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This paper deals with a basic issue: How does one approach the problem of designing the “right” objective
for a given resource allocation problem? The notion of what is right can be fairly nebulous; we consider two

issues that we see as key: efficiency and fairness. We approach the problem of designing objectives that account
for the natural tension between efficiency and fairness in the context of a framework that captures a number of
resource allocation problems of interest to managers. More precisely, we consider a rich family of objectives that
have been well studied in the literature for their fairness properties. We deal with the problem of selecting the
appropriate objective from this family. We characterize the trade-off achieved between efficiency and fairness as
one selects different objectives and develop several concrete managerial prescriptions for the selection problem
based on this trade-off. Finally, we demonstrate the value of our framework in a case study that considers air
traffic management.
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1. Introduction
Operations managers are frequently concerned with
problems of resource allocation. They must build
quantitative decision models for such problems, cali-
brate these models, and then use a suitable decision
support/optimization tool to make implementable
decisions or “allocations.” There is a vast amount
of academic research in operations management and
associated fields available to complement each of the
steps above. At the risk of belaboring the obvious, the
following examples serve to specify this connection
with resource allocation:

• Call center design. Pools of specialized agents
must be utilized to provide service to various classes
of customers. Decisions include staffing levels across
agent pools and routing protocols to assign customers
to agents. If delays experienced by customers are
associated with dollar values, a natural objective is
minimizing the expected delay costs incurred across
customer classes.

• Healthcare scheduling. Beds (and the associated
resources of doctors, nurses, and equipment) must be
allocated over time to patients in need of care. In the
case of an operating room, a natural objective might
be (and, at least nominally, frequently is) the maxi-
mization of throughput. In an urgent care setting, one
may care about delay related objectives. For instance,
in the case of scheduling a specialized intensive care
unit, a natural objective is minimizing the expected

waiting time for a bed. In more sophisticated settings,
the objectives may be directly related to physiological
outcomes—for instance, minimizing mortality.

• Air traffic control. In case of inclement weather,
the U.S. Federal Aviation Administration (FAA) needs
to reallocate landing and takeoff slots among the
airlines. Delays on the ground and in the air are
associated with dollar values and a natural objec-
tive to consider is then reallocating slots in a manner
that minimizes the total dollar impact of the resulting
delays.

• Allocation of cadaveric organs. The United Network
for Organ Sharing oversees the allocation of cadaveric
organs (e.g., kidneys, livers etc.) to patients in need
of them. Medical researchers and statisticians have
built sophisticated models that predict the physiolog-
ical outcome of allocating a specific organ (as mea-
sured by a number of attributes) to specific patients.
These outcomes are frequently measured in terms of
the number of quality-adjusted life years (QALYs) the
transplant will add to the patient’s life. A natural
objective is to assign organs in a manner that maxi-
mizes the expected QALYs added across the popula-
tion over time.

The list above is somewhat idiosyncratic—there are
a number of other examples that one could include.
What the examples above do share in common, how-
ever, is their undoubted relevance from the perspec-
tive of the social utility at stake in their solution.
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Academic work on these problems frequently tends
to focus on decision support related issues. For exam-
ple, how does one design a routing scheme that mini-
mizes delays in a particular queueing model? Or how
does one make organ allocation decisions given the
uncertainties in supply, demand, and the acceptance
behavior of patients? These are difficult questions to
answer.

The present paper focuses on a more basic issue.
How does one come up with the right operational
objective in each of the scenarios above? Is the “obvi-
ous” objective the right one? To return to the exam-
ples above, it is hard to argue that minimizing the
dollar impact of delays is not a noble objective for
the FAA—in fact, a vast number of proposals attempt
to do just that. Of course, this noble objective fails to
account for the outcome an individual airline might
have to endure as part of such an allocation. Sim-
ilarly, in the case of organ allocation, it is difficult
to argue against the value of an allocation scheme
that maximizes the number of life years generated via
transplantation activities. Unfortunately, this objective
fails to account for inequities such a scheme might
imply for a particular group of patients (based, for
instance, on their age, or peculiar physiological char-
acteristics). Designing the “right” objective is a first-
order issue, and the tensions inherent in doing so
are frequently complex as the examples we have just
noted make clear. This crucial design task is nonethe-
less frequently executed in an ad hoc fashion. The
present paper attempts to provide some structure to
guide this task.

• An abstract framework. We view resource alloca-
tion problems through the lens of welfare economics.
In particular, we imagine that any resource alloca-
tion problem may be viewed as one where the system
designer (or operations manager, in this case) must
decide on an allocation of utilities to several parties
from some set of feasible utilities. How might we
select an allocation from among the many efficient
allocations possible? A little reflection shows that the
criterion implicitly employed in the examples above
is a utilitarian criterion—one simply seeks to max-
imize the sum of utilities. In this paper, we adopt
the utilitarian criterion as our measure of efficiency.
We will return to this notion later, but for now sim-
ply note that this criterion can in many situations be
unambiguously interpreted as the criterion by which
to measure efficiency. Put mathematically, the man-
ager’s job is selecting an allocation of utilities to n
parties, u ∈ Rn

+
, from some set of feasible utilities U .

The utilitarian criterion seeks to find an allocation u
to maximize

∑

j uj , where uj is the utility derived by
the jth party.

• Inequity. The utilitarian criterion is neutral
toward inequity. Coupled with the fact that in many

of the examples we have encountered above, an aux-
iliary mechanism for monetary compensation is not
implementable, this inequity is the root cause of the
tensions in designing an appropriate objective. Fortu-
nately, we have available to us an axiomatic treatment
of attitudes toward inequity. This axiomatic treatment
has deep roots in early philosophy and has quantita-
tively culminated over the last 50 years in a family
of social welfare functions parameterized by a single
parameter that measures the attitude of the system
designer toward inequities. This family is given by1

n
∑

j=1

u1−�
j

1 −�
0

The parameter � ≥ 0 measures an aversion to
inequality. This family of “�-fair” welfare functions
subsumes the well-known Nash (�→ 1) and Kalai–
Smorodinsky (�→ �) solutions and is the fairness
scheme we adopt and analyze in this paper; a more
detailed discussion of the �-fair welfare functions
and their connection with the Nash and Kalai–
Smorodinsky solutions is included in §2.2.

• The design problem. The above setting allows us to
reduce the problem of designing an appropriate objec-
tive to the selection of a single parameter. A natural
trade-off implicit in selecting this parameter (at least,
as seen from the operational perspective), is the loss
in total system utility, or loosely, efficiency, incurred in
the pursuit of equity. We seek to quantify this trade-
off via a worst-case analysis. In particular, we show
that this loss (measured in relative terms) scales in the
worst-case like 1 −ä4n−4�/4�+1555, where n is the num-
ber of parties and � a design choice that measures
the importance of equity. Conversely, another trade-
off that arises from the selection of the parameter is
the loss in fairness incurred in the pursuit of effi-
ciency. To this end, we show that a natural measure
of fairness, namely, the minimum utility that every
party is guaranteed to derive, degrades (measured in
relative terms) in the worst-case like 1 −ä4n−1/�5. The
above quantifications are among the principal theo-
retical contributions in this paper, and to the best of
our knowledge are the first general characterizations
of the very natural underlying trade-off curves.

Using the aforementioned trade-off curves, we dis-
cuss ways in which a manager might choose an
appropriate � for his problem so as to balance fairness
and equity. Note that there are alternative methods
one can devise to carry out the task of choosing �.
One such method could be to utilize historical data of
instances of the underlying allocation problem so as

1 It is tempting to confuse this welfare function with the well-
known Arrow–Pratt utility function; it is important to not conflate
the notions of a utility function and welfare function.
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to computationally construct similar trade-off curves
and base the selection of � thereon. Below we outline
the merits of our approach that make it relevant and
important to managerial practice:

• Our worst-case analysis relies on a minimal num-
ber of structural assumptions about the problem at
hand. Thus, it can be used by managers to derive gen-
eral rules of thumb about how to deal with balancing
equity and efficiency. In particular, it can be utilized
to characterize “sweet spots” in the trade-off between
efficiency and fairness that are general and instance-
free; see §3.3 for more details.

