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Abstract. In this paper, we study systems that allocate different types of scarce resources

to heterogeneous allocatees based on predetermined priority rules—the U.S. deceased-

donor kidney allocation system or the public housing program. We tackle the problem

of estimating the wait time of an allocatee who possesses incomplete system informa-

tion with regard, for example, to his relative priority, other allocatees’ preferences, and

resource availability. We model such systems as multiclass, multiserver queuing systems

that are potentially unstable or in transient regime. We propose a novel robust optimiza-

tion solution methodology that builds on the assignment problem. For first-come, first-

served systems, our approach yields a mixed-integer programming formulation. For the

important case where there is a hierarchy in the resource types, we strengthen our formu-

lation through a drastic variable reduction and also propose a highly scalable heuristic,

involving only the solution of a convex optimization problem (usually a second-order cone

problem).We back the heuristic with an approximation guarantee that becomes tighter for

larger problem sizes. We illustrate the generalizability of our approach by studying sys-

tems that operate under different priority rules, such as class priority. Numerical studies

demonstrate that our approach outperforms simulation. We showcase how our method-

ology can be applied to assist patients in the U.S. deceased-donor kidney waitlist. We

calibrate our model using historical data to estimate patients’ wait times based on their

kidney quality preferences, blood type, location, and rank in the waitlist.

History: Accepted by Yinyu Ye, optimization.
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1. Introduction
In this paper, we deal with the problem of estimat-

ing wait times in systems that allocate scarce resources

of different types according to some predetermined

priority rule, such as first-come, first-served (FCFS).

Allocatees are heterogeneous, differing in their prefer-

ences over resource types, and possess incomplete sys-
tem information with regard to their relative priority,

other allocatees’ preferences, and/or resource avail-

ability. We take the perspective of an individual alloca-

tee and tackle the estimation problem of his wait time

until he is allocated his preferred resources, based on

his available information. Technically, this corresponds

to a wait time estimation problem for a particular cus-

tomer in a multiclass, multiserver (MCMS) queuing

system for which primitive information about queue

populations, customer arrivals, and/or service times

is limited. We argue that wait time estimation in such

a context is highly relevant to practical problems and

that it requires development of a new methodological

framework.

A concrete motivation for our research is the plight

of patients suffering from end-stage renal disease,

which is terminal, and for which only two treatment

options, maintenance dialysis and kidney transplanta-

tion, are available. The significant and growing number

of patients seeking a kidney transplant in the United

States (currently 100,434, 110% higher than 15 years

ago) register on a national waitlist. Organs procured

from donors are offered to blood-type-compatible

wait-listed patients according to a national allocation

policy that closely resembles FCFS. In the face of often

long and variable wait times, accurate estimates of

remainingwait timewould be valuable to patients for a

number of reasons. One relates to the choice of appro-

priate treatment protocols, since the timing of initia-

tion and subsequent management of dialysis therapy

both rely heavily on estimates of wait time (Lee et al.

2008). The decision of whether to accept or reject an

offered kidney (e.g., one of marginal quality from an

old donor) also relies heavily on estimates of wait time

until the next offer, in particular, of a kidney of better
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quality (Zenios 2005). Apart from informing the afore-

mentioned decisions that could critically impact sur-

vivability, accurate wait time estimates can also help

improve patient quality of life. For example, reducing

uncertainty around wait times could mitigate patient

anxiety and facilitate planning of life activities around

dialysis treatment, which roughly entails 12 hours of

visits weekly to a dialysis center.

To the best of our knowledge, no tools exist for esti-

mating wait times until offer of a kidney, never mind

of a kidney of a particular quality.
1

Our private com-

munications with a number of healthcare providers

and physicians at major transplant centers in the New

England area corroborated this state of affairs, and

attested to the hardship that faces these parties in

advising patients about likely wait times to offer of a

kidney of acceptable quality. This is hardly surprising

considering the following challenges to deriving wait

time estimates in this context. First, wait times critically

depend on the acceptance propensity of higher-ranked

patients, whose preferences with respect to acceptable

kidney qualities are unobservable. Second, the alloca-

tion system is neither stationary nor stable, with the

number of wait-listed patients continually growing,

already far exceeding the supply of organs.

The challenges to estimating wait times are not

unique to the kidney allocation system (KAS) but are

rather usually encountered in systems that allocate

scarce goods, especially public ones. Another such sys-

tem is the U.S. Public Housing Program (PHP), which

provides affordable rental housing to low-income fam-

ilies and individuals. The PHP operates in a similar

fashion as the KAS: eligible applicants register on wait-

lists and are offered housing options (that differ in the

number of bedrooms, wheelchair accessibility, etc.) as

they become available. Specifically, the PHP operates

in an FCFS fashion, although some programs accom-

modate local variations (see Section 6). Wait time esti-

mates are valuable to applicants, because access to

affordable housing can have important financial life-

planning consequences. Unfortunately, these estimates

are equally hard to derive for many of the same reasons

as within the KAS—i.e., incomplete information and

transient/unstable system behavior (see Section 3 for

details). Indeed, all of the housing offices we surveyed

in the New England area refrain from providing any

but crude, wide-ranging estimates (the Boston hous-

ing office, for example, quotes wait times ranging from

10 weeks to more than five years).

Our research objective is to estimate wait times of

allocatees based on their own preferences and char-

acteristics, and the limited information they might

possess. That is, in this paper, we take the perspec-

tive of an individual allocatee, for whom we attempt

to derive wait time estimates, taking the underlying

resource allocation mechanism as given. For example,

we aim to estimate wait times for patients in the KAS

based on their own kidney-quality preferences, cur-

rent rank on the waitlist, and blood type. We model

the allocation system as an MCMS queuing system

serving customers (the allocatees) in which server

multiplicity captures resource heterogeneity (for exam-

ple, kidneys of different quality) and class multiplic-

ity captures customer heterogeneity (for example, with

respect to acceptable kidney qualities). In this setting,

our research question deals with the problem of esti-

mating thewait time of a particular customer in a given

class based on limited information about queue popu-

lations, customer arrival times, and service times.

The large body of work in the queuing literature

that deals with MCMS systems is not well suited to

our research question posed within systems plagued

by incomplete information and/or characterized by

transient, potentially unstable behavior—i.e., queu-

ing systems that accurately capture intricacies often

encountered in resource allocation in practice (see the

discussions in Sections 1.1 and 2).We consequently uti-

lize robust optimization tools known to cope well with

information incompleteness and to support the deriva-

tion of tractable optimization formulations.

In particular, we develop a new methodological

framework for analyzing wait times of customers

served by potentially nonstationary or unstable MCMS

systems that operate according to predetermined pri-

ority rules under incomplete information. Our frame-

work does not postulate probability distributions for

the uncertain parameters and instead models stochas-

ticity by means of optimization variables that lie in

uncertainty sets, which encompass all available limited

information, in the spirit of recent robust queuing the-

ory. We quantify wait times through their worst-case

values, whichwe refer to as robust wait times.

The key challenge in analyzing MCMS systems—

namely, to capture the customer–server allocation dy-

namics implied by a specific priority rule—as we dis-

cuss later makes our analysis fundamentally different

from existing approaches in robust queuing theory. We

address it by introducing a modeling formulation that

leverages assignment variables and affords the flexibil-

ity of dealing with various priority rules that can be

modeled as constraints on the assignment variables.

We base our analysis on MCMS FCFS systems, moti-

vated by the KAS and PHP. We illustrate later how

our approach can accommodate alternative priority

rules. Our formulations, by building on top of assign-

ment problems, exhibit enhanced computational per-

formance. Although the use of assignment variables is

motivated by work in the stochastic server allocation

and job scheduling literature, the linkage between the

robust queuing system and the assignment problem is

novel—see our discussion in Section 1.1.
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Using our methodological framework, we first

derive a mixed-integer programming (MIP) formula-

tion to compute robust wait times in a general MCMS

system. We then focus on a subclass of MCMS sys-

tems for which there is a hierarchy of resource types.

This important subclass, termed hierarchical MCMS

(HMCMS), subsumes many practical systems, includ-

ing the KAS. We leverage the structure of HMCMS

systems to strengthen our general MIP formulation

through a drastic variable and constraint reduction.

We further develop a heuristic approach to com-

pute approximate robust wait times in HMCMS sys-

tems that involves solving only a convex optimization

problem (usually a second-order cone program) with

a small number of variables. Critically, we derive an

approximation guarantee to back our heuristic that

becomes tighter as the problem size increases. We

demonstrate the performance of our formulations in

terms of accuracy and solution times by conducting

extensive numerical studies using simulated data for

realistic problem sizes.

We put our methodology into practice in a case

study of the KAS. Using highly detailed historical data

on wait-listed patients and donated organ offers, we

calibrate our model to predict wait times based on

patients’ wait-list rank and blood type.

We subsequently demonstrate how our methodol-

ogy can be applied to systems that prioritize customers

based on priority rules other than FCFS (see Section 6).

In particular, we extend ourMIP formulation, heuristic

approach, and its approximation guarantee to systems

in which priority is driven by customer class.

Our work contributes to the following literature

streams. First, it builds on and extends nascent robust

queuing theory in a significant way by capturingmulti-

ple customer classes. This additional modeling compo-

nent enables the incorporation of customer heterogene-

ity. Because, from a technical perspective, this relies on

introducing customer allocation dynamics to servers,

existing robust queuing theory tools are of little use.

We show how, by capturing these dynamics via a novel

assignment approach, moderately sized MIP formula-

tions and efficient heuristics that afford a priori error

bounds can be derived. Second, our work contributes

to the broader queuing literature by providing an esti-

mation procedure forwait times inMCMS systems that

are potentially unstable and/or in a transient regime

that is tractable and accurate under incomplete infor-

mation. Third, the present work adds to the operations

research literature that deals with organ allocation by

developing the first method for estimating wait times

in the KAS.

1.1. Literature Review
1.1.1. Robust Queuing Theory. This nascent literature

stream deals with queuing systems under uncertainty

in arrival and service times. Xie et al. (2011) use an

approach based on the Stochastic Network Calculus

framework to propose bounds on the delays in Internet

networks in transient regime. Bandi et al. (2015, 2018)

model networks of single-class queues using a robust

optimization approach via uncertainty sets and obtain

bounds on the waiting times using a worst-case-

analysis approach. These papers deal with single-class,

homogeneous customers, which allows them to build

their analysis using the standard Lindley recursion

or extensions thereof. Our work is inspired by the

use of robust optimization for queuing systems anal-

ysis. However, our dealing with customer heterogene-

ity introduces highly nonlinear dynamics with regard

to customer–server routing according to priority rules.

These dynamics invalidate the Lindley recursion and

consequently the techniques presented in the afore-

mentioned papers.

1.1.2. Multiclass Multiserver Queuing Theory Under
Transient Regime. MCMS queuing systems have been

a major topic of study given their varied applications.

The vast majority of papers in this stream focus on opti-

mal control or stability analysis. Optimal control deals

with the derivation of priority rules that optimize cer-

tain performance metrics such as throughput, delays,

etc.; see e.g., Harrison and Van Mieghem (1997), Jiang

and Walrand (2010), Plambeck and Ward (2006). Sta-

bility analysis examines conditions and priority rules

under which queuing systems are stable; related find-

ings are clearly and elegantly summarized in the sur-

vey paper by Bramson (2008). A subclass of MCMS

systems that is closer to the ones we consider in this

paper is that of parallel-server networks for which Bell

and Williams (2001), Harrison and López (1999), and

Mandelbaum and Stolyar (2004) again address optimal

control and stability issues. In contrast, we deal with

systems that (a) operate under predetermined priority

rules and (b) are inherently unstable and in transient

regime, such as the KAS and the PHP.

Transient analysis of queuing systems began with

the analysis of M/M/1 queues, for which Karlin and

McGregor (1958) showed that it involved an infi-

nite sum of Bessel functions. The analysis was fur-

ther extended (Abate and Whitt 1987, 1988, 1998;

Choudhury et al. 1994; Choudhury and Whitt 1995)

to obtain additional insights on the queue length pro-

cess. In view of the insurmountable tractability chal-

lenges even for stable Markovian queues (see, e.g., the

discussion in Gross et al. 2008, Heyman and Sobel

2003, Odoni and Roth 1983, and Keilson 1979), sev-

eral approximation techniques have been proposed,

such as the ones by Grassmann (1977, 1980), Kotiah

(1978), Moore (1975), Rider (1976), Rothkopf and Oren

(1979), and others. All such approacheswe are aware of

have focused on developing numerical techniques for

single-class queues and queuing networks and do not
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generalize to multiclass queuing systems of the type

we study in this paper.

To the best of our knowledge, all papers in this liter-

ature stream consider primitive information regarding

system dynamics, arrivals, and service durations to be

known and specified using distributions. We deal with

problems where (pieces of) such information is (are)

unavailable.

1.1.3. Optimization Approaches in Multiserver Queu-
ing Systems. A growing stream of research proposes

to employ linear and integer optimization for queu-

ing and scheduling problems. Gurvich et al. (2010)

consider the problem of jointly optimizing staffing

levels and priority rules in a queuing system with

uncertain arrivals. To optimize over the priority rule,

they treat the number of jobs assigned to each server

as optimization variables. Similarly, integer optimiza-

tion variables are routinely employed in scheduling

problems to determine a schedule (or job-to-server

assignment) that optimizes a certain objective; see,

e.g., Pinedo (1995) or the survey by Queyranne and

Schulz (1994). More recently, Deng and Shen (2016)

use an assignment-style formulation to derive optimal

appointment schedules. Although our assignment-

style formulations are motivated by the referenced

work here, ourwork highlights the linkage between the

assignment problem and robust queuing system anal-

ysis. Furthermore, note that in all referenced work, the

job-to-server assignment variables are used to deter-

mine an optimal priority rule. Our work differs in

that the assignment variables are used to describe

the system’s evolution under a predetermined priority

rule. Consequently, appropriate constraints need to be

devised so that feasible assignments respect each given

priority rule. From this standpoint, our work mim-

ics Bodur and Luedtke (2017), where the authors use

job-to-server assignment variables to capture dynam-

ics under the shadow-tandem priority rule. In contrast,

we study a robust queuing setting and focus on FCFS

and class priority rules.

1.1.4. Model-Based Organ Allocation. This literature

comprises two streams. Papers in the first stream take

the perspective of policy makers and devise organ

allocation policies that would improve on the status

quo. Zenios (2005) provides an excellent survey of ear-

lier work in this stream, whereas more recent papers

include Akan et al. (2012), Bertsimas et al. (2013), Kong

et al. (2010), and Su and Zenios (2006). Our approach

is very different as we consider the U.S. national allo-

cation policy in place and estimate patient wait times.

Papers in the second stream take the patients’ per-

spective and study the accept/reject decision that they

face when offered an organ, by modeling it as an opti-

mal stopping problem in an MDP framework. The

key insight from these papers is that patients follow

threshold-type policies—i.e., each patient has a thresh-

old on organ quality and accepts (rejects) organs if they

are above (below) this threshold. See again the survey

by Zenios (2005) for earlier papers, and Alagoz et al.

(2007), Sandıkçi et al. (2008), and Sandıkçi et al. (2013)

for recent work. Our work takes a different angle: we

borrow the key insight of these papers—that is, we

take as given that the patients’ accept/reject behavior

is threshold-type and focus on characterizing the time

until the next offer. This angle is in some sense com-

plementary to the existing papers, which take as given

a characterization of the time until the next offer and

focus on the accept/reject decision problem.

1.2. Notation
We denote sets (resp. random variables) using upper-

case blackboard bold (resp. uppercase script) typeface

style. Superscripts affixed to vectors are used for ele-

ment indexing—e.g., if xi j ∈ �k
, then x`i j is its `th ele-

ment. We denote the indicator function with I( · ).
Finally, e is the vector of all ones, and ei is the vector

with its ith element equal to one and all other elements

equal to zero.

2. Model
We begin by developing a queuing model that can be

used to analyze wait times in first-come first-served

(FCFS) resource allocation systems—e.g., the kidney

or public housing allocation systems discussed in the

introduction. To obtain a general-purpose model that

can be widely applicable, we omit capturing partic-

ularities of specific applications. We next present the

model, followed by a discussion of how it can be

applied to tackle our research questions.

Consider a multiclass, multiserver (MCMS) queuing

systemwhere a set of M distinct servers, indexed by j �
1, . . . ,M, serve K customer classes, similarly indexed

by i � 1, . . . ,K. Associated with the ith customer class,

there is an infinitely sized queue that is populated by

all customers of that class, which we shall refer to as

i-customers. Customers of each class can only be served

by a fixed subset of servers. Let�(i) ⊂ {1, . . . ,M} be the
(nonempty) set of servers eligible to serve i-customers.

Correspondingly, let �( j) ⊂ {1, . . . ,K} be the set of

queues or customer classes for which the jth server is

eligible. Figure 1 provides an illustrative example.

At time t � 0, there is a (random) number ® of cus-

tomers waiting for service in the system, with ® i of

them being i-customers. We index customers by ν �

1, . . . ,® so that {1, . . . ,®
1
} are 1-customers, {®

1
+

1, . . . ,®
1
+ ®

2
} are 2-customers, etc. Customers are

served according to FCFS. Let σ be a permutation of

{1, . . . ,® } that produces the order in which the® cus-

tomers arrived. In particular, σ(ν) is the order in which

the νth customer arrived—and thus his service priority

as well. The system is closed after t � 0—i.e., no more
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Figure 1. Illustration of a Multiclass Multiserver Queuing

System with M � 2 Servers and K � 3 Classes (Queues), for

Which �(1)� {1, 2}, �(2)� {2}, �(3)� {1}, and �(1)� {1, 3},
�(2)� {1, 2}

Classes

Servers

1

2

�1

�2

�3

customers arrive.
2

Subsequently, to receiving service

by any eligible server, customers exit the system.

We assume without loss that all servers are busy at

t � 0. Service times of the jth server are independent

and identically distributed (i.i.d.)—in particular, inde-

pendent of customer class—and are denoted by

{¸ `
j }`∈�. Specifically, after t � 0 the jth server becomes

available for service for the first time at t �¸ 1

j , it then

begins servicing another customer, becoming available

again at t � ¸ 1

j + ¸ 2

j , etc. Let µ j be the average ser-

vice rate of the jth server and 1/µ j its average ser-

vice time. Service times are also assumed independent

across servers and independent of queue populations.

Once a server becomes available, it immediately

starts servicing the highest-priority customer among

the remaining ones for which the server is eligible. To

formalize this, let �i(t) be the set of i-customers waiting

in the ith queue at time t. For example, as per our afore-

mentioned indexing convention, we have that �
1
(0) �

{1, . . . ,®
1
}. Suppose that the jth server becomes avail-

able at time t. The server then starts servicing customer

ν? ∈ arg min{σ(ν): ν ∈⋃
i∈�( j) �i(t)}. Subsequently, cus-

tomer ν? leaves the queue i? in which hewaited—i.e., if

ν? ∈ �i?(t), we have �i?(t+)� �i?(t)\{ν?}. If there are no
customers waiting at time t for which the jth server is

eligible—i.e.,

⋃
i∈�( j) �i(t)��—then the server remains

idle.

In this setting, the clearing time for the ith queue is

defined as the time at which it first empties,

· i(® 1
, . . . ,® K , σ, {¸ `

1
}`∈� , . . . , {¸ `

M}`∈�)
:� inf{t ≥ 0: |�i(t)| � 0},

and is a complex function of the state of the sys-

tem at time t � 0, described by the queue populations

®
1
, . . . ,® K , the priority mapping σ, and the service

times {¸ `
1
}`∈� , . . . , {¸ `

M}`∈�.
The focal point of our subsequent analysis is to quan-

tify the clearing times of queues in themodel described

above. Before presenting the analysis, we illustrate how

this will allow us to tackle the main research prob-

lem we outlined in the introduction. In particular, con-

sider an FCFS multiclass, multiserver queuing system.

The wait time of an existing, particular customer cor-

responds then to the clearing time of the queue he

belongs to in an appropriately specified instance of our

model. The statistics of the queue populations, the pri-

ority order, and the service times in our model can be

calibrated so as to reflect the (partial) characterization

of the state of the system that is available.

It is important to note here that we do not require

the original queuing system one would want to ana-

lyze to be closed. For example, the queuing system

underlying kidney allocation in the United States is

open and unstable—i.e., patients arrive at a higher rate

than kidneys. Since wait times of existing customers in

FCFS systems are not affected by future arrivals, how-

ever, a closed queuing system model suffices for our

purposes.

3. Robust Optimization Framework for
Multiclass Multiserver Systems

The analysis of MCMS queuing systems like the one

we introduced in the previous section has attracted a

lot of attention in the queuing theory literature. While

this theory offers a considerable arsenal of analysis

tools for such systems, the vast majority of them either

(a) address alternative questions to ours or (b) rely on

assumptions that would be prohibitive for us to make

in our setting.

Specifically, the focal points in the MCMS queu-

ing theory literature have been establishing stability of

such systems and/or optimizing over priority or con-

trol mechanisms (see Section 1.1). For our purposes,

however, the key quantity of interest is clearing or wait

times under a predetermined priority rule (e.g., FCFS).

Among the studies closer to ours that quantify wait

times, the majority of them obtain general-purpose

averages from a system’s perspective. Our focus is on

estimating wait times for particular customers in the

system who might have already been waiting for some

time, based on the unique, limited, and idiosyncratic

information they might possess.

Furthermore, studies in the literature quantifying

wait times for MCMS systems usually assume that

there is complete information, that the system is stable,

and that it starts with empty queues. Unfortunately, all

of these assumptions are in contrast with the following

practical considerations underlying the resource allo-

cation systems we are interested in analyzing:

1. Incomplete information: Resource allocation sys-

tems of public goods are often plagued by lack of infor-

mation. For example, patients’ preferences pertaining

to acceptable organ quality are private information and

unobservable in the kidney allocation system (see Sec-

tion 5). In the public housing allocation system, while
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candidates submit their housing preferences at regis-

tration, their true preferences might again be unob-

servable because candidates might not be fully incen-

tivized to reveal them, or because they might change

over time. In addition, the construction rate of new

housing developments could also be hard to estimate

because of limited historical data in developing regions

and their dependence on fluctuating socioeconomic

factors. From a modeling perspective, this means that

probabilistic models of queue populations and/or ser-

vice distributions might be simply unavailable, or very

hard to estimate, to the extent that postulating spe-

cific distributional forms might compromise predictive

ability.

