have attempted to use statistical representations
of fault roughness (Bydlon & Dunham 2015) and medium het-
erogeneity (Mai et al. 2010; Olsen & Takedatsu 2015) to push
physics-based ground motion prediction to higher frequencies. To
be successful, this effort requires reliable, quantitative informa-
tion on the strength and variability of heterogeneity in the Earth’s
crust. We have that information at small scale length in some ar-
eas from well logs—vertically along the wellbore, and horizon-
tally between wellbores (Olsen 2013; Shaw et al. 2014), but we
lack it at spatial scales ranging from tens of metres to 10 km
(i.e. mesoscale).

In this study, we consider the P-wave velocity structure (Fig. 1)
estimated under Long Beach, California from the ambient seis-
mic wavefield (Nakata et al. 2015). The Long Beach experiment
contained about 2500 vertical-component geophones that continu-
ously recorded ground motion. The dense array provides unique
mesoscale information. Nakata et al. (2015) estimated the ve-
locity model using P-wave traveltime tomography with a cell
size of 25 × 25 × 25 m3. Their results form the foundation
for our study. First, we introduce a representation of random ve-
locity structure using the autocorrelation function (ACF). Next,
we estimate parameters of the ACF using the observed velocity
structure. Finally, we validate synthetic coda envelopes based on
the estimated ACF against the observed coda waves of a local
earthquake.

S T O C H A S T I C R A N D O M V E L O C I T Y
M O D E L

If we assume that the randomness of a medium is spatially ho-
mogeneous, perhaps varying differently in different directions, we
can characterize the stochastic nature of that medium using an ACF
(R(x), where x represents the spatial lag) (Ishimaru 1978). If we can
define the ACF, then we can identify the character of randomness of
a medium. The spatial lag x can represent any coordinate, but here
we consider Cartesian coordinates for simplicity (x = (x, y, z)).
The power spectral density function (PSDF) of the random media
is computed by the Fourier transform of the ACF over three spatial
coordinates:

P(kx , ky, kz) =
∞�

−∞
R(x, y, z)e−kx x−ky y−kz z dx dy dz, (1)

where k is the wavenumber (k = 2π/λ, where λ is the wavelength) in
each direction. For geophysical applications and particularly wave
propagation problems, von Kármán, Gaussian, self-affine (fractal),
and Kummer ACFs have been developed and used (Ishimaru 1978;
Klimeš 2002; Sato et al. 2012). Based on data fitting as discussed
below, we find that among these distributions, the von Kármán
correlation function (PvK) best represents our velocity data:

PvK(kx , ky, kz) = 2dπ d/2ε2ax ayaz�(κ + d/2)

�(|κ|) (
1 + a2

x k2
x + a2

yk2
y + a2

z k2
z

)κ+d/2
, (2)

where d is the Euclidean dimension (d = 3), � the gamma function,
κ the Hurst exponent, a the correlation length for each direction,
and ε the fractional magnitude of the fluctuation, which is given
by ε ≡ R(0, 0, 0). The PSDF of the von Kármán model follows a
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power law (fractal randomness) for large wavenumbers (ak � 1),
where κ controls the rate of the power-law decay with increasing
wavenumber (Supporting Information Fig. S1). In contrast to the
self-affine model, the von Kármán model has a low-cut wavenumber
filter, and hence large-scale heterogeneities are not fractal.

We estimate the PSDF from the data of the 3-D velocity cube
(Fig. 1). The velocity structure of the study area has a strong 1-D
trend in depth. To make the mean of the random medium zero, we
normalize the velocity model:

ξ (x, y, z) = v(x, y, z) − v̄(z)

v̄(z)
, (3)

where v̄(z) represents the 1-D trend, and the dimensionless function
ξ (x, y, z) is the perturbation of the velocities for which

