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1. Introduction
In this paper we study the problem faced by a central deci-
sion maker of allocating a set of scarce resources among
multiple self-interested parties or players. A solution that
maximizes the sum of utilities of all the players might not
be implementable, because some of the parties might con-
sider it “unfair” in the sense that such a solution is achieved
at the expense of some players. In many environments fair-
ness might be more important than optimality. The overall
objective of the paper is to study what we call “the price of
fairness,” that is, the relative system efficiency loss under
a “fair” allocation compared to the one that maximizes the
sum of player utilities.
To concretely motivate the need for our study, let us con-

sider the U.S. Federal Aviation Administration (FAA). The
FAA is responsible for an important scheduling problem:
it must generate precise schedules that determine not just
when a particular flight might take off and land, but also
what regions of U.S. airspace it might occupy over any
given interval during its duration. The FAA must produce
such a schedule for all flights and must dynamically adjust
this schedule over the course of a given day to respond
to unpredictable events, e.g., inclement weather. Such a
schedule allocates scarce resources, such as take-off and
landing “slots” at airports, in a manner that respects flight
plans. When a schedule must be recomputed due to an
unforeseen event, this translates to ground and air-holding
delays for flights. Because the estimated cost of such delays
is very high (in the 12-month period ending September
2008, 138 million system delay minutes drove an estimated
$10 billion in direct operating costs for scheduled U.S. pas-
senger airlines; see Air Transport Association 2008), the
importance of arriving at an effective schedule is apparent.

What do we mean by an effective schedule? Because
delays (either on the ground or in the air) have well-
accepted dollar values, one natural notion of “effective” is
a schedule that minimizes the total cost of delay to the air-
line industry. In fact, there is an extant body of research
devoted to formulating and solving precisely this prob-
lem (see Odoni and Bianco 1987; Bertsimas and Stock-
Patterson 1998, 2000; Lulli and Odoni 2007). While this
work points at the possibility of dramatically reducing
delay costs to the airline industry vis-à-vis current prac-
tice, the vast majority of these proposals remain unim-
plemented. The ostensible reason for this is fairness: the
notion of equity is absent from consideration in the afore-
mentioned proposals, and while some of the stakeholders
(namely, some airlines) clearly stand to gain from an imple-
mentation of these proposals, other airlines might actu-
ally lose relative to the status quo. This apparent impasse,
wherein a socially efficient solution—i.e., one that maxi-
mizes the sum of utilities of individual players—is difficult
to implement because it might be perceived as unfair to
some of the stake-holders involved, is hardly unique to the
air-traffic scheduling problem above. Indeed, issues of this
sort arise in diverse scenarios ranging from the allocation of
bandwidth in a communication network (see Bertsekas and
Gallager 1987) to the allocation of transaction costs among
portfolios when a firm executes a large trade on behalf of
multiple interested parties (see Fabozzi et al. 2007). A great
deal of thought has been invested in understanding, and
axiomatically characterizing, what might constitute a “fair”
allocation of resources. However, beyond qualitative eco-
nomic analysis and with the exception of a handful of very
special problems, there has been little work to quantita-
tively characterizing the trade-offs inherent in employing
these notions.
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This paper considers two axiomatically justified and
well-accepted notions of fairness in the context of general
resource allocation problems whose solutions impact mul-
tiple players. We formulate the qualitative question on the
price of fairness, alluded to thus far, quantitatively: We
take as our notion of socially optimal or efficient an allo-
cation that maximizes the natural utilitarian criterion (the
sum of the utilities of individual players). We then define
the price of fairness as the performance loss incurred rela-
tive to this criterion, in making allocations under either of
the following fairness criteria: max-min fairness and pro-
portional fairness. We make the following contributions in
regard to characterizing the price of fairness for general
resource allocation problems:
1. We present bounds on the price of fairness for both

max-min and proportional fairness that depend on a single
parameter—the number of players. Our bounds are oth-
erwise uniform over a broad class of resource allocation
problems, namely, problems where the set of utilities indi-
vidual players can simultaneously achieve is convex and
compact.
2. Our bounds illustrate that (a) the price of fairness as

a function of the number of players is substantially smaller
than a crude analysis might suggest, especially when the
number of players is small; and (b) the price of proportional
fairness is substantially smaller than the price of max-min
fairness, especially when the number of players is large.
3. We show that our bounds on the price of fairness are

tight; we do so by evaluating the price of fairness for exam-
ples of a well-studied bandwidth allocation problem that
arises in communication networks. These examples are by
no means pathological. Furthermore, we show that the class
of resource allocation problems addressed by our bounds
is, in a certain sense, the broadest class of problems we
may hope to consider; the price of fairness for problems
outside this class can be arbitrarily large.
To the best of our knowledge, the analysis undertaken

here is the first of its kind. Our hope is that this anal-
ysis contributes to elucidating the precise trade-offs one
must make in allocating resources according to egalitarian
criteria.

1.1. Relevant Literature

Applications. The importance of fairness issues in
resource allocation problems has been recognized and well
studied in a variety of settings. These range from engineer-
ing applications in communication networks (Bertsekas and
Gallager 1987; Kelly et al. 1997; Luo et al. 2004; Luss
1999; Ogryczak et al. 2005; Radunovic and Le Boudec
2002, 2004), the Air Traffic Flow Management problem
(Bertsimas and Gupta 2011, Bertsimas et al. 2009a, Rios
and Ross 2007, Soomer and Koole 2009, Vossen et al.
2003), to financial applications and the multiaccount opti-
mization problem (Bertsimas et al. 2009b, Khodadadi et al.
2006, O’Cinneide et al. 2006). In the communication net-
work setting, where one must allocate bandwidth to flows

in a network, a scheme that chooses to maximize through-
put without regard to treating individual flows equitably is
regarded as fully “efficient,” and several studies address the
efficiency loss due to the incorporation of fairness consid-
erations. These studies are typically numerical and focus
on providing qualitative insights via studies of specific
network topologies. Bonald and Massoulié (2001) intro-
duce a number of network configurations where it is possi-
ble to derive performance results for proportional fairness,
yet use simulation to assess max-min fairness. Radunovic
and Le Boudec (2004) show that max-min fairness results
in severe inefficiency for wireless networks in a limit-
ing regime, and they use numerical studies to validate
that observation for practical situations. The impact of the
fairness criteria utilized on the price of fairness has also
received some attention: Mo and Walrand (2000) deal with
this issue by studying a one-parameter family of objectives
that include both max-min fairness and proportional fair-
ness as special cases. Our results imply a tight theoretical
analysis of the loss in efficiency inherent in fair allocations
of bandwidth in a communication network.