2. Instability and transient behavior: The queuing sys-

tems underlying practical resource allocation systems

are often unstable, or do not reach steady state dur-

ing their lifetime, consequently remaining in transient

state. For instance, the kidney supply scarcity is well

documented, with the number of registered patients

waiting for a kidney transplant rising by at least

1,650 every single year since 1995, and on average by

4,750 per year, resulting in ever increasing wait times

(Abouna 2008, Horvat et al. 2009). Similarly, wait times

in overloaded public housing programs could exceed

five years. Such systems, even when they are stable, are

unlikely to reach steady state because house availabil-

ity and new constructions are likely to be heavy tailed

and/or time varying because of, for example, fluctuat-

ing socioeconomic and policy factors during these long

periods (Barabási 2005).

3. Nonzero initial queues: The systems we consider do

not start from empty, but with a certain queue pop-

ulation in each class already waiting for service. This

nonzero initial condition usually leads to analytical

intractability when traditional approaches are used for

analysis (Kaczynski et al. 2012, Kelton and Law 1985).

All of the reasons outlined in the discussion above

motivate us to consider the use of robust optimiza-

tion tools as an alternative modeling approach to tack-

ling our research questions. In particular, we develop

a solution approach inspired by the very recent robust

queuing theory (RQT) surveyed in Section 1.1. This

theory being limited to single-class queuing systems,

we extend the methodology in multiple ways to ade-

quately address MCMS systems—more details on how

our work builds on and extends RQT are included in

Section 1.1.

3.1. Our Model of Uncertainty
As in RQT, we treat random quantities—e.g., service

times—as decision variables in an optimization prob-

lem. These variables are constrained to lie in uncer-

tainty sets that reflect fundamental known properties

that the original random quantities would satisfy with

high probability.

To this end, let x`j be the variable corresponding to

the `th service time of the jth server and ni the vari-

able corresponding to the number of i-customers in the

system—previously denoted by the random variables

¸ `
j and ® i , respectively. We also let n :� [n

1
· · · nK]>

and, for all j � 1, . . . ,M, let x j :� [x1

j · · · x
¯` j

j ]>, where
¯` j

is an upper bound on the number of customers served

by the jth server (we elaborate on how to compute
¯` j’s

later).

In line with RQT and several other recent papers

in the robust optimization literature, we constrain the

deviations of sums of service times from their means

using bounds dictated by the Generalized Central

Limit Theorem (GCLT). In particular, we make the fol-

lowing assumption.

Assumption 1. The service times x j of the jth server belong
to the uncertainty set

� j :�

{
x j ∈ �

¯` j
+ :

∑̀
k�1

xk
j ≤

`
µ j

+Γ�j (`)1/α j , ` � 1, . . . , ¯` j

}
,

j � 1, . . . ,M,

where Γ�j ≥ 0 controls the degree of conservatism, and α j ∈
(1, 2] is a heavy tail parameter.

We refer the interested reader to Appendix A and to

Bandi and Bertsimas (2012) for a more elaborate moti-

vation and justification of Assumption 1. To streamline

our analysis and ease notation, we denote the comple-
tion times of the jth server (assuming it processes

¯` j

customers) with c j :� [c1

j · · · c
¯` j
j ]>, where c`j :�

∑`
k�1

xk
j ,

and the uncertainty set they belong to with

� j :�

{
c j ∈ �

¯` j
+ : c`j �

∑̀
k�1

xk
j , ` � 1, . . . , ¯` j , x j ∈� j

}
,

j � 1, . . . ,M.

While the GCLT-based structure of the uncertainty

sets � j (� j) is standard in the robust optimization lit-

erature, the structure of an uncertainty set for queue

populations could be different and highly context spe-

cific. In particular, such a set would need to capture

the idiosyncratic information that is available. To pre-

serve generality and tractability, we only assume the

following.

Assumption 2. The queue populations n ∈ �K belong to a
bounded polyhedral uncertainty set � .

The family of linear inequalities is rich enough to

capture a vast variety of information pieces that might

be available to characterize � . For example, if a patient

in the kidney waitlist knows with certainty that there

are 10 patients with higher priority ahead of him, the

constraint

∑K
i�1

ni � 10 could capture this information.

In Section 5, and for the purposes of our detailed case
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study on the kidney allocation system, we exemplify

how such a set could be constructed in practice.

We do not impose any constraints on the (random)

permutation of customers σ that determines service

priority. That is, given queue populations n ∈ �K
, σ

could be any permutation of numbers 1, 2, . . . ,
∑K

i�1
ni .

We denote the set of all such possible permutations

with Σ(n).

3.2. Solution Methodology
We introduce the concept of the robust wait time or

robust clearing time of the ith queue, denoted by Wi ,

defined as the maximum (worst-case) clearing time

subject to the random quantities lying in their uncer-

tainty sets. That is, Wi is the optimal value of the opti-

mization problem

maximize · i(n1
, . . . , nK , σ, x1

, . . . , xM)
subject to n ∈ � ∩�K ,

σ ∈Σ(n),
x j ∈� j , j � 1, . . . ,M.

(1)

As we shall see, and in line with recent papers in the

robust optimization literature, by picking appropriate

values for the conservatism parameters Γ�j , one can use

Wi as a way to estimate different statistics of the clear-

ing time · i—e.g., its average, its 95-, 97-percentiles,

etc. As a technical remark, we henceforth assume that

there exists a population vector n for which the ith
class is populated—i.e., ni ≥ 1—since otherwise Wi � 0.

Before we proceed with the solution of (1), it is

important to note that the worst-case estimates this

approach can produce are of high practical relevance in

the context of service/resource allocation systems. As a

matter of fact, in many service systems where demand

outstrips supply, managers prefer to provide service

guarantees to their customers, instead of average wait

time estimates (Aufderheide 1999, Davis et al. 2014,

Matas et al. 2015). In healthcare, patients being typi-

cally risk averse, worst-case estimates are highly valued

and are often used for treatment planning (Elwyn et al.

2001, Entwistle et al. 1998, Vincent and Coulter 2002).

3.2.1. An Assignment Formulation. Problem (1) is

hard to solve, as formalized in our first result.

Proposition 1. The optimization problem (1) is NP-hard.

All proofs are included in Appendix F. Deriving a

tractable formulation for (1) is challenging, because

there is no analytical expression for · i . Note that in

single-queue settings, Lindley’s equations can be used

to characterize · i . For example, the analysis of net-

works of single-server queues by Bandi et al. (2015,

2018) is based entirely on these equations. In anMCMS

setting however, the presence of multiple queues and

heterogeneous customers make the system dynamics

significantly more complicated. This is because cus-

tomers waiting in queues need to be routed to servers

according to a priority rule (e.g., FCFS). Lindley’s equa-

tions are insufficient to capture such dynamics and,

consequently, an alternative line of attack is needed.

We introduce a novel approach to solve prob-

lem (1). The main idea is to model the routing pro-

cess as an assignment problem, where customers are

assigned to servers. Put differently, any permutation σ
in problem (1) that determines service/routing priority

induces a particular solution to our assignment formu-

lation. The key is that our formulation allows for the

reverse as well: by including appropriate constraints

on the assignment variables, we ensure that any feasi-

ble assignment abides by the FCFS priority discipline

under some permutation σ.
Our modeling choice enables us to cast (1) as a

mixed-integer optimization problem (MIP). The main

decision variables of the MIP are the assignment vari-

ables y`k j , which indicate whether the `th service that

the jth server provides is to a k-customer. Consider

the MIP

maximize wi (2a)

subject to∑
k∈�( j)

y`k j≤1, `�1, . . . , ¯` j , j�1, . . . ,M; (2b)∑
`�1,..., ¯` j

j∈�(k)

y`k j≤nk , k�1, . . . ,K; (2c)

∑
k′∈�( j)

y`k′ j≥ f `k j , k∈�( j), `�1, . . . , ¯` j , j�1, . . . ,M; (2d)

wk≤c`j + ¯ζ f `k j , k∈�( j), `�1, . . . , ¯` j ,�1, . . . ,M; (2e)

wk≥c`j − ¯ζ(1−y`k j), k∈�( j), `�1, . . . , ¯` j , j�1, . . . ,M; (2f)

c j∈� j , j�1, . . . ,M; (2g)

y`k j , f `k j∈{0,1}, k∈�( j), `�1, . . . , ¯` j , j�1, . . . ,M; (2h)

(n+ei)∈�∩�K , (2i)

with variables w , n ∈ �K
, y , f ∈ {0, 1}

∑M
j�1
|�( j)| ¯` j

, c ∈
�

∑M
j�1

¯` j
, where

¯ζ is an upper bound on Wi .

Theorem 1. The optimal value of the MIP (2) is equal
to Wi , i � 1, . . . ,K.

Apart from the assignment variables y and their

associated completion times c, we use the auxiliary

variables f to indicate whether a customer class is

filled, or has emptied: f `k j � 1 if at the time the `th ser-

vice of the jth server begins, the k-customers’ class is

still populated. Constraints (2b) and (2c) are assign-

ment constraints. Constraint (2d) ensures that the jth
server will be assigned to customers once it becomes

available, unless all classes �( j) it is eligible for have

emptied. Constraint (2e) can be active only if the kth
customer class has emptied, yielding an upper bound

on the clearing time of the kth queue. Constraint (2f)

provides a nontrivial lower bound on the clearing time

of the kth queue whenever an assignment is made to
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that queue. Constraints (2g) and (2i) ensure that the

completion times and queue populations lie in their

respective uncertainty sets.
3

Finally, parameters
¯` j and

¯ζi can be readily calculated as
¯` j � max{∑k∈�( j) nk : n ∈

� ∩ �K} and
¯ζ � max j{ ¯` j/µ j + Γ

�
j ( ¯` j)1/α j }. For more

details, see the proof of Theorem 1.

Themain appealing features of ourmethodology are

as follows.

1. Tractability: The use of assignment variables allow

us to capture the complex MCMS dynamics using an

MIP formulation, which can be solved via available

solvers. More importantly, at the heart of our formu-

lation lies an assignment problem, which is known

for its tractability properties. As a matter a fact, the

required computational times we recorded in our

numerical studies (presented below) demonstrate that

instances of practical relevance can be solved in less

than few minutes. Furthermore, when dealing with

specific applications, one could potentially leverage

their structure to strengthen formulation (2), as Sec-

tion 4 exemplifies.

2. Generalizability: While a vast number of MCMS

queuing applications follow FCFS and can conse-

quently be analyzed using formulation (2), other prior-

ity rules are encountered in practice as well. We argue

that our modeling approach is generalizable and offers

the potential to capture priority rules other than FCFS.

In particular, this would be made possible by imposing

appropriate constraints on the assignment variables

that would reflect the desired rules. In Section 6, we

study a system where a class-priority (CP) rule is fol-

lowed instead of FCFS, as well as a “hybrid” system

where some of the servers follow FCFS and others fol-

low CP. Under CP, the study of open systems becomes

relevant and our framework is extended accordingly to

capture customer arrivals.

Furthermore, we emphasize that formulation (2)

does not rely on the GCLT-based structure of the ser-

vice time uncertainty sets imposed via Assumption 1.

In particular, Theorem 1 applies as long as � j are

nonempty, bounded polyhedra (see Appendix A).

3. Robustness: By relying on a worst-case analysis,

our solution approach works very well under a wide

range of uncertainty scenarios that could realize in

practice and is thus robust to misspecifications of

underlying distributions/primitives. For further evi-

dence, we refer the reader to the numerical studies that

follow.

Table 1. Average Absolute Relative Errors of Our Clearing Time Statistics’ Estimates

Across All Instances for Which the True Distributions Were Known

Clearing time statistics Average 95-percentile 97-percentile 99-percentile

Avg. absolute relative error (%) 6.52 2.64 2.55 3.41

3.3. Performance
We performed a wide range of numerical studies to

evaluate the accuracy and computational speed of our

solution approach in estimating different statistics of

clearing/wait times in our model. In particular, we

randomly generated multiple instances under different

system sizes (varying from K � M � 5 to 500), different

service distributions (varying from exponential to nor-

mal distributions with coefficients of variation between

20% and 40%, to Pareto distributions with parameter α
between 1.3 and 1.7) and different average queue pop-

ulations (varying from 5 to 500).

For all instances, we used our formulation (2) to

estimate the average, 95-, 97-, and 99-percentiles of

clearing times. We then used a standard simulation

approach to approximate these statistics. Assuming

that simulation produced the statistics’ true values, we

measured the average absolute relative error of our

estimates as

# iterations∑
k�1

���� (our estimate)k −(simulation estimate)k
(simulation estimate)k

����
# iterations

×100%.

To evaluate the robustness of our estimates to mis-

specifications of the queue populations’ distributions,

we also considered cases where the true distributions

were different from the ones assumed by the models.

In these cases, we used the simulation approach to pro-

duce its own estimates under the assumed distribution

andmeasured its errors in a similar fashion as with our

approach. Finally, we recorded the required computa-

tional times to solve formulation (2) for all generated

instances.

We next present only a summary of our results; a

detailed description of our experiments and findings

is included in Appendix B. Table 1 reports the aver-

age absolute relative errors of our approach in esti-

mating different statistics of the clearing times. While

these figures are averages across all instances, we note

that performance was relatively uniform across differ-

ent problem sizes and distributions. With regard to

computational times, the majority of instances solved

within a matter of few seconds, while all instances

solved in less than three minutes. In case the true dis-

tributions were different from the ones assumed, we

found that the relative errors of both our and the simu-

lation approach depended more strongly on the queue

population sizes. Table 2 includes the average relative

errors we recorded for both approaches for different
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Table 2. Average Absolute Relative Errors of the

Simulation’s and Our Approach’s Estimates for the Average

Clearing Time Across All Instances for Which the Assumed

Queue Population Distribution Was Different from the True

One, for Different Average Queue Populations

Avg. queue population 5 100 500

Simulation’s avg. absolute relative error (%) 21 15 12

Our avg. absolute relative error (%) 13 9 7.5

queue population sizes when the true distributions

were different from the ones assumed.

Our numerical studies showcase that our method-

ology provides accurate estimates of clearing time

statistics. For practical situations where distributions

are unavailable or there is a discrepancy between the

assumed and the actual ones, our studies suggest that

ourmethodologywould provide far superior estimates

compared to simulation, illustrating its usefulness.

4. Hierarchical Service Systems
Before applying our methodology to quantify wait

times in the U.S. kidney allocation system (KAS),

we study an important subclass of MCMS queu-

ing systems that subsumes a vast number of practi-

cal applications (including KAS). We leverage struc-

tural properties of this subclass to strengthen the MIP

formulation (2). We also derive a heuristic to estimate

wait times that involves the solution of a scalable con-

vex optimization problem, and back it with a perfor-

mance guarantee.

In particular, in this section, we study MCMS queu-

ing systems whereby there is a hierarchy across the ser-

vice that the different servers provide, and customers

seek service that meets or exceeds a particular rank,

or level, in this hierarchy. To make this precise, we

assume that the jth server provides the jth highest ser-

vice level—e.g., server 2 provides the second-highest

service level. Correspondingly, i-customers are seek-

ing service level i or higher (e.g., servers 1 and 2 are

the only servers eligible for 2-customers); K-customers

seek service of any level. From a modeling standpoint,

under this hierarchy we have as many customer classes

as servers, K � M, and the sets � and� have a particu-

lar “nested” structure

�(i)� {1, . . . , i}, i � 1, . . . ,K;

�( j)� { j, . . . ,K}, j � 1, . . . ,K.

We shall refer to such systems as hierarchical service
systems or hierarchical multiclass, multiserver systems

(HMCMS). Figure 2 provides an illustrative example

for K � 3.

Note that despite being a special case, HMCMS sys-

tems arise very frequently in practice, for example,

Figure 2. Illustration of a Hierarchical Multiclass

Multiserver Queuing System with K � 3

Classes Servers

1

2

3

�1

�2

�3

Notes. Server 1 (3) provides the highest (lowest) service level. Cus-

tomers in class 1 (2 or 3) seek service at level 1 (2 or 3) and above.

when there are different quality levels of a partic-

ular service that is provided. Some concrete exam-

ples include (a) kidney allocation, where donated

organs have different quality based on donor charac-

teristics;
4

(b) healthcare services, where different tech-

nology generations are used with newer ones typ-

ically outperforming older ones (e.g., conventional,

intensity-modulated or proton radiation therapy ser-

vices); and (c) transportation services, where different

travel classes are offered. In such contexts, it is natural

to assume that “customers” who are willing to accept

a specific quality of service level will also be willing

to accept all higher quality levels; in other words, cus-

tomer heterogeneity stems only from different quality

level thresholds the customers have. This threshold-

type customer heterogeneity gives rise to the nested

structure of HMCMS systems.

In the remainder of this section and for the case of

hierarchical service systems, we leverage their struc-

tural properties to strengthen the general formula-

tion (2) so as to compute wait time for service (of any

level) in a more efficient manner. We also devise a

highly scalable heuristic approach that approximates

robust wait times and is backed by a strong approxi-

mation guarantee.

4.1. Service Wait Time
An important quantity in the context of hierarchical

service systems is thewait time to receive service of any

level. This quantity, denoted by ·K in our framework,

corresponds to the wait time a customer will experi-

ence if he were to abolish any quality/service level

threshold he may have and is a commonly reported

metric in hierarchical service systems in practice. For

example, the medical reporting website of the govern-

ment of Alberta, Canada,
5

provides wait time statistics

for service of any level for all reported medical pro-

cedures (e.g., imaging services, interventions, surgical

services) and does not provide a breakdown based on

the quality of service or technology used. Similarly, in
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its Cancer Waiting Times Annual Report,
6

the English

National Health Service only reports wait time statis-

tics for cancer services of any level. For example, wait

time statistics reported for radiotherapy treatment are

agnostic to technology generations. The practical rele-

vance of the quantity·K is not surprising: by abstract-

ing away from preferences, it constitutes a baseline

measure for wait times as individual preferences could

only lead to increased waiting.

Calculating theworst-case·K in anHMCMS system

remains a hard problem. However, in what follows we

leverage its structure to strengthen our formulations.

Proposition 2. Calculating WK for HMCMS systems is an
NP-hard problem.

The MIP formulation (2) we proposed to estimate

wait times for general MCMS systems involves two

sets of key decisions: customer assignment to servers

and completion times (captured by variables y and c,
respectively). While the former correspond to variables

and constraints that appear in assignment problems,

which are known to scale well, the latter variables and

constraints make formulation (2) deviate from a clas-

sical assignment problem, and are thus harder to deal

with from a computational standpoint. It turns out that

for HMCMS and WK , completion, or service times can

be fixed to their worst-case values in our formulation.

This allows us to considerably simplify it, by eliminat-

ing the associated variables and constraints.

Before we present more details, we argue that in the

computation of Wi , service times need not take their

worst-case values in general—even if the system has a

hierarchical structure, but i < K. We prove this via an

example showing that shorter service times could lead

to longer wait times.

Example 1. Consider a hierarchical service system

with K � M � 2 queues, each of which is populated

by a single customer—i.e., � � {(1, 1)}. We are inter-

ested in the clearing time W
1
of the first queue—i.e.,

the waiting time for the 1-customer. The servers have

equal parameters Γ�
1
� Γ�

2
� 1 and α

1
� α

2
� 2. However,

the first has a lower service rate than the second; in

particular, µ
1
� 0.8 < 1 � µ

2
. Clearly, in the worst case,

the 2-customer has service priority.

Suppose first that all service times attain their worst-

case values. In particular, servers 1 and 2 become

available for service for the first time at c1

1
� x1

1
� 1/µ

1
+

Γ�
1

√
1� 2.25 and c1

2
� x1

2
� 1/µ

2
+Γ�

2

√
1� 2, respectively.

Then, at t � 2, server 2 starts servicing the 2-customer,

and at t � 2.25, the 1-customer receives service. In other

words, under worst-case service times, W
1
� 2.25.

Suppose now that the service times of server 1 are

lower than their worst-case values. Specifically, server 1

takes c1

1
� x1

1
� 1.8 to become available for the first

time. Then, at t � 1.8, server 1 starts servicing the

2-customer. At t � 2, server 2 will become available

for service but will remain idle, being ineligible to

serve the 1-customer. If server 1’s time to serve the

2-customer takes its worst-case value such that c2

1
�

x1

1
+ x2

1
� 2/µ

1
+Γ�

1

√
2� 2.5+

√
2, the 1-customer will be

served precisely at that time and W
1
� 2.5+

√
2 > 2.25.

The intuition behind the counterexample is that

while, on one the hand, shorter service times make

the servers available earlier and could thus reduce

wait times, on the other hand, they could also change

the service sequence of customers, thus potentially

increasing wait times for some customer classes. Our

next result shows that the structure of hierarchical ser-

vice systems precludes this latter possibility for cus-

tomers waiting for service of any level.

Lemma 1. For a hierarchical MCMS system, the clearing
time ·K is increasing in the service times. In particular,
problem (1) admits an optimal solution for which completion
times take their worst-case values—i.e.,

c`j � x1

j + · · ·+ x`j �
`
µ j

+Γ�j (`)1/α j ,

j � 1, . . . ,K, ` � 1, . . . , ¯` j .

Based on Lemma 1, we now fix the completion times

to take their worst-case values. We introduce the fol-

lowing notation. Consider the set of all worst-case com-

pletion times for all servers—i.e., {c`j � `/µ j +Γ
�
j (`)1/α j

:

j � 1, . . . ,K, ` � 1, . . . , ¯` j}7—and let
¯` :� ¯`

1
+ · · · + ¯`K

be its cardinality and c` its `th smallest element, ` �
1, . . . , ¯`. Consider the MIP

maximize

∑
`�2,..., ¯`

c`( f `−1 − f `) (3a)

subject to∑
k� j,...,K

y`k j ≤ 1, ` � 1, . . . , ¯` j , j � 1, . . . ,K; (3b)∑
( j, ω): cωj ≤c`

yωK j ≤ nK − f ` , ` � 1, . . . , ¯`; (3c)∑
j�1,...,k
`�1,..., ¯` j

y`k j ≤ nk , k � 1, . . . ,K − 1; (3d)

∑
( j, ω): cωj �c`

k� j,...,K

yωk j ≥ f ` , ` � 1, . . . , ¯`; (3e)

f `−1 ≥ f ` , ` � 2, . . . , ¯`; (3f)

f ` ∈ {0, 1}, ` � 1, . . . , ¯`; (3g)

y`k j ∈ {0, 1}, j � 1, . . . ,K, k � j, . . . ,K, ` � 1, . . . , ¯` j ; (3h)

n ∈ � ∩�K , (3i)

where y ∈ {0, 1}K ¯`
1
+(K−1) ¯`

2
+···+ ¯`K and n ∈ �K

are assign-

ment and class population variables, respectively; and

f ∈ {0, 1} ¯`
are indicators of whether the Kth customer

class is filled, or has cleared.
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Theorem 2. For a hierarchical MCMS system, the optimal
value of the MIP (3) is equal to WK .

