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Abstract For health monitoring of a building, we need to separate the response of
the building to an earthquake from the imprint of soil-structure coupling and from
wave propagation below the base of the building. Seismic interferometry based on
deconvolution, where we deconvolve the wave fields recorded at different floors,
is a technique to extract this building response and thus estimate velocity of the wave
that propagates inside the building. Deconvolution interferometry also allows us to
estimate the damping factor of the building. Compared with other interferometry tech-
niques, such as cross-correlation and cross-coherence interferometry, deconvolution
interferometry is the most suitable technique to monitor a building using earthquake
records. For deconvolution interferometry, we deconvolve the wave fields recorded at
all levels with the waves recorded at a target receiver inside the building. This receiver
behaves as a virtual source, and we retrieve the response of a cut-off building, a short
building that is cut off at the virtual source. Because the cut-off building is indepen-
dent from the structure below the virtual source, the technique might be useful for
estimating local structure and local damage. We apply deconvolution interferometry
to 17 earthquakes recorded during two weeks at a building in Fukushima, Japan, and
estimate time-lapse changes in velocity and normal-mode frequency. As shown in a
previous study, the change in velocity correlates with the change in normal-mode fre-
quency. We compute the velocities from both traveling waves and the fundamental
mode using coda-wave interferometry. These velocities have a negative correlation

with the maximum acceleration of the observed earthquake records.

Introduction

The response of a building to an earthquake has been
studied since the early 1900s (e.g., Biot, 1933; Sezawa
and Kanai, 1935; Carder, 1936). We can estimate the fre-
quencies of the fundamental and higher modes of buildings
using ambient and forced vibration experiments (Trifunac,
1972; Ivanovié et al., 2000; Kohler et al., 2005; Clinton et al.,
2006; Michel et al., 2008). Because of the shaking caused by
major earthquakes, the frequencies of normal modes de-
crease (Trifunac et al., 2001a; Kohler et al., 2005); the reduc-
tion is mostly temporary (a few minutes) and healing occurs
with time, but some reduction is permanent. Clinton et al.,
2006 found more than 20% temporal reduction and 4% per-
manent reduction in the fundamental frequency of the motion
of the Millikan Library located at the California Institute of
Technology after the 1987 M 5.9 Whittier Narrows earth-
quake. The reduction in the frequency logarithmically corre-
lates with the maximum acceleration of observed records
(Clinton et al., 2006). Precipitation, strong wind, tempera-
ture, reinforcement, and heavy weight loaded in a building
also change the frequencies of normal modes (Kohler et al.,

2005; Clinton et al., 2006). Because these frequencies are
related to both the building itself and the soil-structure cou-
pling, we have to consider soil-structure interactions (Safak,
1995) and nonlinearities in the response of the foundation
soil (Trifunac et al., 2001a,b). Normal-mode frequencies es-
timated from observed records are, therefore, not suitable for
health monitoring of a building in isolation of its environ-
ment (Todorovska and Trifunac, 2008b).

Snieder and Safak (2006) show that one can estimate an
impulse response independent from the soil-structure coupling
and the complicated wave propagation (e.g., attenuation and
scattering) below the bottom receiver by using seismic inter-
ferometry based on deconvolution. Seismic interferometry is a
technique to extract the Green’s function, which accounts for
the wave propagation between receivers (Lobkis and Weaver
2001; Derode et al., 2003; Snieder, 2004; Paul et al., 2005;
Snieder, Wapenaar, et al., 2006; Wapenaar and Fokkema,
2006). Seismic interferometry can be based on cross correla-
tion, deconvolution, and cross coherence (Snieder et al., 2009;
Wapenaar et al., 2010). Deconvolution interferometry is a
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useful technique for monitoring structures, especially in one
dimension (Nakata and Snieder, 2011, 2012a,b). Because de-
convolution interferometry changes the boundary condition at
the base of the building, we are able to extract the pure re-
sponse of the building regardless of its coupling to the subsur-
face (Snieder and Safak, 2006; Snieder, Sheiman, et al., 2006).

Deconvolution interferometry has been applied to earth-
quake records observed in a building to retrieve the velocity of
traveling waves and attenuation of the building (Oyunchimeg
and Kawakami, 2003; Snieder and Safak, 2006; Kohler ef al.,
2007; Todorovska and Trifunac, 2008a,b; some studies call
the method impulse response function or normalized input—
output minimization). Todorovska and Trifunac (2008b) use
11 earthquakes occurring over a period of 24 years to monitor
the fundamental frequency of a building after applying decon-
volution interferometry. The fundamental frequencies they es-
timated from the interferometry are always higher than the
frequencies obtained from the observed records because
the frequencies computed from the observed records are af-
fected by both the building itself and soil-building coupling,
whereas the frequencies estimated using the interferometry
are only related to the building itself. Oyunchimeg and
Kawakami (2003) apply short-time moving-window seismic
interferometry to an earthquake record to estimate the velocity
reduction of a building during an earthquake. Prieto er al
(2010) apply deconvolution interferometry to ambient vibra-
tions after normalizing amplitudes per frequency using the mul-
titaper method (Thomson, 1982) to estimate the traveling-wave
velocity and damping factor.

In this study, we apply deconvolution interferometry to
17 earthquakes observed at a building in Japan over a period
of two weeks and monitor the changes in velocity of the build-
ing. This study is based on the work of Snieder and Safak
(2006); furthermore, we extend the deconvolution interferom-
etry as proposed by Snieder and Safak (2006) to deconvolu-
tion with the waveforms recorded at an arbitrary receiver,
compare this with cross-correlation and cross-coherence
interferometry, and use interferometry for monitoring a build-
ing in Japan. First, we introduce our data: geometry of receiv-
ers, locations of the building and epicenters of earthquakes
used, observed waveforms, and shapes of the normal modes
extracted from observed records. We also introduce the
equations of interferometry based on deconvolution, cross
correlation, and cross coherence. We further indicate the de-
convolved waveforms obtained from one earthquake and es-
timate a velocity as well as a quality factor (Q). Next, we
apply deconvolution interferometry to all observed earth-
quakes and monitor the change in velocity of the building
using coda-wave interferometry (Snieder er al., 2002). In
a companion paper, we apply the interferometry to ambient
vibrations.

Building and Earthquakes

The building (rectangle in Fig. 1) in which we recorded
vibrations is located in the Fukushima prefecture, Japan.
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Figure 1. The building (rectangle, not to scale) and epicenters
of earthquakes used (crosses). Numbers beside crosses correspond
to the sequential numbers in Table 1. Inset indicates the location of
the magnified area.

Continuous seismic vibrations were recorded by Suncoh
Consultants Co., Ltd., for two weeks using 10 microelectro-
mechanical-systems (MEMS) accelerometers, which were
developed by Akebono Brake Industry Co., Ltd., and 17
earthquakes were observed during the two weeks (Table 1;
Fig. 1). In this study, we focus on processing of the earth-
quake records, and we analyze ambient vibrations in the
companion paper. The building includes eight stories, a base-
ment, and a penthouse (Fig. 2). We installed receivers on the
stairs, located 20 m from the east side and at the center be-
tween the north and south sides. The sampling interval of the
records is 1 ms, and the receivers have three components.
Here, we use two horizontal components, which are aligned
with the east-west (EW) and north—south (NS) directions.