Worst-Case Analysis and Approximation Algorithms.
In recent work, Chakrabarty et al. (2009) seek to charac-
terize what we refer to as the price of fairness for a spe-
cific class of resource allocation problems. In particular,
that work shows that when the set of achievable “utilities”
is a polymatroid, all Pareto resource allocations are effi-
cient. This is, unfortunately, a somewhat restrictive condi-
tion, and a general class of resource allocation problems
that satisfy this condition is not known. In a similar vein,
Butler and Williams (2002) show that the price of fair-
ness is zero for a specialized facility location problem.
Several pieces of work in the approximation algorithms
literature have considered computing “approximately” fair
solutions. Such work is motivated either by problems where
fair solutions are difficult to compute, or else by the desire
to simultaneously optimize several different objectives. For
instance, Kleinberg et al. (1999) focus on the problem of
approximating the max-min fair solution for routing and
load balancing problems where the exact fair solution is
hard to calculate. On the simultaneous optimization front,
Kumar and Kleinberg (2000) discuss the existence of global
c-approximation vectors (which are coordinate wise within
a multiplicative factor of c of every other allocation) for
bandwidth allocation, scheduling and facility location prob-
lems; the relevant value of c in each case is a function
of problem primitives. The results of Goel et al. (2000)
and Goel and Meyerson (2006) establish the existence of
resource allocations that are simultaneously within a mul-
tiplicative factor of � for essentially all “fair” allocation
criteria for general resource allocation problems of the type
studied here; the authors show that � is logarithmic in the
price of max-min fairness.
Commonly used notions of fairness, such as max-min

fairness and proportional fairness, arise from an appeal-
ing (and long-standing) axiomatic characterization of what
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it means to be fair, and an analogous characterization for
“approximately” fair solutions is not available. It is thus dif-
ficult to judge what fairness properties (if any) such approx-
imately fair solutions inherit. As an example, it is easily
shown that by averaging the proportional fairness, max-min
fairness, and utilitarian solutions to a resource allocation
problem, one arrives at an allocation that is simultaneously
within a multiplicative factor of 3 of the optimal solution
for each of those criteria for the class of resource allocation
problems we consider; such a solution would be considered
approximately fair in the aforementioned work but might
not be Pareto. Seen in this light, our work studies the trade-
offs inherent in choosing a fair allocation as opposed to an
approximation thereof.

Price of Anarchy. While in this work we assume that
the utilities of the players are known and study the inef-
ficiency that fairness constraints result in, another source
of inefficiency could be the selfish behavior of players
who do not truthfully reveal their utilities. The effect of
selfish behavior has been studied as the price of anarchy
in the literature. See Johari and Tsitsiklis (2004), Kout-
soupias and Papadimitriou (1999), Papadimitriou (2001),
Perakis (2007), and Roughgarden and Tardos (2002) for
more details.

Economic Theory. While we defer a thorough review
of the literature in this area to §3, we mention for now
that the question of what it means to be fair has been
addressed extensively in the economics literature over the
last century. In particular, see Young (1995) and Sen and
Foster (1997) for a thorough overview of this work. Fair-
ness also plays a critical role in the selection of an appro-
priate social welfare function in welfare economics (see
Mas-Colell et al. 1995). The notions of fairness we focus
on in this work are perhaps among the most prominently
studied notions of fairness in the economics literature;
for fundamental axiomatic characterizations of proportional
and max-min fairness see Nash (1950) and Kalai and
Smorodinsky (1975), respectively.
The structure of this paper is as follows. In §2, we intro-

duce notation, focus on the socially optimal (taken as the
sum of the utilities) and the fair allocations, and define the
price of fairness. A general discussion on fairness schemes
is included in §3. The main results of the paper are pre-
sented in §4, with illustrative examples given in §5. We
conclude and point out interesting directions of future work
in §6.

2. Problem Formulation
Consider a resource allocation problem involving n players
and a central decision maker (CDM). There are some scarce
resources that need to be allocated among the players by
the CDM. According to her own preferences, each player
derives a utility that depends on the allocation picked by
the CDM. The preferences of each player are described by

a utility function, which maps a feasible allocation into a
utility level. We focus on problems where the CDM has
complete knowledge of the preferences and possible con-
straints of the players, and has absolute control of the allo-
cation decision.
To fix some notation, let X ⊂ Rm be the resource set,

i.e., the set of all feasible allocations of resources. An
element x ∈ X specifies a feasible allocation of resources
among the players (e.g., x might be the concatenation of
n k-dimensional vectors that describe the quantities of k
different resources allocated to each of n players; in this
case m = nk). Note that the resource set also incorporates
all constraints on allocations such as resource capacity con-
straints, individual limitations of the players or the CDM,
etc. With the jth player, we associate a utility function
fj � X →R+, for every j = 1� � � � � n. If the CDM picks allo-
cation x, the jth player derives a utility of fj�x�. Finally, let
U be the utility set, that is the set of all achievable utility
allocations, or distributions:

U = �u ∈Rn
+ � ∃x ∈ X� fj�x� = uj� ∀ j = 1� � � � � n	�

Example 1. As a concrete example, consider two re-
sources, denoted by A and B, being allocated between two
players, denoted by 1 and 2 (i.e., in this case n = 2). Let
xA1 and xA2 be the fractions of the available resource A
allocated to players 1 and 2, respectively; xB1 and xB2 are
defined similarly. The resource set is then

X ={

xA1xB1xA2xB2�

T ∈R4
+
∣∣xA1+xA2�1�xB1+xB2�1

}
�

with m = 4. Assume that the utility derived by each player
is equal to the square-root of the sum of the fractions of
each resource allocated to him (i.e., fj�x� =√

xAj + xBj for
j = 1�2). The utility set in this case is thus

U =
{[√

xA1 + xB1

√
xA2 + xB2

]T ∣∣x ∈ X
}

= {

u1u2�

T ∈R2
+ � u2

1 + u2
2 � 2

}
�

Returning to our general formulation, the CDM’s prob-
lem is to decide on a utility allocation among the players,
u ∈ U . A good bit of research, notably in welfare eco-
nomics, has dealt with the identification of the appropriate
criteria that the CDM needs to take into account in order
to make a decision (see Mas-Colell et al. 1995). We next
discuss the utilitarian criterion and fair criteria for such
allocations.

2.1. Utilitarian Solution

Under the classical utilitarian principle, the central decision
maker picks an allocation that maximizes the sum of the
utilities of the players. That is, the CDM decides on the
allocation by solving the problem

maximize eT u�

subject to u ∈ U�
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with variable u ∈ Rn, where e is the vector of all
ones. We denote the optimal value of this problem with
SYSTEM�U�, i.e.,

SYSTEM�U� = sup�eT u � u ∈ U	�

The resulting allocation is then the utilitarian solution.
It is referred to also as the Bentham-Edgeworth solution
in welfare economics, as the system optimum solution in
engineering applications and as the best effort solution in
telecommunications.
The utilitarian solution is a natural choice in applica-

tions where the sum of the utilities corresponds to some
measure of system efficiency. For example, consider a com-
munications network where a service provider controls the
transmission rates allocated to clients, subject to capac-
ity constraints. The service provider plays the role of the
CDM, and the clients are the players in our setting. In case
the utility that each player derives is equal to his transmis-
sion rate, the sum of the utilities corresponds to the total
throughput of the network.
On the other hand, the sum of utilities is neutral toward

potential inequalites in the utility distribution among the
players. It is therefore possible that the utilitarian solution
is achieved at the expense of some players.