Formulation (3) presents a structure that closely

mimics an assignment problem. Constraints (3b) are

classical assignment constraints. Constraints (3c) and

(3d) are capacity constraints. The main departure from

an assignment problem stems from the variable f ` ,
which indicates whether the Kth customer class is

filled, or has cleared, at the `th completion time, or

equivalently, assignment. When that class clears, f `
takes the value 0 (and retains it because of (3f)), allow-

ing (3c) to be binding with nK assignments to the Kth

class, and the objective (3a) to attain the associated

clearing time. Finally, (3e) forces assignment unless the

Kth class has cleared, similarly to (2d).

Owing to its simpler structure and significantly

fewer variables/constraints, we expect formulation (3)

to yield significant computational advantages over

the general formulation (2). We compare the two

approaches in terms of their computational perfor-

mance in Section 4.3, alongside a third heuristic

approach, which we present next.

4.2. Service Wait Time Approximation
Both the formulation (2) for general MCMS and

the more efficient formulation (3) for HMCMS sys-

tems have a number of variables that depends on

the customer classes’ populations. Intuitively, this is

because the presence of more customers would require

a higher number of server-to-customer assignments.

Algebraically, as the population uncertainty set �
includes higher-valued vectors n, the parameters

¯` j
increase and so do the numbers of variables y and f .
This dependence would increase computational bur-

den for heavily overloaded systems. To overcome this,

we devise a heuristic to approximate WK with sig-

nificantly reduced computational requirements that

are independent of n. More importantly, we back

the heuristic with an approximation guarantee that

becomes tighter as n grows—i.e., precisely when the

heuristic’s computational gains become worthwhile.

Consider the following optimization problem:

maximize w

subject to w ≤
m j

µ j
+Γ�j s j , j � 1, . . . ,K

(s j)α j ≤ m j , j � 1, . . . ,K;

K∑
k� j

mk ≤
K∑

k� j

nk +K − j, j � 1, . . . ,K;

n ∈ � .

(4)

It can be readily seen that problem (4) is convex. In

particular, for any rational value of α j (including the

important case where the service times do not exhibit

heavy tails; i.e., for α j � 2), problem (4) reduces to

a second-order cone program (SOCP) (Alizadeh and

Goldfarb 2001, section 2.3). An interpretation of its

variables and constraints is as follows. The variables

m ∈ �K
represent the numbers of customers assigned

to/served by each server by the time the Kth class has

cleared, which in turn corresponds to variable w ∈ �.
Variables s ∈�K

are auxiliary and n ∈�K
are class pop-

ulations as before. At optimality, it can be readily seen

that the first two constraints are equivalent with w ≤
m j/µ j + Γ

�
j (m j)1/α j

—i.e., w is upper-bounded by the

worst-case time it takes the jth server to serve its m j
assigned customers, for all j � 1, . . . ,K. The third con-

straint bounds the number of customers assigned to a

subset of servers by the population of customer classes

these servers are eligible for, plus a correction term.

Note that all variables are continuous and, as such,

approximations of the quantities we just discussed.

In contrast with both our previous formulations,

(4) can be interpreted as taking an “aggregate view”

of the system, in that it only deals with the total num-

ber of customers served by each server, and not with

which precise customer classes and in what order this

occurred. Consequently, formulation (4) affords a dras-

tic complexity reduction, falling into the category of

conic optimization problems—namely, SOCP—that are

efficient to solve at very high scale using standard

solvers. Additionally, (4) involves only 3K + 1 variables

and a number of constraints that does not increase

with the class populations n—unlike our previous for-

mulations. Hence, in applications where n could take

high enough values that render (3) impractical to solve,

(4) provides an alternative approach.

Another implication of the aggregate system view

of (4) is that it only provides an approximation to the

quantity WK we want to calculate. Fortunately, we are

able to provide the following guarantee to the approx-

imation fidelity. Specifically, the optimal value of (4),

denoted by ŴK , approximates WK within an additive

constant that depends only on the maximum service

time among all servers

χ :� max

j�1,...,K

{
1

µ j
+Γ�j

}
.

In particular, for x ∈ �, we have that x`j ≤ χ for all j �
1, . . . ,K and ` � 1, . . . , ¯` j .

Theorem 3. For a hierarchical MCMS system,

WK ≤ ŴK ≤WK + 2χ.

A very important property of our approximation guar-

antee is that it becomes tighter as the class populations

n increase—i.e., exactly for the problem instances for

which formulation (4) would be most useful. To see

this, note that as n increases, ceteris paribus, WK also
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naturally increases as servers have to serve more cus-

tomers. However, χ remains constant.

We next confirm by way of numerical studies that

our heuristic approach yields significant computa-

tional benefits at essentially no cost in accuracy, as our

approximation guarantee suggests.

4.3. Performance
We conclude the treatment of HMCMS systems with

an evaluation of the two formulations we presented by

way of numerical studies. In particular, we quantify,

first, the required computation times ofMIP (3) and the

heuristic SOCP (4) (for α j � 2), relative to the general

MIP formulation (2), and, second, the relative approxi-

mation error of the heuristic, (ŴK −WK)/WK × 100%.

We used a similar approach as in Section 3.3,

randomly generating multiple problem instances of

HMCMS systems of varying classes and population

sizes. For a detailed discussion, see Appendix C.

Tables 3 and 4 summarize our findings. Specifi-

cally, Table 3 reports the average computation times of

the three formulations under consideration for differ-

ent problem sizes (as measured by the average total

population sizes). Our results suggest that MIP (3)

reduces computation times by a factor of three to four,

approximately, compared to the general MIP formu-

lation (2). The heuristic SOCP formulation provides a

further reduction by a factor higher than 10.

Table 4 reports the average relative approximation

errors we recorded for varying problem sizes. Evi-

dently, our heuristic is almost exact and becomes

tighter as population sizes grow.

Together, our findings from Tables 3 and 4 suggest

that for problem sizes involving less than 10,000 cus-

tomers, the exact MIP formulations can be used to

produce solutions in a matter of two minutes. For

problems involving a higher number of customers, the

SOCP formulation retains the low computation times,

with an approximation error of less than 0.1%.

In summary, the special structure of hierarchical ser-

vice systems allowed us to sharpen our formulations

to compute the wait time for service WK . Formula-

tion (3), by providing a speed increase by a factor of

Table 3. Approximate Average Computation Times of Our

Different Formulations for HMCMS Systems with Varying

Number of Customers

Computation times

Avg. total number

of customers MIP (2) MIP (3) SOCP (4)

100 customers 1 sec 0.8 sec 0.8 sec

1,000 customers < 1 min < 1

2
min 1.2 sec

10,000 customers 6 min 2 min 5.4 sec

100,000 customers 40 min 10 min < 1 min

Table 4. Average Relative Approximation Error of Our

SOCP Heuristic (4) for HMCMS Systems with Varying

Number of Customers

Avg. total number of customers Avg. relative error (%)

50 customers 1.9
100 customers 0.85

200 customers 0.5
400 customers 0.25

1,200 customers 0.08

three to four, enables us to solve realistic-size prob-

lems, for example in the context of the kidney alloca-

tion system, involving 10 classes and 1,000 customers in

approximately two minutes. We also provided a pow-

erful heuristic that further reduced computational bur-

den by an order of magnitude, and this allows us to

preserve low computation time requirements for much

larger instances, obtaining provably near-optimal solu-

tions at the same time.

5. Patient Wait Times in the U.S. Kidney
Allocation System

In this section, we investigate a real-world application

of our MCMS analysis framework. In particular, we

consider the estimation of patient wait times in the

U.S. kidney allocation system (KAS). We envision our

methodology to enable transplant centers to develop

software tools that would offer wait time estimates to

their patients. We first describe the KAS in some detail

and demonstrate that it effectively operates as a hier-

archical service system. Then, we illustrate how our

analysis framework can be deployed to estimate wait

times, and conclude by performing a numerical case

study based on historical data.

5.1. The U.S. Kidney Allocation System: An FCFS
Hierarchical Service System

Kidney allocation in theUnited States is coordinated by

the United Network for Organ Sharing (UNOS). When

a patient is in need of a kidney transplant, his med-

ical information is added to UNOSNet, a computer-

ized system administered by UNOS.When a deceased-

donor kidney is procured, the donor’s information is

also entered into the system. Subsequently, UNOSNet

generates a match run—i.e., a ranked list of patients

based on a set of allocation rules. The organ is then

offered to the patient ranked highest on the match run.

If rejected, it is offered to the patient ranked second

highest, and so on. We next describe in some detail

the allocation rules prevailing in the United States in

the period from January 1, 2007, to January 2, 2014, for

whichwewere able to obtainmatch run data. Note that

some changes to the rules came into effect on Decem-

ber 4, 2014—these are discussed in Section 6 together
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with an extension to our methodology that can cater

for these changes.

In KAS, the United States is divided geographically

into 11 regions, each of which consists of several Organ

Procurement Organizations (OPOs). There are a total

of 58 OPOs of varying size. Before generating a match

run, UNOSNet first screens out all medically incompat-

ible candidates primarily based on blood type—other

less frequent reasons could be height, weight, or tissue

type.
8

Subsequently, the rank-ordered list is generated

as follows. First, kidneys are offered to any identical

tissue match candidates,
9

although such matches are

extremely rare. Then, they are offered in turn to can-

didates in the same OPO as the donor, to candidates

in the same region, and finally to all remaining candi-

dates nationally. Within each classification, candidates

are ranked using a points-based system, relying on

(a) candidate wait time, (b) sensitization,
10

and (c) tis-

sue match strength.

On receiving an offer, a patient is given an hour to

decide whether to accept or reject it. Patients are more

likely to reject lower-quality organs—e.g., organs from

elderly donors or with a high creatinine level—because

they would yield lower posttransplant survivability.

In particular, the accept/reject decision involves trad-

ing off the benefits of an immediate transplant of the

offered organ with the risks and benefits of waiting for

future offers, whenever they might occur. In practice,

some patients may be obliged to reject an offer because

of operational reasons (e.g., patient is too ill for trans-

plant, surgeon is unavailable, etc.); we shall refer to

such patients as unavailable. Note that patients are able

to observe only their rank in the match run, alongside

donor information. Specifically, they have no informa-

tion about any other candidate in the match run or the

waitlist.

5.1.1. Modeling KAS as a Queuing System. The KAS

can be reasonably approximated by a number of inde-

pendent systems, each operating as a hierarchical

MCMS queuing system under an FCFS priority. We

elaborate on these modeling choices below. Note that

these choices are hardly new and are in line with the

literature, as we point out in the subsequent discussion

and in Section 1.1.

In particular, we consider the patients and donors

in a specific OPO and of a specific blood type as

an independent system that we analyze separately.

This is because patients predominantly accept kidneys

from donors that are from the same OPO and of the

same blood type. Indeed, kidneys are offered almost

exclusively to candidates with identical blood type

because of medical compatibility issues—exceptions

arise in the extremely rare cases of identical tissue

matches. Furthermore, the vast majority of candidates

accept kidneys from their own OPO (close to 85%),

finding kidneys from distant locations undesirable,

owing to the procured organs’ limited preservation

times and their quality deterioration over (transport)

time. Nonetheless, we illustrate how our model can be

extended to capture coupling between different OPOs

in Section 6.

The accept/reject decision-making process of can-

didates allows us to model each subsystem of an

OPO–blood-type pair as a hierarchical MCMS queu-

ing system. Specifically, there is a series of papers in

the literature that model the accept/reject decision

problem facing transplant patients as a stopping prob-

lem, where benefits from a current offer are traded off

with risks of waiting and benefits from future potential

offers. In that context, it has been shown that patients

make decisions by following a threshold-based policy—

i.e., they accept an offered kidney if and only if its

quality exceeds a certain threshold, which depends

on the patients’ risk tolerance, health status, etc. (see

Section 1.1). We assume that patients follow a thresh-

old policy in our setting. Consequently, by clustering

kidneys into levels 1, . . . ,K of decreasing quality, we

can model the underlying dynamics with an HMCMS

as follows: all waiting patients willing to accept ser-

vice (kidneys) of quality level i or higher are assigned

to class i ∈ {1, . . . ,K}. Correspondingly, there are K
servers that capture the arrival processes of donated

kidneys, with the jth server “producing” kidneys of

quality level j and thus being eligible to serve patients

of class i ≥ j. When the jth server starts servicing a

patient, this corresponds to a kidney of quality j being
procured and accepted by the served patient, who

then leaves the system. The server’s service time corre-

sponds to the time until the next kidney of quality j is
procured.

Finally, it is well accepted both by practitioners

and academics that candidates are ranked mostly in

the order in which they joined the waitlist—i.e., the

HMCMS queuing system in eachOPO-blood-type sub-

system essentially operates under an FCFS priority

(see, e.g., Cleveland Clinic 2015, OPTNKTC 2007, Su

and Zenios 2005).We note that while the KASwas orig-

inally designed in the 1980s so as to balance fairness

(FCFS) and efficiency (stronger tissue matching), med-

ical advances since the 1990s have drastically improved

survivability under dialysis, to the extent that can-

didates have accumulated a large number of points

from wait time that far outweigh other factors in the

points computation and ultimately in their ranking

(OPTNKTC 2007).

To summarize, the KAS can be credibly modeled

as a collection of OPO-blood-type subsystems, each

operating as an HMCMS system under FCFS—with

patients corresponding to customers seeking service

(transplantation), servers capturing the donation pro-

cess, and service times corresponding to kidney inter-

arrival times.
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We next argue that our robustMCMS analysis frame-

work is an appropriate solution method to adopt,

because it accommodates practical considerations such

as lack of information and instability. We will also

see that our framework is flexible to account for other

KAS dynamics we have not explicitly modeled, such

as patient unavailability or removal from the waitlist

because of death.

5.2. Using Our MCMS Analysis Framework
We propose using the robust MCMS analysis frame-

work we have developed to estimate patient wait times

in the KAS. By computing the clearing times for each

queue, our model can essentially provide patients with

estimates for the required wait time until they are

offered an organ of the highest quality (W
1
), or an organ

of quality i or better (Wi), or simply any organ (WK).

More importantly, our model is suitable to provide

credible estimates for all of the reasons we outlined in

Section 3: the KAS is inherently unstable and plagued

by incomplete information. Having discussed the for-

mer in Section 3, we elaborate on the latter below.

The key pieces of information that are unobserv-

able in the KAS are the patients’ preferences that drive

accept/reject decisions, and these could significantly

impact wait times. In particular, a specific patient

observes only his rank in the match run, which informs

him about how many patients are in front of him in

the system. However, he is unable to know what organ

qualities they would be willing to accept. If all patients

in front of him were willing to accept only top-quality

kidneys, he would likely get an offer sooner (of a lower-

quality kidney); if they were willing to accept any kid-

ney quality, he would likely wait much longer. Tomake

things worse, fitting probabilistic prediction models of

patient acceptance/rejection behavior has proved to be

extremely challenging.
11

In our terminology, while a patient could infer the

aggregate queue population through his rank, there is

significant uncertainty of how the population is dis-

tributed across the different queues. Our method is

tailored to deal with this problem by taking a robust

approach and by requiring the calibration of an uncer-

tainty set, which is significantly easier compared to a

probabilistic model.

It is important to note that modeling the queue pop-

ulations via an uncertainty set allows us to capture

other dynamics of the KAS that we do not explicitly

model. For example, patients might become unavail-

able or might leave the system—e.g., because of death

or receipt of an organ from a living donor. Also,

patient preferencesmight change over time—e.g., again

because of changes in their health condition. Patient

rank might also be slightly affected by tissue match-

ing and sensitization, resulting in fewer patients with

higher priority. All of these aforementioned dynamics

would affect the queue populations and could thus be

subsumed by properly calibrated uncertainty sets.

5.2.1. Model Calibration. We cluster kidneys based on

the well-accepted Kidney Donor Profile Index (KDPI),

a quality metric that UNOS has adopted.
12

Although

in practice physicians and patients might be assessing

quality in ways that deviate fromKDPI slightly, Arıkan

et al. (2018) brought forth empirical evidence that

accept/reject quality thresholds can be well approxi-

mated by KDPI.

With regard to the queue population uncertainty set,

we specify the set in away that it relies only on parame-

ters that can be estimated through available data, so as

to retain practical relevance. Consider a k-patient who

observes his rank to be r—i.e., there are r−1 patients in

front of him. Let ºν be the class to which the νth such

patient belongs, ν � 1, . . . , r − 1. In case the νth patient

is unavailable, we let ºν � 0. Let qi be the probability of

a patient being of class i ∈ {1, . . . ,K}, or being unavail-

able (i � 0). That is, ºν � i with probability qi , for all i �
0, 1, . . . ,K and ν�1, . . . , r−1. Assuming independence,

a CLT-based approximation would then yield that

r−1∑
ν�1

ºν − (r − 1)µº ≤ Γσº
√

r − 1,

where µº �
∑K

i�1
iqi , σ

2

º �
∑K

i�1
i2qi − µ2

º, and Γ is a

conservatism parameter. Noticing that

∑r−1

ν�1
ºν + k �∑K

i�1
ini , we get that

� �

{
n ∈ �K

:

K∑
i�1

ini − k ≤ (r − 1)µº +Γσº
√

r − 1

}
. (5)

5.3. Numerical Case Study
In this study, we apply our robust MCMS (RMCMS)

methodology to estimate wait times statistics in depen-

dence of rank for patients of blood type O in the PADV-

OP1 Gift of Life Donor Program
13

OPO. So as to test

our methodology in a realistic setting, we obtained all

historical data from UNOS that would be available to

patients and their physicians. We split the data into a

training set, used to fit model parameters, and a testing
set, used to assess out-of-sample performance.

5.3.1. Data. Our data set covers the period from May

of 2007 to June of 2013 and includes 7,388 patients and

438 donors. We use the data from May of 2007 to May

of 2010 as our training set, and the remainder as our

testing set. The data set includes the following infor-

mation pertaining to each procured deceased-donor

kidney: (a) procurement OPO, (b) procurement date

and time, (c) donor blood type, (d) KDPI score, and

(e) all accept/reject decisions made, alongside reasons

for rejection, e.g., due to quality or unavailability.

It is important to note here that our data set also

includes, for each offer made, patient identifiers. These
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identifiers enable us to reconstruct the entire sequence

of offers received by each patient, and thus to compute

their individual wait times. However, because of con-

fidentiality reasons, this information is made available

by UNOS only for bona fide research purposes under

institutional review board oversight. In particular, it

would not be available to patients or physicians for con-

sultation purposes. As such, we do not use this iden-

tifier information in any way in our parameter fitting

process. Instead, we only use it for purposes of eval-

uating our implementation’s accuracy. In other words,

our implementation here relies on publicly available

data only and can be replicated by transplant centers

wishing to offer consultation to their patients.

This study used data from the Organ Procurement

and Transplantation Network (OPTN). The OPTN data

system includes data on all donor, wait-listed candi-

dates, and transplant recipients in the United States,

submitted by the members of the Organ Procurement

and Transplantation Network (OPTN), and has been

described elsewhere. The Health Resources and Ser-

vices Administration (HRSA) of the U.S. Department

of Health and Human Services provides oversight to

the activities of the OPTN contractor.

5.3.2. Parameter Fitting. We clustered kidneys in

K � 5 quality categories based on KDPI, which is a nor-

malized score from 0% (best quality) to 100% (worst

quality). The categories j � 1, . . . , 5 included all kid-

neys with a KDPI score of 0%–6%, 6%–25%, 25%–50%,

50%–75%, and 75%–100%, respectively.
14

We used the kidney interarrival times in the training

set to fit the service time uncertainty set parameters. In

particular, we set the coefficient α j � 2 for all quality

categories, based on the absence of heavy tails in the

empirical distributions. For the j-quality kidneys, we

let 1/µ j equal the interarrivals’ empirical mean. Simi-

larly, we let Γ�j � Γσ j , where σ j equals the interarrivals’

empirical standard deviation, and Γ is the same conser-

vatism parameter as in (5).

For the queue population uncertainty set, we let q
0

be the empirical mean of the fraction of rejections due

to unavailability in the training set. To estimate the

probability qi of a patient being of class i ∈ {1, . . . ,K},
we used a maximum likelihood approach. That is, we

fitted the probabilities qi’s so as to maximize the like-

lihood of the accept/reject decisions we observed in

the training set—we refer the reader to Appendix D for

more details.

5.3.3. Out-of-Sample Performance. Having fitted all

parameters based on the training set, we used our

SOCP (4) with various values of the conservatism

parameter Γ (as discussed in Section 3.3) to estimate the

average, 68-, 95-, 97-, and 99-percentiles of thewait time

for blood group O patients in the PADV-OP1 Gift of

Life Donor Program OPO in the testing set, depending

Figure 3. (Color online) Our Model’s Estimates of Different

Statistics of Time to First Offer vs. Patient Rank in a

Particular OPO and Blood Group
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on their rank. Our estimates are depicted in Figure 3.

For example, we estimate the average wait time that a

patient ranked 50 will experience until he is offered an

organ to be approximately 500 days.

To evaluate the accuracy of our estimates out-of-

sample, we used the patient identifier information in

our data set to empirically calculate statistics for the

wait times actually experienced by patients in our

testing set. Because of limited data availability, we

were only able to credibly calculate the average and

68-percentile for patients ranked up to 40. Table 5

includes the empirical estimates, together with our

RMCMSmodel’s estimates. The average absolute errors

of our estimates relative to the empirical ones were

14.96% for the average and 11.73% for the 68-percentile.

For benchmark purposes, we consider a hypothetical
estimator that uses additional historical patient wait

time information, and thus refer to it as “historical.”