• The fact that our analysis is problem instance
independent is particularly important in settings
where managers are faced with complex, multifaceted
operational problems. In such settings, choosing �
based on a worst-case analysis can be viewed as a
long-term strategic decision that can be applied across
all operational activities. In particular, this choice of �
can then be taken as a given in calibrating the objec-
tives of operational optimization problems that one
solves over time. Section 4, which presents a case-
study from the airline industry, serves as a useful
example in this regard. Allowing the balance between
equity and efficiency to depend on problem instance
specific data in that setting is unlikely to gain traction
given the inherent variability in the specification of
these instances and the strongly competing interests
of the stakeholders.

We provide a concrete illustration of the value of
the framework and our analysis above by implement-
ing it in the context of the air traffic management
problem mentioned earlier. In particular, we present
a concrete, quantitative statement of the design prob-
lem a system manager seeking the “right” operational
objective might solve, and then we explore the conse-
quences of various solutions in a study using detailed
historical air traffic data.

Finally, despite our focus on problems of particu-
lar interest to operations managers, note that the key
ideas and results of this paper can be extended and
applied to general resource allocation problems, many
of which are reviewed in §1.1.

The structure of this work is as follows. In the
next subsection, we review relevant applications in
the literature where the need for the design of objec-
tives that balance equity and efficiency is apparent.
We will also review important developments in the
welfare economics and bargaining literature that yield
the foundations of our framework. In §2, we intro-
duce our framework rigorously, placing it in the con-
text of welfare economics. Section 3 establishes the
trade-off curves that, as we have discussed, can guide
the design of an equitable objective. Section 4 consid-
ers a concrete design problem in this vain in the con-
text of air traffic management. This case study uses

actual air traffic data and illustrates the value of our
framework. Concluding remarks are included in §5.

1.1. Literature Review

1.1.1. Economic Theory. A typical setting in wel-
fare economics concerns the scenario where a central
planner must make an allocation of goods in an econ-
omy to a number of distinct entities. The planner is
aware of the preferences of the entities, and one typi-
cally assumes these are described via cardinal utilities.
The central problem in welfare economics is then con-
cerned with how the central planner should go about
making these allocations. Samuelson (1947) provided
the first formulation in which the relevant constraint
set for the planner was the set of achievable utility
allocations, or the utility possibility set, an idea which
became central in this area. In fact, our framework is
based on exactly that notion. The welfare economics
problem can then be stated as the problem of picking
a point in the utility set (for more details, see §2).

One prominent way of addressing the allocation
problem above has been the identification of a real-
valued social welfare function of the allocation of util-
ities, which is used by the central decision maker to
rank allocations. The approach in which the welfare
function reflects the distributional value judgment of
the central planner was first taken by Bergson (1938)
and Samuelson (1947). Some of the most important
instances of social welfare functions are the utilitarian,
maximin, and constant elasticity functions. For the
merits of the utilitarian function, see Harsanyi (1955).
The maximin function is based on the Rawlsian jus-
tice, introduced by Rawls (1971). For details regarding
the constant elasticity function, see §2.2. We refer the
reader to Young (1995) and Sen and Foster (1997) for
a thorough overview of the above work. Mas-Colell
et al. (1995) provide a nice introduction.

Another approach to dealing with the allocation
problem is provided by bargaining theory. Here one
formulates axioms that any allocation must satisfy
and then seeks allocation rules that satisfy these
axioms. The standard form of the bargaining prob-
lem was first posed by Nash (1950). Nash (1950)
provided a set of axioms that an allocation must
satisfy, and demonstrated the unique allocation rule
satisfying these axioms, all in a two-player setting.
An alternative solution (and axiomatic system) for
the two-player problem was introduced by Kalai and
Smorodinsky (1975). The work by Lensberg (1988)
extended these solutions to a setting with multiple
players. For other axiomatic formulations, see, Roth
(1979). Finally, see Young (1995) and Mas-Colell et al.
(1995) for surveys of the literature.

1.1.2. Applications. As is evident from our intro-
ductory remarks, the need to design resource allo-
cation objectives that in addition to being “efficient”



Bertsimas, Farias, and Trichakis: On the Efficiency-Fairness Trade-off
Management Science 58(12), pp. 2234–2250, © 2012 INFORMS 2237

in an appropriate sense are also equitable is ubiqui-
tous. Below we discuss a biased sample of related
applications:

Healthcare. The fundamental question in this area is
how to balance equity in health provision and med-
ical utility, which typically corresponds to the aggre-
gate health of the population (see Wagstaff 1991).
This natural dichotomy between equity and efficiency
is apparent across a wide spectrum of healthcare
operations. For instance, in managing operations in
a hospital’s intensive care unit, one cannot simply
maximize throughput without accounting for fairness
and medical urgency (see Swenson 1992, Chan et al.
2012b). Furthermore, in their book, Medicine and the
Market: Equity v. Choice, Callahan and Wasunna (2006)
discuss the use of markets and government fund-
ing to balance efficiency and equity (respectively), for
the purposes of insurance policies and a healthcare
reform. See also Pauly (2010) for a related discus-
sion. The efficiency-fairness trade-off is also particu-
larly important in the allocation of research funds by
the National Institute of Health (NIH) of the United
States over various biomedical research projects. Each
of the projects deals with improving the care pro-
vided to patients of particular diseases (e.g., cancer,
HIV, etc.). A primary goal of the allocation is then
to maximize clinical efficiency, that is, to allocate the
funds such that the resulting research gains lead to
the highest possible anticipated increase in QALYs of
the population. Such practice, however, may poten-
tially be unethical and result in age or race discrim-
ination. To ensure an equitable health treatment, the
NIH needs to diversify its allocation, trading off clin-
ical efficiency and fairness (see Resnick 2003, Bisias
et al. 2012). Finally, similar considerations arise in the
allocation of deceased-donor kidneys to patients on
a waiting list; see Su and Zenios (2004, 2006) and
Bertsimas et al. (2012) for a detailed discussion.

Service Operations. Other settings where the equity-
efficiency trade-off is of importance include call cen-
ter design and other associated queueing problems,
supply chain, and service applications. As discussed
previously, the maximization of the throughput or the
minimization of average waiting time are the typi-
cal objectives for a service manager in designing a
queueing system. Several studies have acknowledged
the importance of accounting for inequity in these
settings by employing alternative objectives such as
the variability in service times or queue lengths, etc.
(see Shreedhar and Varghese 1996, Armony and Ward
2010, Chan et al. 2012a). Within the supply chain
literature, Cui et al. (2007) incorporate the concept
of fairness into the conventional dyadic channel to
investigate how fairness may affect the interactions
between the manufacturer and the retailer. Finally,
Wu et al. (2008) study the impact of fair processes on

the motivation of employees and their performance
in execution. They examine the trade-offs involved
and study under which circumstances management
should use fair processes or not.

Yet another application, revisited in §4 for a case
study, is the air traffic control problem, alluded to
in the previous discussion. There is an extant body
of research devoted to formulating and solving the
problem of minimizing the total system delay cost
(see Odoni and Bianco 1987, Bertsimas and Stock-
Patterson 1998). Although this objective is natural,
a somewhat surprising fact is that existing practice
(at least within the United States) does not take into
account delays in making such reallocation decisions.
The emphasis, rather, is on an allocation that may be
viewed as equitable or fair to the airlines concerned.
Recent research work deals with combining those two
objectives (see Vossen et al. 2003, Barnhart et al. 2012,
Bertsimas and Gupta 2012).