2.2. Fair Solutions

Alternatively to classical utilitarianism, the central decision
maker might decide on the utility allocation incorporat-
ing fairness considerations. Depending on the nature of the
problem and her own perception about fairness, the CDM
picks a fairness scheme of her preference, that is, a set of
rules or properties (e.g., total equity, under which every
player derives exactly the same utility). The selected alloca-
tion then needs to be compatible with the fairness scheme.
To make this more precise, we model a fairness

scheme as a set of rules and a corresponding set function
� � 2R

n

+ → Rn
+, which takes a utility set as an input and

maps it into an element of the utility set. Given a utility set
U , � �U� ∈ U is then an allocation that abides to the set of
rules of the fairness scheme in consideration.
By imposing a specific fairness scheme and deciding on

a fair allocation, the sum of utilities in the system might,
and in most cases will, decrease compared to the utilitar-
ian solution. In case the sum of utilities corresponds to
an efficiency measure of the system, fairness constraints
might then impose a performance or efficiency loss. Let
FAIR�U�� � denote the sum of utilities under the fair allo-
cation imposed by a fairness scheme � , i.e.,

FAIR�U�� � = eT� �U��

We define the price of fairness, denoted by POF�U�� �,
for the problem involving the utility set U and the fairness
scheme � , to be the relative reduction in the sum of utilities

under the fair solution � �U�, compared to the utilitarian
solution, i.e.,

POF�U�� � = SYSTEM�U� −FAIR�U�� �

SYSTEM�U�
�

Note that the price of fairness is a number between 0 and 1,
because the sum of utilities under the utilitarian solution
attains its maximum value. When the sum of utilities is an
efficiency measure, values closer to 0 are preferable for the
price of fairness because the CDM can then combine high
system efficiency and fairness.
The scope of this work is to quantify the price of fairness

for a large family of problems. We first discuss fairness
schemes in the next section, review the two most promi-
nent schemes, proportional and max-min fairness, and then
present our main results.

3. Fairness Schemes
Fairness in allocation problems has been extensively stud-
ied through the years in many areas, notably in social sci-
ences, welfare economics, and engineering. A plethora of
fairness criteria have been proposed. Due to multiple (sub-
jective) interpretations of the concepts of fairness, and the
different characteristics of allocation problems, there is no
single principle that is universally accepted. Nevertheless,
there are general theories of justice and equity that fig-
ure prominently in the literature, on which most fairness
schemes are based. Moreover, there has been a body of
literature that deals with axiomatic foundations of the con-
cepts of fairness. In this section, we briefly review the most
important theories and axioms, and then focus on propor-
tional and max-min fairness, the two criteria that emerge
from the axiomatic foundations and are also widely used in
practice. For more details, see Young (1995) and Sen and
Foster (1997).
Among the most prominent, the oldest theory of jus-

tice is Aristotle’s equity principle, according to which
resources should be allocated in proportion to some pre-
existing claims, or rights to the resources that each player
has. Another theory, widely considered in economics in the
19th century, is classical utilitarianism, which dictates an
allocation of resources that maximizes the sum of utili-
ties (see §2.1). A third approach is due to Rawls (1971).
The key idea of Rawlsian justice is to give priority to the
players that are the least well off, so as to guarantee the
highest minimum utility level that every player derives.
Finally, Nash introduced the Nash standard of comparison,
which is the percentage change in a player’s utility when
he receives a small additional amount of the resources.
A transfer of resources between two players is then justi-
fied if the gainer’s utility increases by a larger percentage
than the loser’s utility decreases.
Aristotle’s equity principle is used in the majority of

cases where players have specific pre-existing claims or
rights to the resources (for example, split of profits among
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shareholders). In this work, we do not deal with such
cases; hence, the Aristotelian principle does not apply. The
utilitarian principle has been criticized (see Young 1995)
because it is not clear that it is ethically sound: in maximiz-
ing the sum of utilities, the utility of some players might be
greatly reduced in order to confer a benefit to the system.
Finally, the two schemes we will focus on are based on the
Rawlsian justice and the Nash standard, which are in line
with the common perception of equity and fairness.
In addition to using theories of justice and common per-

ception, researchers have also established sets of axioms
that a fairness scheme should ideally satisfy. The main
work in this area is within the literature of fair bargains
in economics (see Young 1995 and references therein). We
now briefly present the most well-studied set of axioms in
the case of a two-player problem (n = 2). In the axioms that
follow, we denote the utility set U and define the maximum
achievable utility of the jth player, u

j , according to

u
j = sup�uj � u ∈ U	�

We utilize the notation a � b for a, b ∈Rn to denote ai �

bi, i = 1� � � � � n. Furthermore, if g� Rn →Rn is an operator
and A ⊂Rn is a set, then g�A� = �g�x� � x ∈ A	 ⊂Rn.

Axiom 1 (Pareto Optimality). The fair solution � �U�
is Pareto optimal, that is, there does not exist an allocation
u ∈ U , such that u�� �U� and u �=� �U�.

Axiom 2 (Symmetry). If � � R2 → R2 is a permutation
operator defined by ���u1� u2�� = �u2� u1�, then the fair
allocation under the permuted system, � ���U��, is equal
to the permutation of the fair allocation under the original
system, ��� �U��. That is, � ���U�� =��� �U��.

Axiom 3 (Affine Invariance). If A� R2 →R2 is an affine
operator defined by A�u1� u2� = �A1�u1��A2�u2��, with
Ai�u� = ciu + di and ci > 0, then the fair allocation under
the affinely transformed system, � �A�U��, is equal to the
affine transformation of the fair allocation under the orig-
inal system, A�� �U��. That is, � �A�U�� = A�� �U��.

Axiom 4 (Independence of Irrelevant Alternatives).

If U and W are two utility sets such that U ⊂ W , and
� �W� ∈ U , then � �U� =� �W�.

Axiom 5 (Monotonicity). Let U and W be two util-
ity sets, under which the maximum achievable utility of
player 1 is equal, i.e., u

1 = w
1. If for every utility level

that player 1 may demand, the maximum achievable utility
that player 2 can derive simultaneously, is bigger or equal
under W , then the utility level of player 2 under the fair
allocation should also be bigger or equal under W , i.e.,
� �U�2 �� �W�2.

Pareto optimality ensures that there is no wastage. By
symmetry, the central decision maker does not differentiate
the players by their names. The affine invariance require-
ment means that the scheme is invariant to a choice of

numeraire. According to the independence of irrelevant
alternatives, preferring option A over option B is inde-
pendent of other available options. Finally, by monotonic-
ity, if for every utility level that player 1 may demand,
the maximum utility level that player 2 can simultane-
ously derive is increased, then the utility level assigned to
player 2 under the fair scheme should also be increased.
For a more detailed discussion about monotonicity, see
Kalai and Smorodinsky (1975).
The main result in this area is that, under mild assump-

tions on the utility set, there does not exist a scheme
that satisfies all axioms; see Nash (1950) and Kalai and
Smorodinsky (1975) for more details. Moreover, the unique
scheme that satisfies Axioms 1–4 is the Nash solution;
the unique scheme that satisfies Axioms 1–3 and 5 is
the Kalai-Smorodinsky solution. Proportional and max-min
fairness are direct generalizations of those schemes and are
studied next.

3.1. Proportional Fairness

Proportional fairness (PF) is the generalization of the Nash
solution for a two-player problem. The Nash solution is the
unique scheme that satisfies Axioms 1–4 and is based on
the Nash standard of comparison. Under the Nash standard,
a transfer of resources between two players is favorable and
fair if the percentage increase in the utility of one player
is larger than the percentage decrease in utility of the other
player. Proportional fairness is the generalized Nash solu-
tion for multiple players. In that setting, the fair allocation
should be such that, if compared to any other feasible allo-
cation of utilities, the aggregate proportional change is less
than or equal to 0. In mathematical terms,

n∑
j=1

uj −� PF�U�j

� PF�U�j

� 0� ∀u ∈ U�

In case U is convex, the fair allocation under proportional
fairness � PF�U� can be obtained as the (unique) optimal
solution of the problem

maximize
n∑

j=1

loguj�

subject to u ∈ U�

because the necessary and sufficient first-order optimality
condition for this problem is exactly the Nash standard of
comparison principle for n players. Moreover, note that the
proportionally fair allocation � PF�U� can also be obtained
by (equivalently) maximizing the product of the utilities
over U . This suggests that proportional fairness yields a
Pareto optimal allocation and is also scale-invariant. In par-
ticular, we use the notation � = diag��1� � � � ��n� to denote
a diagonal matrix with entries �1� � � � ��n in the diagonal.
We define the scaled utility set �U , with �j > 0 for all
j = 1� � � � � n, as

�U = ��u � u ∈ U	�



Bertsimas, Farias, and Trichakis: The Price of Fairness
22 Operations Research 59(1), pp. 17–31, © 2011 INFORMS

Then,

� PF��U� = �� PF�U�� (1)

that is, the fair allocation under the scaled utility set,
� PF��U�, is equal to the scaled fair allocation under the
original utility set, �� PF�U�.
Proportional fairness has been extensively studied and

used in the areas of telecommunications and networks,
especially after the paper of Kelly et al. (1997).