In particular, we estimate the average (68-percentile)

wait time of a patient of a given rank in the test-

ing set by the average (68-percentile) historical wait

time of patients of the same rank in the training set.

This estimator is inspired by the so-called “delay his-

tory estimators” studied in queuing theory (Ibrahim

et al. 2017). We referred to such an estimator as hypo-

thetical in this context because historical wait time

information is not available to patients or physicians

as per our discussion above. In other words, the his-

torical estimator could not be deployed in practice.

Another significant limitation of the hypothetical his-

torical estimator compared to our model is that it can

only provide estimates up to some rank and up to

some percentiles for which enough historical data are

available. Consequently, we were only able to use it to

estimate average (68-percentile) wait times for patients

ranked up to 40 as before. The average absolute errors

of the historical estimator relative to the empirical esti-

mates were 16.76% for the average and 14.65% for the
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Table 5. Statistics of Time to First Offer in Dependence of Patient Rank in a Particular OPO

and Blood Group

Average (in days) 68-percentile (in days)

Rank Empirical Historical
a

RMCMS Empirical Historical
a

RMCMS

1–5 110.00 71.50 100.45 178.24 122.80 141.90

5–10 133.00 128.00 141.54 209.84 235.40 193.70

10–15 243.00 188.50 188.63 328.86 349.00 251.27

15–20 308.50 235.00 234.07 405.74 383.76 305.37

20–25 292.00 335.50 278.50 345.38 436.72 357.38

25–30 319.00 300.00 322.23 409.60 450.80 407.94

30–35 261.00 272.00 365.41 444.82 468.06 457.40

35–40 363.00 450.00 408.17 457.00 551.30 506.00

Avg. abs. rel. error 0.00 16.76 14.96 0.00 14.65 11.73

across all ranks (%)

Notes. Empirical wait times correspond to the actual wait times exhibited in the testing set. RMCMS

(resp. historical) estimates correspond to the estimates obtained by our (resp. the historical estimator)

approach.

a

Historical estimator relies on data that are not publicly available and is provided for reference

purposes only (see Section 5.3).

68-percentile. In contrast, our approach requires only

publicly available data, is implementable in practice,

generalizes to arbitrarily high ranks, and, despite using

significantly less data, provides higher accuracy.

6. Class-Based Priority Systems
So far, we focused on MCMS systems that serve cus-

tomers according to FCFS. We now extend our anal-

ysis to cater for two alternative priority rules that are

frequently encountered in practice. In Section 6.1, we

study systems in which customer priority is driven

by the class to which they belong. In Appendix E,

we study systems in which some servers prioritize

customers based on their class, while others do so

based on FCFS. In both cases, same-class customers are

served according to FCFS.

The priority rules we consider here are motivated

by practice. In particular, they arise in the U.S. kid-

ney allocation system owing to a recent allocation pol-

icy change that came in effect in December 2014.
15

According to it, the new KAS offers the top-20% qual-

ity kidneys (as measured by their KDPI; see Section 5)

to patients with top-20% expected posttransplant sur-

vival (EPTS) score first, and then to the remaining

patients.
16

That is, patient priority for top-quality kid-

neys is driven by whether they belong to the top-20%

EPTS class or not, whereas the remaining kidneys are

offered in an FCFS manner. In Appendix E, we show

how the formulation we developed in Section 5.2 to

estimate wait times in the KAS can be extended to cap-

ture this policy change.

Similarly, class-based priority rules can be used to

model regional or national kidney offers. In particu-

lar, our KAS model in Section 5.2 ignored such offers

and treated each local OPO independently (since that

accounted for the vast majority of transplants). To fur-

ther enhance our estimates, one can envision a national

KAS model with 58 MCMS systems of the type we

studied in Section 5.2, each corresponding to one of

the 58 OPOs. Procured kidneys would then be offered

to patients within the same OPO first, then to patients

within the same region, and then to the remaining

patients—i.e., different patient classes would have dif-

ferent priorities.

Finally, various house allocation programs priori-

tize applicants based on additional criteria to wait

time—e.g., the Housing Authority in Cambridge,

Massachusetts, prioritizes those who either live/work

in Cambridge or are veterans—while serving based on

FCFS otherwise. Class-based priority rules become rel-

evant under such circumstances.

6.1. Class Priority Systems
We study the alternative priority rules only for hier-

archical service systems. This is due to space consid-

erations, but it also allows us to keep our focus on

the paper’s main application, the KAS. General MCMS

systems under class-based priority rules can be ana-

lyzed in a similar fashion. Our treatment parallels the

one we presented for MCMS FCFS systems.

6.1.1. Model Dynamics. Consider an HMCMS system,

where a customer’s service priority is dictated by the

class to which he belongs. In particular, there is a

class priority ranking, so that customers from a higher-

ranked class have priority over customers from lower-

ranked classes. Customers from within a particular

class are served in an FCFS manner. We henceforth

refer to this service priority rule as class priority (CP).

For simplicity, we present the case here where the pri-

ority rank of each class corresponds to its index—i.e.,
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i-customers have service priority over k-customers, for

all i < k.
In this context and for the purposes of computing

wait times, neither the precise arrival order σ of cus-

tomers waiting at t � 0 is needed, nor is the precise

constellation of queues’ populations �i(t). Instead, it
can be readily seen that a sufficient state representa-

tion is now given by the population size |�i(t)| of each
queue at time t, where |�i(0)| �® i , i � 1, . . . ,K. Then,

if the jth server becomes available at time t, it serves
a customer from class i? ∈ arg min{i ∈�( j): |�i(t)| > 0}
and, subsequently, |�i?(t+)| � |�i?(t)| − 1. If |�i(t)| � 0

for all i ∈�( j), then the server serves a customer of an

external class, assumed to always be populated.
17

Suppose we are interested in quantifying the wait

time of an i-customer. As before, we assume that no

i-customers arrive after t � 0, because future i-cus-
tomers would not affect wait times of existing ones.

This no longer being true for customers of higher prior-

ity classes 1, . . . , i−1, we explicitly model such arrivals.

In particular, k-customers arrive at an average rate λk
after t � 0, with i.i.d. interarrival times that are also

independent of customer arrivals of other classes, ser-

vice times, and queue populations, for all k � 1, . . . ,
i − 1. We denote the arrival time of the rth k-customer

after t � 0 with ¡r
k , k � 1, . . . , i − 1, r ∈ � (in which case

|�k(¡r
k+)| � |�k(¡r

k)| + 1).

All other dynamics and model parameters are as in

Section 2. The clearing time of the ith customer class,

defined as

·CP

i (® 1
, . . . ,® K , {¸ `

1
}`∈� , . . . , {¸ `

K}`∈� ,
{¡r

1
}r∈� , . . . , {¡r

i−1
}r∈�) :� inf{t ≥ 0: |�i(t)| � 0},

can be used to analyze wait times for customers as per

our discussion in Section 2. As a technical remark, note

that for finite service times and queue populations,

·CP

i will remain finite—in fact, since no i-customers

arrive, class i will clear by the time the ith server serves

® i customers.

6.1.2. Model of Uncertainty. To quantify ·CP

i , we as-

sume that service times and queue populations lie in

uncertainty sets � j and � as in Section 3. Customer

arrival times, being summations of i.i.d. interarrival

times, are assumed to lie in GCTL-based uncertainty

sets in accordance with the literature. In particular,

k-customers’ arrival times lie in the polyhedron

�k :�

{
ak ∈ �r̄k

: ar
k ≥ r/λk −Γ�k (r)1/βk , r � 1, . . . , r̄k

}
,

k � 1, . . . , i − 1,

where Γ�k is a conservatism parameter,
18 βk a heavy tail

parameter, and r̄k is the maximum number of arrivals

(in a similar fashion as
¯` j). As we shall see, a character-

ization of r̄k would be superfluous.

6.1.3. SolutionMethodology. Wequantify the clearing

time ·CP

i with a worst-case guarantee on its value,

denoted by WCP

i and given as the optimal value of the

problem

maximize ·CP

i (n1
, . . . , nK , x1

, . . . , xK , a1
, . . . , ai−1

)
subject to n ∈ � ∩�K

;

x j ∈� j , j � 1, . . . ,K;

ak ∈�k , k � 1, . . . , i − 1.

(6)

One can readily adapt the proof of Proposition 1 to

show that (6) remains NP-hard. Similarly to our analy-

sis in Section 4, our first nontrivial result on hierarchi-

cal service systems under CP shows that in the problem

above, we can take service and arrival times be equal to

their worst-case values—i.e., have servers take as long

as possible to serve and customers arrive as early as

possible.

Lemma 2. For a hierarchical service system under CP, the
clearing time ·CP

i is increasing in the service times and
decreasing in the arrival times. In particular, problem (6)

admits an optimal solution for which completion and arrival
times take their worst-case values—i.e.,

c`j �x1

j +· ··+x`j �
`
µ j

+Γ�j (`)1/α j , j�1, . . . ,K, `�1, . . . , ¯` j ;

ar
k�

r
λk
−Γ�k (r)1/βk , k�1, . . . , i−1, r�1, . . . , r̄k .

Taking advantage of Lemma 2, we fix the comple-

tion and arrival times to their worst-case values. We

next formulate an MIP to compute WCP

i that is similar

to the efficient formulation (3), resembling an assign-

ment problem. Recall that c` is the `th smallest ele-

ment of the set comprising of all completion times

c l
j , for all l � 1, . . . , ¯` j and j � 1, . . . ,K. Let v`k be the

number of k-customer arrivals by time c`—i.e., v`k :�

max{r: ar
k ≤ c`} for k � 1, . . . , i − 1 and ` � 1, . . . , ¯`.

Consider the problem

maximize

∑
`�2,..., ¯`

c`( f `−1

i − f `i ) (7a)

subject to∑
k� j,...,K

y`k j ≤ 1, ` � 1, . . . , ¯` j , j � 1, . . . ,K; (7b)∑
( j, ω): cωj ≤c`

yωi j ≤ ni − f `i , ` � 1, . . . , ¯`; (7c)∑
( j, ω): cωj ≤c`

yωk j ≤ nk + v`k − f `k ,

k � 1, . . . , i − 1, ` � 1, . . . , ¯`; (7d)∑
( j, ω): cωj �c`

k� j,...,i

yωk j ≥ f `i , ` � 1, . . . , ¯`; (7e)

f `−1

i ≥ f `i , ` � 2, . . . , ¯`; (7f)

yωk j ≤ 1− f `k′ , k′ < k , ( j, ω): cωj � c` , ` � 1, . . . , ¯`; (7g)
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f `k ∈ {0, 1}, k � 1, . . . , i , ` � 1, . . . , ¯`; (7h)

y`k j ∈ {0, 1}, j � 1, . . . ,K, k � j, . . . ,K, ` � 1, . . . , ¯` j ; (7i)

n ∈ � ∩�K . (7j)

Theorem 4. For a hierarchical MCMS system under class
priority, the optimal value of the MIP (7) is equal to WCP

i ,
i � 1, . . . ,K.

The MIP (7) is very similar to (3) (for i � K), with its

variables and constraints having the same interpreta-

tion. The only two discrepancies are as follows. First,

in this setting, customer arrivals are possible. This is

reflected in (7d), where the number of assigned ser-

vices to the kth class is bounded by its initial popula-

tion nk adjusted for arrivals v`k . Second, in this case, the

priority discipline dictates that k′-customers have pri-

ority over k-customers, for all k′ < k. To capture this, we

use variables f `k that indicate whether class k is filled

or has cleared by time c` . Constraint (7g) enforces then
the CP discipline: if at c` the k′th class is filled, the

server cannot be assigned to any lower-priority k > k′

class—i.e., yωk j ≤ 1− f `k′ � 0.

As a technical remark, the parameters
¯` j can be cal-

culated as follows. First, note that the ith class must

have cleared after the ith server has served ni cus-

tomers, since i-customers have priority among the ones

forwhich the ith server is eligible. Thus, ¯`i �max{ni : n ∈
� ∩�K}. At the same time, this observation implies that

the ith class must have cleared by c
¯`i
i , which is pre-

cisely the time it takes the ith server to serve its maxi-

mum amount of customers. The parameters
¯` j can then

be taken as the maximum customers each server could

serve within c
¯`i
i —i.e.,

¯` j � max{l: c l
j ≤ c

¯`i
i }.

6.1.4. Scalable Approximation. We conclude our anal-

ysis of CP hierarchical service systems by devising

a heuristic that approximates WCP

i . The heuristic is

inspired by the “aggregate” allocation view that we

discussed in Section 4.2. Specifically, consider the fol-

lowing convex optimization problem:

maximize w
subject to

w ≤ m j/µ j +Γ
�
j s j , j � 1, . . . , i;

(s j)α j ≤ m j , j � 1, . . . , i;
i∑

k� j

mk ≤
i∑

k� j

nk +

i−1∑
k� j

qk + i − j, j � 1, . . . , i; (8)

q j/λ j −Γ�j u j ≤ w , j � 1, . . . , i − 1;

(u j)β j ≤ q j , j � 1, . . . , i − 1;

n ∈ � .

The problem shares many similarities with (4), reduc-

ing to an efficient SOCP formulation for CLT-based

uncertainty sets (when α j and β j are rational for all j).
Here, variables q ∈ �i−1

capture customer arrivals.

Accordingly, the number of customers assigned to a

subset of servers is now bounded by the population

of customer classes for which these servers are eligi-

ble, adjusted for arrivals. Variables u ∈ �i−1

are aux-

iliary and ensure that the customer arrivals q attain

their appropriate value—i.e., the worst-case number of

arrivals by the clearing time w.

Note that, in comparison with the MIP (7), this

heuristic has significantly reduced computational

requirements that are also independent of n. Next, we

provide an approximation guarantee, for the special

case when there are no arrivals, that becomes tighter as

n grows in the same way as our heuristic in Section 4.2.

Let ŴCP

i be the optimal value of (8).

Theorem 5. For a hierarchical MCMS system under class
priority and no arrivals,

WCP

i ≤ ŴCP

i ≤WCP

i + 2χ, i � 1, . . . ,K.

Theorem 5 shows that our heuristic produces near-

optimal results, for high value of n and the special case

of no arrivals. This suggests that the heuristic will still

provide quality approximations in the general case.

In numerical studies we conducted, similar to the ones

we presented in Section 4.3, we found the approxi-

mation errors, even under customer arrivals, to be no

worse that the ones we reported in Section 4.3. We omit

further details because of space limitations.

7. Conclusions
We dealt with the problem of estimating wait times in

multiclass, multiserver (MCMS) queuing systems that

operate based on predetermined priority rules under

incomplete information. In particular, we focused

on MCMS systems under FCFS, motivated by the

U.S. kidney allocation system (KAS). To deal with

primitive information incompleteness and the tran-

sient/unstable behavior that characterizes such sys-

tems, we developed a novel robust optimization frame-

work. The framework was based on the introduction

of an assignment-style formulation to capture the com-

plex queuing dynamics in an MCMS system.

We devised MIP formulations for our estimation

problem. We also presented a provably near-optimal

heuristic that involved the solution of an SOCP for

problems attaining a particular hierarchical structure,

commonly encountered in practice.

To validate the performance of our approach in terms

of computation times and accuracy, we performed

numerical studies in which we found our method to

significantly outperform simulation.We also presented

an implementation in the context of the KAS. Specif-

ically, we calibrated our model so as to estimate wait
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times of patients based on their own unique charac-

teristics, preferences, and information available. Using

detailed historical data,we fitted ourmodel parameters

and measured the out-of-sample estimation error to be

less compared to hypothetical estimators that utilized

data not available to patients. To the best of our knowl-

edge, such an estimation tool is novel and can provide

valuable information topatients as theyplan their treat-

ment options and life activities. Furthermore, we ana-

lyzed systems that operated under an alternatively pri-

ority rule, based on class priority, to illustrate how our

framework can be generalized.

Acknowledgments
The authors thank the review team for the valuable feedback

they provided. The data reported here have been supplied by

United Network for Organ Sharing (UNOS) as the contrac-

tor for the Organ Procurement and Transplantation Network

(OPTN). The interpretation and reporting of these data are

the responsibility of the authors and in no way should be

seen as an official policy of or interpretation by the OPTN or

the U.S. Government.

Appendix A. Service Time Uncertainty Sets
The service time uncertainty sets in this paper are given by

� j :�

{
x j ∈ �

¯` j
:

∑̀
k�1

xk
j ≤

`
µ j

+Γ�j (`)1/α j , ` � 1, . . . , ¯` j

}
,

j � 1, . . . ,M,

where Γ�j ≥ 0 controls the degree of conservatism and α j ∈
(1, 2] is a heavy tail parameter. We remark on how our choice

of service time uncertainty sets and their structure affect our

results, and possible ways to calibrate the sets using data

and probabilistic guarantees. For an elaboratemotivation and

justification based on limit theorems, we refer the interested

reader to Bandi and Bertsimas (2012) and Bandi et al. (2015).

A.1. Theoretical Results
It can be readily seen that all of our theoretical results in Sec-

tion 3 extend in case the service time uncertainty sets � j are

nonempty, bounded polyhedra, for every j � 1, . . . ,M. In par-

ticular, the proofs of our hardness result (Proposition 1) and

MILP reformulation of problem (1) (Theorem 1) do not rely

on the GCLT structure imposed by Assumption 1. Similarly,

our monotonicity result in Lemma 1 holds more generally.

The sharper formulations we derive in Section 4 for hierar-

chical service systems, however, do rely on properties of the

GCLT structure (Theorems 2 and 3).

A.2. Constraints Structure
Amore general way to formulate constraints based on GCLT

is to consider a subset of service times, S ⊂ {1, . . . , ¯` j}, and
bound their sum as∑

k∈S
xk

j ≤
|S |
µ j

+Γ�j |S |1/α j .

In ourwork, we imposed constraints that correspond to nested
subsets of the form S � {1, . . . , `} only (Assumption 1). Vari-

ations of this nested structure have been used in numerous

papers in the robust optimization literature across different

application areas, including, for example, Bandi et al. (2015),

Whitt and You (2018), and Whitt and You (2016) (queuing),

and Mamani et al. (2017) (inventory management).

Nonetheless, we argue next that all of ourmain results that

rely on the GCLT structure, namely Theorems 2 and 3, still

hold true if we consider sets that are generated by all possible

GCLT-based constraints, specifically

�̃ j :�

{
x j ∈ �

¯` j
:

∑
k∈S

xk
j ≤
|S |
µ j

+Γ�j |S |1/α j , ∀S ⊂ {1, . . . , ¯` j}
}
.

To show this, it suffices to show that the worst-case service

times over the sets � j we identify in Lemma 1, which we

denote here by

x̃`j �
1

µ j
+Γ�j (`1/α j − (` − 1)1/α j ), ` � 1, . . . , ¯` j ,

remain feasible for �̃ j ⊂� j . To this end, consider all possible

index sets of some fixed cardinality ∆ ∈ {1, . . . , ¯` j}. We have∑
k∈S

x̃k
j ≤

∆∑
k�1

x̃k
j ≤
∆

µ j
+Γ�j ∆

1/α j ,

∀S ⊂ {1, . . . , ¯` j} such that |S | �∆,

where the first inequality follows from x̃1

j ≥ · · · ≥ x̃
¯` j
j , and the

second from x̃ j ∈� j . Thus, x̃ j ∈ �̃ j .

A.3. Calibration Using Historical Data and
Probabilistic Bounds

In this section, we discuss a possible way to calibrate the

uncertainty set � j for the important case wherein service

times have finite variance and do not exhibit heavy tails. This

is the case, for example, in the kidney allocation system, or

when service times are exponentially distributed. That is,

we set α j � 2. We can also set the mean service time 1/µ j
equal to its empirical mean, calculated from available histor-

ical data—see, for example, the Parameter Fitting paragraph

of Section 5.3. Similarly, we calculate the empirical standard

deviation σ j using data.

A possible way to calibrate the conservatism parameter

Γ�j it to use probabilistic bounds as follows. We assume that

service times follow some (unknown) distribution P, and
propose to use (approximate) probabilistic bounds to cali-

brate Γ�j so that service times lie in the uncertainty set with

some prespecified confidence level. For technical purposes,

we also require P to have a uniformly bounded third absolute

moment.

The key idea is to notice that the constraints in � j can be

equivalently rewritten involving the maximum of a normal-

ized random walk. In particular, if we let

M ¯` j
:� max

1≤`≤ ¯` j

∑`
k�1
((xk

j − 1/µ j)/σ j)
√
`

,

then we have that

� j �

{
x j ∈ �

¯` j
: M ¯` j

≤ Γ�j /σ j

}
.
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If we now consider the associated random service times ¸ k
j ,

it can be readily seen that ¹ k :� (¸ k
j − 1/µ j)/σ j are indepen-

dent, zero-mean, and unit-variance random variables. Let-

ting ³` :�
∑`

k�1
¹ k , we can write the random variable associ-

ated with M ¯` j
as

­ ¯` j
:� max

1≤`≤ ¯` j

³`√
`
.

Using this notation, we get that the probability of service

times ¸ k
j lying in � j is precisely

P({¸ 1

j , . . . ,¸
¯` j
j } ∈� j)� P

(
­ ¯` j
≤ Γ�j /σ j

)
.

Using Theorem 1 in Darling and Erdős (1956), we get that for

large enough
¯` j ,

P
(
­ ¯` j
≤ δ ¯` j

+
t
θ ¯` j

)
≈ exp

(−exp(−t)
2

√
π

)
, ∀ t ∈ �,

where θn :�
√

2 log log n and δn :� θn + (log log log n)/(2θn),
n ≥ 1. Therefore,

P
(
­ ¯` j
≤
Γ�j

σ j

)
≈ exp

(−exp(θ ¯` j
(δ ¯` j
−Γ�j /σ j))

2

√
π

)
.

Hence, we conclude that if we want the service times to lie in

the uncertainty set � j with probability 1− ε, approximately,

we can select

Γ�j � σ jδ ¯` j
−
σ j

θ ¯` j

log

(
2

√
π log

1

1− ε

)
.

Appendix B. Numerical Experiments on Synthetic
Instances of MCMS Systems

We performed two sets of experiments on an array of

randomly generated instances of MCMS systems. In the

first (second) set of experiments, we operate in a regime

where the true distributions of queue populations are known

(unknown). We note that the second setting is most relevant

for the class of problems that we focus on in this paper.