Figure 3a—d illustrates the observed waveforms and their
power spectra of earthquake number 5, which gives the great-
est acceleration to the building. Figure 3e,f shows the
spectrogram of the motion at the fourth floor computed with
the continuous-wavelet transform (Torrence and Compo,
1998). Higher frequencies quickly attenuate and the funda-
mental mode is dominant for later times in Figure 3e,f. The
frequency of the fundamental mode in the EW component
(1.17 Hz) is higher than the frequency in the NS component
(0.97 Hz) because the EW side of the building is longer than
the NS side. Both components have large amplitudes at
around 0.5 Hz between 14 and 21 s. Because the 0.5 Hz com-
ponent is localized in time (Fig. 3e,f), it corresponds to a sur-
face wave that moves the entire building. Because the
frequency of the surface wave is less than that of the funda-
mental mode of the building, however, it does not excite
waves that propagate within the building.
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Figure 2. The (a) EW and (b) NS vertical cross sections of the

building and the positions of receivers (triangles). Elevations denote
the height of each floor from ground level. We put receivers on stairs
0.19 m below each floor except for the basement (on the floor) and
the first floor (0.38 m below). Receiver M2 is located between the
first and second floors. Horizontal-receiver components are aligned
with the EW and NS directions.

Figure 4 illustrates the shapes of the normal-mode dis-
placement computed from the real part of the Fourier
spectra at different floors. We calculate displacement from
acceleration using numerical integration (Schiff and Bogdan-
off, 1967). Just as for the fundamental mode, the frequencies
of overtones in the EW component are also higher than
those in the NS component. Although the displacements
of both components in mode 1 (the fundamental mode) are
almost the same, the NS component displacement is larger
than that of the EW component in modes 2 and 3. The am-
plitude of mode 1 is much larger than the amplitudes of other
modes.
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Deconvolution with an Arbitrary Receiver

By deconvolving observed earthquake records, we ob-
tain the impulse response of a building (Oyunchimeg and
Kawakami, 2003; Snieder and Safak, 2006; Kohler et al.,
2007; Todorovska and Trifunac, 2008a). When the height
of the building is H, the recorded signal of an earthquake
in the frequency domain at an arbitrary receiver at height
z is given by Snieder and Safak (2006):

o0
u(z) = Z S(w)R™ (w){eik(ZmH+z)e— y|k|(2mH+z)
m=0

+ eik(2(Wl+1)H—Z)e—"/lk\(2(M+1)H—Z)}

S(w){eikze—“/lk\z + eik(zH—z)e_fy\szH_z)}
B 1 — R(w)e?*H e~ 2NkiH

ey

where S(w) is the incoming waveform to the base of the
building, R(w) is the reflection coefficient related to the cou-
pling of the ground and the base of the building, k is the
wavenumber, ~ is the attenuation coefficient, and i is the
imaginary unit. We use the absolute value of wavenumbers
in the damping terms because the waves attenuate regardless
of whether the wavenumber is positive or negative. In equa-
tion (1), we assume that the wave propagates vertically in the
building (one-dimensional propagation) with constant ampli-
tude and wavenumber and without internal reflections. The
constant wavenumber implies that we assume constant ve-
locity ¢ because k = w/c. The incoming waveform S(w) in-
cludes the source signature of the earthquake and the effect
of propagation such as attenuation and scattering along the

Table 1

Origin Times, Magnitudes, and Hypocenter Locations of Recorded Earthquakes Estimated by
the Japan Meteorological Agency (JMA)

Origin Time Maximum
Number  (yyyy/mm/dd hh:mm:ss.s) My Latitude Longitude Depth (km)  Acceleration (m/s?)
1 2011/05/31 16:12:20.2 39 37.1983 141.0900 32 0.145
2 2011/06/01 01:41:19.6 42 37.6583 141.7617 44 0.088
3 2011/06/01 06:23:27.2 34 37.1167 140.8400 7 0.061
4 2011/06/03 21:44:38.7 4.2 37.2783 141.4683 36 0.040
5 2011/06/04 01:00:14.1 5.5 36.9900 141.2100 30 1.923
6 2011/06/04 09:03:33.7 4.3 37.2683 141.4783 36 0.147
7 2011/06/04 10:41:10.0 4.1 37.0033 141.1933 28 0.083
8 2011/06/05 17:32:38.9 3.5 37.1117  140.8217 7 0.281
9 2011/06/05 19:46:06.3 3.9 36.9200  140.7333 14 0.175
10 2011/06/05 20:16:37.0 4.4 37.0500  140.7717 11 0.843
11 2011/06/07 03:11:55.9 2.6 37.1233 140.8540 5 0.020
12 2011/06/09 19:38:32.9 5.7 36.4967 140.9700 13 0.358
13 2011/06/11 00:40:55.4 39 36.9367 140.6833 11 0.075
14 2011/06/11 01:41:19.6 3.9 37.4117 141.3983 46 0.087
15 2011/06/12 05:08:58.4 4.5 37.2150  141.2100 21 0.153
16 2011/06/12 17:09:45.4 4.6 36.4117 141.0800 47 0.270
17 2011/06/13 05:59:35.1 4.4 37.3350  141.3283 33 0.180

The earthquakes are numbered sequentially according to their origin times. Maximum acceleration is the
observed maximum amplitude of the MEMS accelerometers at the first floor in the 120 s following the origin

time of each earthquake.
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Figure 3.  Unfiltered waveforms of earthquake number 5 recorded at the building in (a) the EW component and (b) the NS component,
and (c, d) their power spectra. (e, f) Spectrogram computed with continuous-wavelet transformed waveforms recorded at the fourth floor.
Time O s represents the origin time of the earthquake. We preserve relative amplitudes of the EW and NS components.

path from the hypocenter of the earthquake to the base of the D(z,2,.w) = u(z)
building. The attenuation coefficient + is defined as e u(z,)
1 S(w){eikze—ﬂ,/\klz + eik(ZH—z)e—qf|k|(2H—z)}

T= E @ - S(w){e*cae Kz 4 oik(2H=2,) g=7IKI2H=2,)}
with Q the quality factor (Aki and Richards, 2002).

For m = 0 in the first line in equation (1), the first term
S(w)e™*e~kIz indicates the incoming upgoing wave and the
second term S(w)e*(H=9)¢=7IK2H=2) the downgoing wave,
which is reflected off the top of the building. The index

m represents the number of reverberations between the base

00
— Z(_l)n {eik(2n(H—z,,)+z—z,l) e~ NKIQn(H=2,)+2-2,)
n=0
+ eik(Zn(H—za)—FZH—z—z[,)

% e—n/\k|(2n(H—za)+2H—z—za)}’ (3)

and top of the building.