3.2. Max-Min Fairness

Max-min fairness (MMF) is a generalization of the
Rawlsian justice and the Kalai-Smorodinsky (KS) solution
in the two-player problem. The KS solution is the unique
solution that satisfies Axioms 1–3 and 5. In settings where
the maximum achievable utility levels of the two players
are equal, the KS solution corresponds to maximizing the
minimum utility the players derive simultaneously. Other-
wise, the central decision maker decides on the allocation in
the same way, but by considering a scaled, normalized sys-
tem, under which the players have equal maximum achiev-
able utility levels. In other words, under the KS solution
the players simultaneously derive the largest possible equal
fraction of their respective maximum achievable utilities.
For simplicity, for the rest of this section we deal with nor-
malized problems where the players have equal maximum
achievable utilities.
In a setting that involves more than two players, such

an allocation may not be Pareto optimal, thus indicating a
waste of resources. That can happen, for instance, in case
there exist players that can derive higher utility levels with-
out affecting the others, and their allocated resources are
not optimized. Max-min fairness generalizes the above cri-
teria to account for this potential loss of efficiency and
always yields Pareto optimal allocations.
Under max-min fairness, the CDM tries at the first step

to maximize the lowest utility level among all the players.
After ensuring that all players derive (at least) that level, the
second lowest utility level among the players is maximized,
and so on. The resulting allocation yields a distribution
of utility levels among the players that has the following
property: the distribution of the utility levels of any other
allocation that achieves a strictly higher utility for a specific
level is such that there exists a lower level of utility that has
been strictly decreased. In other words, any other allocation
can only benefit the rich at the expense of the poor (in
terms of utility).
Intuitively, max-min fairness maximizes the minimum

utility that all players derive. In situations where an efficient
allocation exists that results in equal utility for all play-
ers, MMF converges to this equitable allocation. In cases
where some players can achieve higher utility levels, with-
out depriving others of the minimum utility performance,
MMF equitably and efficiently allows them to increase their

utility in a similar fashion by maximizing a new minimum
utility level that all improving players derive.
In mathematical terms, let T � Rn → Rn be the sorting

operator, that is,

T �y� = �y�1�� � � � � y�n��� y�1� � · · ·� y�n��

where y�i� is the ith smallest element of y. We say that
a ∈ Rn is lexicographically larger than b ∈ Rn and write
symbolically a 	lex b if there exists an index k � n, such
that ai = bi� ∀ i < k, and ak > bk. Also, we write a 
lex b if
a 	lex b or a = b. The max-min fairness scheme then corre-
sponds to lexicographically maximizing T �u� over U , that
is, finding an allocation uMMF ∈ U such that its resulting
sorted utility distribution is lexicographically largest among
all sorted feasible utility distributions. We then have

T �uMMF� 
lex T �u�� ∀u ∈ U�

The existence of a max-min fair allocation is guaran-
teed under mild conditions (e.g., if U is compact), and the
Pareto optimality of the allocation follows by its construc-
tion; see Radunovic and Le Boudec (2002) for more details.
Efficient algorithms for computing an MMF allocation have
also been developed and studied in the literature. The com-
putations involve a sequential optimization procedure that
identifies the corresponding utility levels at each step. For
more details, see Ogryczak et al. (2005).
Because the max-min fairness scheme deals with nor-

malized utilities, it is also scale-invariant. Hence if � =
diag��1� � � � ��n�, with �j > 0 for all j = 1� � � � � n, then

�MMF��U� = ��MMF�U�� (2)

that is, the fair allocation under the scaled system,
�MMF��U�, is equal to the scaled fair allocation under the
original system, ��MMF�U�.
Max-min fairness was first implemented in networking

and telecommunications applications and has also initiated
a lot of research in this area (see Bertsekas and Gallager
1987, Bonald and Massoulié 2001, Luss 1999). It has many
applications in bandwidth allocation, routing and load bal-
ancing problems and, in general, resource allocation or
multiobjective optimization problems.

4. The Price of Fairness
In this section we present the main results of this paper,
namely upper bounds for the price of fairness under the
proportional and the max-min fairness schemes, which
depend only on the number of players, and their maximum
achievable utilities (in case they are not equal).
Consider a resource allocation problem faced by a central

decision maker as described in §2. We make the following
assumption:

Assumption 1. The utility set is compact and convex.
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Assumption 1 is very common in the literature of fair
bargains. Compactness follows from bounded and continu-
ous utility functions and a compact resource set. Convexity
arises in cases of a randomization mechanism that might be
employed, especially if the resources are indivisible, with
the utility levels then corresponding to the expected utilities
levels derived (see Young 1995). Furthermore, convexity
also follows in many cases where the utility functions are
concave and nondecreasing. The following proposition sug-
gests a rich family of problems that fits into this framework.

Proposition 1. Let the resource set X ⊂ Rm
+ be compact,

convex, and monotone (a set A ⊂ Rm
+ is called monotone

if �b ∈ Rm � 0 � b � a	 ⊂ A, ∀a ∈ A). Suppose the util-
ity function of the jth player is such that fj�x� = f̄j �xj�,
for all x ∈ X, with f̄j � R

mj → R, and xT = 
xT
1 xT

2 · · ·xT
n �,

where m1 +· · ·+mn = m. Moreover, f̄j is nondecreasing in
each argument, concave, bounded, and continuous over X,
and f̄j �0� = 0. Then, the resulting utility set U is compact,
convex, and monotone.

Proof. Let f � X → Rn
+ be the vector of utility func-

tions, i.e.,

f �x� = [
f̄1�x1� f̄2�x2� · · · f̄n�xn�

]T
� ∀x ∈ X�

Because X is compact, f is continuous and bounded over
X, it follows that U is compact.
To show monotonicity, let u ∈ U . Then, ∃x ∈ X, such that

f �x� = u. Consider now an allocation u′, such that 0� u′

� u. For any j , let gj��� = f̄j ��xj�, for 0� �� 1. Because
f̄j is continuous and nondecreasing, so is gj . Given also that
gj�0� = 0, gj�1� = uj and that 0 � u′

j � uj , it follows that
∃�j ∈ 
0�1�, such that gj��j� = f̄j ��jxj� = u′

j . Note that
by monotonicity of X, z = 
�1x

T
1 �2x

T
2 · · · �nx

T
n �T ∈ X. But,

f �z� = u′, which shows that u′ ∈ U and U is monotone.
To show convexity, let ũ ∈ U ; then, ∃x̃ ∈ X, such

that f �x̃� = ũ. Let � ∈ 
0�1�. By convexity of X,
�x + �1− ��x̃ ∈ X. By concavity of f̄j ,

f ��x+�1−��x̃���f �x�+�1−��f �x̃�=�u+�1−��ũ�0�

Because U is monotone, it follows that �u+ �1− ��ũ ∈ U ,
and U is convex. �

Note that, although not exhaustive, Proposition 1 shows
that a general class of problems satisfy Assumption 1. The
compactness and convexity requirements on the resource
set X are common and support a broad family of prob-
lems. The monotonicity requirement is satisfied in case of
freely disposable physical resources, i.e., when an allotted
resource can be reduced or nullified, without necessarily
affecting the rest of the allocation. Finally, the requirements
on the utility function depending only on the allocation
of each player, being concave and nondecreasing, are also
well studied in the literature (see Mas-Colell et al. 1995,
Young 1995).