Table B.1. Average Absolute Relative Errors (in %) of Our Estimates When Services Are Normally Distributed

K � M � 10 K � M � 20 K � M � 50

Statistic µ� � 10 µ� � 50 µ� � 100 µ� � 10 µ� � 50 µ� � 100 µ� � 10 µ� � 50 µ� � 100

σs � 2.5
Average 8.65 7.78 6.46 7.39 7.22 5.32 6.8 6.05 4.35

95-%ile 5.14 3.32 2.82 1.06 3.04 2.19 0.87 1.53 1.03

97-%ile 4.04 2.26 2.98 0.44 3.12 2.25 0.60 1.99 1.10

99-%ile 3.54 1.54 1.27 2.35 4.98 2.73 1.27 2.89 0.62

σs � 4.0
Average 8.21 7.54 6.12 6.84 6.9 5.49 6.47 6.33 4.67

95-%ile 2.23 2.57 2.44 0.64 3.28 3.59 1.21 2.60 2.11

97-%ile 1.75 2.16 1.65 1.49 4.14 4.85 0.59 3.33 3.39

99-%ile 5.05 4.09 3.51 4.47 7.70 5.31 2.83 5.08 1.50

B.1. Known Queue Population Distribution
When the distributions of all uncertain parameters are per-

fectly known, the clearing time distribution can be estimated

using simulation.We estimate clearing time percentiles using

our method and benchmark against simulation (assumed to

return the true statistics). The following procedure underlies

all of our experiments in this regime:

• Select K � M. Select also the mean µ�
of each queue’s

population distribution. The populations of all queues are

independent and normally distributed with standard devi-

ation σ� � 0.2. Finally, select the distributions of the service

times. These have mean 1/µ j � 1 for all j � 1, . . . ,K, and are

either normally distributed with standard deviation σ j or

Pareto distributed with parameter α. Holding these parame-

ters fixed, generate 100 instances of the problem by construct-

ing server eligibility sets � at random. For each instance,

select a queue index i uniformly at random.We are interested

in estimating statistics of· i .

• For each instance, estimate statistics of· i by simulation

as follows. Draw 20,000 (40,000) samples when the service

times are normally (Pareto-) distributed from the distribu-

tions of the queue populations and the service times. Gen-

erate also the permutation σ uniformly at random based on

the queue population. For each sample, record the simulated

clearing time of the ith queue.
19
For each instance, record the

average clearing time and the 95-, 97-, and 99-percentiles of

the clearing time distribution.

• For each instance, compute the robust clearing time at

the ith queue using the formulation (2). The queue popula-

tion uncertainty set is

� :�

{
n ∈ �M

:

����∑̀
i�1

ni − `µ�

���� ≤ σ�Γ√`, ` � 1, . . .M
}
, (B.1)

where Γ is chosen to match the percentile of interest (for

details, see Bandi et al. 2015). Note that to estimate the

average clearing time, we heuristically select Γ � 0.5, which

exhibits good numerical performance. The service time

uncertainty set is as in Assumption 1, with Γ�j � σ jΓ and α j �2

(in the case of normally distributed services), or where Γ�j
and α j are chosen as in Section 2.1 of Bandi et al. (2015) (in

the case of Pareto-distributed services). For each of the four

statistics, record Wi .

• Compute the average absolute relative error as in Sec-

tion 3.3 across all 100 instances.
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Table B.2. Average Absolute Relative Errors (in %) of Our Estimates When Services Are Pareto Distributed

K � M � 10 K � M � 20 K � M � 50

Statistic µ� � 10 µ� � 50 µ� � 100 µ� � 10 µ� � 50 µ� � 100 µ� � 10 µ� � 50 µ� � 100

α � 1.5
Average 7.65 7.17 6.09 6.87 7.26 5.38 6.66 6.15 4.2

95-%ile 5.66 4.63 3.82 1.38 2.89 1.67 0.68 2.64 1.46

97-%ile 4.89 2.54 7.49 0.87 2.44 2.11 0.84 1.47 0.98

99-%ile 2.36 1.62 4.99 0.96 3.08 0.97 0.40 2.54 1.66

α � 1.7
Average 8.24 7.50 6.42 6.47 7.01 5.33 6.74 6.50 4.49

95-%ile 4.84 5.75 5.64 2.16 2.09 2.50 1.71 1.94 1.78

95-%ile 1.56 2.86 5.28 1.00 4.65 4.08 1.03 2.82 2.91

99-%ile 3.69 5.13 7.25 4.10 6.49 8.99 1.27 4.00 2.52

Our results are summarized in Tables B.1 and B.2 for

the cases of normally distributed and Pareto-distributed ser-

vices, respectively. The tables showcase that, across all exper-

iments, the average absolute relative errors of our approach

are under 9%.

B.2. Unknown Queue Population Distribution
We now investigate the setting when the true queue pop-

ulation distribution is not perfectly known and instead a

different distribution is assumed. In this case, the simu-

lation approach fails to deliver accurate estimates for the

clearing time of a queue. We thus benchmark the estimates

obtained using both our approach and simulation against

that of an oracle that knows the true distribution. Across all

Table B.3. Average Absolute Relative Errors of Both Our

Estimates and Simulation Estimates for the Average Wait

Time When the Queue Population Distribution Assumed

Differs from the Actual Distribution for the Case When the

Average Queue Population Is µ� � 5

Queue population distribution

True Assumed Wi (Γ� 0.5) (%) Simulation (%)

Normal(5, 10) Normal(5, 5) 13.23 11.10

Normal(5, 10) 11.69 0.00

Normal(5, 15) 12.38 20.89

Normal(5, 20) 13.92 23.18

Exponential(5) 12.45 21.59

Pareto(5, 1.5) Normal(5, 5) 11.11 21.89

Normal(5, 10) 11.55 21.34

Normal(5, 15) 12.38 17.87

Normal(5, 20) 12.37 16.75

Exponential(5) 12.11 20.92

Pareto(5, 1.7) 11.16 19.67

Pareto(5, 1.3) 12.02 33.85

Pareto(5, 1.7) Normal(5, 5) 13.70 27.98

Normal(5, 10) 14.94 23.52

Normal(5, 15) 15.07 21.24

Normal(5, 20) 13.67 20.14

Exponential(5) 15.94 24.26

Pareto(5, 1.5) 14.20 21.13

Pareto(5, 1.3) 14.88 31.99

Avg. abs. relative error 13.09 21.02

across all instances

of our experiments, the service times are assumed to be nor-

mally distributed with mean 1/µ j � 1 and standard deviation

σ j equal to either 25% or 40% with both parameters per-

fectly known. The following procedure underlies all of our

experiments:

• Let K � M � 20. Select the mean µ�
of each queue’s

population distribution. The populations of all queues are

independent and either normally distributed with standard

deviation σ� or Pareto distributed with parameter α. Only

the means of the (otherwise unknown) queue population

distributions are known. Also select the value of σ j uni-

formly at random. Holding these parameters fixed, generate

100 instances of the problem by constructing server eligi-

bility sets � at random. For each instance, select a queue i

Table B.4. Average Absolute Relative Errors of Both Our

Estimates and Simulation Estimates for the Average Wait

Time When the Queue Population Distribution Assumed

Differs from the Actual Distribution for the Case When the

Average Queue Population Is µ� � 100

Queue population distribution

True Assumed Wi (Γ� 0.5) (%) Simulation (%)

Normal(100, 50) Normal(100, 25) 7.88 6.73

Normal(100, 50) 8.18 0.00

Normal(100, 75) 10.89 13.89

Normal(100, 100) 9.08 19.09

Exponential(100) 8.14 17.36

Pareto(100, 1.5) Normal(100, 25) 8.65 14.74

Normal(100, 50) 9.68 12.66

Normal(100, 75) 8.23 14.73

Normal(100, 100) 8.95 12.59

Exponential(100) 7.90 11.82

Pareto(100, 1.7) 9.57 11.29

Pareto(100, 1.3) 7.07 22.51

Pareto(100, 1.7) Normal(100, 25) 10.47 19.06

Normal(100, 50) 10.06 16.14

Normal(100, 75) 10.48 17.93

Normal(100, 100) 8.60 14.88

Exponential(100) 8.68 19.78

Pareto(100, 1.5) 12.29 15.83

Pareto(100, 1.3) 12.70 24.24

Avg. abs. relative error 9.34 15.01

across all instances
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Table B.5. Average Absolute Relative Errors of Both Our

Estimates and Simulation Estimates for the Average Wait

Time When the Queue Population Distribution Assumed

Differs from the Actual Distribution for the Case When the

Average Queue Population Is µ� � 500

Queue population distribution

True Assumed Wi (Γ� 0.5) (%) Simulation (%)

Normal(500, 200) Normal(500, 150) 6.60 5.26

Normal(500, 200) 6.52 0.00

Normal(500, 350) 7.55 12.34

Normal(500, 500) 6.50 15.88

Exponential(500) 7.41 14.78

Pareto(500, 1.5) Normal(500, 150) 8.26 12.58

Normal(500, 200) 7.22 9.05

Normal(500, 350) 7.14 11.98

Normal(500, 500) 7.06 10.05

Exponential(500) 6.67 10.01

Pareto(500, 1.7) 8.55 10.07

Pareto(500, 1.3) 5.76 16.94

Pareto(500, 1.7) Normal(500, 150) 8.26 15.26

Normal(500, 200) 7.50 11.75

Normal(500, 350) 9.34 15.41

Normal(500, 500) 8.29 13.23

Exponential(500) 6.82 15.23

Pareto(500, 1.5) 9.01 11.22

Pareto(500, 1.3) 11.13 19.42

Avg. abs. relative error 7.66 12.13

across all instances

randomly. We are interested in estimating the average clear-

ing time of the ith queue,· i . Select an assumed distribution

for the queue population with mean µ�
. This can be either

normal, Pareto, or exponential.

• For each instance, use simulation to compute the true

expected clearing time of the ith queue using a procedure

that parallels that from Section B.1. Note that in reality, this

estimate would not be possible to obtain since the queue

population distributions are unknown.

• Estimate the average clearing time of the ith queue

under the assumed distribution using both simulation and

our approach, in the exact same fashion as described in

Section B.1.

• Compute the average absolute relative error of both

approaches relative to the true value returned by the oracle

across all 100 instances.

Our results are summarized in Tables B.3–B.5 for µ� � 5,

100, and 500, respectively. We observe that the average abso-

lute relative error of the simulation approach is consistently

greater by a factor of over 1.5 relative to our approach, and

this independently of the value of µ�
. Moreover, we observe

that our method converges as µ�
increases, consistent with

the CLT asymptotic behavior.

B.3. Computation Times
We concludewith a summary of the computation times taken

by our approach.
20

We computed the average solver times

taken by our method over 100 randomly generated instances,

for a varying number of classes and an average queue popu-

lation µ� � 50, as in Section B.1. We observe that for instances

Table B.6. Computation Times for Different Problem Sizes

K � M � 10 20 50 100 500

Solver time (seconds) 0.42 0.93 17.2 39.6 152.4

even as large as K � M � 500—i.e., instances involving an

average number of 50× 500 � 25,000 customers—the average

solver times were under two minutes (see Table B.6).

Appendix C. Numerical Experiments on Synthetic
Instances of HMCMS Systems

C.1. Computation Times
To evaluate the required computation times of the MIP (3)

and the SOCP (4) (for α j � 2), we used both formulations to

compute WK in randomly generated instances of HMCMS

systems. For benchmark purposes, we computed WK using

also the general MIP formulation (2). The instances were gen-

erated as follows.

• Select the number of classes (and servers) K(� M)
among the values {10, 20, 50, 100, 200, 500}.

• Select also the means {n̂i}i�1,...,K of each queue’s popula-

tion distribution among the values {10, 20, 50, 100, 200, 500}.
• Construct the uncertainty sets � (as in (5)) with the

parameters {n̂i}i�1,...,K and Γ� � 2/
√

K. This gives rise to on

average a total of K · n̂i customers in the system.

• Holding these parameters fixed, generate 100 instances

of the problem by randomly varying the service rates µ j . For
each instance, solve the optimization problems (2)–(4) while

measuring the solver times.

Our results are included in Tables C.1–C.3.

C.2. Accuracy of Heuristic Approach
To evaluate the accuracy of the SOCP (4), we used it to

compute ŴK for randomly generated instances of HMCMS

systems, and measured the approximation error compared

with WK . Our approach was:

• For various lower and upper bounds on queue pop-

ulations,

¯

p and p̄, respectively, generate 1,000 instances as

follows.

• Let K � M � 5. Select the ith class population ni ran-

domly between [
¯

p , p̄]. Let � � {n}. Select arrival rates µ j ran-

domly between [0.1, 1.1] and Γ¸ randomly between [0, 1].
• For each instance, solve SOCP (4) to compute ŴK , and

similarly MIP (3) to compute WK .

Table C.1. Average Computation Times (in Seconds) of

MIP (2) for HMCMS Systems with Varying Size of the

System (K) and Number of Customers (n̂)

n̂

K 10 20 50 100 200 500

10 1.03 1.65 26.67 110.33 261.49 470.22

20 1.18 8.22 29.23 237.16 315.48 574.41

50 7.1 48.28 101.35 324.94 414.96 580.22

100 20.48 92.52 156.56 380.56 692.65 916.09

200 94.53 132.92 258.73 447.55 2,348.72 2,755.79

500 135.92 268.25 483.92 985.09 2244 4,656.11
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Table C.2. Average Computation Times (in Seconds) of MIP

(3) for HMCMS Systems with Varying Size of the System (K)

and Number of Customers (n̂)

n̂

K 10 20 50 100 200 500

10 0.84 1.11 9.96 40.46 60.45 115.42

20 1.09 5.37 15.26 70.28 84.72 135.05

50 5.42 24.56 55.37 104.89 129.79 149.97

100 19.55 54.73 69.93 125.34 165.13 199.89

200 64.86 85.34 120.23 189.53 540.19 650.37

500 94.84 134.77 179.89 399.95 649.54 1,149.74

Table C.3. Average Computation Times (in Seconds) of

SOCP (4) for HMCMS Systems with Varying Size of the

System (K) and Number of Customers (n̂)

n̂

K 10 20 50 100 200 500

10 0.83 0.89 0.98 1.18 1.92 2.45

20 0.86 0.93 1.19 2.12 2.29 2.62

50 1.17 1.06 1.95 2.59 3.29 3.71

100 1.72 3.37 3.08 3.97 7.1 10.25

200 1.83 5.22 8.53 15.39 19.23 42.64

500 3.38 8.81 12.28 19.11 44.43 74.32

Table C.4. Average Relative Approximation Error of Our

SOCP Heuristic (4) for HMCMS Systems with Varying

Number of Customers

Lower and upper bounds Avg. relative error

on queue populations [
¯

p , p̄] ((ŴK −WK)/WK) × 100% (%)

[5, 10] customers 1.9

[15, 30] customers 0.85

[25, 50] customers 0.5

[75, 100] customers 0.25

[200, 300] customers 0.08

• Compute the average approximation error across all

1,000 instances.

Table C.4 reports our results. Evidently, our heuristic is

almost exact and becomes tighter as

¯

p and p̄ increase—i.e., as

population sizes grow.

Appendix D. Estimating Kidney Patients’
Preferences

We outline the procedure we followed in our case study in

Section 5 to estimate qi , the probability of a random wait-

listed patient being an i-patient—i.e., being willing to accept

a kidney if and only if it is of quality i or higher, for all

i � 1, . . . ,K. For simplicity, we assume here that all patients

are available—i.e., q
0
� 0. Put differently, we discuss how to

calculate the probability of a patient being in class i, condi-
tional on being available. The unconditional probabilities can

be readily retrieved by scaling the conditional ones by 1− q
0
.

At a high level, our approach is to estimate the proba-

bilities with the ones that maximize the likelihood of the

recorded offer decisions in the UNOS data set. In particu-

lar, for all k � 1, . . . ,K, let ¡k
and ±k

be indicator random

variables such that

¡k
�


1 if the patient is willing to accept

kidneys of quality k,
0 otherwise;

±k
�

{
1 if the patient is a k-patient,
0 otherwise.

By definition,

P(±i
� 1)� qi and P(¡ j

� 1|±i
� 1)�

{
1 if j ≤ i ,
0 otherwise,

for all i , j � 1, . . . ,K. Thus,

P(¡ j
� 1)�

K∑
i�1

P(¡ j
� 1 | ±i

� 1)P(±i
� 1)

�

K∑
i� j

P(±i
� 1)�

K∑
i� j

q j , j � 1, . . . ,K.

Let ai (ri), i � 1, . . . ,K, denote the records in the UNOS data

set of a kidney of quality i being accepted (rejected) because

of quality. The likelihood of observing ai (ri) accept (reject)
decisions for kidneys of quality i can be readily expressed as

K∑
i�1

ai log

( K∑
j�i

q j

)
+ ri log

(
1−

K∑
j�i

q j

)
,

for all i � 1, . . . ,K. Note that in line with the literature, we

assumed that decisions are independent of each other and

are solely driven by kidney quality—see, e.g., Zenios (2005).

Then, the maximum likelihood probabilities can be obtained

by solving the following convex optimization problem in the

variables q
1
, . . . , qK :

maximize

K∑
i�1

ai log

( K∑
j�i

q j

)
+ ri log

(
1−

K∑
j�i

q j

)
subject to

K∑
i�1

qi � 1,

qi ≥ 0 i � 1, . . . ,K.

Appendix E. Hybrid Priority Systems
In this section, we study HMCMS systems where some

servers follow CP and others follow FCFS. We refer to

such priority rules as hybrid (HP). As with our analysis

of class-priority systems, we again focus our discussion on

a specific model that pertains to KAS because of space

considerations—more general cases can be tackled in a simi-

lar fashion.

Consider an HMCMS system for which we are interested

in estimating the clearing time of the Kth queue, as in Sec-

tion 4.1. There is an additional class, indexed by i � 0, who

seek service from the 1st server only—i.e., the one provid-

ing the highest service quality. That is, �(0)� {1} and �(1)�
{0, 1, . . . ,K}. Server 1 prioritizes 0-customers over all other

customers. All other model specifications are as in Section 4.

In particular, all servers but the first one follow FCFS.
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This model adequately captures the dynamics under the

newKAS. Specifically, patients with an EPTS score in the top-

20% range can be classified in the 0th class. Consequently,

they would receive priority for top-quality organs (procured

by server 1) over all other patients.
21

In this context, it can be readily seen that only arrivals of

0-customers affect the Kth queue’s clearing time, and are thus

the only arrivals we model. We refrain from formalizing fur-

ther model dynamics of this hybrid HMCMS system, as they

closely resemble the dynamics of FCFS and CP systems we

outlined in Sections 2 and 6.1. We also use uncertainty mod-

els, notation and solution methodology that are immediate

extensions of our approach so far. For instance, we denote the

(robust) clearing time we are interested in with (WHP

K )·HP

K .

In this context, one can readily extend our analysis to show

that calculating WHP

K is NP-hard and the following mono-

tonicity result.

Lemma 3. For a hierarchical MCMS system under HP, the clear-
ing time ·HP

K is increasing in the service times x
1
, . . . , xK and

decreasing in the arrival times a
0
.

Using Lemma 3, we fix the completion and arrival times to

their worst-case values as in Section 6.1. The following MIP,

which builds on problem (3), allows us to compute WHP

K .

maximize

∑
`�2,..., ¯`

c`( f `−1 − f `) (E.1a)

subject to constraints (3a)–(3i) (E.1b)∑
( j, ω): cω

1
≤c`

yω
01
≤ n

0
+ v`

0
− f `

0
, ` � 1, . . . , ¯`; (E.1c)

yωi1 ≤ 1− f `
0
, i ≥ 1, ω: cω

1
� c` , ` � 1, . . . , ¯`;

(E.1d)

f `
0
∈ {0, 1}, ` � 1, . . . , ¯`. (E.1e)

Theorem 6. For the hierarchical MCMS system under hybrid
priority defined above, the optimal value of the MIP (E.1) is
equal to WHP

K .

Loosely speaking, MIP (E.1) builds on formulation (3)

to capture the FCFS dynamics of the original system, as

reflected in the common constraints (3a)–(3i). MIP (E.1) then

borrows from (7) the CP dynamics that pertain to the 0th

class, as reflected in the additional constraints (E.1c)–(E.1d).

In particular, variables f `
0
indicate whether class 0 is filled or

has cleared by time c` . Constraint (E.1c) is then an arrivals-

adjusted capacity constraint for the 0th class, similar to (7d).

Constraint (E.1d) enforces the CP priority: at any c` , if the 0th

class is filled, the 1st server cannot serve any lower priority

i > 0 class—i.e., yωi1 ≤ 1− f `
0
� 0 (similar to constraint (7g).

In summary, our treatment in this section demonstrated

the flexibility of our modeling framework to tackle multiclass

multiserver queuing systems under priority rules different

than FCFS that are also potentially open. While we limited

our exposition to the particular hierarchical service systems

for brevity, our approach is still applicable in the general case.

Appendix F. Proofs
We present the proofs of the main results in the order in

which they appear in our paper.

Proof of Proposition 1. Consider the decision problem asso-

ciated with the optimization problem (1), where we query

whether its optimal value is greater than or equal to some

value V . Let Π denote this decision problem. We will show

that the problem Partition (Garey and Johnson 1979), which

is known to be NP-hard, transforms to Π. That is, given

an instance I
P
of Partition, we will show how to construct

an instance IΠ of Π in polynomial time, such that I
P
is a Yes

instance of Partition if and only if IΠ is a Yes instance of Π.

To introduce some notation, we define the decision

problem.

Partition:

Instance: A set of k positive integers �� {a
1
, . . . , ak},

with

∑k
`�1

a` � 2B, B ∈ �.
Query: Is there a subset �

1
⊂� such that

∑
`∈�

1

a` �∑
`∈�\�

1

a` � B?

We construct an instance IΠ of Π as follows:

(i) K � 2, M � 2, with �(1)� {1}, �(2)� {1, 2}.
(ii) i � 2.

(iii) � ∩ �2

� {n: n
1
� y>a , n

2
� 2B − y>a , n

1
≥ B, y ∈

{0, 1}k}.
(iv) µ

1
� µ

2
� 1, Γ�

1
� Γ�

2
� 0,

¯`
1
� ¯`

2
� k.