As we deconvolve a waveform recorded by a receiver at
z with a waveform observed by another receiver at z,, from
equation (1) we obtain

where we use a Taylor expansion in the last equality. In equa-
tion (3), the receiver at z,, behaves as a virtual source. Equation (3)
may be unstable because of the spectral division. In practice we
use a regularization parameter £ (Yilmaz, 2001, Section 2.3):
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Figure 4. Displacement of the first three horizontal normal

modes for earthquake number 5 estimated from the real part of
the Fourier spectra at different floors. Each mark indicates the dis-
placement of a receiver. The center frequency of each mode is
shown at the top of each panel. Black horizontal lines and the num-
bers on the lines show the amplitude ratio among modes, and the
box depicts the height of the building (R2 in Fig. 2). The zero dis-
placement is at the right side of each box.

u(@) u(z)u* (z,)

~ 4
i) TGP + ) P

D(z,z,,w) =

where * is a complex conjugate and (|u(z,)|?) is the average
power spectrum of u(z,). In this study we use € = 1%.

Note that these deconvolved waves are independent of
the incoming waveform S(w) and the ground coupling R(w).
When we consider substitutions S(w) — 1, R(w) — —1,
H — H - z,,and z — 7 — z,, equation (1) reduces to equa-
tion (3). These conditions indicate the physical properties of
the deconvolved waveforms: impulse response (S(w) — 1),
perfect reflection at the virtual source (R(w) — —1), and a
small building (H - H — z, and z — z — z,,), as we discuss
later.

When z > z,, equation (3) describes a wave that is ex-
cited at z, and reverberates between z, and the top of the
building. Using a normal-mode analysis (equation A4 in Ap-
pendix A), the fundamental mode of equation (3) in the time
domain is given by

drc
H—

D(z,z,.1) = e ! sin(wyt) cos (wo

HC_Z)’ 5)

where wy = w¢/{2(H — z,)}. The period of the fundamental
mode is, thus,

_ 4(H B Za)
= 76. ,

T (6)

which corresponds to the period of the fundamental mode of
the building that is cut off at z, (cut-off building; Fig. 5a).
According to equation (3) the polarity change resulting from
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Figure 5.  Schematic shapes of the fundamental mode retrieved

by using seismic interferometry. (a) Fundamental mode retrieved by
deconvolving wave fields with a motion recorded at z,, (equation 3).
(b) Fundamental mode retrieved by deconvolving wave fields with a
motion recorded at the first floor (equation 9).

reflection at z,, is given by (—1)", the reflection coefficient at
the virtual source is —1. Therefore, the cut-off building is
only sensitive to the properties of the building above z,,
and the reconstructed wave motion in the cut-off building
has the potential to estimate local structure and local damage
instead of structure and damage for the entire building.

When z <z, and n =0 in equation (3) we obtain
two waves: an acausal upgoing wave from z to
24 (€% ¢=1IKl(=22)) ‘and a causal downgoing wave from
7, to z(e*PH=272)g=7kCH=2=2))  Wavyes for n>1 in
equation (3) account for the reverberations between gz,
and the top of the building. Because D(z,, z,,w) = 1, the
deconvolved waveforms at z, is a delta function in the time
domain (D(z,, 24, t) = 6(¢)); thus, D(z,,z,,t) = 0fort # 0
(clamped boundary condition; Snieder, Sheiman, et al.,
2006; Snieder et al., 2009). The upgoing and downgoing
waves interfere destructively at z,,.

Although we assume, for simplicity, a constant velocity
in equation (1), we can apply deconvolution interferometry
to wave fields observed at a building with smoothly varying
velocities. When the velocity ¢ varies with height, the local
wavenumber does so as well, and using the WKBJ approxi-
mation for the phase, equation (1) generalizes to

U

1—R(w)exp(2i [ k(z)dz)exp(=2 [ |k(z)|dz) )

u(z)=

with

U = S [exp(i A k(z)dz) exr)(—v A |k<z>|dz)
+ exp{i(AH k(z)dz + /H k(z)dz)}
X exp{—’Y(/OH |k(z)|dz + [H Ik(Z)le)}],
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and equation (3) generalizes in this case to

D(z,z,4,w) = i(—l)" [exp{i(Zn/H k(z)dz+ /Zk(z)dz) }
n=0 z z

“a ca

xexp{—fy(Zn/HIk(z)Idz+/zIk(Z)IdZ)}
+exp{i((2n + 1)/H k(z)dz—i—/H k(z)dz)}

H
xexp{—*y((Zn—f— 1)/ |k(z)|dz

—i—/HIk(z)Idz)}]. )

As for equation (3), equation (8) represents the
waves in a cut-off building at z,, and the period of the
fundamental mode of the cut-off building depends on the
slowness averaged between z, and H. Note that when
7> 74, D(z,74,w) in equation (8) is only related to k(z)
above z,,.

When z,, is at the first floor (z, = 0) or at the top of the
building (z, = H), equation (3) corresponds to equa-
tions (26) or (21) in Snieder and Safak (2006), respectively,
which we rewrite here as

C(z, 2, w) = u(z)u*(z,)

= IS

ikz g=yIklz 4 eik(ZH—z)e—vlk\(ZH—z)}{e—ikzae—“/lk\za 4 e~ ik(2H=2,) o= /Ik\(2H—zu)}
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if the building were placed on a rigid subsurface (i.e., the
reflection coefficient at the base is —1). When we put a
receiver at the top floor (8 in Fig. 2) of a building instead
of the rooftop (R; or R, in Fig. 2), we theoretically do
not obtain the response in equation (10) because the traveling
waves reflect at the top of the building rather than at the top
floor. In this case, the deconvolved response follows equa-
tion (3). This difference may be insignificant when the wave-
length of the traveling waves is much longer than the
distance between the top floor and the top of the building.

Cross-Correlation and Cross-Coherence
Interferometry

In the previous section, we focused on seismic interfer-
ometry based on deconvolution. Let us consider seismic
interferometry based on cross correlation (e.g., Schuster
et al., 2004) and cross coherence (e.g., Nakata et al., 2011);
these two methods are the techniques applied most widely
and applied earliest (Aki, 1957), respectively.

Cross Correlation

From equation 1, the cross correlation of u(z) and
u(z,) is

(1)

00
D(Z, 0, w) — Z(_l)n{eik(ZnH+z)e— Y|k|(2nH +z)

n=0

+ eik(Z(n+l)H—Z)e—",'\k|(2(n+l)H—Z) }’ (9)

D(z,H,w) = %{eik(H—z)e—vf\kl(H—z) + ek (H=2) kI (H=2)y
(10)

C(z,0,w) = [SW)2 &

1- R(w)gZikHe—z’)’\HH _ R* (w)e—ZikHe—Z'y\HH + |R(w)|2e_47‘k|H

In contrast to the deconvolution (equation 3), equation (11)
depends on the incoming wave S(w) and the ground coupling
R(w) and does not create a clamped boundary condition
(C(z4, 74, w) # 1). Because of the presence of the reflection
coefficient R(w) and the power spectrum |S(w)|?, it is much
more complicated to estimate the properties (e.g., traveling-
wave velocity and attenuation) of the building from cross
correlation than from deconvolution.
When z, = 0 and z, = H, equation (11) reduces to

ikze—ﬂf\klz + e—ikze—vlk\(étH—z) + eik(ZH—z)e—vlk\(ZH—z) + e—ik(ZH—z)e—'y|k\(2H+z)

(12)

1— R(w)62ikHe—2q/\k|H — R* (w)e—2ikHe—2'y\k|H + |R(w)|2e—4'y\k|H ’

e—2~/\k|H{eik(H—z)e—*,'\k|(H—z) + e—ik(H—z)e"/lkl(H—z)}

C(z, H,w) = 2|S(w)|? .