Examples in the next section indicate that in the absence
of the convexity assumption, the worst-case price of fair-
ness can get arbitrarily close to 1, even for a two-player
problem.
We now provide the main results of this paper for the

case where the maximum achievable utilities of the players
are equal and for the case in which they are not.

4.1. Equal Maximum Achievable Utilities

The following theorem provides upper bounds for the price
of fairness, in case of equal maximum achievable utilities.

Theorem 1. Consider a resource allocation problem with
n players, with n � 2. Let the utility set, denoted by
U ⊂Rn

+, satisfy Assumption 1. If all players have equal
maximum achievable utilities, which are greater than 0,
(a) the price of proportional fairness is bounded by

POF�U�� PF�� 1− 2
√

n − 1
n

�

(b) the price of max-min fairness is bounded by

POF�U��MMF�� 1− 4n

�n + 1�2
�

Moreover, the bound under proportional fairness is tight if√
n ∈N, and the bound under max-min fairness is tight for

all n.

Proof. By assumption, the players have equal maximum
achievable utilities. We assume further that they are equal
to 1, i.e.,

u
j =max�uj � u ∈ U	 = 1� ∀ j = 1� � � � � n� (3)

This is without loss of generality and can be achieved sim-
ply by scaling. As a result,

0� u� e� ∀u ∈ U� (4)

Without loss of generality, we assume that U is mono-
tone. This is because all schemes we consider, namely
utilitarian, proportional, and max-min fairness yield Pareto
optimal allocations. In particular, suppose there exist allo-
cations a ∈ U and b  U , with allocation a dominating
allocation b, i.e., 0� b � a. Note that allocation b can thus
not be Pareto optimal. Then, we can equivalently assume
that b ∈ U because b cannot be selected by any of the
schemes.
Note that the monotonicity assumption and (3) also

imply that 0 ∈ U and ej ∈ U for all j = 1� � � � � n. By
Assumption 1, we also have �1/n�e ∈ U (by convexity).
(a) Proportional fairness. Let uPF ∈ U be the utility dis-

tribution under the proportionally fair solution. By defini-
tion, we have

FAIR�U�� PF� = eT� PF�U� = eT uPF� (5)
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By the first-order optimality condition (see §3.1), we have

n∑
j=1

uj − uPF
j

uPF
j

� 0� ∀u ∈ U�

Equivalently,

��PF�T u� 1� ∀u ∈ U� (6)

where

�PF
j = 1

nuPF
j

� (7)

This defines a hyperplane that supports U at uPF. Figure 1
illustrates uPF and the hyperplane in the case of a two-
dimensional example.
Because uPF ∈ U , using (4) we have that uPF

j � 1 ⇒
�PF

j � 1/n, for all j . Moreover, because ej ∈ U for all j ,
using (6) we have ��PF�T ej � 1 ⇒ �PF

j � 1. Without loss
of generality, we also assume that the elements of �PF are
ordered. To summarize, we have

1
n
� �PF

1 � · · ·� �PF
n � 1� (8)

The supporting hyperplane we identified can now be
used to bound the sum of utilities under the utilitarian solu-
tion. In particular, using (4) and (6) we get that

SYSTEM�U� =max�eT u � u ∈ U	

�max�eT u � 0� u� e� ��PF�T u� 1	� (9)

where the right-hand side is the optimal value of the linear
relaxation of the well-studied knapsack problem, a version
of which we review next.

Figure 1. An example of a two-dimensional utility set,
with the points of interest and the associated
supporting hyperplanes used in the proof of
Theorem 1.
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Let w ∈ Rn and B ∈ R be such that 0 � w1 � · · · �
wn � B, eT w � 1, 1/n � B � 1. Then, one can show (see
Bertsimas and Tsitsiklis 1997) that the linear program

maximize eT y�

subject to wT y � B

0� y � e

(10)

has an optimal value equal to l�w� B� + ��w� B�, where

l�w�B�=max
{

i

∣∣∣∣
i∑

j=1

wj �B� i�n−1
}

∈ �1�����n−1	 (11)

��w�B�= B−∑l�w�B�
j=1 wj

wl�w�B�+1

∈ 
0�1�� (12)

Using this observation, we can rewrite (9) as

SYSTEM�U�� l��PF�1� + ���PF�1�� (13)

We can now provide an upper bound to the price of
fairness:

POF�U�� PF� = SYSTEM�U�−FAIR�U�� PF�

SYSTEM�U�

= 1− FAIR�U�� PF�

SYSTEM�U�

= 1−
∑n

j=1U
PF
j

SYSTEM�U�
(from (5))

= 1−
∑n

j=1�1/�n�PF
j ��

SYSTEM�U�
(from (7))

� 1−
∑n

j=1�1/�n�PF
j ��

l��PF�1�+���PF�1�
� (from (13))

Let g� Rn →R be defined as

g��� =
∑n

j=1�1/�n�j��

l���1� + ����1�
�

Using this definition and (8), the bound can now be
rewritten as

POF�U�� PF�� 1− g��PF�� 1− inf
1/n��1� ···��n�1

g����

and it suffices to show that

F1 = inf
1/n��1� ···��n�1

g����
2
√

n − 1
n

�

Let p� R2 →R be defined as

p�y� = �y1/y2� + n − y1
ny1

�
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and

F2 = inf
y1y2�1
1�y1�n
1/n�y2�1

p�y��

We first show that F1 � F2. To do that, it is sufficient to
show that for any � such that 1/n � �1 � · · · � �n � 1,
there exists a y ∈R2, such that y1y2 � 1, 1� y1 � n, 1/n�

y2 � 1, and g���� p�y�. Let y1 = l���1�+����1�. By the
ranges of l���1� and ����1�, it follows that 1 � y1 � n.
Moreover, let

y2 = y1
�1/�1� + · · · + �1/�l���1�� + �����1�/�l���1�+1�

�

Because �j � 1/n, we get

y2 = y1
�1/�1� + · · · + �1/�l���1�� + �����1�/�l���1�+1�

�
y1

n�l���1� + ����1��
= 1

n
�

A similar argument utilizing that �j � 1 shows that y2 � 1.
To show that y1y2 � 1, consider the following convex opti-
mization problem:

minimize
1
v1

+ · · · + 1
vl���1�

+ ����1�
vl���1�+1

�

subject to v1 + · · · + vl���1� + ����1�vl���1�+1 = 1

v � 0�

with variable v ∈ Rl���1�+1. Note that � is feasible for this
problem, since by (12) we have