(v) V � B.
For the constructed instance, note that there are always

2B customers in the system, split between the two classes,

with class 1 having at least B customers. All service times

are equal to one. For the worst-case clearing time W
2
, we can

take without loss the service priority of the 1-customers to

be higher than all of 2-customers. This ensures that server 1

does not serve any 2-customer. Therefore, in the worst case,

we have that W
2
� n

2
.

Suppose now that I
P
is a Yes instance of Partition. Then, let

y` �I(` ∈�
1
), for all `� 1, . . . , k. This value of y yields a pop-

ulation vector n
1
� n

2
� B, and therefore IΠ is a Yes instance

ofΠ since W
2
� B ≥V . Conversely, if IΠ is a Yes instance ofΠ,

we conclude that W
2
� n

2
� B for some population vector n,

such that n
1
� n

2
� B. Let y ∈ {0, 1}k the corresponding vector

that generates n. By letting �
1
� {`: y` � 1}, we get that∑

`∈�
1

a` � n
1
� B,

and I
P
is a Yes instance of Partition. �

Proof of Theorem 1. We proceed in two steps. First, we

show that Wi is equal to the optimal value of the follow-

ing optimization problem with variables w, n ∈ �K
, q ∈

�|�(1)|
¯`
1
+···+|�(M)| ¯`M

, and c ∈ �
∑M

j�1

¯` j
.

maximize wi (F.1a)

subject to q`j ∈�( j)∪ {K+1}, `�1, . . . , ¯` j , j �1, . . . ,M;

(F.1b)

q`j ∈�( j), `�1, . . . , ¯` j , j �1, . . . ,M: c`j <wk

for some k ∈�( j); (F.1c)∑
`�1,..., ¯` j

j∈�(k)

I(q`j � k)� nk , k �1, . . . ,K; (F.1d)

wk �max{c`j : q`j � k or `�0, j ∈�(k), `�0, . . . , ¯` j},
k �1, . . .K; (F.1e)

c j ∈� j , j �1, . . . ,M; (F.1f)

n ∈� ∩�K , (F.1g)
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where we use the convention that c0

j � 0 for all j ∈ {1, . . . ,M}.
Problem (F.1) admits a very intuitive interpretation. The vari-

ables q`j model the queue the jth server assigns its `th service,

as per constraint (F.1b). Service is assigned to the fictitious

queue K + 1 if no eligible customer is available for service.

Constraint (F.1c) captures the fact that if at time c`j , there
exists a nonempty queue compatible with server j, then the

`th service from the jth server cannot be assigned to the fic-

titious queue. Constraint (F.1d) requires that all customers

from all queues are served, while constraint (F.1e) corre-

sponds to the definition of the completion time of a queue,

with the completion time being equal to zero if no customers

were waiting.

Proposition 3. The optimal values of problems (1) and (F.1) are
finite and equal to each other. Moreover, for every optimal solution
(n , σ, x) to (1), there exists an optimal solution (w , n , q , c) to (F.1)
such that c`j � x1

j + · · · + x`j , j � 1, . . . ,M, ` � 1, . . . , ¯` j , and vice
versa.

Second, we show that problems (2) and (F.1) have the same

optimal value.

Proposition 4. The optimal values of problems (2) and (F.1) are
equal to each other. Moreover, for every optimal solution to (F.1),
there exists an optimal solution to (2) such that the optimal vectors
of completion times coincide. �

Proof of Proposition 2. Follows directly from the proof of

Proposition 1. �

Proof of Lemma 1. Recall that in a hierarchical MCMS,

�( j)� { j, . . . ,K} for all j ∈ {1, . . . ,K} and �(k)� {1, . . . , k} for
all k ∈ {1, . . . ,K}. Proposition 3 implies that WK is equal to

the optimal value of (F.1) with i :� K. We show that given any

feasible solution (w , n , q , c) to (F.1) and any sequence of ser-

vice times c̃ such that c̃ j ∈� j and c̃`j ≥ c`j for all j ∈ {1, . . . ,K}
and ` ∈ {1, . . . , ¯` j}, there exists a solution (w̃ , n , q̃ , c̃) feasible
in (F.1) and such that w̃K ≥wK . This will enable us to conclude

that there exists an optimal solution to (F.1) in which the

completion times all attain their maximum values. The proof

of this lemma will then readily follow from Proposition 3.

Let (w , n , q , c) be feasible in (F.1), and let c̃ such that c̃ j ∈
� j and c̃`j ≥ c`j for all j ∈ {1, . . . ,K} and ` ∈ {1, . . . , ¯` j}. Also,

define an assignment r and a population n̂ as follows:

r`j :�

{
q`j if c̃`j < wK ,

K + 1 else;

n̂k :� nk −
∑

`�1,..., ¯` j
j�1,...,k

I(r`j � k),

for all j ∈ {1, . . . ,K}, ` ∈ {1, . . . , ¯` j}, and k ∈ {1, . . . ,K}. Note

that n̂ ≥ 0, and in particular n̂k > 0 for all k ∈ {1, . . . ,K}
such that wk ≥ wK . To see the latter, fix k ∈ {1, . . . ,K} such
that wk ≥ wK . Then, n̂k ≤ 0 would imply that more than nk
k-customers are served under assignment r. Since under r,
customers are served only at times before wK according to q
(and servers remain idle afterward), this would imply that

more than nk k-customers are served under assignment q
before wK , a contradiction since the earliest time at which

the nkth k-customer is served is wK .

Let

¯

` j be the number of customers served by the jth server

under r—i.e.,

¯

` j :� max{`: r`j < K + 1}, j � 1, . . . ,K.

Consequently, the times their service started has to be less

than wK (by the definition of r). Thus, for all j ∈ {1, . . . ,K}
and ` ∈ {1, . . . , ¯` j}, it holds that

c̃`j

{
< wK if ` ≤

¯

` j ,

≥ wK else.

Consider now a new instance of problem (F.1) with iden-

tical service system layout, but where the queue popu-

lation uncertainty set is given by the singleton {n̂} and

where the uncertainty set for the server completion times

is given by the singleton {ĉ}, where ĉ is defined through

ĉ`j � c̃`+
¯

` j
j , j ∈ {1, . . . ,K}, ` ∈ {1, . . . , ¯` j −

¯

` j}. Let (ŵ , q̂) be such
that (ŵ , n̂ , q̂ , ĉ) is feasible in the associated instance of prob-

lem (F.1). Next, for j ∈ {1, . . . ,K} and ` ∈ {1, . . . , ¯` j−
¯

` j}, define

q̃`j :�

{
q`j if ` ≤

¯

` j ,

q̂
`−

¯

` j
j else;

w̃k :�

{
wk if wk < wK ,

ŵk else.

We first argue that wK ≤ w̃K . The definition of n̂ implies

that n̂K > 0 and therefore feasibility of (ŵ , n̂ , q̂ , ĉ , ŵ) in the

instance of (F.1) implies ŵK ∈ ĉ. But, for all j ∈ {1, . . . ,K} and
` ∈ {1, . . . , ¯` j −

¯

` j}, ĉ`j � c̃
`+

¯

` j
j ≥ wK . Hence, wK ≤ ŵK � w̃K .

The final step is to show that (w̃ , n , q̃ , c̃) is feasible in prob-

lem (F.1). Constraint (F.1b) is trivially satisfied. For (F.1c), fix

j ∈ {1, . . . ,K}. Then:
• For ` ≤

¯

` j , we have c`j ≤ c̃`j < wK ≤ w̃K . Since K ∈ �( j),
feasibility of (w , n , q , c) in (F.1) combined with c`j < wK imply

that q`j ∈�( j). The definition of q̃ then yields q̃`j � q`j ∈�( j),
and constraint (F.1c) is satisfied in this case;

• For ` >
¯

` j , if ∃ k ∈�( j) such that c̃`j < w̃k , then the defi-

nition of c̃ implies that wK ≤ c̃`j < wk and therefore it follows

from the definition of w̃ that w̃k � ŵk . Therefore, ĉ
`−

¯

` j
j � c̃`j <

w̃k � ŵk . The feasibility of (ŵ , n̂ , q̂ , ĉ) in its corresponding

instance of (F.1) implies q̂
`−

¯

` j
j ∈�( j). The definition of q̃ yields

q̃`j � q̂`−
¯

` j
j ∈�( j), and constraint (F.1c) holds.

As the choice of j was arbitrary, constraint (F.1c) is satisfied.

For (F.1d), we have that∑
`�1,..., ¯` j
j�1,...,K

I(q̃`j � k)�
∑

`�1,...,
¯

` j
j�1,...,K

I(q̃`j � k)+
∑

`�
¯

` j+1,..., ¯` j
j�1,...,K

I(q̃`j � k)

�
∑

`�1,...,
¯

` j
j�1,...,K

I(q`j � k)+
∑

`�
¯

` j+1,..., ¯` j
j�1,...,K

I(q̂
`−

¯

` j
j � k)

� nk − n̂k +
∑

`�
¯

` j+1,..., ¯` j
j�1,...,K

I(q̂
`−

¯

` j
j � k)

[by definitions of n̂ , r,
¯

` j]
� nk − n̂k + n̂k � nk

[by feasibility of (q̂ , ĉ , ŵ)].
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Finally, it can be readily checked that (w̃ , n , q̃ , c̃) satisfies con-
straint (F.1e) by the definition of q̃ and the fact that n̂k > 0 for

all k ∈ {1, . . . ,K} such that wk ≥ wK . �

Proof of Theorem 2. Recall that, in the context of hierarchi-

cal MCMS, �( j) � { j, . . . ,K} for all j ∈ {1, . . . ,K} and �(k) �
{1, . . . , k} for all k ∈ {1, . . . ,K}. Theorem 1 implies that WK
is equal to the optimal value of problem (2) with i :� K. It

thus suffices to show that the optimal values of problems (2)

and (3) are equal in the present setting.

Let (w , n , y , f , c) be an optimal solution to problem (2)

such that the completion times are equal to their worst-

case values. Existence of such a solution is guaranteed by

Lemma 1 and Propositions 3 and 4. We first argue that

∃ j?, `?, t? such that

wK � c`
?

j? � c t?
and f `K j �

{
1 if c`j < wK ,

0 if ` � `? and j � j?.

To see this, note that if f `K j � 1 for all j and `, then by (2e), wK

can take a value that is strictly bigger than
¯ζ (since all of the

elements of c are positive), a contradiction. Let then ( j?, `?) ∈
arg min{c`j : f `K j � 0}. Then, by optimality of (w , n , y , f , c), con-
straint (2e) is binding for j? and `?, and our claim follows.

Define the variables f̂ ∈ � ¯`
and n̂ ∈ �K

such that for ` ∈
{1, . . . , ¯`},

f̂ ` :�

{
1 if ` < t?,
0 else;

n̂ :� n + eK .

We now demonstrate that (y , n̂ , f̂ ) is feasible in problem (3),

and produces an objective value (3a) equal to wK—i.e., the

optimal value of problem (2). Constraints (3b) and (3d) follow

directly from (2b) and (2c), respectively. For (3c), note that∑
( j, ω): cωj ≤c`

yωK j ≤
∑

ω�1,..., ¯` j
j�1,...,k

yωK j ≤ nK � n̂K − 1 ≤ n̂K − f̂ ` ,

where the second inequality follows from (2c). Con-

straint (3e) is trivially satisfied for ` ≥ t?. For any ` < t?,
let ( j, ω) be such that cωj � c` . Constraint (3e) then becomes∑

k′� j,...,K yωk′ j ≥ 1, which follows from (2d) for k � K and ( j, ω).
Constraints (3f)–(3i) are readily satisfied. Finally, note that

the objective value attained by (y , n̂ , f̂ ) in (3) is given by

c t?( f̂ t?−1 − f̂ t?) � wK and thus the optimal value of (3) is

greater or equal to WK .

To complete the proof, let (y , n , f ) be an optimal solution

to problem (3). Using a similar argument as above, ∃ t? such

that f ` � 1 for ` ∈ {1, . . . , ¯`}, ` < t?, and f ` � 0 else. Conse-

quently, the optimal value of (3) is equal to c t?
. Define the

variables ỹ , ˜f ∈ �K ¯`
1
+(K−1) ¯`

2
+···+ ¯`K

such that for j ∈ {1, . . . ,M},
` ∈ {1, . . . , ¯` j}, and k ∈�( j),

ỹ`k j :�

{
y`k j if c`j < c t? ,

0 else,

˜f `k j :�

{
1 if c`j < c t? ,

0 else.

Consider the solution (c t?
e, n − eK , ỹ , ˜f , c), which produces

an objective value (2a) equal to c t?
—i.e., the optimal value

of problem (3). We show that (c t?
e, n − eK , ỹ , ˜f , c) is feasible

in (2). Constraint (2b) follows from (3b) and from ỹ ≤ y. Simi-

larly, for k � 1, . . . ,K−1, constraint (2c) follows from (3d). For

k � K, we have∑
`�1,..., ¯` j
j�1,...,K

ỹ`K j �
∑

( j, ω): cωj ≤ct?−1

ỹωK j +
∑

( j, ω): cωj ≥ct?

ỹωK j

�
∑

( j, ω): cωj ≤ct?−1

yωK j ≤ nK − f t?−1

� nK − 1,

where the second equality follows from the definition of ỹ
and the inequality from (3c). For constraint (2d), it suffices

to check it for k � K. The constraint is trivially satisfied,

unless ( j, `) are such that c`j < c t?
, in which case

˜f `K j � 1

and ỹ`k′ j � y`k′ j . Let t be such that c t � c`j . Clearly, t < t? and

thus f t � 1. Constraint (2d) then follows from (3e). For con-

straint (2e), it again suffices to check for k � K. As with the

previous case, for any ( j, `), we either have c`j < c t?
and

˜f `K j �1,

or c`j ≥ c t?
and

˜f `K j � 0. In both cases, (2e) is trivially satisfied.

Constraint (2g) is trivially valid, unless ỹ`k j � 1—i.e., for ( j, `)
such that c`j < c t?

. But then, the constraint becomes c t? ≥ c`j ,
which is true. The remaining constraints are immediate and

the proof is complete. �

Proof of Theorem 3. For ease of exposition, we treat the case

of α j � 2, j � 1, . . . ,K; generalizing for other values is straight-

forward. We introduce the following notation. Let � be a

mapping from �K
to a set in �K+1

such that for all n ∈ �K

�(n) :�
{
(m ,W) ∈ �K+1

: W ≤
m j

µ j
+Γ�j

√
m j and

K∑
k� j

mk ≤
K∑

k� j
nk +K − j, j � 1, . . . ,K

}
and �I be the corresponding mapping where m is integral—

i.e., �I(n) :� �(n) ∩ {�K ×�}. Let h, hI : �
K → � be such that

for all n ∈ �K
,

h(n) :� max{W : (m ,W) ∈ �(n)} and

hI(n) :� max{W : (m ,W) ∈ �I(n)}.

The proof is based on the following results.

Proposition 5. The optimal value of

maximize hI(n)
subject to n ∈ � ∩�K (F.2)

is equal to WK .

Proposition 6. The optimal value of

maximize h(n)
subject to n ∈ � (F.3)

is equal to ŴK .

Proposition 7. For all n ∈ �K , we have
(i) hI(n) ≤ h(n) ≤ hI(n)+ χ.
(ii) hI(n) ≤ hI(m) for all m ∈ �K such that n ≤ m.
(iii) hI(n + e) ≤ hI(n)+ χ.
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Let n? ∈ � be an optimal solution of problem (F.3). We then

have that

WK � max{hI(n): n ∈ � ∩�K} [by Prop. 5]
≤max{h(n): n ∈ � ∩�K} [by Prop. 7(i)]
≤max{h(n): n ∈ � }
� ŴK [by Prop. 6]
� h(n?)
≤ hI(n?)+ χ [by Prop. 7(i)]
≤ hI(bn?c + e)+ χ [by Prop. 7(ii)]
≤ hI(bn?c)+ 2χ [by Prop. 7(iii)]
≤WK + 2χ,

where the last inequality holds since n? ∈ � ⇒ bn?c ∈
� ∩ �K

—i.e., bn?c is feasible for problem (F.2), and

Proposition 5. �

Proof of Lemma 2. We begin by defining a number of oper-

ators that will facilitate our analysis of the queue dynamics

under CP. Given three ordered finite sequences c � {c`} ¯`
`�1

,

a � {ar} r̄r�1
, and y � {ym}m̄m�1

, define the operator

c ⊕ y :� sort({c , y}),

which returns the ordered finite sequence of length ( ¯` + m̄)
consisting of all elements of the concatenation of sequences c
and y. Also, define the operator

c→ a :� {c t
: s t(a , c)� 0, t ∈ {1, . . . , ¯`}},

where the sequence s is given by

s0(a , c) :� 0,
s t(a , c) :� [s t−1(a , c) − 1]+ + z t(a , c) − z t−1(a , c)

∀ t ∈ {1, . . . , ¯`},
z t(a , c) :� max{i ∈ {0, . . . , r̄}: a i ≤ c t}

∀ t ∈ {0, . . . , ¯`},

(F.4)

with the convention that a0 � c0 < 0. These operators admit

a very natural interpretation in the context of hierarchical

MCMS systems under CP. The operator c→ a enables us to

obtain the (ordered) subset of completion times c that remain

“unused” after being fed into the stream of customer arrival

times a. The operator c ⊕ y enables us to collect (subsets of)

completion times of multiple servers into a single ordered

stream.

Consider a single server single class system under FCFS,

where c and a collect the server completion times and the cus-

tomer arrival times, respectively. We argue that the quantity

c→ a corresponds to the set of completion times that coincide

with times when the queue was empty. For any t ∈ {0, . . . , ¯`},
the quantity z t(a , c) ∈ {0, . . . , r̄} corresponds to the number of

customers that have arrived by time c t
(note that z0(a , c)� 0).

Accordingly, (z t(a , c) − z t−1(a , c)) ∈ {0, . . . , r̄} represents the

number of customer arrivals in the interval (c t−1 , c t]. Interpret
s0(a , c) as the number of customers waiting prior to time 0.

Fix t ∈ {1, . . . , ¯`}. Suppose that s t−1(a , c) ∈ � represents the

number of customers waiting to be served at time c t−1
—i.e.,

the (t − 1)th time the server completes a job. If s t−1(a , c) � 0,

the total number of customers waiting at time c t
is equal

to z t(a , c) − z t−1(a , c)—i.e., no one was served in the interval

[c t−1 , c t). On the other hand, if s t−1(a , c) ≥ 1, a customer is

served at time c t−1
, and the total number of customers wait-

ing at time c t
is given by s t−1(a , c) − 1 + z t(a , c) − z t−1(a , c)

(a nonnegative integer). We conclude that s t(a , c) ∈ � repre-

sents the number of people waiting to be served at time c t

for all t ∈ {0, . . . , ¯`}. Thus, for t ∈ {1, . . . , ¯`}, s t(a , c) � 0 if and

only if the queue is empty at time c t
, yielding the desired

interpretation for c→ a.
We now demonstrate that ·CP

i can be expressed analyti-

cally in dependence of the customer arrival times, the queue

population lengths, and the server completion times using

the operators introduced above.

Proposition 8. Consider a hierarchical service system under CP
with customer arrival times and server completion times given by
a and c, respectively. For each k ∈ {1, . . . , i − 1}, let

āk :� ak ⊕ {0, . . . , 0︸  ︷︷  ︸
nk times

}.

Then, the clearing time ·CP

i is given by

y
1
� c

1
→ ā

1
,

yk � (yk−1
⊕ ck)→ āk ∀ k ∈ {2, . . . , i − 1},
·CP

i � (yi−1
⊕ ci)ni .

Note that āk is essentially the augmented sequence of

k-customer arrival times including the nk k-customers ini-

tially waiting at time 0.

Given two sequences y � {ym}m̄m�1
and ỹ � { ỹm}m̃m�1

of not

necessarily identical length, we define the relationship

y ≤ ỹ if and only if m̃ ≤ m̄ and

ym ≤ ỹm ∀m ∈ {1, . . . , m̃}.

The above relationship can be interpreted as an element-wise

comparison of the two sequences, where elements equal to

+∞ are appended at the end of the shorter sequence so as

to equalize the sequence lengths. Note in particular that if

m̃ � 0, then y ≤ ỹ for all y.
The remainder of the proof is based on the following struc-

tural properties of our operators.

Proposition 9. Given the ordered sequences c, c̃, a, ã, and y, the
following statements hold true:

(i) If c̃ ≥ c, then y ⊕ c̃ ≥ y ⊕ c.
(ii) If c̃ ≥ c, then c̃→ a ≥ c→ a.
(iii) If ã ≤ a, then c→ ã ≥ c→ a.

We are now ready to show that ·CP

i is increasing in the

service times x and decreasing in the arrival times a. Let
·CP

i
′
denote the clearing time under service and arrival times

given by x′ and a′, respectively. Then, from Proposition 8,

·CP

i
′
is expressible analytically via

y′
1
� c′

1
→ ā′

1
,

y′k � (y′k−1
⊕ c′k)→ ā′k ∀ k ∈ {2, . . . , i − 1},
·CP

i
′
� (y′i−1

⊕ c′i)ni .

Let x and a be such that x ≥ x′ and a ≤ a′. Then, c ≥ c′,
and it follows from Proposition 9(i) that āk ≤ ā′k for all k ∈
{1, . . . , i − 1}. Propositions 9(ii) and (iii) then imply that

y
1
� c

1
→ ā

1
≥ c′

1
→ ā

1
≥ c′

1
→ ā′

1
≥ y′

1
.
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Applying Proposition 9(i) twice yields

y
1
⊕ c

2
≥ y′

1
⊕ c

2
≥ y′

1
⊕ c′

2
.

Fix k ∈ {2, . . . , i − 1}. Suppose that yk−1
⊕ ck ≥ y′k−1

⊕ c′k . Then,
Propositions 9(ii) and (iii) imply that yk ≥ y′k . Thus, yk ≥ y′k
for all k ∈ {1, . . . , i − 1}. Proposition 9(i) yields that yi−1

⊕ ci ≥
y′i−1
⊕ c′i , and therefore ·CP

i ≥ ·CP

i
′
, which concludes the

proof. �

Proof of Theorem 4. The proof is similar to Theorem 2 and

is omitted for brevity. �

Proof of Theorem 5. Fix any i � 1, . . . ,K. Consider a hierar-

chical MCMS system that comprises the first i classes and

servers, but operates under FCFS. That is, an HMCMS with

i classes, server parameters µ j , Γ
�
j , and α j , j � 1, . . . , i, and

population uncertainty set

� ′ � {n ∈ �i
: (n , ñ) ∈ � for some ñ ∈ �K−i},

where servers follow FCFS. Under no arrivals, problem (8)

reduces to problem (4), since we have q � u � 0. Therefore,

we have that ŴCP

i � Ŵi , for all i � 1, . . . ,K.