Figure 5b illustrates a schematic shape of the fundamen-
tal mode as given in equation (9). The period of the mode in
equation (9) is related to the structure of the entire building as

— R(w) 2 kH =2 HH _ R () o=21kH o=29KH 1| R (w)|Pe=HIFIH

(13)

respectively. If R(w) = 0 (no reflection at the base), equa-
tion (13) is, apart from the prefactor 2|S(w)|?e=2"*H  the
same as equation (10).
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Cross Coherence

Cross coherence is defined as frequency-normalized
cross correlation:

u(z)u*(z,)
lu(2)[|u(z,)]
u(z)u*(z,)

S @)l + ¢ (u@lu)l)

Similar to equation (4), we use a regularization parameter ¢’
in the last equality in practice. In this study, we use
¢ = 0.1%. For mathematical interpretation, using Taylor
expansions of /1 + X and 1/4/1 + X for X < 1, the cross
coherence between u(z) and u(z,) is given by

CH(z,74,w) =

(14)
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(17)

CH(z,H,w)
1 o0

_ L ik(z—H)
= ¢! X|:1+2Z

. n=1
X |:1 + Z

n=1

{ eZink(H—z) e—Zn’y|k\(H—z)

An}:|,

respectively. Note that because of the complexity of cross-
coherence interferometry, equations (15)—(17) contain pseu-
doevents that propagate at slower velocities than the true
velocity of the building. For example, equation (16) can
be expanded into

n!

{e—2ink(H—z) e—2n~/|k\(H—z)

n!

CHz. 2. w) = OG0 _ u(@)u* (z,) INIENII)
sZas |M(Z)||M(Za)| \/u(z)u*(z)\/u(za)u*(za) \/M*(Z)\/u(za)

2ink(H-z) e—2nq/\k| (H-z)

ek 5 | 1 + li €
2

n=1

r 0 {e—2ink(H—za)e—2n7|k(H—z,,)
=1

n!

—_—

x |14+

n!

+

Mg :N\

—2ink(H-z2) ,—2n~|k|(H-z)
e e
An}]

n

x1+

|
{

2ink(H-z,) ,—2n7|k|(H-z,)
e e
An}],

gk

n=1

where Ay = 1 and A,, = (2n — 1)!1/(=2)". As for deconvo-
lution interferometry, equation (15) does not depend on S(w)
and R(w). For a complex number z = re'?, the square root is
defined as /z = /re’?/?. Furthermore, the waveforms of
cross-coherence interferometry satisfies a clamped boundary
condition at z =z, (CH(z4,z4,w) =1,  thus,
CH(z4, 24, 1) = 6(2), and CH(z,,24,1) = 0 for ¢ # 0).
For z, = 0 and z, = H, equation (15) simplifies to

1 2ink(H-z) e—2n'y|k\(H—Z)
CH(z,0,w)=e**x|14= A, _
(Z w) e X[ +2;{ I’l' n 1}i|
r 1 e—2inkHe—2n'y|k\H
X 1+§;{—'An—l}]
o) —2ink(H-z) ,—2nv|k|(H-z)
gl
n=1
oS e2mkH —2n~|k|H
x 1+Z{ An}}, (16)
n=1

{ekee Kz 1 pikCH=2) p=1lk QH=2) f p=ikia p=7lkl2a | o=k (2H=24) p=7KI2H-24)}
{e—ikze—",'\klz + e—ik(ZH—z)e—ﬂ/\k|(2H—z)}{eikz[,e—wlk\z“ + eik(ZH—z(,)e—w|k\(2H—z,,)}

)
]

(15)

CH(z,0,w)= eikz { 1 _le—4y|k\(H—z) _le—4fyk|H}
’ ’ 4 4

+

’—‘-'M'—‘oolwl\-)l»—k'\"’—‘-bl»—k

. |
e~ ikz p=27Ik|(2H-2) +Ze3tkze—27\k|(2H—Z)

— —p—ik(2H=32) p=27|k|(H~2) ik(2H+2) ,—=27|k|H

Lo
2

+ ezk(2H—~)e—2'y|k\(H—z) +%e—ik(2H—z)e—2”/|k|H

—ik(4H—SZ) e—4'y\k|(H—z) _le—ik(4H—z) e—4’y|k\H

+

ik (4H=2) ,=2+Ik|2H~ z)+3e—zk(4H 2) =4 IkIH
8

zk(4H 3z)e—4~/|k|(H Z)_le—lk(41‘1 32)
4

8°
x e~ 2KIQH=2) L 0 (=61IkI(H=2))

(18)

ke e2KICH=2) /4 _p—ik(2H=32)

The  terms and
e~2IKI(H=2) /3 indicate waves that propagate at one-third of
the true velocity, and the term 3e~*(#=52) o=4lKI(H=2) /8 4t
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Table 2

Amplitudes of Traveling Waves Obtained from Observed Records and Computed by
Seismic Interferometry Based on Deconvolution, Cross Correlation, and Cross Coherence
for z, = 0 (Equations 1, 9, 12, and 16)

Phase Observed Record Deconvolution Cross Correlation Cross Coherence
eikz S(w)e M e klz C 1 = Le=tlkl(H-2) _ %efhlk\l-l
pik(2H=2) S(w)e™ yIk|(2H~z) e IK@H=2) C, 1 o=27Ik|(H-2)
pik(2H+2) S(w)R(w)e—y\kl(ZHJrz) —eKQH+2) G, _1o=2lkH
pik(4H-2) S(w)R(w)eIKEH-2) —e—Vkl(4H-2) Cy — % e~ 2k(2H=2)

Cr = ISP M1+ R@)e I3, [REw) etk

Cy = [S(W)Pe M1 + R(w)e Yo [R(w)[ e IkH

C3 = [S(W)PR(w)e ML 4 R(w)e YT [R(w)[Pre kA

Cy = [S(W)PR(W)eMEH=T 4 R(w)e LI | [R(w) et kIH

We compute the amplitudes of cross-correlation interferometry in Appendix B. For cross-coherence
interferometry, we ignore wave fields that attenuate faster than e¢IKI(#-2),

one-fifth. These unphysical waves complicate the estimation
of the velocity of traveling waves by applying cross-
coherence interferometry to earthquake data.