�1 + · · · + �l���1� + ����1��l���1�+1 = 1�

We show that

v̄ = 1
l���1� + ����1�

e

is an optimal solution. Feasibility is immediate, and
the necessary and sufficient first-order optimality condi-
tions are also satisfied: Noting that v̄1 = v̄j for all j =
1� � � � � l���1� + 1, we have that for any v � 0, with v1 +
· · · + vl���1� + ����1�vl���1�+1 = 1,

l���1�∑
j=1

�v̄j − vj�

v̄2
j

+ ����1��v̄l���1�+1 − vl���1�+1�

v̄2
l���1�+1

= 1
v̄2
1

��v̄1 + · · · + v̄l���1� + ����1�v̄l���1�+1�

− �v1 + · · · + vl���1� + ����1�vl���1�+1�� = 0�

Because � is feasible and v̄ optimal, it follows that

y1
y2

= 1
�1

+···+ 1
�l���1�

+ ����1�
�l���1�+1

�
1
v̄1

+···+ 1
v̄l���1�

+ ����1�
v̄l���1�+1

= l���1�+����1�
v̄1

=�l���1�+����1��2=y2
1 �

Finally,

g��� =
∑n

j=1�1/n�j�

l���1� + ����1�

= ��1/�1� + · · · + �1/�l���1�� + �����1�/�l���1�+1�

+�1− ����1�/�l���1�+1� + �1/�l���1�+2�

+ · · · + �1/�n�� · �n�l���1� + ����1���−1

= ��y1/y2� + �1− ����1�/�l���1�+1� + �1/�l���1�+2�

+ · · · + �1/�n�� · �ny1�
−1

�
�y1/y2� + n − l���1� − ����1�

ny1
(from (8))

�
�y1/y2� + n − y1

ny1
= p�y��

We now evaluate F2:

F2 = inf
y1y2�1
1�y1�n
1/n�y2�1

�y1/y2� + n − y1
ny1

= inf
y1y2�1
1�y1�n
1/n�y2�1

(
1

ny2
+ 1

y1
− 1

n

)
�

Clearly, the infimum is attained, and at the optimum
y1y2 = 1, i.e., 1/y2 = y1, and

F2 = inf
1�y1�n

(
y1
n

+ 1
y1

− 1
n

)
= 2

√
n − 1
n

�

The proof is complete by noting that F1 � F2. Section 5
includes examples that show that the bound is tight in case√

n ∈N.
(b) Max-min fairness. Consider the ray re, r � 0.

Because 0 ∈ U and 1/ne ∈ U , by convexity of U we have
that re ∈ U , for 0� r � 1/n. Because U ⊂ 
0�1�n is com-
pact, there exists a � ∈ 
1/n�1� such that �e ∈ bd�U�, the
boundary of the set U . Note that � corresponds to the max-
imum minimum achievable utility level that all players can
derive simultaneously. Under max-min fairness, the utility
derived by all players is at least �, as discussed in §3.2,
that is,

�MMF�U���e� (14)

We can thus use � to bound the sum of utilities under the
max-min fair allocation

FAIR�U��MMF� = eT�MMF�U�� eT ��e� = n�� (15)
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Similarly to the derivation for proportional fairness, we
will identify a hyperplane that supports U at �e. In partic-
ular, because U is convex and �e ∈ bd�U�, by the support-
ing hyperplane theorem, ∃�MMF ∈Rn \ �0	 such that

��MMF�T u� ��MMF�T ��e�� ∀u ∈ U� (16)

Applying the above equation to 0 ∈ U ,

0 ∈ U ⇒ ��MMF�T 0� ��MMF�T ��e� ⇒ eT �MMF
� 0�

Suppose that eT �MMF = 0. Combining this fact with (16)
for every ej ∈ U , we get

ej ∈ U ⇒ ��MMF�T ej � ��MMF�T ��e� ⇒ �MMF
j � 0�

Together with the assumption eT �MMF = 0, that leads to
�MMF = 0, a contradiction. Hence, eT �MMF > 0, and we can
assume without loss that

eT �MMF = 1�

The equation that defines the supporting hyperplane to U ,
(16), can now be rewritten as

��MMF�T u��� ∀u ∈ U� (17)

Figure 1 again illustrates the point �e and the supporting
hyperplane in the case of a two-dimensional example.
We now show that �MMF � 0. Suppose that �MMF

j < 0,
and let y = �e −�/2ej . Since 0� y ��e, we have y ∈ U ,
by monotonicity of U . But,

��MMF�T y = ��MMF�T

(
�e − �

2
ej

)
= � − �

2
�MMF

j > ��

a contradiction to (17) because y ∈ U . Hence, �MMF � 0.
Furthermore, because ej ∈ U for all j , using (17) we

have

��MMF�T ej �� ⇒ �MMF
j ���

Without loss, we can assume similarly to the proportional
fairness case that the elements of �MMF are ordered. To
summarize, if we let

C =
{

�y�B� ∈Rn ×R
∣∣0� y1 � · · ·� yn � B�

eT y = 1�
1
n
� B � 1

}
�

then ��MMF��� ∈ C.
Similar to the analysis for the case of proportional fair-

ness, using (4), (17), and the analysis of (10), we get

SYSTEM�U��max�eT u � 0� u� e� ��MMF�T u��	

= l��MMF��� + ���MMF���� (18)

It follows that

POF�U��MMF�

=1− FAIR�U��MMF�

SYSTEM�U�

�1− n�

SYSTEM�U�
(from (15))

�1− n�

l��MMF���+���MMF���
(from (18))

�1− inf
�����∈C

n�

l�����+������
�

We show that

l����� + ������� n + 1− 1
�

� ∀ ����� ∈ C�

That implies that for any such � and �,

n�

l����� + ������
�

n�

n + 1− �1/��
�

4n

�n + 1�2
�

and the proof will be complete. Note that the last inequality
follows by simply minimizing over � ∈ 
1/n�1�. Moreover,
that also demonstrates that

FAIR�U��MMF�

SYSTEM�U�
�

n�

SYSTEM�U�
�

4n

�n + 1�2
� (19)

Fix any ����� ∈ C. If l����� + ������ < n, let

y = �1− ��������l�����+1 + �l�����+2 + · · · + �n

n − l����� − ������
�

Note that because �j ��, we get y ��. Then,

1= eT �

= �1 + · · · + �l����� + �������l�����+1

+ �1− ��������l�����+1 + �l�����+2 + · · · + �n

= � + �1− ��������l�����+1 + �l�����+2 + · · · + �n

= � + �n − l����� − �������y

�� + �n − l����� − ���������

which demonstrates that l�����+������� n+1−�1/��.
If l����� + ������ = n, we get 1 = eT � = �, and hence
l����� + ������ = n = n + 1 − �1/��, and the proof is
complete.
Section 5 includes examples that show that the bound is

tight for all n� 2. �

At this point, it serves us to pause and remark on the
result we have established.
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• The bounds we have established depend only on the
number of players involved in the resource allocation; they
are independent of the shape of the utility set, as long as it
is compact and convex, and the players have equal maxi-
mum achievable utilities. Note that the assumption of equal
maximum achievable utilities is not overly restrictive: the
utility levels of the players are commonly normalized in a
variety of settings so that the comparison between them is
meaningful. Under normalization, the maximum achievable
utility of each player typically is equal to 1.

• Our results show that for a small number of players,
the price of fairness stays relatively low. In particular, these
results establish that for Nash’s original two-player bargain-
ing game (i.e., n = 2), the price of fairness is at most 8�6%
for proportional fairness and 11�1% for max-min fairness!
For n = 5, these numbers are 30�6% and 44�4%, respec-
tively. This suggests that in cases with a relatively small
number of players, the central decision maker can achieve
fair allocations without incurring a high reduction in the
sum of utilities. For illustration, Table 1 lists the values for
the worst-case bounds under the two schemes for a small
number of players.