We next argue that for a closedHMCMS system, theworst-

case clearing time of the last class is equal for both CP and

FCFS priorities.

Proposition 10. For a hierarchical MCMS service system under
no arrivals, WK � WCP

K .

Fix again an i � 1, . . . ,K and consider a hierarchical MCMS

system that comprises the first i classes and servers, but oper-

ates under FCFS, as before. Since we deal with closed sys-

tems, Proposition 10 yields that WCP

i �Wi . By Theorem 3, we

obtain that Wi ≤ Ŵi ≤Wi + 2χ. Replacing for Wi and Ŵi , we

obtain that

WCP

i ≤ Ŵi ≤WCP

i + 2χ, i � 1, . . . ,K. �

Proof of Lemma 3. The proof is similar to Lemma 2 and is

omitted for brevity. �

Proof of Theorem 6. The proof is similar to Theorem 2 and

is omitted for brevity. �

F.1. Proofs of Auxiliary Results
Proof of Proposition 3. The proof proceeds in three steps.

Step 1: Problem (1) is feasible and has a finite optimal value. The
sets � ∩�K

, Σ(n), and � j , j � 1, . . . ,M, are all nonempty by

construction. It follows that problem (1) is feasible. Bound-

edness of the optimal value of (1) follows from boundedness

of its feasible region.

Step 2: The optimal values of problems (1) and (F.1) are equal.
First, let (n , σ, x) be feasible in (1). We construct w, q, and c
such that wi �· i(n1

, . . . , nK , σ, x1
, . . . , xM) and (w , n , q , c) is

feasible in (F.1). For all j ∈ {1, . . . ,M} and ` ∈ {1, . . . , ¯` j},
define c`j :�

∑`
k�1

xk
j . We assume without loss of generality

that the elements of c are all distinct from one another and

positive. All of our arguments remain valid if this assump-

tion is relaxed at the cost of complicating notation. As in

Section 2, let �k : �+→ 2
{1,...,K}

, k ∈ {1, . . . , n} be multivalued

functions that map time to the set of k-customers still waiting

to be served. For all j ∈ {1, . . . ,M} and ` ∈ {1, . . . , ¯` j}, define

q`j :�


k if

⋃
k′∈�( j) �k′(c`j ),� and

arg min

{
σ(ν): ν ∈⋃

k′∈�( j) �k′(c`j )
}
∈ �k(c`j ),

K + 1 else.

Note that since all of the elements of σ are distinct, the min-

imization problem in this definition presents a unique mini-

mizer. Also, for all k ∈ {1, . . . ,K}, let

wk :�· k(n1
, . . . , nK , σ, x1

, . . . , xM)� inf{t ≥ 0: |�k(t)| � 0}.

Constraints (F.1b), (F.1f), and (F.1g) are clearly satisfied. Fix

j ∈ {1, . . . ,M} and ` ∈ {1, . . . , ¯` j}. It follows from the defi-

nitions of w and q that if c`j < wk′ for some k′ ∈ �( j), then
|�k′(c`j )| > 0 and therefore

⋃
k′∈�( j) �k′(c`j ) , �, implying that

q`j ∈ �( j). Since the choice of j and ` was arbitrary, con-

straint (F.1c) is satisfied. Fix k ∈ {1, . . . ,K}. Until time wk
(note that wk < ∞), the total number of customers served

from queue k is equal to nk , and constraint (F.1d) is satisfied.

By construction, the function |�k(t)| is nonincreasing, left-

continuous, with discontinuities at all instants t ∈ {t ≥ 0: t �
c`j and q`j � k}. Thus,

wk �

{
max{c`j : q`j � k , j ∈�(k), ` � 1, . . . , ¯` j} if |�k(0)| > 0,

0 else,

and constraint (F.1e) is satisfied. We have thus constructed

a solution (w , n , q , c) feasible in (F.1) and such that wi �

· i(n1
, . . . , nK , σ, x1

, . . . , xM).
Second, let (w , n , q , c) be feasible in (F.1). Note that the

existence of such a solution is guaranteed since problem (1)

is feasible (see Step 1) and we have just shown that any

feasible solution to (1) can be used to construct a feasible

solution to (F.1). We will construct a solution σ and x such

that (n , σ, x) is feasible in (1) and· i(n1
, . . . , nK , σ, x1

, . . . , xM)
� wi . We again assume without loss of generality that the

elements of c are all distinct from one another and posi-

tive. For all j ∈ {1, . . . ,M} and ` ∈ {1, . . . , ¯` j}, define x`j :�

c`j − c`−1

j , where we use the convention that c0

j � 0. Also,

define λ: �+→{1, . . . ,
∑K

k�1
nk} and λk : �+→{1, . . . , nk}, k ∈

{1, . . . ,K} through

λ(t) :�
∑

j�1,...,M
`�1,..., ¯` j

I(c`j ≤ t and q`j ∈�( j)) and

λk(t) :�
∑

j∈�(k)
`�1,..., ¯` j

I(c`j ≤ t and q`j � k),

which count the number of all customers served by time t
or the number of k-customers, respectively. Thus, if q`j � k ∈
�( j), then the k-customer who receives the `th service of the

jth server is the λ(c`j )th customer to be served in the system.

For each k ∈ {1, . . . ,K}, m ∈ {1, . . . , nk}, define

σ

( k−1∑
k′�1

nk′ + m
)

:�
{
λ(c`j ): q`j � k and λk(c`j )� m ,

j ∈�(k), ` ∈ {1, . . . , ¯` j}
}
.
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Thus, if ν �
∑k−1

k′�1
nk′ + m, customer ν is the mth k-customer

waiting at t � 0, and σ(ν) is the order in which he is served.

By our assumption that the elements of c are all distinct

from one another, σ defines a permutation of n—i.e., σ ∈
Σ(n), and thus the second constraint in (1) is satisfied. By

construction, x also satisfies the last constraint in (1). There-

fore, (n , σ, x) is feasible in (1). Note in particular that under

this solution, customers are sorted according to the order

in which they received service under q. We now show that,

· i(n1
, . . . , nK , σ, x1

, . . . , xM) � wi . It suffices to show that for

all j ∈ {1, . . . ,M}, k ∈�( j), and ` ∈ {1, . . . , ¯` j}, it holds that

q`j � k ⇔
⋃

k′∈�( j)
�k′(c`j ),� and

arg min

{
σ(ν): ν ∈

⋃
k′∈�( j)

�k′(c`j )
}
∈ �k(c`j ),

(F.5)

so that the same customers are served under the allocation

q and the permutation σ each time a server becomes avail-

able. We prove this statement by induction on the ordered

sequence of server completion times c.
Fix j′ ∈ {1, . . . ,M}, and `′ ∈ {1, . . . , ¯` j′}. Suppose that (F.5)

is true for all j and ` such that c`j < c`
′

j′ . We first show that

it must also be true for j � j′ and ` � `′. It follows from (F.5)

that for all k ∈ {1, . . . ,K} and t ≤ c`
′

j′ , it holds that

�k(t)� �k(0) −
{ k−1∑

k′�1

nk′ + m:

m ∈
{
1, . . . ,

∑
j∈�(k)
`�1,..., ¯` j

I(c`j < t and q`j � k)
}}
,

and thus

|�k(t)| � nk −
∑

j∈�(k)
`�1,..., ¯` j

I(c`j < t and q`j � k). (F.6)

If q`
′

j′ � k ∈�( j), it follows from (F.6) and from the feasibility

of q in (F.1) that |�k(c`
′

j′ )| > 0, and therefore

⋃
k′∈�( j) �k′(c`j ),�.

Moreover, it follows from the definition of λ that the first

customer waiting at queue k at time c`
′

j′ under q is the λ(c`′j′ )th
customer being served in the system. Finally, the definition

of σ implies that at time c`
′

j′ , all customers ν with σ(ν) <
λ(c`′j′ ) have already left the system. Thus, arg min{σ(ν): ν ∈⋃

k′∈�( j) �k′(c`
′

j′ )} ∈ �k(c`
′

j′ ) holds. If instead q`
′

j′ � K + 1, then

constraints (F.1c) and (F.1e) imply that c`
′

j′ > wk′ for all k′ ∈
�( j′), and it follows from (F.6) that |�k′(c`

′
j′ )| � 0 for all k′ ∈

�( j)—i.e.,

⋃
k′∈�( j) �k′(c`j )��, and the right hand-side in (F.5)

cannot hold.We conclude that (F.5) is true for j � j′ and ` � `′.
To complete the induction, we show that (F.5) is true for the

first completion time—i.e., for j′ ∈ {1, . . . ,M} such that c1

j′ ≤ c`j
for all j ∈ {1, . . . ,M}, ` ∈ {1, . . . , ¯` j}. If q1

j′ � k ∈�( j), then σ(1+∑k−1

k′�1
nk′)� 1—i.e., the highest priority is a k-customer. More-

over, since by time c1

j′ , no other customer has been assigned

to a server yet under q, it holds that |�k(c1

j′)| > 0, and the right

hand-side of (F.5) holds true for j � j′ and ` � 1. If instead

q1

j′ � K + 1, constraints (F.1c) and (F.1e) combined with the

fact that c1

j′ ≤ c`j ∀ j, ` imply that nk′ � 0 for all k′ ∈ �( j), a
contradiction.

We conclude that (F.5) is true for all j, `, and k, and

therefore the completion time of queue i under the alloca-

tion q and the permutation σ are equal—i.e.,· i(n1
, . . . , nK , σ,

x
1
, . . . , xM) � wi . Consequently, problems (1) and (F.1) have

the same optimal value, which is finite. �

Proof of Proposition 4. Let (w , n , y , f , c) be an optimal solu-

tion in (2) whose existence follows from the Weierstrass

Theorem. Without loss of generality, we assume that con-

straint (2c) is active at this optimal solution. Otherwise, such

an optimal solution can be readily constructed in an iterative

fashion, starting from (w , n , y , f , c). We construct a feasible

solution in (F.1) as follows. Let

(`′, j′) ∈
{
(`, j) ∈ �2

:

∑
k′∈�( j)

y`k′ j � 0 and c`j � wi ,

j ∈�(i), ` ∈ {1, . . . , ¯` j}
}
.

Note that by the definition of
¯ζ, the set above is never empty

(otherwise it would contradict the optimality of (w , n , y , f , c)
in (2)) and therefore the pair (`′, j′) is well defined. For j ∈
{1, . . . ,M}, k ∈�( j), ` ∈ {1, . . . , ¯` j}, define

q`j :�



∑
k∈�( j)

k y`k j if

∑
k∈�( j)

y`k j � 1,

i if j � j′ and ` � `′,

K + 1 else,

and w̃k :� max{c`j : q`j � k , j ∈ �(k), ` ∈ {0, . . . , ¯` j}}. Also let

ñ :� n + ei . By definition of q and w̃, (F.1b) and (F.1e) are

both trivially satisfied. It follows from n +ei ∈ � ∩�K
that ñ ∈

� ∩�K
. Thus, (w̃ , n , q , c) satisfies constraints (F.1f) and (F.1g).

In addition,∑
`�1,..., ¯` j

j∈�(i)

I(q`j � i)� 1+
∑

`�1,..., ¯` j
j∈�(i)

y`i j � ni + 1 � ñi ,

where the first and second equalities follow from the def-

inition of q and the feasibility of y in (2), respectively. For

k ∈ {1, . . . ,K}, k , i it holds that∑
`�1,..., ¯` j

j∈�(k)

I(q`j � k)�
∑

`�1,..., ¯` j
j∈�(k)

y`k j � nk � ñk .

Thus, (F.1d) is satisfied for all k ∈ {1, . . . ,K}. Fix k ∈ {1, . . . ,K}.
If k , i, it directly follows from the definition of w̃ that

w̃k ≤ wk . Moreover, it follows from the choice of (`′, j′) that
w̃i � wi . Thus, w̃k ≤ wk for all k ∈ {1, . . . ,K}. Fix j ∈ {1, . . . ,M}
and ` ∈ {1, . . . , ¯` j} and suppose that c`j < w̃k for some k ∈
�( j). Then, c`j < wk and (2e) implies that f `k j � 1. It then fol-

lows from (2d) that

∑
k′∈�( j) y`k′ j � 1. The definition of q then

implies that q`j ∈�( j). Since the choice of j ∈ {1, . . . ,M} and
` ∈ {1, . . . , ¯` j} was arbitrary, constraint (F.1c) is satisfied. We

have thus constructed a solution (w̃ , ñ , q , c) feasible in (F.1)

such that w̃i � wi . Thus, the optimal objective value of (F.1) is

lower bounded by the optimal objective value of (2).

Suppose that there exists a solution (w̄ , n̄ , q̄ , c̄) feasible
in (F.1) and such that w̄i > wi . Once we reach a contradiction,

the proof will be complete. To this end, let

(`′, j′) ∈ {(`, j) ∈�2

: q̄`j � i and c̄`j � w̄i , j ∈�(i), ` ∈ {1, . . . , ¯` j}}.
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Note that by construction, the set above is never empty and

therefore the pair (`′, j′) is well defined. For j ∈ {1, . . . ,M},
k ∈�( j), ` ∈ {1, . . . , ¯` j}, define

ȳ`k j :�

{
I(q̄`j � i and j , j′ and ` , `′) if k � i ,
I(q̄`j � k) else,

and
¯f `k j :�I(c̄`j < w̄k). Also, let ¯̄n :� n̄ − ei . We now show that

(w̄ , ¯̄n , ȳ , ¯f , c̄) is feasible in (2). It follows from n̄ ∈ � ∩�K
that

¯̄n + ei ∈ � ∩�K
. Therefore, constraints (2g)–(2i) are satisfied.

Also, it holds that∑
k∈�( j)

ȳ`k j ≤
∑

k∈�( j)
I(q̄`j � k) ≤ 1,

where the first and second inequalities follow from the defi-

nition of ȳ and the feasibility of q̄ in (F.1), respectively. Thus,

constraint (2b) is satisfied. Constraint (2d) is trivially satisfied

if
¯f `k j � 0. If

¯f `k j � 1, then by definition it holds that c̄`j < w̄k ,

and (F.1c) implies that q̄`j ∈ �( j)—i.e., ∃ k′ ∈ �( j) such that

ȳ`k′ j � 1 and constraint (2d) is satisfied in this case also. More-

over, by definition of ȳ`i j and
¯̄n, it holds that∑

`�1,..., ¯` j
j∈�(i)

ȳ`i j �
∑

`�1,..., ¯` j
j∈�(i)

I(q̄`j � i and j , j′ and ` , `′)� n̄i − 1 � ¯̄ni ,

and for k , i, it holds that∑
`�1,..., ¯` j

j∈�(k)

ȳ`k j �
∑

`�1,..., ¯` j
j∈�(k)

I(q̄`j � k)� n̄k �
¯̄nk .

Thus, (2c) holds true. If
¯f `k j � 0, then it follows from the defini-

tion of
¯f that w̄k ≤ c̄`j , and constraint (2e) holds true. If

¯f `k j � 1,

then constraint (2e) is trivially satisfied since
¯ζ constitutes a

valid upper bound on w̄k by construction. Finally, it follows

from the definition of w̄k that

w̄k � max

`∈{1,..., ¯` j }
j∈�(k)

c̄`j I(q̄`j � k)

≥ max

`∈{1,..., ¯` j }
j∈�(k)

c̄`j ȳ`k j

≥ max

`∈{1,..., ¯` j }
j∈�(k)

{
c̄`j − ¯ζ(1− ȳ`k j)

}
≥ c̄`j − ¯ζ(1− ȳ`k j) ∀ ` ∈ {1, . . . , ¯` j}, j ∈ {1, . . . ,M},

where the first equality and first inequality follow from the

definitions of w̄k and ȳ`k j , respectively, and where the second

inequality follows from the definition of
¯ζ. Therefore, con-

straint (2f) holds true. We have thus constructed a feasible

solution (w̄ , ¯̄n , ȳ , ¯f , c̄) in (2) with an objective value w̄i > wi .

This contradicts optimality of (w , n , y , f , c) in (2), and the

proof is complete. �

Proof of Proposition 5. Fix n ∈ � ∩ �K
and consider an

instance of problem (1) in which the queue population uncer-

tainty set is given by the singleton {n}. Let WK be the optimal

value of this instance. Since the choice of n ∈ � ∩�K
is arbi-

trary, it suffices to show that the optimal value of this instance

is equal to hI(n).

Let (n , x , σ) be optimal in the new instance of problem (1)

and let m j be the number of customers served by the jth
server by the clearing time WK , for j � 1, . . . ,K, under this

solution. These numbers satisfy the following property:

K∑
k� j

mk ≤
K∑

k� j
nk , j � 1, . . . ,K, (F.7)

since the servers j, . . . ,K, being eligible to serve customers

of classes j, . . . ,K, cannot serve more than the population of

these classes.

By the clearing time definition, at WK some server has

to start serving the nKth K-customer; let that server be J.
Consider now m̄ ∈ �K

such that

m̄ j :� m j + 1, j , J, and m̄ J :� m J .

Wewill show that (m̄ ,WK) ∈ �I(n), which will yield that WK ≤
hI(n). Clearly, m̄ ∈�K

. For j > J, we have that (F.7) is satisfied

with strict inequality—i.e.,

∑K
k� j mk <

∑K
k� j nk . Otherwise, the

servers j, . . . ,K, being eligible to serve customers of classes

j, . . . ,K, serve the entire population of these classes, a contra-

diction since server J serves one K-customer at WK . This then

implies

K∑
k� j

m̄k �

K∑
k� j

mk +K − j + 1 ≤
K∑

k� j
nk +K − j.

For j ≤ J, we use (F.7) to obtain

K∑
k� j

mk �

K∑
k� j

mk +K − j ≤
K∑

k� j
nk +K − j.

By Lemma 1, we can assume that service times take their

worst-case values. Thus, the `th customer served by the j
server starts receiving service at `/µ j + Γ

�
j

√
`. Consequently,

and by the definition of WK and m, we get that

WK �
m J

µ J
+Γ�j

√
m J �

m̄ J

µ J
+Γ�j

√
m̄ J ;

WK ≤
m j + 1

µ J
+Γ�j

√
m j + 1 �

m̄ J

µ J
+Γ�j

√
m̄ J , j , J.

To derive a contradiction and complete the proof, we

assume that hI(n) > WK . Then, ∃ (m̂ , ŵ) ∈ �I(n) such that

ŵ >WK . Note that for all j � 1, . . . ,K, we have that

m j

µ j
+Γ�j

√
m j ≤WK < ŵ ≤

m̂ j

µ j
+Γ�j

√
m̂ j ,

where the first inequality follows from the definition of m
and the last by (m̂ , ŵ) ∈ �I(n). Consequently, m j < m̂ j for all

j � 1, . . . ,K.

Let I be the minimum index so that queues I , . . . ,K have

cleared by WK . Then, we can select a feasible solution (n , x , σ)
that still attains the worst-case value WK so that (F.7) is satis-

fiedwith equality for j � I—i.e.,

∑K
k�I mk �

∑K
k�I nk . To see this,

suppose that we have strict inequality. Since I , . . . ,K have

cleared by WK , then it must be that a server r ∈ {1, . . . , I − 1}
served a customer from class I , . . . ,K. Without loss, we can

select the priority σ so that server r serves an (I−1)-customer

instead—such a customer is guaranteed to wait, since queue
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I − 1 did not clear. By this change in assignments of cus-

tomers to servers, the clearing time for queues I , . . . ,K can

only strictly increase, leading to a contradiction of worst-case

optimality of WK , or remain the same, preserving worst-case

optimality. By applying this argument recursively, we get the

desired m. Then, we get a contradiction as

K∑
k�I

nk +K − I ≥
K∑

k�I
m̂k [by (m̂ , ŵ) ∈ �I(n)]

≥
K∑

k�I
(mk + 1) [by m̂ j > m j]

�

K∑
k�I

nk +K − I + 1

[
by

K∑
k�I

mk �

K∑
k�I

nk

]
. �

Proof of Proposition 6. For any n ∈ � and (m ,W) ∈ �(n), let
s �
√

m. Then, it can be readily seen that m, s, n, and W are

feasible for problem (4). Thus,

ŴK ≥max{h(n): n ∈ � }.

Conversely, for any m, s, n, and W feasible for problem (4),

we have that n ∈ � and

W ≤
m j

µ j
+Γ�j s j ≤

m j

µ j
+Γ�j

√
m j and

K∑
k� j

mk ≤
K∑

k� j
nk +K − j, j � 1, . . . ,K.

That is, (m ,W) ∈ �(n) and thus ŴK ≤max{h(n): n ∈ � }, com-

pleting the proof. �

Proof of Proposition 7(i). Consider any n ∈ �K
.

The first inequality follows directly from the fact that

�I(n)� �(n) ∩ (�K ×�) ⊂ �(n).
For the second inequality, let (m̄ , ¯W) ∈ �(n) be optimal

for the maximization problem in the definition of h(n)—i.e.,

h(n) � ¯W . Then, it suffices to show that (bm̄c , ¯W − χ) ∈ �I(n),
since then by the definition of hI(n), we would have hI(n) ≥
¯W − χ � h(n) − χ. Clearly, bm̄c ∈ �, and for any j � 1, . . . ,K,

we have that

K∑
k� j
bm̄kc ≤

K∑
k� j

m̄k ≤
K∑

k� j
nk +K − j,

where the second inequality follows from (m̄ , ¯W) ∈ �(n).
Finally, note that for any j � 1, . . . ,K,

¯W − χ ≤
m̄ j

µ j
+Γ�j

√
m̄ j − χ [by (m̄ , ¯W) ∈ �(n)]

≤
bm̄ jc + 1

µ j
+Γ�j

√
bm̄ jc + 1− χ

≤
bm̄ jc + 1

µ j
+Γ�j

√
bm̄ jc +Γ�j − χ [by

√
x + 1 ≤

√
x + 1]

≤
bm̄ jc
µ j

+Γ�j

√
bm̄ jc

[
by

1

µ j
+Γ�j ≤ χ

]
. �

Proof of Proposition 7(ii). Consider any x , y ∈�K
with x ≤ y.