Comparison of Deconvolution, Cross Correlation, and
Cross Coherence

Each type of interferometry has different properties
(e.g., amplitude or complexity). It follows from equations (4),
(11), and (14) that in the frequency domain the phases
obtained by interferometry based on deconvolution, cross
correlation, and cross coherence are the same. The spectral
amplitude is different, though, and this leads to different
waveforms in the time domain. We list in Table 2 the ampli-
tudes of the first four causal waves propagating at the true
velocity of the building for observed record, deconvolution,
cross correlation, and cross coherence (equations 1, 9, 12,
and 16, respectively). For cross-correlation interferometry,
we calculate the amplitudes of the traveling waves in Appen-
dix B using Taylor expansions. Although the amplitudes of
cross correlation are complicated due to the reflection coef-
ficient R(w) and the power spectrum |S(w)|?, the ratios of
amplitudes for each pair of traveling waves are the same
as those for observed records. The amplitudes of the wave-
forms obtained by cross coherence are independent of in-
coming waveform S(w) and reflection coefficient R(w), but
the ratio of amplitudes varies between each pair of traveling
waves. Therefore, estimating attenuation of the building us-
ing cross-coherence interferometry is problematic. Because
the amplitudes of the deconvolved waveforms are indepen-
dent of S(w) and R(w) and depend exponentially on the trav-
eled distance, deconvolution interferometry can be used to
estimate attenuation of the building.

We numerically compute synthetic waveforms excited at
0 m by an impulsive source (S(w) = 1) based on equation (1)
shown in Figure 6a. In the computation, we use the following
parameters: H = 100 m, R(w) =0.5, Q = 3000, and
¢ =200 m/s. In applying seismic interferometry, we com-
pute deconvolution ({u(z)u*(0)}/{|u(0)|> + £(|u(0)|>)};
Fig. 6b), cross correlation (u(z)u*(0); Fig. 6¢), and cross

coherence  ({u(z)u*(0)}/{|u(2)||u(0)] + &'([u(z)||u(0)])};
Fig. 6d), where ¢ = 1% and €' = 0.1%, using the synthetic
waveforms shown in Figure 6a. In Figure 6b—d, the virtual
sourceis atz = 0 m. Deconvolved waveforms (Fig. 6b) arrive
at the same time as the waves in the synthetic records, but
the polarization is reversed when the wave is reflected at z =
0 m due to the clamped boundary condition. In cross-
correlation interferometry (Fig. 6c¢), the causal waves arrive
at the same time as the waves in the synthetic records
(Fig. 6a), and the acausal waves are kinematically identical
to the time-reversed causal waves. Although for simplicity
we use S(w) = 1 in Figure 6, the incoming wave complicates
the cross-correlated waveforms when we use real earthquake
data, and picking the arrival times of the traveling waves may
be difficult in that case. Cross-coherence interferometry cre-
ates traveling waves that propagate at slower velocities than
true velocity ¢ = 200 m/s. In Figure 6d, the gray line high-
lights the wave —e~"¥(2H=32) o=21IkI(H=2) /3 'which travels with
one-third of the true wave speed (66.7 m/s). To estimate the
velocity of the traveling waves, therefore, deconvolution
interferometry is useful.

We highlight the amplitudes of the waves in Figure 6
with the circles. A comparison of Figure 6a and 6b shows
that the ratios of the amplitudes of the synthetic records
and deconvolved waves within the first two circles are the
same, but the ratios in the second and third circles are differ-
ent. The reflection coefficient at 0 m of the synthetic records
is R(w), whereas the reflection coefficient of waves obtained
by deconvolution interferometry is —1; see the numbers next
to the arrows in Figure 6a and 6b. The difference between the
reflection coefficients implies that deconvolved waveforms
are independent of the ground coupling, and the decay of
amplitudes of the waves is only related to the attenuation
of the building. The ratios of the amplitudes of the waves
highlighted by the circles in cross-correlation interferometry
are the same as those in the synthetic records; see the num-
bers next to the arrows in Figure 6a and 6¢. Thus, both the
building and the soil-structure coupling influence the ampli-
tudes of cross-correlated waveforms. In cross-coherence
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Figure 6. (a) Synthetic waveforms based on equation (1). We numerically calculate waveforms with an impulse response (S(w) = 1) at

t=0sat0m, R(w) =0.5, Q = 3000, H= 100 m, and ¢ = 200 m/s. Interferometric waveforms by computing deconvolution (panel b:
equation 9), cross correlation (panel c: equation 12), and cross coherence (panel d: equation 16) using waveforms shown in panel (a). The
virtual source for interferometry is at the O m receiver. We apply a bandpass filter 0.5-1-30-40 Hz after computing each waveform. The
circles in each panel highlight four waves, which are discussed in the main text. The numbers near each arrow indicate the ratio of
the amplitude difference between two waves highlighted by the circles apart from the attenuation expected from the traveling distance
at the correct velocity. To estimate the ratio of amplitude in panel (d), we ignore wave fields that attenuate faster than e~¢7¥I(#=2 and CH, =
2/(4 — e~ KIH=2) _ o=k where 7 = 40 m. Amplitudes in each panel are normalized by the amplitude of the first highlighted wave (at
t = 0.2 s). The gray line in panel (d) shows the wave that propagates at 66.67 m/s.

interferometry (Fig. 6d), the ratios of the amplitudes of the
waves within the circles are different from either synthetic
records or deconvolution interferometry. When we consider
the amplitudes of each interferometry, deconvolution inter-
ferometry is useful for estimating the attenuation of the
building.

Based on equations (11)—(18), Table 2, and Figure 6, we
conclude that deconvolution interferometry is suitable for
application to earthquake records to estimate the velocity
and attenuation of the building. Cross-correlated waveforms
depend on the incoming wave S(w) and the ground coupling
R(w). Cross-coherence interferometry creates pseudoevents,
and the decay of amplitudes of waveforms reconstructed by
cross coherence is not exponentially depending on the trav-
eled distances. Therefore, these types of interferometry are
not appropriate to estimate velocity and attenuation.

Snieder, Sheiman, et al. (2006) show that the wave fields
obtained from deconvolution interferometry satisfy the same
wave equation as the wave field of the real building for an

external source. Using this idea, we explain why cross-
coherence interferometry creates unphysical events. Follow-
ing Snieder, Sheiman, et al. (2006), we denote the linear
differential operator that defines the wave propagation by
L(z) (e.g., for the one-dimensional wave equation L(z) =
d?/dz* + w*/c(z)). The operator acts on the space variable
z. For an internal source at z,, the wave field u(z) (equation 1)
satisfies L(z)u(z) = F(zo) where F is the excitation at z.
For an external source, on the other hand, u(z) satisfies
L(z)u(z) = 0; this homogeneous equation applies to earth-
quake data. Applying the operator L(z) to equations (3),
(11), and (14), respectively, gives

“@ _ L ue) =0, (19)

L(2)D(z, 24 w) = L(Z)M(Z ) u(z

L(2)C(z, 24 w) = L(Qu(2)u*(z,) = {L(Du(z)}u*(z,) = 0,
(20)
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Deconvolved waveforms, in which the virtual source is at the first floor, of earthquake number 5 after applying a bandpass filter

0.4-0.5-45-50 Hz in the (a) EW and (b) NS components. Arrival time of traveling waves with the velocity that is estimated from the least-
squares fitting of the first upgoing and downgoing waves, gray lines. We repeat the gray lines after the second traveling waves based on
equation (9). Waves in the positive polarization, solid gray lines; waves in the negative polarization, dashed gray lines.

u(z)u*(z,)
lu(2)[|u(z,)]

u*(z,) u(z)
— 21
|u<za>|L(Z)(|u(z>|) #0. D

L(z)CH(z,z,4,w) = L(2)

where L(z) acts on the z coordinate only. Cross-coherence
interferometry (equation 21) does not produce a wave field
that satisfies the wave equation of the real building, but de-
convolution and cross-correlation interferometry do satisfy
the wave equation. Equation 21 shows that cross-
coherence interferometry creates unphysical internal sources
that complicate wave fields obtained from cross coherence.