∑
x, y, zξ (x,

y, z) = 0. The directions x and y are arbitrary horizontal directions,
and here we choose easting and northing, respectively. We are free
to choose the function v̄(z) as a constant, linear trend, or more com-
plicated functions, provided we do not remove the heterogeneity
of the model. We use a linear regression of the laterally averaged
velocity model based on a least-squares fit similar to Shiomi et al.
(1997), and show ξ (x, y, z) in Fig. 1. Nakata et al. (2015) employed
a boxcar smoothing filter to stabilize the inverted velocities in the
tomography results we use. Because this filter provides an addi-
tional apparent decay in the PSDF, we compensate for this effect
by deconvolving the PSDF of the filter (Shiomi et al. 1997). Af-
ter deconvolution, the PSDF of the fractional velocity model (Pd)
exhibits a greater vertical than horizontal extent of the high PSD
(Fig. 2a), which suggests anisotropy of the heterogeneity as we
discuss quantitatively below.

To reveal the statistical properties of the velocity structure, we
compare the PSDF of the velocity model with von Kármán models,
in which we estimate ax, ay, az , κ , and ε in eq. (2) to represent the
data. Because the two horizontal directions are chosen arbitrarily,
we assume ax = ay = ar, and hence we have four independent
parameters to estimate. In the supplemental material, we show the
fit of other ACFs to the data as well. For our parameter estimation,

we minimize a misfit based on the L2 norm as

Misfit = 1

N

{∑
k

[
w(k)

{
log10(PvK(k)) − log10(Pd(k))

}2
]}1/2

,

(4)

where w is a weighting function and N the total number of sam-
ples. Although the wavenumber is evenly sampled on a linear scale,
the inversion is more stable when the wavenumber is evenly sam-
pled on a logarithmic scale. The weighting function transforms
the wavenumber sampling from a linear scale to logarithmic scale,
which puts a greater weight on smaller wavenumbers. We constrain∑

k w(k) = 1.0 to preserve the total intensity. For this parameter
estimation, we do not use wavelengths shorter than 100 m, which
approximates the average receiver spacing.

The data are better represented by the von Kármán model (Figs 2
and 3) compared with other ACF models (Supporting Information
Fig. S2). This means that the velocity structure follows a power
law at large wavenumbers. The parameters for the best von Kármán
model are (ar, az , κ , ε) = (0.51 km, 0.10 km, 0.040, 0.107). Although
we use a grid search to estimate the parameters (Fig. 4), based on
the shape of the misfit function, we could have used a gradient
method to reduce the computational cost. For our inversion, we
have enough sensitivity to estimate a correlation length as short as
0.1 km. The correlation length defines the length at which fractal
heterogeneity breaks down (transition zone is at ak = 2πa/λ), and
we have sufficient wavenumber resolution (ak = 0.1k < 1.0; Fig. 3)
to resolve the correlation length.

The aspect ratio of the correlation length is 5.1, which means
that the heterogeneity in our study area is highly anisotropic at short
wavelengths, with much shorter scale length vertically than hori-
zontally. This anisotropy is to be expected for a layered sedimentary
environment. The Hurst exponent of 0.04 indicates that the area is
very rough and rich in short wavelength heterogeneities (fractal di-
mension of 3.96 (i.e. d + 1 − 0.04)). The vertical correlation length
of 0.10 km, the Hurst exponent of 0.04, and the fractal magnitude
of 0.107 are consistent with independent estimates from sonic logs
(Olsen 2013).

Figure 2. (a) Power spectra of the velocity model shown in Fig. 1 in the wavenumber domain. (b) Power spectra of the best-fit von Kármán model (ar =
0.51 km, az = 0.10 km, κ = 0.040 and ε = 0.107).

 at Stanford U
niversity on N

ovem
ber 3, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


2052 N. Nakata and G.C. Beroza

-8

2

-6

-4

-2

0

P
S

D
 (

km
3  d

B
)

a) P(k
e
,0,0)

data
von Karman model

Wavelength (km) 
101 100 10-1

-8

2

-6

-4

-2

0

P
S

D
 (

km
3  d

B
)

b) P(0,k
n
,0)

Wavenumber (1/km)
100 101

-8

2

-6

-4

-2

0

P
S

D
 (

km
3  d

B
)

c) P(0,0,k
z
)

Figure 3. Comparison between the observed velocity model (black) and the
best von Kármán model (red) along the (a) east-wavenumber (ke), (b) north-
wavenumber (kn) and (c) vertical-wavenumber (kz) axes in Fig. 2. Note: we
show only the positive wavenumbers.