Networks. The trade-off between efficiency and fair-
ness is hardly specific to just operations management
problems. In particular, it is well recognized and stud-
ied in many engineering applications as well, ranging
from networking and bandwidth allocation, and job
scheduling to load balancing. For instance, the net-
work utility maximization problem has been heavily
studied in the literature. In that problem, a network
administrator needs to assign transmission rates to
clients sharing bandwidth over a network, account-
ing for efficiency (e.g., net throughput of the network)
and fairness (e.g., “equal” bandwidth assignment).
For more details, see Bertsekas and Gallager (1987),
Kelly et al. (1998), and Mo and Walrand (2000).

1.1.3. Worst-Case Analysis. Recent work has fo-
cused on studying the worst-case degradation of the
utilitarian objective, i.e., the sum of the utilities, under
a fair allocation compared to the allocation that max-
imizes the utilitarian objective. Bertsimas et al. (2011)
provide uniform bounds on the worst-case degrada-
tion if the system designer chose either the propor-
tional or max-min fair allocations (each via a separate
analysis). They do so for a broad class of resource
allocation problems. From a theoretical perspective,
the present paper provides a new, unified geometric
framework through the lens of which we may recon-
struct those earlier results and simultaneously develop
a host of novel guarantees of managerial relevance.
First, we may characterize the worst-case degradation
of the utilitarian objective or price of fairness for a
continuum of allocation rules (or equivalently, degrees
of fairness) parameterized by the inequality aversion
parameter �. We can simultaneously understand an
entirely different sort of trade-off, which measures
the loss in fairness as one seeks more efficient solu-
tions. In particular, we may characterize how the
minimum utility allocated to a player varies under
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varying choices of �. Together, these new trade-off
curves allow a manager to make an informed decision
on precisely how to balance fairness and inequity in
designing an appropriate objective.

In addition to the above work, Butler and Williams
(2002) show that the degradation is zero under a max-
min fair allocation for a specialized facility location
problem. Correa et al. (2007) also analyze the degra-
dation under a max-min fair allocation for network
flow problems with congestion. Chakrabarty et al.
(2009) show that when the set of achievable utili-
ties is a polymatroid, the worst-case degradation is
zero under all Pareto resource allocations. This is a
somewhat restrictive condition and a general class of
resource allocation problems that satisfy this condi-
tion is not known. Relative to the above literature,
the present paper provides the first analysis that is
simultaneously applicable to general resource alloca-
tion problems for a general family of allocation rules.

2. A General Framework
We describe a general framework that captures the
majority of the applications discussed in the intro-
duction. We then review allocation mechanisms that
account for the objectives of equity and efficiency
alluded to in the introduction.

Consider a resource allocation problem, in which a
central decision maker (CDM) needs to decide on the
allocation of scarce resources among n players. Each
player derives a nonnegative utility, depending on the
allocation decided by the CDM (e.g., via means of a
utility function). For a given allocation of resources,
there is thus a corresponding utility allocation u ∈ Rn

+
,

with uj equal to the utility derived by the jth player,
j = 11 0 0 0 1n.

A utility allocation u ∈ Rn
+

is feasible if and only
if there exists an allocation of resources for which
the utilities derived by the players are u11u21 0 0 0 1un

accordingly. We define the utility set U ⊂ Rn
+

as the set
of all feasible utility allocations. Encapsulated in the
notion of the utility set are the preferences of the play-
ers and the way they derive utility, as well as individ-
ual constraints of the players or the CDM, constraints
on the resources, etc. Thus, the utility set provides a
condensed way of describing the problem. Given the
utility set, the CDM then needs to decide which utility
allocation among the players to select or, equivalently,
which point from the utility set to select. The notion
of the utility set was introduced by Samuelson (1947).

The above setup has been studied within the
research areas of fair bargaining and welfare eco-
nomics (see §1.1). Note that these utilities may not
be quasi-linear; that is to say, there is no reason to
assume that an allocation to a specific party might be
substituted by a cash payment to that party. In fact,
allowing for such cash payments greatly simplifies

the aforementioned utility allocation problem, as dis-
cussed in §2.1; this work is thus relevant in cases
where such cash payments are not feasible.

To illustrate the applicability of the setup, we dis-
cuss below an example.

Example 1. As a concrete application of the model
above, consider the call center design problem
alluded to in the introduction. An operations man-
ager (the central decision maker) needs to decide on
staffing levels across agent pools (the scarce resources)
and routing protocols to serve n different customer
classes (the players). Suppose that a specific set of
decisions results in the jth customer class experienc-
ing an expected waiting time of wj , j = 11 0 0 0 1n, dur-
ing steady-state operation of the center. The vector of
steady-state expected waiting times of the customer
classes is commonly referred to as the performance
vector. Suppose also that the utility derived by the jth
customer class is vj − cjwj , where vj is the constant
nominal utility derived by that particular class for the
service and cj is effectively the value of time to the jth
class. Let W be the set of achievable performance vec-
tors, known as the achievable performance set or space.
Note that the description of W might be very com-
plex. The utility set in that case is

U = 8v1 − c1w11 0 0 0 1 vn − cnwn �w ∈W90

Note that a lot of work has been devoted to provid-
ing tractable descriptions of the underlying achiev-
able performance space, W , or approximations of it,
under different settings. Results of that kind are very
powerful, as they allow one to maximize concave
functions of the waiting times (e.g., utilities) very effi-
ciently. We refer the reader to Gelenbe and Mitrani
(1980), Federgruen and Groenevelt (1988), Tsoucas
(1991), and Bertsimas et al. (1994) for early results in
that field.

In the next section, we review social welfare func-
tions and allocation mechanisms that give rise to effi-
cient and fair allocations.

2.1. Utilitarian Allocations
A natural objective for the central decision maker is to
maximize an efficiency metric of the system (defined
appropriately). In this work, we adopt the sum of
utilities (derived by the players) as our metric of sys-
tem efficiency, as discussed in the introduction. This
is referred to as the utilitarian criterion. Our rationale
in doing so is twofold:

1. The utilitarian criterion emerges as the natural
efficiency metric employed in practice. The examples
alluded to earlier are cases in point, and by them-
selves are sufficient to justify this benchmark.

2. In a general setting where cash payments or
any general monetary transfers are allowed as a
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mechanism to compensate for inequity, the sum of
utilities is the only admissible criterion of efficiency.
It stands to reason then, that the allocation induced by
such a criterion may be viewed as efficient, whether
or not monetary transfers are possible.

In mathematical terms, given a utility set U , a util-
itarian allocation corresponds to an optimal solution
of the problem

maximize 1Tu

subject to u ∈U1

with variable u ∈ Rn
+

, and 1 is the vector of all ones.
We denote the optimal value of this problem with
SYSTEM4U5, i.e.,

SYSTEM4U5= sup81Tu � u ∈U90

As discussed above, we will regard this value as cor-
responding to the highest possible level of system effi-
ciency (or social utility) achievable.

The sum of utilities is among the most well-studied
social welfare functions, and is known as the Bentham
utilitarian function given the philosophical justifica-
tion of this criterion provided by Jeremy Bentham (see
Mas-Colell et al. 1995, Young 1995). The utilitarian
principle of maximizing the sum of utilities is neutral
toward inequalities among the utilities derived by the
players. As a result, it is considered to lack fairness
considerations (see Young 1995).

2.2. Fair Allocations
Because of the subjective nature of fairness and dif-
ferent possible interpretations of equity, there is no
principle that is universally accepted as “the most
fair.” In particular, there has been a plethora of pro-
posals in the literature under axiomatic bargaining,
welfare economics, as well as in applications ranging
from networks, air traffic management, healthcare,
and finance. We refer the reader to Young (1995) and
Bertsimas et al. (2011) for a more detailed exposition.