• Figure 2 depicts the bounds as a function of the
number of players. Note that the worst-case price of fair-
ness strictly increases with the number of players under
both schemes and approaches 1 asymptotically. How-
ever, proportional fairness bears a significantly lower price
compared to max-min fairness in the worst case; this is
especially so for large numbers of players. Those observa-
tions are in line with intuition and provide a sound theo-
retical basis to prior empirical work in the literature (see
Radunovic and Le Boudec 2004, Tang et al. 2004).

4.2. Unequal Maximum Achievable Utilities

We now generalize the result of the previous section for the
case where the players potentially have unequal maximum
achievable utilities. The following theorem provides upper
bounds for the price of fairness. Recall that the maximum
achievable utility of the jth player is defined as

u
j = sup�uj � u ∈ U	�

Table 1. Bounds on the price of fairness, under Assump-
tion 1 and equal maximum achievable utilities
for all players, for the proportional and max-
min fairness schemes, for a small number of
players n.

Proportional Max-min
fairness fairness

n = 2 0�086 0�111
n = 3 0�179 0�250
n = 4 0�250 0�360
n = 5 0�306 0�444

Figure 2. Bounds on the price of fairness, under As-
sumption 1 and equal maximum achievable
utilities for all players, for the proportional
(PF) and max-min fairness (MMF) schemes,
against the number of players.

1.0

0.8

0.6

0.4

0.2

0
0 5 10 15 20

n
B

ou
nd

 o
n 

th
e 

pr
ic

e 
of

 f
ai

rn
es

s

PF
MMF

Theorem 2. Consider a resource allocation problem with
n players; n � 2. Let the utility set, denoted by U ⊂ Rn

+,
satisfy Assumption 1. If all players have maximum achiev-
able utilities greater than 0, then
(a) the price of proportional fairness is bounded by

POF�U�� PF�� 1− 2
√

n − 1
n

minj∈�1� ���� n	 u
j

maxj∈�1� ���� n	 u
j

− 1
n

+ minj∈�1� ���� n	 u
j∑n

j=1 u
j

�

(b) the price of max-min fairness is bounded by

POF�U��MMF�� 1− 4n

�n + 1�2
1/n

∑n
j=1 u

j

maxj∈�1� ���� n	 u
j

�

Proof. To ease notation, define

u
max = max

j∈�1� ���� n	
u

j � u
min = min

j∈�1� ���� n	
u

j �

Let

� = diag�u
1� � � � � u

n�

be a diagonal scaling matrix. Consider the normalized prob-
lem, with utility set

�U = �−1U�

Note that �U satisfies Assumption 1 and has also the prop-
erty that the maximum achievable utilities for all players
are equal to 1.
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For all u ∈ U and the corresponding ū = �−1u ∈ �U , we
have

eT u = eT �ū� u
maxe

T ū� u
maxSYSTEM� �U��

As a result,

SYSTEM�U�� u
maxSYSTEM� �U�� (20)

Moreover,

SYSTEM�U��
n∑

j=1

u
j = eT �e� (21)

(a) Proportional fairness. Using Theorem 1,

FAIR� �U�� PF�

SYSTEM� �U�
= eT� PF� �U�

SYSTEM� �U�
�

2
√

n − 1
n

� (22)

Moreover, by (7) and (8), we have that � PF� �U�� 1/ne.
Hence,

� PF� �U� = 1
n

e + q� (23)

for some q � 0. By utilizing this expression and (22),
we get

eT� PF� �U�

SYSTEM� �U�
= 1+ eT q

SYSTEM� �U�
�

2
√

n − 1
n

� (24)

We can now bound the sum of utilities under the propor-
tionally fair allocation for the problem involving U :

FAIR�U�� PF� = eT� PF�U�

= eT� PF�� �U�

= eT �� PF� �U� (from (1))

= eT �

(
1
n

e + q

)
(from (23))

= 1
n

eT �e + eT �q

�
1
n

eT �e + u
mine

T q� (since q � 0)� (25)

We then have

FAIR�U�� PF�

SYSTEM�U�

�
�1/n�eT �e + u

mine
T q

SYSTEM�U�
(from (25))

= �1/n�eT �e − u
min

SYSTEM�U�
+ u

min�1+ eT q�

SYSTEM�U�

�
�1/n�eT �e − u

min

SYSTEM�U�
+ u

min�1+ eT q�

u
maxSYSTEM� �U�

(from (20))

�
�1/n�eT �e − u

min

eT �e
+ u

min�1+ eT q�

u
maxSYSTEM� �U�

(from (21))

�
1
n

− u
min∑n

j=1 u
j

+ 2
√

n − 1
n

u
min

u
max

� (from (24))

(b) Max-min fairness. We apply Theorem 1 for the nor-
malized problem that involves �U . Let � be the maximum
minimum utility for �U . Then,

FAIR�U��MMF� = eT�MMF�U�

= eT�MMF�� �U�

= eT ��MMF� �U� (from (2))

� eT ���e� (from (14))

=
(
1
n

n∑
j=1

u
j

)
n�� (26)

We therefore have

FAIR�U��MMF�

SYSTEM�U�

�
��1/n�

∑n
j=1 u

j �n�

SYSTEM�U�
(from (26))

�
�1/n�

∑n
j=1 u

j

u
max

n�

SYSTEM� �U�
(from (20))

�
�1/n�

∑n
j=1 u

j

u
max

4n

�n + 1�2
� (from (19)) �

Theorem 2 extends the results of Theorem 1 in case of a
problem in which players have unequal maximum achiev-
able utilities. In general, asymmetric maximum achievable
utilities might result (although not necessarily) in a higher
price of fairness. Theorem 2 characterizes the way in which
the worst-case bounds are affected. In the next section we
address a natural question that arises in response to the
results of our theorems, namely, how loose are our bounds?
The surprising answer is that our bounds are in fact tight;
they are achieved by several realistic examples.

5. Examples
This section addresses two natural questions that arise in
the context of our analysis of the price of fairness. The
first concerns the tightness of our bounds. To that end we
will study a problem of bandwidth allocation for a com-
munication network wherein our bounds on the price of
fairness are, in fact, achieved. The next question one might
ask regards our assumptions on the structure of the utility
set, namely Assumption 1. Here we show via an example
that if Assumption 1 is violated, the price of fairness can
be arbitrarily large, even for a small number of players.