F I T T I N G A N E A RT H Q UA K E C O DA
E N V E L O P E

Coda waves have an important role in understanding the hetero-
geneity of the Earth (Aki 1969). Here, we perform a preliminary
test through modelling of the envelope of an earthquake using the
PSDF we obtained (Fig. 5). We use the closest earthquake to the
array as an example; the earthquake is Mw 2.0 and occurred on
2012 March 7, 4.5 km to the east of the centre of the array at
11.1 km depth. We use receivers located 11.95–12.05 km away
from the hypocentre of the earthquake and average envelopes of
the observed wavefields over all receivers used. This averaging is
important because we estimate the average stochastic model for the
entire area in the previous section.

Several methods are available to model the coda envelope of the
earthquake. For example, we could use a Markov approximation
or radiative transfer theory, or we could numerically simulate the
wavefield (Saito et al. 2003). Since we do not have information
below the depth of the velocity model in Fig. 1 (i.e. below 1.2 km
depth) and the estimated Hurst exponent is small, we employ ra-
diative transfer theory to approximate the decay of the envelope.
Because synthesizing the envelope of an anisotropic von Kármán
model is still a research topic [for anisotropic Gaussian ACF, see

Sato (2008)], we assume a 3-D isotropic ACF with a correlation

length of
√

a2
x + a2

y + a2
z . Other parameters (ε and κ) are the same

as used in Fig. 2(b). The large aspect ratio of the correlation length
may increase wave scattering, which is partly guided by the stratified
structure (Olsen 2013; Savran et al. 2014).

The scattering coefficient g(θ ) of the estimated von Kármán
PSDF with the isotropic scattering assumption is given by eq. (4.25)
of Sato et al. (2012):

g(θ ) = 1

π

(ω

c

)4
P

(
2ω

c
sin

θ

2

)
, (5)

where ω is the angular frequency, θ the scattering angle, and c the
mean wave velocity. We estimate the velocity in eq. (5) from the
arrival times of the direct waves and use the central frequency of
the each range as ω. The total scattering coefficient g0, which is the
inverse of the mean free path l, is obtained by the integral over the
scattering angle:

g0 = 1

2

∫ π

0
sin θ g(θ )dθ = 1

l
. (6)

An approximate solution of the 3-D radiative transfer equation based
on the given l is

P(r, t) ≈ e−ct/ l

4πr 2
δ(r − ct) + (1 − r 2/c2t2)1/8

(4πlct/3)3/2
e−ct/ l G

×
(

ct

l

[
1 − r 2

c2t2

]3/4
)

H (ct − r ), (7)

where

G(x) ≈ ex
√

1 + 2.026/x,

r is the distance from the source to the receiver, H is the Heaviside
step function (0 for ct − r < 0 and 1 for ct − r > 0) to satisfy
causality and δ the Dirac delta function (Paasschens 1997).

Using eqs (5)–(7) with the estimated PSDF P and velocity c, we
can roughly simulate the envelopes of the earthquake coda. Because
we consider one wave mode without converted waves in eq. (7) (i.e.
scalar waves), we independently compute envelopes for P and S
waves at 4–8 Hz and 8–16 Hz. One can compute the envelope with
mode conversion based on the Born approximation (Maeda et al.
2008). To synthesize the envelopes for P and S waves, we give two
parameters that are the amplitude of each wave and the length of
the path of the heterogeneous layer (r). We estimate a common path
length for all four envelopes but independent amplitude normaliza-
tion. This assumption is equivalent to considering heterogeneous
structure on top of a homogeneous half space, with coda waves
only excited in the heterogeneous structure. To align the first break
time of the envelopes with arrival times of the earthquake, we add
traveltimes for the homogeneous region (12.0 − r)/c to P(r, t) in
eq. (7).