Deconvolved Waveforms Generated
from an Earthquake

As an illustration of the data analysis, we first show the
application of deconvolution interferometry to the records of
earthquake number 5. We first estimate whether the reflec-
tion point of the traveling wave is at R1 or R2 because the
building has a penthouse (Fig. 2). Figure 7 shows waveforms
deconvolved by the motion recorded at the first floor (equa-
tion 9) for the EW and NS components. We apply a 0.4-0.5—
45-50 Hz sine-squared bandpass filter to the deconvolved
waveforms. Because the physical property at the basement
is different from the other floors, we do not deconvolve with
the motion in the basement in this study. During the first sev-
eral-hundred milliseconds in Figure 7, the waveforms depict
a traveling wave excited at the first floor at # = 0 s. The wave
is reflected off the top of the building and propagates down,
and then reflects again at the first floor with the opposite
polarization because the reflection coefficient of the decon-
volved waves at the first floor is equal to —1 (according to
equation 9). While reverberating between the first floor and
the top of the building, higher frequencies attenuate and the
fundamental mode is dominant for later times.

To estimate the velocity of the traveling wave and the
location of the reflection point, we compute the travel-time
curve using a least-squares fitting of the picked travel times
on the first upgoing and downgoing waves at each floor (the
first two solid gray lines in Fig. 7). For picking the travel
times, we seek the maximum amplitude time in each travel-
ing wave. We repeatedly draw the reverberating travel-wave
paths based on equation (9) using the velocity estimated from
the first upgoing and downgoing waves (in Fig. 7). To avoid
large uncertainties we use the picked travel times between
floors one through five in the EW component and between
floors one through six in the NS component because at these
floors the positive amplitudes of the upgoing and downgoing
waves do not overlap. Both travel-time curves in the EW and
NS components indicate that the waves reflect off the top of
the penthouse (R2), and the velocity is 214 & 9 m/s in the
EW direction and 158 & 7 m/s in the NS direction, respec-
tively, where the uncertainties are one standard deviation of
measurements. Because the NS side is shorter, the velocity in
the NS component is slower. The deconvolved waveforms in
the NS component show large deviation from expected
arrival times shown in the gray lines in Figure 7b, which in-
dicates that the frequency dispersion in the NS component is
larger than in the EW component. In the following, we focus
on the EW component analysis.

In Appendix C, we apply cross-correlation and cross-
coherence interferometry to records in the EW component.
Because of the power spectrum of the incoming wave, we
cannot obtain traveling waves using cross-correlation inter-
ferometry (Fig. Clc in Appendix C). We can estimate the
velocity of traveling waves from the waveforms created by
cross-coherence interferometry, but cannot estimate attenua-
tion because the fundamental mode is not reconstructed
(Fig. C1d in Appendix C).

Next, we deconvolve the wave fields with the motion
recorded by the receiver at the fourth floor (Fig. 8), where
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(a) Deconvolved waveforms, in which the virtual source is at the fourth floor, of earthquake number 5 after applying a bandpass

filter 0.4—0.5-45-50 Hz in the EW component. Travel paths expected from the velocity 195 m/s and equation (3), gray lines. Waves in the
positive polarization, solid gray lines; waves in the negative polarization, dashed gray lines. The point where the positive and negative
polarization waves cancel, circle. (b) The same waveforms shown in panel (a) but with the deconvolved waveforms lower than the fourth
floor omitted. When we focus on the cut-off building above the fourth floor, the reflection coefficient at the circle is —1.

the fourth-floor receiver behaves as a virtual source and sat-
isfies a clamped boundary condition; then we apply the same
bandpass filter as used in Figure 7. We can interpret wave-
forms in Figure 8 in two ways, which are explained using
Figure 8a,b. We obtain upgoing and downgoing waves,
which interfere at the fourth floor. At the circle in Figure 8a,
the upgoing wave from the bottom and downgoing wave
from the top cancel, and the deconvolved waveform at the
fourth floor vanishes for nonzero time, which is due to the
fact that the waveform at the virtual source is a band-limited
delta function.

The fourth floor also behaves as the reflection point with
reflection coefficient —1 (equation 3), which means we can
separate the building into two parts: above and below the
virtual source. Figure 8b shows the building above the virtual
source. At the circle in Figure 8b, the downgoing wave with
positive polarization from the top is perfectly reflected as the
negative-polarization upgoing wave. Because we obtain an
upgoing wave from the virtual source and reverberations
between the fourth floor and the top of the building, this
example of interferometry creates the response of a cut-off
building that is independent from the structure below the
fourth floor (see equation 3 and Fig. 8b). Similar to Figure 7,
the fundamental mode for the cut-off building (equation 3
and Fig. 5a) is dominant for later times in Figure 8b. Note
the similarity between Figures 7a and 8b; both figures show
traveling waves and fundamental mode. The period of the
normal mode in Figure 8b is shorter than in Figure 7a as is
expected from equation (6). Interestingly, because the cut-off
building is independent from the structure below the fourth
floor, this fictitious building is useful for detecting local
structure and local damage of the building.

Applying a least-squares fit of the travel times of the first
upgoing wave at the first to fourth floors (n = 0 and 0 < 7 <
7, in equation 3), we obtain the velocity of traveling waves to

be 195 + 25 m/s. To avoid large uncertainties, we use the
travel times at the first to fourth floors to estimate the veloc-
ity. At these floors, the upgoing waves are well separated
from the downgoing waves. For the cut-off building, by
estimating the velocity from the deconvolved waveforms at
the floors only below or above the virtual source, we can
obtain the velocity that is only related to the structure below
or above the virtual source because the virtual source satisfies
the clamped boundary conditions. The structure between the
first and fourth floors (below the virtual source) contributes
to the estimation of this velocity. This is the main reason why
the mean velocities estimated from Figures 7 and 8 differ, but
this discrepancy is not statistically significant.