A fairness scheme of particular interest, and one
on which we will focus our attention in this work,
is the �-fairness scheme, which was studied early on
by Atkinson (1970), building on notions of individual
risk aversion introduced by Pratt (1964) and Arrow
(1965), and using these instead as notion of aversion
to inequity (for more details, see also Mas-Colell et al.
1995, Barr 1987). According to �-fairness, the CDM
decides on the allocation by maximizing the constant
elasticity social welfare function W�, parameterized
by �≥ 0, and defined for u ∈ Rn

+
as

W�4u5=



























n
∑

j=1

u1−�
j

1 −�
for �≥ 01 � 6= 11

n
∑

j=1

log4uj5 for �= 10

A resulting utility allocation, denoted by z4�5, is
such that

z4�5 ∈ arg max
u∈U

W�4u51 (1)

and is referred to as an �-fair allocation.
Under the constant elasticity welfare function,

the proportional increase in welfare attributed to a
given player for a given proportional increase of her
utility, is the same at all utility levels. Moreover,
because the constant elasticity function is concave
and component-wise increasing, it exhibits diminish-
ing marginal welfare increase as utilities increase.
In other words, if player A derives a lower utility
than player B, then a marginal increase in the util-
ity of player A would yield a higher welfare increase
compared to a marginal increase in the utility of
player B. As such, the marginal increase in the utility
of player A would be more desirable for the CDM.
This property of W� typically leads to more even or
fair distributions of utility among players and can
thus provide an explanation of why the constant elas-
ticity welfare function yields fair allocations. Further-
more, the rate at which marginal increases diminish is
controlled by the parameter �; in the example above,
the difference in the welfare increase between the
cases of marginally increasing the utility of player A
or player B, increases with the parameter �, thus mak-
ing the scenario of marginally increasing the utility of
player A instead of player B even more desirable for
the CDM. For that reason, the parameter � is called
the inequality aversion parameter.

The �-fairness scheme can be useful in practice
for a CDM, as it facilitates an understanding of the
efficiency-fairness trade-off. In particular, as we dis-
cussed above, a higher value of the inequality aver-
sion parameter is thought to correspond to a “fairer”
scheme (see also Tang et al. 2006, Barr 1987, Lan
et al. 2010). Note that for the smallest value of �= 0,
we recover the utilitarian principle, which is neu-
tral toward inequalities. Thus, the CDM can adjust
attitudes toward inequalities by means of a single
parameter.

Furthermore, the �-fairness scheme captures as spe-
cial cases two important fair bargaining solutions,
which have been studied extensively in the literature;
for �= 1, the scheme corresponds to proportional fair-
ness (introduced by Nash 1950), whereas for � → �,
the �-fair allocation converges to the utility alloca-
tion suggested by max-min fairness (see Kalai and
Smorodinsky 1975, Mas-Colell et al. 1995).

Although the �-fairness scheme has been studied
both from a theoretical and a practical perspective,
most prominently in networks (Mo and Walrand 2000,
Bonald and Massoulié 2001) and healthcare (Wagstaff
1991), the underlying efficiency-fairness trade-off is
still not well understood. Recent work by Lan et al.
(2010) has been devoted to theoretically characterizing
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what it actually means for a higher value of � to
be more fair. The impact of a higher value of � on
the system efficiency (i.e., sum of utilities) has also
received a lot of attention. Bertsimas et al. (2011)
present tight upper bounds on the efficiency loss
for the special cases of proportional and max-min
fairness.

What is lacking is a precise understanding of the
efficiency-fairness trade-off implicit in a selection of
the inequality aversion parameter �; an understand-
ing of this trade-off would provide the system man-
ager with a useful design tool. The next section sheds
light toward this direction.

3. The Efficiency-Fairness Trade-off
Consider a resource allocation problem, as described
in §2, and suppose that the central decision maker
wishes to implement �-fairness to trade off efficiency
and fairness. As discussed above, such an implemen-
tation requires the calibration of the inequality aver-
sion parameter � that controls the trade-off.

Although there is some understanding on how the
fairness properties of the �-fairness scheme behave
with respect to varying �, there is no theoretical
work focusing on the potential efficiency degradation.
As such, the selection of the parameter in a practical
setting can be very challenging. In particular, to make
decisions, a manager needs to understand (a) what
the efficiency loss might be and (b) what the fairness loss
might be for a specific value of the parameter �. This
section sheds light on exactly those matters, by quan-
tifying what the maximum efficiency and fairness loss
can be for a given fixed value of �. We next formally
define the notions of the efficiency and fairness loss
and discuss the main results.

3.1. Efficiency Loss and the Price of Fairness
As the central decision maker incorporates fairness
considerations, the efficiency of the system (measured
as the sum of utilities), is likely to decrease, compared
to the efficiency under the utilitarian solution.

Suppose the CDM adopts �-fairness, using a fixed
value for the inequality aversion parameter �, and the
utility set U is such that an �-fair allocation exists
(e.g., U is compact). Then, the efficiency of the sys-
tem under the �-fairness scheme will be the sum of
the components of the �-fair utility allocation z4�5
(as in (1)), and denoted by

FAIR4U3�5= 1T z4�50

The efficiency loss is the difference between the
maximum system efficiency, SYSTEM4U5, and the effi-
ciency under the fair scheme, FAIR4U3�5. The effi-
ciency loss relative to the maximum system efficiency

is the so-called price of fairness (Bertsimas et al. 2011),
defined in this case as

POF4U3�5=
SYSTEM4U5− FAIR4U3�5

SYSTEM4U5
0

This price is a number between zero and one, and cor-
responds to the percentage efficiency loss compared
to the maximum system efficiency. It is a key quantity
to understanding the efficiency-fairness trade-off.

Note that for � = 0, the �-fairness scheme corre-
sponds to the utilitarian principle, because W0 is the
sum of utilities, W04u5= 1Tu. Hence, for any compact
utility set U , the sum of utilities is the same under
both schemes, i.e., SYSTEM4U5= FAIR4U305, and

POF4U305= 00

For � > 0, we have the following result. A useful
quantity for the presentation of the result is the max-
imum achievable utility of each player, defined (for the
jth player) as

u?
j = sup8uj � u ∈U91 for all j = 11 0 0 0 1n0

Theorem 1. Consider a resource allocation problem
with n players, n ≥ 2. Let the utility set, denoted by
U ⊂ Rn

+
, be compact, convex, and such that the play-

ers have equal maximum achievable utilities (greater than
zero). For the �-fairness scheme, �> 0, the price of fairness
is bounded by

POF4U3�5 ≤ 1 − min
x∈611n7

x1+1/� +n− x

x1+1/� + 4n− x5x

= 1 −ä4n−�/4�+1550

In Theorem 1, we assume that the utility set is com-
pact and convex. This assumption is standard in the
literature of fair bargains and also very frequently
satisfied in practice. In particular, compactness of
the utility set follows from limited resources and
bounded and continuous functions that map resource
allocations to utility for each player. Also, in case of
nonconvex utility sets, randomization over possible
utility allocations results in a convex set (of expected
utilities). For more details, we refer the reader to
Young (1995) and Bertsimas et al. (2011).

Furthermore, note that the negative of the function
that needs to be minimized to compute the exact
bound in Theorem 1, is unimodal (see the online
appendix, §C, available at http://fileserver.hbs.edu/
ntrichakis/onTheEfficiencyFairnessTradeoff_Appendices
.pdf). As such, one can efficiently compute the unique
minimizer and the associated minimum function
value. Figure 1 depicts bounds on the price of fair-
ness implied by Theorem 1, for different values of
the inequality aversion parameter �, as functions of
the number of players n. The graph illustrates the
dependence of the bound on the number of players,
for different values of �; in particular, the worst-case
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Figure 1 Bounds on the Price of Fairness of �-Fair Allocations for
Different Values of � Implied by Theorem 1
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Note. The bounds are plotted as functions of the number of players n.

price is increasing with the number of players and
the value of �.

A natural question arising with regard to the results
of Theorem 1 is whether the bounds are tight. The
surprising fact is that the bounds are very strong,
near-tight.