The decay of the synthetic envelopes fit reasonably well to the
observed ones, especially for S waves (Fig. 5). Note that the decays
are governed by the heterogeneity of the model, which we estimated
from the deterministic velocity model (Fig. 1). With the caveat that
we did not use the anisotropic aspect of the velocity heterogeneity
in this test, it is interesting to note that the energy of the body waves
we extracted from ambient wavefields extended to 10 Hz (Nakata
et al. 2015). Yet smaller-scale structure, which is extrapolated to
higher wavenumbers, rather than inferred from the deterministic
tomography, is consistent with the same heterogeneity spectrum in
that it successfully predicts the coda decay (Fig. 5). Because we do
not include any reflectors or deterministic structure for simulating
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Figure 4. 4-D misfit function of the von Kármán model (eq. 4). Each panel shows the misfit cube of three parameters. We choose the best-fitted parameter of
the remaining parameter for each panel (e.g. ε = 0.107 for panel (a)). The red dot shows the parameters for the model in Fig. 2(b).
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Figure 5. (a) An example of waveforms generated by the nearby earthquake
(4.5 km east and 11.1 km deep) at one station (0.5–16 Hz) and (b,c) mean-
square envelope of the earthquake waveforms compared with the synthetic
envelopes computed by radiative transfer theory with the estimated von
Kármán model at the frequency ranges of (b) 8–16 Hz and (c) 4–8 Hz (us-

ing an isotropic random model with correlation length of
√

a2
x + a2

y + a2
z ).

Radiative transfer theory is based on scalar waves and the envelopes for P
and S waves (red and blue lines, respectively) are computed separately. The
thicknesses of the assumed heterogeneous medium for the envelopes are
1.5 km for both frequency ranges. The earthquake envelope is averaged over
receivers that are located at 11.95–12.05 km from the hypocentre based on
straight ray paths.

envelopes, we cannot model non-direct ballistic waves at shorter
wavelengths. Also, radiative transfer theory is not sensitive to for-
ward scattered waves, which may be small in this medium because
κ is small. To improve the modelling, we could use, for example, a
hybrid method of radiative transfer theory and a Markov approxi-
mation (Saito et al. 2003).

D I S C U S S I O N A N D C O N C LU S I O N S

We estimate the statistical characteristics of the P-wave velocity
heterogeneity at Long Beach, California. The heterogeneity is fit
well with a von Kármán random model with ellipsoidal anisotropy.
The short-wavelength structure follows power-law scaling (fractal
dimension of 3.96), and therefore the von Kármán model is suitable
for the stochastic representation of the velocity structure. We find
that the heterogeneity of the area is highly anisotropic, and the aspect
ratio (horizontal/vertical) of the anisotropy is 5.1. The method used
here could be applied to other areas where dense arrays have been
deployed.

The decay of the coda envelopes computed by the estimated
PSDF of the random model approximates the coda waves of a nearby
earthquake. This result supports our estimated PSDF for the study
area. We use the velocity model that is estimated by deterministic
ray-based tomography. As discussed by Nolet & Dahlen (2000),
tomography is less sensitive for structure that is smaller than the
wavelength; however, if we can explain the envelopes of coda waves
at higher frequencies/shorter wavelengths, we can overcome this
limitation of resolution. To confirm this hypothesis, we need to
understand to what extent the heterogeneity of the Earth really
follows the von Kármán model in which the structure smaller than
2πλ satisfies a power law, which is an important question for future
research.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1. PSDFs of four models (Klimeš, 2002; Sato et al., 2012).
The correlation length (for both Gaussian and von Kármán), Hurst
exponents and the intensity of the randomness are identical for all
models. The vertical black dotted line indicates the inverse of the
autocorrelation length used to compute the PSDFs (1/0.51 km−1).
Figure S2. Best-fit PSDFs for the velocity data shown in
Fig. 2(a) using (a) Gaussian, (b) Kummer and (c) self-
affine correlation functions (http://gji.oxfordjournals.org/lookup/
suppl/doi:10.1093/gji/ggv421/-/DC1).
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