R2
East-West 135
R1 [ 4 30
8 W
7 - - A P - 25 _
6 NWA\/A\_N 20 é
g 5 T_A_,\/A‘VA\N 15 5
2 4 M/—A\M o _§,
3 ,\/K/_A\/L__\M 3
2 ‘\WAA 5 w
M2 W‘/-\/
1 ‘\_/_\A/‘\_/A\/“‘, 0
B \_/_\,A\W -5
-04 -0.2 0.0 0.2 0.4
Time (s)
Figure 9. Deconvolved waveforms, in which the virtual source

is at the eighth floor, of earthquake number 5 after applying a band-
pass filter 0.4—-0.5-12—-16 Hz in the EW component. Travel time of
the waves propagating at 210 m/s, gray lines. The positions of the
lines are estimated from equation (3). Positive polarization, thick
lines; negative polarization, dashed line.
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Figure 10. Natural logarithm of the envelopes, thin line; linear
fitting using the least-squares method, thick line. We show enve-
lopes at only the middle-second to eighth floors because the first
floor is a virtual source and the basement floor has a different physi-
cal condition.

We apply deconvolution interferometry to the motion
recorded by the receiver at the eighth floor, which is the high-
est receiver in the building (Fig. 9). Snieder and Safak (2006)
found that this procedure gives only one pair of upgoing and
downgoing waves; because the eighth-floor receiver is
~12 m below the top of the building (R2), however, the de-
convolved waveforms in Figure 9 satisfy equation (3) instead
of equation (10). In Figure 9, we apply a 0.4-0.5-12—-16 Hz
sine-squared bandpass filter to deconvolved waveforms.
Because the quality of the data is not enough to accurately
pick travel times, we cannot estimate the wave velocity from
Figure 9. The gray lines in Figure 9 indicate the arrival time
of the traveling waves at 210 m/s as inferred from Figure 7a.

From the resonant waves in Figures 7 and 8, we can
estimate Q following the method proposed by Snieder and
Safak (2006). Figure 10 shows the logarithmic envelopes of
the deconvolved waveforms in Figure 7a at each floor except
the basement and the first floor (thin lines), and their least-
squares linear fits (thick lines). Because we use the wave-
forms deconvolved with the first floor, the estimated Q is for
the entire building. We assume Q is constant in the entire
building because the wavelength in the frequency range used
is much longer than the height of the building (the resonant
frequency is 1.17 Hz). In Figure 10, the average slope of the
fitting lines indicates that Q~! = 0.098 based on the funda-
mental-mode frequency 1.17 Hz.

Monitoring a Building Using 17 Earthquakes

Using the 17 earthquakes recorded in the two weeks
(Table 1 and Fig. 2), we monitor the change in the shear-
wave velocity of the building. Figure 11 illustrates the wave-
forms that are deconvolved by the wave recorded at the first
floor of each earthquake (Fig. 11a) and the power spectra of
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Figure 11. (a) The waveforms of each earthquake in the EW

component after deconvolution with the waves recorded on the first
floor in the time domain, and (b) the power spectra of the wave-
forms. We apply a bandpass filter 0.4-0.5-45-50 Hz. We show
the traces from the first floor to the eighth floor in each earthquake.

the deconvolved waveforms (Fig. 11b). The virtual source is
at the first floor (similar to Fig. 7a). The frequency compo-
nent around 1.5 Hz shows the fundamental mode and around
5 Hz the first overtone. From the bottom to top traces for
each earthquake, the traces are aligned from the first to eighth
floors, and the waves propagating between the bottom and
the top are visible. Comparing the fundamental-mode waves
for later times among earthquakes, we can roughly estimate
changes in velocity from a visual inspection, e.g., the veloc-
ities in earthquakes 5, 8, 10, and 12 are slower. The
earthquakes, which show slower velocity, indicate lower nor-
mal-mode frequencies as shown by Todorovska and Trifunac
(2008b). The ratio of the reductions in velocity and fre-
quency are almost the same.

The amplitude of each resonant wave provides an esti-
mate of attenuation. For example, the attenuation is strong
for earthquake number 5 because the amplitude of the fun-
damental mode fades away at around 2.5 s. For some earth-
quakes, although the fundamental mode is dominant at later
times, deconvolved waveforms still show upgoing and down-
going waves (e.g., at 2.5 s of earthquake number 15), which
implies either that the attenuation at higher frequency is rel-
atively weak at the time these earthquakes occurred, or that
the overtones are strongly excited. We estimate the velocity
of traveling waves using the method that is the same as for
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(a) Velocities estimated from traveling waves (black) and by coda-wave interferometry using the stretching method (gray) of

each earthquake. The error bars of the velocities estimated from traveling waves (black) are one standard deviation of individual arrival times,

and the bars in the stretching method are calculated by

0% + o%,. We illustrate only velocities that have < 10% velocity uncertainty (for

traveling waves) or are estimated from more than three traces that have a correlation coefficient > 0.9 (for the stretching method). (b) Cross
plot of estimated velocities with maximum acceleration observed at the first floor.

Figure 7a (the black symbols in Fig. 12). The black marks in
Figure 12b illustrate a negative correlation between the ve-
locities and the maximum acceleration of observed records.

To estimate velocities, we also apply coda-wave interfer-
ometry as developed by Snieder et al. (2002) to deconvolved
waveforms. Coda-wave interferometry allows us to estimate
arelative velocity change from two waveforms by computing
cross correlation. Coda-wave interferometry has been ap-
plied to multiplets (e.g., Poupinet et al., 1984; Snieder and
Vrijlandt, 2005) and to waveforms obtained by seismic inter-
ferometry (e.g., Sens-Schonfelder and Wegler, 2006). By
using coda-wave interferometry, we estimate velocities from
the deconvolved waves between 1 and 3 s in Figure 11. The
waves in the time interval are mostly the fundamental mode.
We choose earthquake number 5 as a reference and estimate
the relative velocity for each earthquake from the reference
earthquake. In coda-wave interferometry, we stretch and
interpolate one waveform and compute a correlation coeffi-
cient (CC) with a reference waveform (u.;) in the time

1
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Figure 13.

domain (Fig. 13; Lobkis and Weaver, 2003; Hadziioannou
et al., 2009; Weaver et al., 2011):

lzlz u(t(l - O‘))uref(t)dt
I (1 = )t [ ide(r)ar

CC(a) = .2

where #; and 7, denote the time window, and in this study we
use 1-3 s. At the maximum of CC(«),
o = 27 Vel (23)
Uref
where v and v, are the velocities at each earthquake and the
reference earthquake, respectively. For computing CC, we
apply the same bandpass filter as for Figure 11, and the
waves are mostly the fundamental mode.
Note that even though we use the waves between 1 and
3 s for applying coda-wave interferometry, the origin time for
stretching is at time O s. The gray symbols in Figure 12 are
the velocities estimated by coda-wave interferometry using

Eq. 5
---Eq.9
— Eq. 9 with streching

~

o
o

Normalized amplitude
S
[6)] o

|
-

Time (s)