Before moving on, we briefly discuss an extension
to the bounds above. In case players have unequal
maximum achievable utilities, one can generalize our
framework to deal with this case, albeit at the expense
of additional technical effort. For instance, if under
the same setup of Theorem 1 we also assume that the
maximum achievable utilities of the players satisfy

L≤ min
j=11 0001n

u?
j ≤ max

j=11 0001n
u?
j = B1

for some 0 <L≤ B, we have that the price of fairness
is bounded by

POF4U3�5

≤ 1 − min
x∈611n7

4B/L51/�x1+1/� +n− x

4B/L51/�x1+1/� + 4n− x54B/L5x
0 (2)

Note that the bounds we obtain in this case depend
on the ratio of highest to lowest maximum achievable
utility B/L; in particular, as the ratio B/L increases, the
bounds tend to become worse. The case we focus on
(equal maximum achievable utilities), however, is par-
ticularly important, because utility levels of different
players are commonly normalized, so as the intercom-
parison of utilities between them becomes meaningful
(see Mas-Colell et al. 1995, Harsanyi 1955).

3.1.1. Near Worst-Case Examples for the Price of
Fairness. We discuss the construction of near worst-
case examples under which the price of fairness is
very close to the bounds implied by Theorem 1 for

any values of the problem parameters, i.e., the num-
ber of players n, and the inequality aversion param-
eter �. To illustrate the fact that the near worst-case
examples are not pathological by any means, but
rather have practical significance, we present them
in a realistic setup under the context of network
management. The setup is relevant to many other
applications including traffic management and rout-
ing. After discussing the structure of the near worst-
case examples, we compare their price of fairness
with the established bounds and demonstrate that
the bounds are essentially tight. Technical details of
the construction of the examples are included in the
online appendix, §B.

Near Worst-Case Bandwidth Allocation. Consider a
network consisting of hubs (nodes) that are connected
via capacitated links (edges). Clients, or flows, wish to
establish transmission from one hub to another over
the network via a prespecified and fixed route. The
network administrator needs to decide on the trans-
mission rate assigned to each flow, subject to capacity
constraints. The resources to be allocated in this case
are the available bandwidth of the links, the players
are the flows, and the central decision maker is the
network administrator. The utility derived by each
player is equal to his assigned transmission rate.

For the purposes of constructing near worst-case
examples, we study a line-graph network, which is a
specific network topology that has received a lot of
attention in the literature and in practice (see Bonald
and Massoulié 2001, Tang et al. 2006). Specifically,
suppose we have n players or flows. The network
consists of y links of unit capacity, where the routes
of the first y flows are disjoint and they all occupy a
single (distinct) link. The remaining n− y flows have
routes that utilize all y links. Each flow derives a util-
ity equal to its assigned nonnegative rate. Note that
in this setup, each player has a maximum achiev-
able utility of one, which is trivially achieved if all
other flows are assigned zero rates. Thus, Theorem 1
applies.

Suppose we further fix a desired inequality aver-
sion parameter � > 0. In that case, one can select y
(under some technical conditions) so that the price of
fairness is exactly equal to the bound implied by The-
orem 1. Technical details about the selection of y are
included in the online appendix, §B.

Note that the described worst-case topology per-
tains to a case of resources shared by n players, who
can be of two types; players of the first type (short
flows) consume resources at a lower rate, for a unit of
utility, compared to players of the second type (long
flows). This can be generalized as follows. Consider
a knapsack-style problem where a unit of a single
resource is shared by n players. Players 11 0 0 0 1 l con-
sume the resource at a rate of �1 for a unit of utility,
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Figure 2 Price of Fairness for Constructed Examples (Markers) for
Different Values of � in §3.1.1
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Notes. The corresponding bounds are also plotted (lines). The values/
bounds are plotted as functions of the number of players n.

whereas players l + 11 0 0 0 1n consume the resource at
a rate of �2. The described utility set is then

U =
{

u∈Rn
+

��1u1 +···+�1ul+�2ul+1 +···+�2un≤11

u≤ 1 ∀ j
}

0

In the online appendix, §B, we present a simple algo-
rithmic procedure of selecting parameters l, �1, and �2
for a fixed number of players n and �, such that the
price of fairness POF4U3�5 for the set U is very close
to the price implied by Theorem 1. Figure 2 illustrates
the prices achieved by following that procedure for
various values of � and n. The average discrepancy
between the bound and the values is 00005, and the
largest discrepancy is 00023.

3.2. Fairness Loss and the Price of Efficiency
Having analyzed the efficiency of different �-fair allo-
cations, we now focus on their fairness properties.
To quantify and compare the fairness properties of dif-
ferent allocations, we need to select a fairness metric
to adopt. Because of the subjective nature of fairness,
note that such a selection can be nebulous, in a similar
way to the selection of a fairness scheme (see §2.2).

For the family of �-fair allocations, a natural mea-
sure of fairness could be the associated inequality
aversion parameter � or the constant elasticity welfare
function (see Atkinson 1970, Lan et al. 2010). Those
measures, however, are not easy to interpret. Other
standard fairness metrics that have been well studied
in the literature and are perhaps easier to interpret
include the minimum utility, the difference between
the maximum and the minimum utility, the standard
deviation or the coefficient of variation of the utilities,
the Jain index, the Theil index, the mean log deviation
of the utilities, the Gini coefficient, etc.

To guide the selection of a fairness metric, we fur-
ther require that under it the max-min fair alloca-
tion (i.e., the �-fair allocation for �→ �) is optimal
among all Pareto allocations for any utility set. Recall
that under the premises of �-fairness, the max-min
fair allocation is deemed as the “most fair” alloca-
tion (see §2.2). Thus, we require that the max-min fair
allocation preserves this property under the selected
fairness metric as well. To this end, the fairness metric
we adopt in this work is the minimum utility. That is,
given a utility allocation u, we measure its fairness
properties by minj uj . This fairness metric was advo-
cated by Rawls (1971) and can be interpreted as a
minimum guarantee of utility to all the players. The
minimum utility is the only fairness metric from the
ones discussed above that is easy to interpret and
also satisfies the max-min fair allocation optimality
requirement.2

For a particular utility set U , our fairness metric
attains its highest value for the �-fair allocation cor-
responding to �→ � and is equal to

max
u∈U

min
j=11 0001n

uj 0

This utility value is then the highest possible mini-
mum utility guarantee for all players the CDM can
set. As the CDM puts more emphasis on efficiency
(e.g., by selecting a lower value of �), the minimum
utility guarantee is likely to decrease.

Suppose the CDM adopts �-fairness, using a fixed
value for the inequality aversion parameter �, and the
utility set U is such that an �-fair allocation exists
(e.g., U is compact). Under the associated allocation
z4�5, the fairness metric evaluates to

min
j=11 0001n

zj4�50

The fairness loss is the difference between the fairness
metric evaluated at the max-min fair allocation and
the �-fair allocation. We then call the fairness loss rel-
ative to the maximum value of the fairness metric as
the price of efficiency, defined as

POE4U3�5=
maxu∈U minj=11 0001n uj − minj=11 0001n zj4�5

maxu∈U minj=11 0001n uj

0

The price of efficiency can be interpreted as the
percentage loss in the minimum utility guarantee

2 Consider the utility set consisting of two points, U = 86005
005 0087T 1 60045 0055 00727T 9. The first point is the max-min fair allo-
cation of U ; however, under the fairness metrics of the difference
between the maximum and the minimum utility, the standard devi-
ation, the coefficient of variation of the utilities, the Jain index,
the Theil index, the mean log deviation of the utilities, and the
Gini coefficient, the second point is preferred. Note that this result
remains true for convex sets, e.g., for the convex hull for the points
in U , 0, and the unit vectors in R3

+
.
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compared to the maximum minimum utility guar-
antee. In case the CDM implements max-min fair-
ness (�→ �), the price of efficiency is zero. As we
depart from the max-min fairness doctrine, perhaps
to achieve higher system efficiency, the price of effi-
ciency is likely to increase.