Let (m̄ , ¯W) ∈ �I(x) be optimal for the maximization problem

in the definition of hI(x)—i.e., hI(x) � ¯W . Then, m̄ ∈ �K
, and

for all j � 1, . . . ,K, we have that

¯W ≤
m̄ j

µ j
+Γ�j

√
m̄ j and

K∑
k� j

m̄k ≤
K∑

k� j
xk +K − j ≤

K∑
k� j

yk +K − j.

Hence, (m̄ , ¯W) ∈ �I(y) as well, and by the definition of hI(y),
we have that hI(y) ≥ ¯W � hI(x). �
Proof of Proposition 7(iii). Consider any n ∈�K

. Let (m̄ , ¯W) ∈
�I(n + e) be optimal for the maximization problem in the

definition of hI(n + e)—i.e., hI(n + e) � ¯W . We consider the

following two cases.

Case 1: m̄ j ≥ 1 for all j � 1, . . . ,K. It suffices to show that

(m̄−e, ¯W −χ) ∈ �I(n), since then by the definition of hI(n)we

would have that hI(n) ≥ ¯W − χ � hI(n + e) − χ. Since (m̄ , ¯W) ∈
�(n + e), we get that m̄ ∈ �⇒ (m̄ − e) ∈ �, and for any j �
1, . . . ,K, we have that

K∑
k� j
(m̄k − 1) ≤

K∑
k� j
(nk + 1− 1)+K − j �

K∑
k� j

nk +K − j.

Note also that for any j � 1, . . . ,K,

¯W − χ ≤
m̄ j

µ j
+Γ�j

√
m̄ j − χ [by (m̄ , ¯W) ∈ �(n + e)]

�
m̄ j − 1

µ j
+Γ�j

√
m̄ j − 1− χ+

1

µ j
+Γ�j (

√
m̄ j −
√

m̄ j − 1)

≤
m̄ j − 1

µ j
+Γ�j

√
m̄ j − 1− χ+

1

µ j
+Γ�j

[by
√

x −
√

x − 1 ≤ 1]

≤
m̄ j − 1

µ j
+Γ�j

√
m̄ j − 1.

[
by

1

µ j
+Γ�j ≤ χ

]
Case 2: m̄ J � 0 for some 1 ≤ J ≤ K. Then, we get

hI(n + e)� ¯W ≤
m̄ J

µ J
+Γ�J

√
m̄ J � 0 ≤ hI(n)+ χ. �

Proof of Proposition 8. Recall that in a hierarchical service

system under CP, a customer from any given class k ∈
{1, . . . ,K} will only be serviced by a server j < k if the server

completion time coincides with a moment when all queues

1 through k − 1 are empty. Observe that y
1
� c

1
→ ā

1
corre-

sponds to the set of times when server 1 becomes available

to serve 2-customers. Fix k ∈ {2, . . . , i − 1}. Suppose that yk−1

denotes the set of times when any of the servers 1 through

k − 1 becomes available to serve k-customers—i.e., the times

when any server j ∈ {1, . . . , k − 1} completes a job and the

queues j through k − 1 are all empty. Then, the quantity c̄k :�

(yk−1
⊕ ck) represents the times when any of the servers 1

through k becomes available to serve k-customers. Since

these are the only servers eligible to service k-customers, the

quantity c̄k corresponds to the set of candidate k-customer

service times. Accordingly, s t(āk , c̄k) corresponds to the num-

ber of k-customers waiting at time c̄ t
k—i.e., the tth time an eli-

gible server becomes available to service k-customers. Under

a CP discipline, servers 1 through k are available to serve

(k + 1)-customers at time c̄ t
k if and only if s t(āk , c̄k)� 0. Thus,
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yk corresponds to the set of times when any of the servers 1

though k becomes available to serve (k+1)-customers. There-

fore, the quantity c̄i represents the stream of candidate

i-customer service times. Since all i-customers have arrived

at time 0, they will all be immediately serviced each time any

of the servers 1 through i becomes available. Therefore, the

nith i-customer will be serviced at time c̄ni
i , which concludes

the proof. �

Proof of Proposition 9(i). Let
¯` and ˜` denote the lengths of c

and c̃, respectively. Also let m̄ denote the length of y. Since
c̃ ≥ c, it follows that

˜` ≤ ¯`. Suppose first that ¯` � ˜`. If ˜` � 0, the

claim follows immediately. Suppose instead that
¯` � ˜` > 0.

Then, (y ⊕ c̃) and (y ⊕ c) have identical lengths and it suffices

to perform an element by element comparison of the two

sequences. Fix ν ∈ {1, 2, . . . , ¯` + m̄}. Then,

(y ⊕ c̃)ν �
{

y ˜λ
for some

˜λ ∈ {1, . . . , ν}, or
c̃ ˜λ′

for some
˜λ′ ∈ {1, . . . , ν}.

Similarly,

(y ⊕ c)ν �
{

yλ for some λ ∈ {1, . . . , ν}, or
cλ′ for some λ′ ∈ {1, . . . , ν}.

We proceed by contradiction for each possible case. Suppose

that (y ⊕ c̃)ν < (y ⊕ c)ν .
• If (y ⊕ c̃)ν � y ˜λ

, then by definition of the ⊕ operator it

follows that

c̃κ ≤ y ˜λ κ � 1, 2, . . . , ν − ˜λ, and (F.8a)

c̃κ ≥ y ˜λ κ � ν − ˜λ+ 1, . . . , ¯`. (F.8b)

—If (y ⊕ c)ν � yλ , then y ˜λ < yλ and therefore
˜λ < λ.

Moreover,

cκ ≤ yλ κ � 1, 2, . . . , ν − λ, and (F.9a)

cκ ≥ yλ κ � ν − λ+ 1, . . . , ¯`. (F.9b)

Since
˜λ < λ ≤ ν, it follows that c̃ν− ˜λ ≥ c̃ν−λ , and thus

c̃ν−λ ≤ c̃ν− ˜λ ≤ y ˜λ < yλ ≤ cν− ˜λ ,

where the second and last inequalities follow from (F.8a)with

κ � ν − ˜λ and (F.9b) with κ � ν − ˜λ, respectively. The last

sequence of inequalities constitutes a contradiction.

—If (y ⊕ c)ν � cλ′ , then y ˜λ < cλ′ . Moreover,

yκ ≤ cλ
′
κ � 1, 2, . . . , ν − λ′, and

yκ ≥ cλ
′
κ � ν − λ′ + 1, . . . , m̄.

The inequalities above imply that
˜λ ∈ {1, 2, . . . ν − λ′}, so that

˜λ ≤ ν − λ′, or equivalently ν − ˜λ ≥ λ′. Therefore,

cλ
′
> y ˜λ ≥ c̃ν− ˜λ ≥ c̃λ

′
,

where the second inequality above follows from (F.8a) with

κ � ν − ˜λ. The last sequence of inequalities contradicts our

assumption that c̃ ≥ c.
We conclude that if

˜` � ¯` and (y ⊕ c̃)ν � y ˜λ
, then (y ⊕ c̃)ν ≥

(y ⊕ c)ν .

• The proof for the casewhen (y⊕ c̃)ν � c̃ ˜λ′
mirrors exactly

the case above and can thus be omitted.

If
˜` < ¯`, the same proof carries through unchanged by

appending
¯`− ˜` elements equal to +∞ at the end of c̃ so as to

equalize sequence lengths.We conclude that y⊕ c̃ ≥ y⊕ c. �

Before proceeding with the proof of Propositions 9(ii) and

(iii), we provide a nonrecursive expression for the elements

of the sequence s(a , c) defined in (F.4). For any given τ ∈
{1, . . . , ¯`}, it follows from (F.4) that

τ∑
t�1

s t(a , c)�
τ∑

t�1

[s t−1(a , c) − 1]+ + z t(a , c) − z t−1(a , c)

� zτ(a , c)+
τ−1∑
t�0

[s t(a , c) − 1]+

� zτ(a , c)+
τ−1∑
t�1

[s t(a , c) − 1]+ [since s0(a , c)� 0]

� zτ(a , c)+
τ−1∑
t�1

(s t(a , c) − 1)+
τ−1∑
t�1

I(s t(a , c)� 0)

� zτ(a , c) − τ+ 1+

τ−1∑
t�1

s t(a , c)+
τ−1∑
t�1

I(s t(a , c)� 0),

which yields

sτ(a , c)� zτ(a , c) −
[
(τ− 1) −

τ−1∑
t�1

I(s t(a , c)� 0)
]

∀ τ ∈ {1, . . . , ¯`}. (F.10)

Equation (F.10) can be interpreted as follows: the number of

people waiting to be served at time cτ under c is equal to

the difference between the total number of people that have

arrived by time cτ under a less the total number of people

that have been served prior to time cτ .

Proof of Proposition 9(ii). Let
¯` and ˜` denote the lengths of

c and c̃, respectively. Let q̃ :� c̃→ a � {q̃m}m̃m�1
and q :� c→ a �

{qm}m̄m�1
. Since c̃ ≥ c, it follows that

˜` ≤ ¯`. Suppose first that

¯` � ˜`. If ˜` � 0, then m̃ � 0 and the claim follows immediately.

Suppose
¯` � ˜` > 0. We begin by showing that m̃ ≤ m̄ and then

demonstrate that q̃m ≥ qm
for all m ∈ {1, . . . , m̃}.

• If m̃ �0, the claim follows directly. Suppose m̃ > 0 and let

τ̃ :� max{t ∈ {0, . . . , ¯`}: s t(a , c̃)� 0}.

Then, τ̃ ≥ 1, and it follows from the definition of m̃ that

m̃ − 1 �

τ̃−1∑
t�1

I(s t(a , c̃)� 0)

� s τ̃(a , c̃) − z τ̃(a , c̃)+ τ̃− 1 [from (F.10) since τ̃ ≥ 1]
� τ̃− 1− z τ̃(a , c̃) [since s τ̃(a , c̃)� 0]
≤ s τ̃(a , c)+ τ̃− 1− z τ̃(a , c)
[since z τ̃(a , c̃) ≥ z τ̃(a , c) and s τ̃(a , c) ≥ 0]

�

τ̃−1∑
t�1

I(s t(a , c)� 0).

There are two possible cases depending on the sign of s τ̃(a , c).
If s τ̃(a , c)� 0, it follows from the above that

I(s τ̃(a , c)� 0)+
τ̃−1∑
t�1

I(s t(a , c)� 0) ≥ m̃.
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If s τ̃(a , c) > 0, the inequality above is strict and the claim

follows. In both cases, the sequence s(a , c) has at least m̃ zero

elements. We conclude that m̄ ≥ m̃.

• We now proceed by contradiction to show that q̃m ≥ qm

for all m ∈ {1, . . . , m̃}. Suppose that there exists t′ ∈ {1, . . . , m̃}
such that q̃ t′ < q t′

, while q̃ t ≥ q t
for all t ∈ {1, . . . , t′−1}. Then,

q̃ t′
� c̃ τ̃ for some τ̃ ≥ t′, and

q t′
� cτ for some τ ≥ t′.

Therefore, c̃ τ̃ < cτ , from which it must hold that τ̃ < τ. Other-

wise, if τ̃ ≥ τ, then c̃ τ̃ ≥ c̃τ ≥ cτ , where the second inequality

follows from the premise that c̃ ≥ c, yielding a contradiction.

From the definition of τ̃ and τ, it follows that

τ−1∑
t�1

I(s t(a , c)� 0)� t′ − 1 and

(F.11)

τ̃−1∑
t�1

I(s t(a , c̃)� 0)� t′ − 1.

Moreover, sτ(a , c)� s τ̃(a , c̃)� 0. Then, (F.10) implies that

zτ(a , c)� τ− t′ and z τ̃(a , c̃)� τ̃− t′. (F.12)

Let τ′ :� max{t: c t ≤ c̃ τ̃}. Then, it must hold that τ′ ≥ τ̃. Oth-

erwise, if τ′ < τ̃, then from the definition of τ′, cτ′ ≤ c̃ τ̃ < c τ̃ ,
which contradicts the premise that c̃ ≥ c. Moreover, it must

hold that τ′ < τ. Otherwise, if τ′ ≥ τ, then c̃ τ̃ ≥ cτ′ ≥ cτ , a con-
tradiction. In addition, it follows from cτ′ ≤ c̃ τ̃ and (F.12) that

zτ
′(a , c) ≤ z τ̃(a , c̃)� τ̃− t′. (F.13)

From the nonnegativity of sτ′(a , c), it follows that

0 ≤ sτ
′(a , c)

� zτ
′(a , c) − (τ′ − 1)+

τ′−1∑
t�1

I(s t(a , c)� 0) [by definition]

≤ zτ
′(a , c) − (τ′ − 1)+

τ−1∑
t�1

I(s t(a , c)� 0) [τ′ < τ]

≤ τ̃− t′ − τ′ + 1+

τ−1∑
t�1

I(s t(a , c)� 0) [from (F.13)]

� τ̃− t′ − τ′ + 1+ t′ − 1 [from (??)]
� τ̃− τ′

≤ 0 [from τ′ ≥ τ̃].

It thus follows that the sequence of inequalities above must

hold with equality. In particular, we obtain

τ′−1∑
t�1

I(s t(a , c)� 0)�
τ−1∑
t�1

I(s t(a , c)� 0). (F.14)

Moreover, sτ′(a , c)� 0, which yields

τ′−1∑
t�1

I(s t(a , c)� 0) <
τ′∑

t�1

I(s t(a , c)� 0) ≤
τ−1∑
t�1

I(s t(a , c)� 0)

and contradicts (F.14).

Since m̃ ≤ m̄ and qm ≤ q̃m
for all m ∈ {1, . . . , m̃}, it fol-

lows that q ≤ q̃, which concludes the proof for the case when

˜` � ¯`. If ˜` < ¯`, the same proof carries through unchanged by

appending
¯`− ˜` elements equal to +∞ at the end of c̃ so as to

equalize sequence lengths. �

Proof of Proposition 9(iii). This proof parallels the proof of

Proposition 9(ii) and is omitted. �

Proof of Proposition 10. Consider an HMCMS system un-

der no arrivals that operates under FCFS, and let c be the

servers’ completion times. Let (y , n , f ) be an optimal solution

to problem (3). We will show that the assignments y can be

taken to be compatible with class priority without loss. This

will imply that WK ≤WCP

K for this system. Note also that since

any allocation that is compatible with CP is also compatible

with FCFS—under an appropriately constructed σ, as in the

proof of Theorem 1—we have that WK ≥ WCP

K . These two

results will yield that WK � WCP

K .

To show that the assignments y can be taken to be com-

patible with class priority without loss, suppose that there

exists an assignment implied by y that is not compatible with

CP. Let τ be the largest time at which such an assignment

was made. In particular, at time τ, server j became available

and served a k-customer, while an i-customer was waiting,

for j ≤ i < k. We denote the number of ν-customers waiting

at the system at τ+—i.e., immediately after the jth server

started serving the k-customer—with mν , ν � 1, . . . ,K. Note

that this implies that mi > 0. Such an assignment is not com-

patible with CP indeed. All assignments at times t > τ are

compatible with CP, by our choice of τ.
To show our claim, it suffices to prove that the Kth queue’s

clearing time would increase under the alternative (CP-

compatible) assignment at time τ where server j serves an

i-customer instead of a k-customer. Recall that WK is the

Kth queue’s clearing time under the original assignment

and let
˜WK be the corresponding time under the alternative

assignment.

Since we assumed all assignments after τ to follow CP, WK
(

˜WK) can be computed as the Kth queue’s clearing time in

case the system’s initial queue populations were m (m −
ei + ek) and server completion times were d � {c` : c` > τ}
under CP. We use the notation and results derived in

Lemma 2 and Proposition 8 to express WK (
˜WK). In particular,

consider the arrival processes

aν � {0, . . . , 0}︸     ︷︷     ︸
mν times

, ν � 1, . . . ,K;

ãν � {0, . . . , 0}︸     ︷︷     ︸
mν−I(ν�i)+I(ν�k) times

, ν � 1, . . . ,K.

The process a (ã) corresponds to initial queue populations of

m (m − ei + ek)—i.e., to the original (alternative) scenario. By

Proposition 8,

y
1
� d

1
→ a

1
, ỹ

1
� d

1
→ ã

1
;

yν � (yν−1
⊕ dν)→ aν , ỹν � ( ỹν−1

⊕ dν)→ ãν
∀ ν ∈ {2, . . . ,K − 1};

WK � (yK−1
⊕ dK)mK , ˜WK � ( ỹK−1

⊕ dK)mK .

Using the monotonicity properties derived in Proposition 8,

to show that
˜WK ≥WK , it suffices to show that ỹk ≥ yk (in a

similar fashion as in the proof of Lemma 2).

Let y
0

:�� and

hν :� yν−1
⊕ dν , ν � 1, . . . ,K.
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Using this notation and the properties of the→ operator, we

get that

yν � (yν−1
⊕ dν)→ aν � hν→ aν � {h`ν}`≥mν

, ν � 1, . . . ,K.

Note that by construction of a, ã, y and ỹ, we have that

ỹν � yν , ν � 1, . . . , i − 1. (F.15)

Combining the above, we get that

ỹi � ( ỹi−1
⊕ di)→ ãi

� (yi−1
⊕ di)→ ãi

� hi→ ãi

� {h`i }`≥mi−1

� hmi−1

i ⊕ yi .

Similarly,

ỹi+1
� ( ỹi ⊕ di+1

)→ ãi+1

� (hmi−1

i ⊕ yi ⊕ di+1
)→ ãi+1

� (hmi−1

i ⊕ hi+1
)→ ãi+1

� {(hmi−1

i ⊕ hi+1
)`}`≥mi+1

� max{hmi−1

i , hmi+1
−1

i+1
} ⊕ yi+1

.

Applying these operators iteratively yields that

ỹk−1
� max

i≤ν≤k−1

{hmν−1

ν } ⊕ yk−1
.

Finally, if we let η :� maxi≤ν≤k−1
{hmν−1

ν },

ỹk � ( ỹk−1
⊕ dk)→ ãk

� (η ⊕ yk−1
⊕ dk)→ ãk

� (η ⊕ hk)→ ãk

� {(η ⊕ hk)`}`≥mk+1

� max{η, hmk
k } ⊕ {h

`
k}`≥mk+1

≥ {h`k}`≥mk
� yk ,

and the proof is complete. �

Endnotes
1
Currently, only historical estimates of wait times aggregated across

all patients from registration to transplant are available. Such esti-

mates have little utility in practice, being agnostic to patient charac-

teristics, such as blood type and current rank in the wait list, that

heavily influence actual wait time. Nor do they offer any guidance

with respect towait time until offer of a kidney of a particular quality.

2
As we shall see, this assumption is without loss as future arrivals

do not affect existing customers under FCFS.

3
As we show in the proof of Theorem 1, formulation (2) produces

the time the last customer in the ith queue leaves the system. Since

we are interested in the time he receives service, we offset ni by one.

4
There is a well-accepted scoring system for measuring kidney qual-

ity, the kidney donor profile index, which is also used in the current

national allocation policy (see Section 5).

5
http://waittimes.alberta.ca.

6
https://www.england.nhs.uk/statistics/2013/07/19/cancer-waiting

-times-annual-report-2012-13 (July 19, 2013).

7
To streamline exposition, we assume the worst-case completion

times of all servers to be distinct. Our analysis can be readily

extended otherwise, at the cost of isolating and discussing degener-

ate cases.

8
Each candidate provides a list of human leukocyte antigens (HLA)

that would be unacceptable in a donor in the sense that he has

antibodies to such HLAs that would result in an organ rejection

by his body. The probability of a candidate having unacceptable

HLAs with a donor is less than 5% in the United States (http://www

.ustransplant.org).

9
When two candidates share the same HLA, they are said to be a

match.

10
Candidates are sensitized if they have unacceptable HLAs; see

http://www.ustransplant.org.

11
The most comprehensive study that leveraged all available UNOS

data and experimented with a series of prediction models, includ-

ing logistic regression, SVMs, boosting, CART, and Random Forests,

reported error rates that varied between 21.2% and 47% (see Kim

et al. 2015) in the context of liver accept/reject decisions.

12
UNOS introduced the KDPI as standard way of measuring kidney

quality in the early 2000 s, to leverage it in the KAS allocation policy;

see Section 6.

13
The Gift of Life Donor Program serves the eastern half of Penn-

sylvania, southern New Jersey, and Delaware.

14
The best-quality category j � 1 was picked to include the narrow

band of top-0% to top-6% kidneys so that all patients would be will-

ing to accept them, as per our model specification. Indeed, all offers

of kidneys in that category are accepted by available patients in our

training set.

15
There are other policy changes that we omit here since they

hardly impact patient waitlist dynamics, and for the sake of brevity.

For more details, see https://optn.transplant.hrsa.gov/governance/

policies.

16
UNOSNet assigns each patient an EPTS score in the range 0% to

100% that characterizes the patient’s expected survivability when

transplanted a median-quality kidney, as compared to other wait-

listed candidates. For example, an EPTS score of 20% indicates that

the patient is expected to live longer (posttransplant) than 80% of

candidates.

17
This assumption captures service perishability in kidney alloca-

tion, where unmatched kidneys are discarded, rather than preserved

waiting for a matching patient to arrive. The model dynamics can be

readily modified to capture cases where servers simply remain idle

instead.

18
To avoid degenerate cases, we assume that 1/λk −Γ�k ≥ 0 for all k.

19
In our experiments, we simulated the clearing time using the

suite of applications Java Modeling Tools (JMT) (see http://jmt

.sourceforge.net).

20
These computational experiments were run on a 2.8-GHz Intel

Core i7 processor machine with 24 GB of RAM, and all optimization

problems were solved with CPLEX 9.1.

21
We make the implicit assumption that 0-patients (i.e., those with

top 20% EPTS score) are willing to accept kidneys only from the first

server (i.e., kidneys of top quality). This is because such patients not

only have priority exclusively for top-quality kidneys, but they are

also in relatively better health (as reflected in their high EPTS score),

affording them time to wait for top-quality kidneys. Nonetheless,

relaxing this assumption is straightforward.
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