5.1. A Communication Network

We illustrate the tightness of our bounds for a problem
of bandwidth allocation on a communication network. The
network consists of hubs (nodes) that are connected via
capacitated links (edges). Clients, or flows, wish to estab-
lish transmission from one hub to another over the network
via a prespecified, fixed route. The network administrator
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needs to decide on the transmission rate assigned to each
flow, subject to capacity constraints. The resources to be
allocated in this case are the available capacities of the
links, the players are the flows, and the central decision
maker is the network administrator. We now fix some nota-
tion and specify the problem data more precisely.
We have a network with k links of unit capacity. There

are in total n = 2k −1 flows in the network, each of which
is associated with a fixed route, i.e., some subset of the k
links. The network is assumed to be a line-graph with k
links. The routes of the first k flows are disjoint and they all
occupy a single (distinct) link. The remaining k − 1 flows
have routes that utilize all k links. The described network
topology is shown in Figure 3, for k = 3. Each flow has a
nonnegative rate, which we denote x1� � � � � xn. The first k
flows derive M units of utility for every unit rate they are
assigned (i.e., fj�x� = Mxj , for j = 1� � � � � k), with M � 1.
The remaining k−1 flows derive utility equal to their rates
(i.e., fj�x� = xj , for j = k + 1� � � � � n).
The routing matrix R ∈Rk×n, defined as

Rij =
{
1 flow j’s route passes over link i�

0 otherwise,

is then such that its ith row is of the form 
eT
i eT �, where ei

is the unit vector in Rk with the ith component equal to 1.
The resource set can be expressed as

X = �x ∈Rn � Rx � e� x � 0	�

For the case of k = 3 (depicted in Figure 3), we have

X =

⎧⎪⎨
⎪⎩x ∈R5

∣∣∣∣∣∣
⎡
⎣ 1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

⎤
⎦
⎡
⎢⎣

x1
���

x5

⎤
⎥⎦� e� x � 0

⎫⎪⎬
⎪⎭ �

Accordingly, the utility set is

U = {

Mx1 · · ·Mxk xk+1 · · ·xn�

T ∈Rn � Rx � e� x � 0
}
�

Note that the utility set is convex and compact. In particu-
lar, Assumption 1 is satisfied.
Furthermore, because all links have unit capacity, all

flows can be assigned a maximum rate of 1. As a result, the
maximum achievable utility for each of the first k flows is

Figure 3. The network flow topology in case of k = 3,
for the example in §5.1.

u
j = M , j = 1� � � � � k, and for each of the remaining flows

is u
j = 1, j = k + 1� � � � � n. Theorem 1 then applies only in

case of M = 1. If we apply Theorem 2, we get

POF�U��MMF�� 1− 4n

�n + 1�2
1/n

∑n
j=1 u

j

maxj∈�1����� n	 u
j

= 1

− 4
�n + 1�2

kM + k − 1
M

�

For the utilitarian solution, the central decision maker
assigns unit rate to the first k flows and achieves a through-
put of kM , i.e.,

SYSTEM�U� = kM�

Under the max-min fairness allocation, a rate of 1/k is
assigned to each flow; hence,

FAIR�U��MMF� = kM + k − 1
k

�

Thus, by substituting for the above expressions and for k =
�n + 1/2�,

POF�U��MMF� = 1− FAIR�U��MMF�

SYSTEM�U�

= 1− kM + k − 1
Mk2

= 1− 1
�n + 1/2�2

kM + k − 1
M

= 1− 4
�n + 1�2

kM + k − 1
M

�

which is exactly the upper bound we derived from Theo-
rem 2. In case M = 1, we get

POF�U��MMF� = 1− 4n

�n + 1�2
�

which is the upper bound from Theorem 1.
This example illustrates the tightness of our bounds for

the max-min fairness scheme for an odd number of players.
Similar tight bounds can be derived for an even number of
players by studying the utility set

W =
{

u ∈Rn
+

∣∣∣∣1nu1 + · · · + 1
n

un/2 + un/2+1

+ · · · + un � 1� u� e

}
�

To obtain a tight upper bound for the case of proportional
fairness, we study a similar setup but with additional long
flows. In particular, let the number of long flows be equal
to k2 − k (instead of k − 1). Thus, there are now n = k2

flows. Let also M = 1.
The utilitarian solution remains unchanged in this case,

with the CDM allocating unit rate to the first k flows.
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Under proportional fairness, we have uPF
j = xPF

j = 1/k
for j = 1� � � � � k, and uPF

j = xPF
j = 1/k2 for the remaining

long flows j = k + 1� � � � � n, because this point satisfies the
first-order optimality condition (see §3.1). In particular, for
any u ∈ U ,

n∑
j=1

uj − uPF
j

uPF
j

=
k∑

j=1

uj − 1/k

1/k
+

n∑
j=k+1

uj − 1/k2

1/k2

= k
k∑

j=1

uj + k2
n∑

j=k+1

uj − k2

= k�eT Ru − k�

� k�eT e − k� = 0�

Thus,

FAIR�U�� PF� = k
1
k

+ �k2 − k�
1
k2

= 2− 1
k

�

and

POF�U�� PF� = 1− 2− 1/k

k
= 1− 2

√
n − 1
n

�

which is again exactly the upper bound from Theorem 1.
We are unable to establish that our bound on the price of
proportional fairness is tight in the event that maximum
achievable utilities are unequal (i.e., M > 1 for the com-
munication network example).

5.2. Nonconvex Utility Set

Here we consider what happens if one were to relax the
requirements of Assumption 1. Consider a setup with two
players (i.e., n = 2), in which the central decision maker
has the option of allocating all resources to one of the play-
ers or splitting them equally among them. In the case where
one player receives all resources, she derives a utility of 1
while the other player derives a utility of 0. If the resources
are split, both players derive a utility of �. The utility set
is thus

U = �e1� e2� �e	�

Note that U is discrete, in particular, nonconvex. As a
result, Assumption 1 is violated.
It is easy to check that for � � 1, the utilitarian solution

corresponds to one player receiving all resources, and the
corresponding sum of utilities is equal to 1. Under the max-
min fairness scheme, the CDM splits the resources among
the players, thus resulting in aggregate utility of 2� and
price of fairness of 1− 2�. We can thus see that for non-
convex utility sets, the price of max-min fairness can get
arbitrarily close to 1, even for two players.
Note that in this case there does not exist a feasible allo-

cation that satisfies the Nash standard (see §3.1). If we
allow the PF allocation to be the one that maximizes the

sum of logarithms of the utilities (see §3.1), then the CDM
again splits the resources among the players, and similar
obervations to MMF apply for PF.
A practical situation under which we might obtain non-

convex utility sets is the power control problem in a wire-
less cellular system under severe interference effects (see
Goldsmith 2005).

6. Conclusions
This paper has attempted to quantify the “price” one has
to pay in demanding that an allocation of resources is
fair. In particular, we presented results on the relative effi-
ciency loss incurred in using either of two widely accepted
and axiomatically justified notions of fairness—max-min
fairness and proportional fairness. It is our belief that the
“price” of fairness is effectively inescapable if the allo-
cations prescribed by a given scheme are to be ethically
acceptable and implementable. Our analysis has yielded
two primary insights. First, it has given us an understand-
ing of when this “price” is likely to be small; this will be
the case when the number of players is small. Second, we
have presented a quantitative distinction between max-min
fairness and proportional fairness, showing that the latter is
a substantially cheaper notion than the former, especially
when the number of players is large. Our analysis is tight
and addresses a vast swath of resource allocation problems.
Moving forward, we believe that one fruitful direction

for future research is identifying specialized families of
utility sets (within the family considered here) that admit
smaller prices of fairness. Good work in this direction
will yield a succinct characterization of resource allocation
problems for which fair allocations are close to efficient.
It is, of course, important that the classes of problems so
identified be relevant; for instance, a condition that guaran-
teed that all Pareto solutions are equally efficient (which is
true if the utility set is a polymatroid) while interesting is
perhaps too narrow to be relevant to practice.
On the practical front, there are a number of important

(and real) resource allocation problems wherein it is highly
desirable that allocations are fair; for example, the air traffic
flow management problem alluded to in the introduction.
We are currently evaluating the performance of “fair” allo-
cation schemes for real world instances of such problems
(see Bertsimas et al. 2009a).
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