(a) Correlation coefficient (CC) as a function of « (equation 22) between deconvolved waveforms computed from earth-

quakes number 5 and number 9 at the eighth floor. Dashed arrows point to the maximum CC value and its value of a. For computing CC, we
use only the waveforms from 1.0 to 3.0 s. (b) Deconvolved waveforms at the eighth floor of earthquakes number 5, number 9, and number 9

with stretching for a« = 0.21 (see panel a).
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the stretching method. Because we use earthquake number 5
as a reference (u.y), the estimated velocities of each earth-
quake using the stretching method (the gray symbols in
Fig. 12) are the relative velocities with respect to the velocity
of earthquake number 5. Therefore, the velocities estimated
from traveling waves and by the stretching method in earth-
quake number 5 are, by definition, the same. The standard
deviation of the velocity change (the gray bars in Fig. 12)

for each earthquake is estimated by /o2 + o7, where o5

is the standard deviation of the velocity measurements esti-
mated from traveling waves at different floors in earthquake
number 5, and oy, is the standard deviation of the relative
velocity measurements between each earthquake and earth-
quake number 5 estimated by the stretching method at differ-
ent floors. The gray symbols in Figure 12b indicate that the
velocities obtained by the stretching method also have a neg-
ative correlation with the acceleration, but the slope is steeper
than that for the traveling waves. Because the waves in 1-3 s
are mostly fundamental mode and the main difference be-
tween the traveling waves and the fundamental mode is the
frequency (the traveling waves contain higher frequencies
than the fundamental mode), the difference in slopes indi-
cates dispersion. The steeper slope of the gray symbols in
Figure 12b indicates that the imprint of acceleration is
stronger for lower frequencies than for higher frequencies.

Conclusions

We obtain impulse responses of the building and their
changes in velocity by applying deconvolution interferom-
etry to 17 earthquake records. We estimate the reflection
point of the traveling wave, which is at the top of the pent-
house, from the deconvolved waveforms. Because the shape
of the ground plan of the building is rectangular, the velocities
of the traveling wave in two orthogonal horizontal compo-
nents are different. According to the properties of deconvolu-
tion, the responses are independent from the soil-structure
coupling and the effect of wave propagation below the bottom
receiver. Because the cut-off building is independent of the
structure below the virtual source, one might be able to use
the cut-off building to investigate local structure and local
damage. Cross-correlation interferometry cannot separate the
building response from the soil-building coupling and the
wave propagation below the virtual source. Cross-coherence
interferometry produces unphysical wave fields propagating at
slower velocity than the true wave speed of the real building,
and the attenuation of the waveforms obtained from cross co-
herence do not correspond to the travel distance of the waves.
Thus, in contrast to deconvolution interferometry, these types
of interferometry are not appropriate for applying to earth-
quake records for estimating velocities and attenuation of
buildings. We estimate velocities from both traveling waves
and the fundamental mode of deconvolved waveforms. The
velocities estimated from each earthquake and maximum ac-
celeration have a negative correlation.
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Data and Resources

Seismograms used in this study were operated and main-
tenanced by Suncoh Consultants Co., Ltd. Earthquake catalogs
are listed at http://www.jma.go.jp (last accessed August 2012).
Figure 1 is produced by using the Generic Mapping Tools
(GMT; http://gmt.soest.hawaii.edu, last accessed August 2012).
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Appendix A

Normal-Mode Analysis of Deconvolution
Interferometry

In equation (3), we analyze the deconvolution interfer-
ometry based on superposition of traveling waves using a
Taylor expansion. Here, we analyze equation (3) based on
summation of normal-mode waves while using contour in-
tegration as following the procedure proposed by Snieder
and Safak (2006). Applying the inverse Fourier transform
to D(z, z,, w) and using the relationship k = w/c, the decon-
volved response in the time domain is given by

2H—z 2H-z

0o e=iw(t=0) g=Iwle 4 pmit(1=) p—lwl*E
D(z,z4.1) = f 31 2H dw.

eiw%e_ﬂf‘w‘%l _l_ ei"" ,_-:ae_’ﬂw‘ —a

—0oQ0 c

(Al)

For ¢ > (2H — z)/c, the locations of poles (w;) of the
integrand in equation (Al) are

wy = wi(E1 =iv), (1=0,1,2,...), (A2)
where the normal-mode frequencies are given by
I+ %)71'6
=—2% A3
wi H-z, (A3)

Using the residue theorem, equation (A1) can be written
as the summation of normal-mode wave fields:

D(z,z,,1) =

dre & H-z
—Die™wit g t .
E (-D'e sin(w;t) cos (w, " )

~Za=o
(A4)

Appendix B

Amplitude of Cross-Correlation Interferometry

In this appendix, we compute the amplitude of the cross-
correlated waveforms in equation (12). Using Taylor expan-
sions, we rewrite equation (12) as
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C(z,0,w) = |S(w)[*{e ez 4 gmikze=1lkI(#H=2) Similar to expression B2, we obtain C,, C3, and C, as
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"= Applying Cross-Correlation and Cross-Coherence

x =2 DVKH (R* (1) )n o=2inkH e—2nvlle}} Interferometry to Real Data

In Figure C1, we apply cross-correlation and cross-
coherence interferometry to real data to draw figures similar
o0 . -
% {Z IR (w)|2”e‘4”"fk|H}. (B2) tq Figure 7a. When we qse the same bandpass filter as for
— Figure 7, cross-correlation interferometry enhances the
fundamental-mode frequency, and only the fundamental
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Figure C1. Waveforms obtained by applying (a, c) cross-correlation and (b, d) cross-coherence interferometry, in which the virtual
source is at the first floor, to the records of earthquake number 5 in the EW component. These waveforms are applied bandpass filters
(a, b) 0.4-0.5-45-50 Hz, (c) 1.3-1.6-45-50 Hz, and (d) 1.4-2—45-50 Hz. Note that the bandpass filter for panels (a) and (b) is the same
filter as that used for Figure 7. The amplitude scales in each panel are different. The solid gray lines in panel (c) and (d) are the positive-
polarity traveling waves with the velocity estimated from Figure 7a based on equations (12) and (16). The dashed gray line in panel (d)
indicates the wave that propagates at one-third of the velocity of Figure 7a.
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mode is visible (Fig. Cla). This is caused by the power spec-
trum of the incoming wave (equation 12). When we cut the
fundamental-mode frequency, the first-higher mode is dom-
inant in the cross-correlated waveforms (Fig. Clc). There-
fore, we cannot estimate the velocity of traveling waves.

Figure Cl1b illustrates upgoing and downgoing waves
from ¢t = 0 s, and the waves propagate at the same velocity
as the traveling waves reconstructed by deconvolution inter-
ferometry (Fig. 7a). These propagating waves, however, may
be affected by the wave that propagates at slower velocities.
The fundamental mode is not clear in Figure C1b because of
the spectral ratio used in cross-coherence interferometry. As
a result, the amplitude in later times is much smaller than the
amplitude of deconvolution interferometry (Table 2).
Because of the frequency we used, the wave propagating
with slower velocity is not clear (the dashed gray line in
Fig. C1d). The negative amplitudes around the dashed line
might be related to the wave with slower velocity.
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