We now analyze the worst-case degradation of
the minimum utility guarantee among all players.
We have the following result. Recall that the maxi-
mum achievable utility of the jth player is defined as

u?
j = sup8uj � u ∈U91 for all j = 11 0 0 0 1n0

Theorem 2. Consider a resource allocation problem
with n players, n ≥ 2. Let the utility set, denoted by
U ⊂ Rn

+
, be compact, convex, and such that the play-

ers have equal maximum achievable utilities (greater than
zero). For the �-fairness scheme, � > 0, the price of effi-
ciency is bounded by

POE4U3�5≤ 1 − min
x∈6�117

4n− 15x+ x1−�

n− 1 + x1−�
= 1 −ä4n−1/�51

where � is the unique root of n − 1 + x−�4x − 15 = 0 in
40115.

Similarly to Theorem 1, one can show that the neg-
ative of the function that needs to be minimized to
compute the exact bound in Theorem 2 is unimodal;
thus, the minimum function value can be efficiently
computed. Figure 3 depicts bounds on the price of
efficiency implied by Theorem 2, for different values
of the inequality aversion parameter �, as functions
of the number of players n. The graph illustrates the
dependence of the bound on the number of players
for different values of �; in particular, the worst-case

Figure 3 Bounds on the Price of Efficiency of �-Fair Allocations for
Different Values of the Inequality Aversion Parameter �
Implied by Theorem 2

n

B
ou

nd
 o

n 
th

e 
pr

ic
e 

of
 e

ff
ic

ie
nc

y

1.0

0.8

0.6

0.4

0.2

0
15100 5 20

� = 0.5
� = 1
� = 5

� → ∞

Note. The bounds are plotted as functions of the number of players n.

price is increasing with the number of players and
decreasing with the value of �.

Finally, the bounds on the price of efficiency pre-
sented in Theorem 2 are tight.

3.2.1. Worst-Case Examples for the Price of Effi-
ciency. For any values of the problem parameters, i.e.,
the number of players n and the value of the inequal-
ity aversion parameter �, one can construct worst-
case examples under which the price of efficiency is
equal to the bounds implied by Theorem 2.

The setup of the worst-case examples for the price
of efficiency is identical with the setup discussed in
§3.1.1 for the price of fairness. In particular, the worst-
case topology pertains to a case of a single resource
shared by n players, with n−1 of them consuming the
resource at a rate of �1 for a unit of utility, whereas the
nth player consumes the resource at a rate of �2, for

�1 =
1

n− 1 + �−�
1 �2 =

�1−�

n− 1 + �−�
1

where � is the (unique) minimizer from Theorem 2.
The proof is similar to the proof of Proposition 1 in
the online appendix, §B, and is omitted.

3.3. Potential Managerial Implications
The framework implicit in our characterization of the
fairness and efficiency properties of �-fair allocations
already provides an interesting and general quantita-
tive formalism of balancing equity and fairness in a
real-world resource allocation problem. In the intro-
duction, we discussed the relative merits of perform-
ing this balancing task, i.e., selecting �, based on
the worst-case analysis we provide. We now discuss
two potential concrete prescriptions for selecting �,
although many others are possible. Consider a set-
ting where the manager must make a choice of objec-
tive in a resource allocation problem that impacts four
distinct parties. Further, let us imagine that the util-
ities allocated to a given party are normalized rela-
tive to their maximum achievable utility. Using the
analysis of the preceding sections, one may construct
the curves described in Figures 4 and 5. These curves
present two distinct ways of visualizing the price of
fairness (i.e., the loss in efficiency due to the require-
ment of fairness) and the price of efficiency (i.e., the
loss in fairness due to the requirement of efficiency)
as the manager varies his choice of objective by vary-
ing his inequality aversion parameter �. Two easily
explained ways of arriving at a choice of � are as
follows:

• Via a tolerance on efficiency and/or unfairness. The
manager might decide that he is willing to be as fair
as possible while allowing no more than a certain
degradation in efficiency. For instance, the manager
might decide to be as fair as possible while guaran-
teeing no more than a 20% decrease in overall system
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Figure 4 Bounds on the Price of Fairness (Solid) and the Price of
Efficiency (Dashed) of �-Fair Allocations for n = 4 Players
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Note. The bounds are plotted as functions of inequality aversion parameter �.

efficiency. Figure 4 then suggests that the appropri-
ate choice of � is about 1. As another example, the
manager might want to be as efficient as possible
while allowing only a limited amount of unfairness.
For instance, if the manager were willing to tolerate
at most a 20% drop in the utility garnered by the
player that is worst off relative to a scheme that max-
imizes the utility of the worst-off player, Figure 4
would then suggests that the appropriate choice of �
is about 3.

• By balancing equity and fairness. The manager
might choose � so as to appropriately balance the
degradation in efficiency and fairness. There are obvi-
ously a multitude of ways he may choose to do so
and Figure 5 provides a valuable trade-off curve in
making such a decision. For instance, the manager
might choose to pick � so as to balance the prices

Figure 5 Bounds on the Prices of Fairness and Efficiency of �-Fair
Allocations for n = 4 Players and Various Values of �
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of efficiency and fairness. In that case, the trade-off
curve described by Figure 5 identifies � = 2 as an
appropriate choice of �. We will examine both these
prescriptions in an empirical study of air traffic flow
management in the next section.

Finally, we conclude with noting yet another insight
derived from Figure 5: In a setting with four players, a
manager will likely only want to consider choices of �
roughly between 005 and 2 and the extreme choices of
utilitarianism (i.e., full efficiency with �= 0) or, at the
other extreme, max-min fairness (�→ �). In partic-
ular, if the manager were to choose an � above 2,
he might as well ignore efficiency altogether and
select � = � (i.e., be as fair as possible) because the
change in the price of fairness beyond that point is
small (or equivalently, the drop in efficiency in going
from �= 2 to �= � is marginal). Similarly, if the man-
ager were to choose an � below 005 he might as well
set � to 0, i.e., be utilitarian and ignore fairness alto-
gether because he would get a dramatic increase in
efficiency for a relatively small price. To summarize,
the manager may choose either one of the extremes
or else from a relative small range of inequality aver-
sion parameters, based on the appropriate “prices” of
fairness and efficiency.

The case study in the next section illustrates how
one can utilize the above ideas in practice, specifically
in the context of air traffic management.

4. A Case Study in Air Traffic
Flow Management

The tools we have introduced thus far provide a prin-
cipled (as opposed to ad hoc) approach to the design
of appropriate operational objectives. This section is
devoted to illustrating this value concretely in the
context of the air traffic flow management problem.
This problem presents the opportunity to save many
billion dollars of unnecessary delay costs every year
and is viewed as a key priority for the FAA.

Consider the problem faced by the FAA in allocat-
ing landing and take-off slots to airlines, as well as
routing them across U.S. airspace, in case of reduced
capacity due to unpredictable inclement weather.
By this allocation, the FAA is effectively allocating
unavoidable delays across airlines, as allocations of
unfavorable slots result in delayed flights. Currently,
the FAA is allocating slots using a ration by schedule
(RBS) principle, which prioritizes flights based on the
original schedule, and is considered as fair. Propos-
als in the literature, however, promise to reduce total
delay by a significant amount (close to 10%), by using
mathematical programming models to minimize total
delay (see Bertsimas and Stock-Patterson 1998, Odoni
and Bianco 1987). Despite the rising delay costs (Air-
lines for America 2011), none of these proposals have
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been implemented. One of the principal reasons for
this is that those models do not address the question
of whether the gains from optimization will be equi-
tably split among the stakeholders. To this end, recent
work deals with minimizing system delay in a fair
way to all airlines (see Vossen et al. 2003, Barnhart
et al. 2012, Bertsimas and Gupta 2012). The notion of
what it means to be fair in these pieces of work is
ad hoc.

We now consider a principled approach to solving
the above problem, based on the model and analysis
presented in §§2 and 3. The relative merits of such an
approach, compared with the proposals in the litera-
ture, are the following:

• The notions of fairness we consider are emi-
nently defensible.

• It will be possible to present a clear analysis
of the trade-off inherent in injecting “equity”; pre-
sumably this will provide a meaningful basis for the
design of a suitable allocation mechanism.

Our framework will apply to this setting in the fol-
lowing way: The airlines correspond to the players,
and the FAA to the central decision maker. Because
the current policy debate centers around departures
from the RBS policy, a natural choice for the utility
of each airline is its delay reduction, compared to
the RBS policy, which attempts to follow the origi-
nal schedule in a first-come, first-served fashion. If for
an airline a new allocation results in a delay reduc-
tion by x minutes, compared to the RBS policy, then
that airline derives x units of utility.3 We consider two
ways of measuring the delay of an airline: either by
(a) the net delay of the flights it operates or (b) the net
delay experienced by the passengers it serves. With
those definitions in place, proposals that minimize
total system delay, correspond to the utilitarian princi-
ple that maximizes the sum of utilities of the players.
Accordingly, the FAA can incorporate fairness con-
siderations by utilizing the �-fairness scheme; that
is, the FAA carries out the allocation by maximizing
the constant elasticity welfare function of the airlines’
utilities. By the choice of �, one can then trade off
efficiency for fairness.

Furthermore, in case the maximum achievable util-
ities (i.e., delay reductions) of the airlines are equal,
the bounds on the maximum relative efficiency and
fairness losses, established in Theorems 1 and 2,
are applicable. Numerical studies indicate that when
measuring airline delay by flight delays, then the
maximum achievable utilities of similar-sized airlines
are for all practical purposes equal (see §4.2). When
measuring airline delay by passenger delays, the max-
imum achievable utilities are not equal; we can then
use (2) to bound the price of fairness.

3 As it turns out, there is also an agreed upon dollar figure associ-
ated with this delay.

In the introduction, we discussed the relative mer-
its of choosing � using the worst-case analysis we
present in this paper for general resource allocation
problems. These merits become very important and
relevant in the context of the specific problem and
industry we consider in this study. In particular, con-
sider the approach of computationally constructing
explicit trade-off curves using historical instances of
capacity realizations and choosing � based on those.
This approach hardly solves the problem at hand,
as the selection of the historical instances influences
the shape of the trade-off curves and hence the deci-
sion. As such, the selection of historical instances is
likely to create tension between the airlines. On the
other hand, the worst-case analysis is an instance-free
approach, better suited for decisions in such an envi-
ronment. Moreover, it remains unclear how brittle a
decision made using historical information might be
to unprecedented capacity shocks. Ex post facto, the
FAA can always account for such shocks. On the con-
trary, decisions made based on a worst-case analysis
are more robust to such unpredictable scenarios and
allow managers to be proactive (rather than reactive)
in hedging against them. Finally, in this study, we
only consider the problem of allocating landing, take-
off, and airspace slots. In reality, the FAA also coor-
dinates a range of other airline ground operations,
in which equity and efficiency need to be balanced as
well. The worst-case analysis we present here, how-
ever, is problem independent. This would potentially
allow the FAA to strategically choose � in concert
with all participating airlines to balance efficiency and
fairness, and then apply that decision across the range
of airline operations.

4.1. The Model
To characterize the utility set, we use a well-accepted
model introduced by Bertsimas and Stock-Patterson
(1998). The model is highly detailed and specifies a
schedule for each flight. In particular, the model spec-
ifies for each flight its scheduled location across the
national airspace sectors or airports for every time
step. The model accounts for the forecasted capacity
of each sector and airport, the maximum and nomi-
nal speed of the aircraft used for each flight, as well
as potential connectivity of flights (through common
usage of aircraft or crew). A self-contained mathe-
matical description of the model is included in the
online appendix, §D. We refer the reader to the origi-
nal paper by Bertsimas and Stock-Patterson (1998) for
more details.

We model the utilities as follows. We have a set of
flights, ¦ = 811 0 0 0 1 F 9, operated by a set of airlines,
¡= 811 0 0 0 1A9 over a discrete time period. Let ¦a ⊂¦
be the set of flights operated by airline a ∈ ¡. The
flights utilize a capacitated airspace that is divided
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into sectors, indexed by j . The decision variables used
in the model are defined as

w
j

ft =











1 if flight f arrives at sector j by
time step t1

0 otherwise0

We denote the scheduled departure and arrival time
of flight f with df and rf , and the origin and desti-
nation airports with of and kf , respectively. Then, the
associated ground and airborne delays experienced
by flight f are

gf =
∑

t

t4w
of
ft −w

of
f 1 t−15− df 1

bf =
∑

t

t4w
kf
ft −w

kf
f 1 t−15− rf − gf 0

The net delay experienced by flight f is gf + bf .
Note that airborne delay typically incurs a higher
cost compared to ground delay because of higher
fuel consumption, safety issues, etc. As such, it has
been proposed to differentiate the impact of ground
and airborne delays (see Bertsimas and Gupta 2012).
Accordingly, we measure the net delay experienced
by flight f by

4delay of flight f 5= gf + 105 bf 0

(a) Flight delay. Suppose we measure airline delay
by the delay of flights. Then, the utility of the ath
airline, that is the reduction of its delay compared to
the RBS scheme, is equal to

ua =
∑

f∈¦a

RBSf −
∑

f∈¦a

4gf + 105 bf 51 (3)

where RBSf is the delay of flight f under the RBS
scheme.

(b) Passenger delay. Suppose we measure airline
delay by the delay of passengers. Let pa1 f be the num-
ber of passengers in flight f operated by airline a.
Then, the utility of the ath airline, that is the reduction
of its delay compared to the RBS scheme, is equal to

ua =
∑

f∈¦a

pa1 f RBSf −
∑

f∈¦a

pa1 f 4gf + 105 bf 50 (4)

Our framework provides a means to account for
fairness in this fairly complicated setup. In particular,
the framework focuses only on the utilities of the air-
lines, that is the important outcomes of the allocation.

4.2. Numerical Experiments
We focus on scheduling flights over a course of a
day for four airlines (as many as the large airlines

currently in the United States), which operate at 54
airports, administering in total around 4,000 flights.4

We use historical data of scheduled and actual flight
departure/arrival times on different days to study the
performance of �-fairness. In particular, we use the
model described above to implement the solution that
minimizes total delay, or equivalently in our setting,
maximizes the total delay reduction or sum of utili-
ties (utilitarianism). We then implement the �-fairness
scheme for different values of the parameter �. We do
so both for the case of measuring airline delay by
(a) flight delay and (b) passenger delay.

We record the maximum possible system delay
reduction (for � = 0), and the system delay reduc-
tion under the �-fairness scheme, for various positive
values of �, particularly, 005, 1 (proportional fair-
ness), and 2. We also implement the max-min fairness
scheme (� → �) and record the system delay reduc-
tion. To evaluate the fairness properties of the differ-
ent schemes, beyond the interpretation based on the
value of �, we also record the individual delay reduc-
tions of the airlines and their minimum value, which
corresponds to our fairness metric (see §3.2).

Table 1 summarizes the numerical results when we
measure airline delay by the delay of flights. The
results are for two representative (actual) days, on
which inclement weather severely affected operations
across the country. For each day and airline, the actual
cumulative delay (in minutes) across its flights on
that day is reported. We calculate the delay reduc-
tions that the utilitarian and the �-fairness schemes
would achieve, for different values of �, including
the special cases of proportional (�= 1) and max-min
fairness (� → �). The utilitarian scheme achieves
roughly a 10% reduction compared to the current RBS
policy, which is the largest possible for the schemes
we consider. The �-fair allocations yield lower delay
reductions, but still the price is relatively small and
increasing with �. Note also that the distribution of
delay reductions changes rapidly as we are varying �.
In particular, note that the utilitarian scheme does not
equitably split the gains from optimization, because
some airlines incur the same delay as in RBS, and oth-
ers achieve large reductions. On the contrary, under
max-min fairness, all airlines are granted almost the
same delay reduction. Figure 6 illustrates the asso-
ciated prices of fairness and efficiency, as a function
of �. We also plot the worst-case bounds implied
by Theorems 1 and 2. As expected, increasing the
inequality aversion parameter � yields an increase in
the efficiency loss and a decrease in the fairness loss.

To support our claim that the maximum achievable
utilities of similar-sized airlines are for all practical

4 There are around 35,000 domestic flights scheduled on a daily
basis in the United States.
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Table 1 Numerical Results for §4.2 for Two Days and Four Airlines

Delay reduction

RBS delay Utilitarian �-fair Prop. fair �-fair Max-min fair
(under RBS) 4�= 05 4�= 0055 4�= 15 4�= 25 4�→ �5

May 13, 2005
Airline 1 131985 0 80205 89205 930 96705
Airline 2 71182 990 86205 92205 945 96705
Airline 3 151239 990 86205 92205 945 96705
Airline 4 101415 21250 1149205 11215 1108705 96705

Total 461821 41230 41020 3195205 3190705 31870

July 27, 2006
Airline 1 121095 1153705 80205 795 795 78705
Airline 2 81933 0 675 735 75705 78705
Airline 3 91531 11800 960 870 825 78705
Airline 4 91551 0 735 765 77205 78705

Total 401110 3133705 3117205 31165 31150 31150

Note. For each airline, we report the actual delay (in minutes) across its flights on that day (under
the RBS policy) and the associated delay reductions that different allocations would achieve.

purposes equal for the experiments above (where we
measure flight delays), note that their coefficients of
variation are 00015 and 00007 for May 13, 2005, and
July 27, 2006, respectively.

Similarly, Table 2 summarizes the numerical results
when we measure airline delay by the delay of pas-
sengers. The results are for the same two days as
above. For each day and airline, the actual cumula-
tive delay (in thousand minutes) of its passengers on
that day is reported, along with the associated delay
reductions of different schemes. Note that in this sit-
uation, the �-fair allocations yield again lower delay
reductions, but the prices of fairness and efficiency are
now larger than in the case of measuring flight delay.
Figure 7 depicts the associated prices of fairness and
efficiency for that case, as a function of �. Note that
for the two days we consider, airlines 3 and 4 serve
1.6 times more passengers per flight (on average)

Figure 6 (a) Price of Fairness and (b) Price of Efficiency for the Case of Measuring Flight Delays in the Numerical Experiments in §4.2 for Different
Values of the Parameter �
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compared to airlines 1 and 2. Recall that when we
measured flight delays above, the maximum achiev-
able utilities of the airlines were equal. Hence, when
we measure passenger delay, the maximum achiev-
able utilities of the airlines are no longer equal, in par-
ticular, the maximum achievable utilities of airlines
3 and 4 are (roughly) 1.6 times larger compared to
airlines 1 and 2 (see (3) and (4)). One can then use
(2) to obtain a bound for the associated price of fair-
ness (for B = 106 and L = 1), which is also plotted in
Figure 7(a).

4.3. Conclusions from Empirical Study
We conclude with a few takeaways from our case-
study.

1. Quality of Decisions. In our discussion of a man-
agerial prescription, one concrete prescription was to
choose an � that balanced the respective prices of
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Table 2 Numerical Results for §4.2 for Two Days and Four Airlines

Delay reduction

RBS delay Utilitarian �-fair Prop. fair �-fair Max-min fair
(under RBS) 4�= 05 4�= 0055 4�= 15 4�= 25 4�→ �5

May 13, 2005
Airline 1 1117407 0 5106 7509 88 9905
Airline 2 60303 0 5505 7804 8909 9905
Airline 3 2105703 26907 14105 12506 11305 9905
Airline 4 11406 306 24504 16501 13001 9905

Total 5124103 57507 49401 445 42104 39708

July 27, 2006
Airline 1 1102801 0 5106 6706 7406 8106
Airline 2 75903 0 44 6108 72 8106
Airline 3 1128607 24408 15904 11709 9808 8106
Airline 4 1128904 20008 12204 10303 9204 8106

Total 4136305 44506 37704 35006 33709 32604

Note. For each airline, we report the actual delay (in thousand minutes) experienced by its pas-
sengers on that day (under the RBS policy) and the associated delay reductions that different
allocations would achieve.

efficiency and fairness. In the setting where utilities
were normalized (or equal), we saw that an appropri-
ate choice of � that accomplished this was �= 2. For
our first set of experiments (where maximum achiev-
able utilities are essentially equal), we see that this
decision would incur a price of fairness of about 706%
and a price of efficiency of about 308%. Put another
way, this choice of � yields a total utility that is within
about 93% of the most efficient solution, whereas the
utility of the worst-off player is simultaneously within
97% of that it would have been under a scheme that
maximized the utility of the worst-off player. Note
that it is not the case that this is simply because the
choice of � here “did not matter.” For instance, if the
manager picked the utilitarian solution (� = 0), effi-
ciency would obviously be 100%, but at the price of
completely excluding one of the players (i.e., the price
of efficiency would be 100%)!

Figure 7 (a) Price of Fairness and (b) Price of Efficiency for the Case of Measuring Passenger Delays in the Numerical Experiments in §4.2 for
Different Values of the Parameter �
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If one were to make this decision using trade-off
curves computed explicitly for this problem instance,
one might be led to choose �= 1, which would incur
a price of fairness of about 605% and a price of effi-
ciency of about 707%. Although this choice does take
the opportunity to reduce the price of fairness pre-
sented by this specific example, the improvement is
relatively small (from 706% to 605%), so that we lost
very little in using our robust framework in making
a selection of � here.

In summary, our prescription successfully navi-
gated a fairly subtle trade-off.

2. Robustness Matters. In looking at the absolute
prices of fairness and efficiency relative to their worst-
case values in our first example (Figure 6), one would
deduce that if the manager were to choose � based on
some budget on the price of efficiency (or fairness) the
resulting might be conservative. In particular, if the
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manager were willing to be as fair as possible pro-
vided the resulting loss in efficiency was less than
20% (i.e., the price of fairness was no more than 20%),
he would pick an � of about 005. This would realize an
efficiency loss of only 5%; in this case it would have
actually been possible for the manager to be fully fair
(i.e., pick � = �) while satisfying the constraint of
an efficiency loss of less than 20%. Notice, however,
that with the second objective, the conservativeness is
substantially less as is evidenced by Figure 7; there a
conservative choice would pick �= 005 for which the
actual efficiency loss is about 15%, which is not nearly
as conservative as in the first instance!

In summary, it is not the case that the worst-case
prices necessarily arise from pathological examples;
here we see a real-world problem instance that comes
fairly close. That said, if one is aware of additional
invariants in the decision problem, this information
could be used to further constrain the description of
the utility set considered in §2, and one could then
hope to computationally construct a trade-off curve,
as we did analytically for the case where U is simply
required to be convex and compact.

5. Concluding Remarks
We dealt with the problem of designing opera-
tional objectives, particularly, balancing efficiency
and fairness in the context of resource allocation.
We reviewed a plethora of problems in the broad area
of operations management for which this dichotomy
constitutes a central issue.

Despite the fact that fairness is of a subjective
nature, we identify a notion of fairness that is well
documented in the welfare economics literature and
is of practical interest: the notion of �-fairness. That
notion provides a family of welfare functions that is
canonical in that it captures the utilitarian allocation,
the max-min fair allocation (or Kalai–Smorodinsky)
and the proportionally fair (or Nash bargaining) allo-
cation. It also permits the decision maker to trade off
efficiency for fairness by means of a single parameter.

For the above notion, we provide near-tight upper
bounds on the relative efficiency loss compared to
the efficiency-maximizing solution, where we mea-
sure efficiency by the sum of player utilities. Simi-
larly, we provide tight upper bounds on the relative
fairness loss, where we measure fairness by the mini-
mum utility of players. The bounds are applicable to a
broad family of problems; they also suggest when the
loss is likely to be small, and illustrate its dependence
on the numbers of parties involved and the chosen
balance between efficiency and fairness. Such a contri-
bution has been elusive in the literature, to the best of
our knowledge, and now provides the means for cen-
tral decision makers to select their attitudes toward
fairness and efficiency using quantitative arguments.
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