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We propose a scalable, data-driven method for designing national policies for the allocation of deceased donor kidneys to
patients on a waiting list in a fair and efficient way. We focus on policies that have the same form as the one currently
used in the United States. In particular, we consider policies that are based on a point system that ranks patients according
to some priority criteria, e.g., waiting time, medical urgency, etc., or a combination thereof. Rather than making specific
assumptions about fairness principles or priority criteria, our method offers the designer the flexibility to select his desired
criteria and fairness constraints from a broad class of allowable constraints. The method then designs a point system
that is based on the selected priority criteria and approximately maximizes medical efficiency—i.e., life-year gains from
transplant—while simultaneously enforcing selected fairness constraints.

Among the several case studies we present employing our method, one case study designs a point system that has
the same form, uses the same criteria, and satisfies the same fairness constraints as the point system that was recently
proposed by U.S. policy makers. In addition, the point system we design delivers an 8% increase in extra life-year gains.
We evaluate the performance of all policies under consideration using the same statistical and simulation tools and data as
the U.S. policy makers use. Other case studies perform a sensitivity analysis (for instance, demonstrating that the increase
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1. Introduction

Renal or kidney transplantation and maintenance dialysis
are the only treatments for end-stage renal disease (ESRD),
a terminal disease affecting over 500,000 people currently
in the United States; see USRDS (2009). Despite being a
major surgical procedure, transplantation is the treatment of
choice for ESRD patients, because a successful transplan-
tation improves their quality of life. In particular, dialysis
treatment requires that the patient visits a dialysis center
for at least 12 hours each week, whereas transplantation
typically allows the patient to resume regular life activi-
ties. Furthermore, a multitude of research and clinical stud-
ies have statistically demonstrated that transplantation also
reduces the mortality risk for patients; see Suthanthiran and
Strom (1994), Schnuelle et al. (1998), Port et al. (1993),
and Ojo et al. (1994). Thus, a kidney transplant is consid-
ered by many as a potentially life-saving gift.

The two sources of kidneys for transplantation are living
donors (e.g., family members or friends of the patient) and
deceased or cadaveric donors. The majority of patients are
unsuccessful in finding living donors, and thus join a pool
of patients waiting for a deceased donor organ. Of course,

whereas in the living donor case the donation is typically
made to a specific patient, in the deceased donor case an
important allocation problem arises. In particular, once an
organ is procured from a deceased donor, there can be thou-
sands of medically compatible and available recipients to
which the organ can be allocated. The problem becomes
even more significant if one accounts for the organ shortage
and the size of the pool of waiting patients in the United
States: on October 20th 2010, 86,391 patients were waiting
for a kidney transplant. In 2009, there were 33,671 new
additions, but only 16,829 transplantations were performed,
from which 10,442 transplants were from deceased donors.
For more information and statistical details, we refer the
reader to UNOS (2010).

In recognition of the aforementioned allocation prob-
lem and the growing difficulty of matching supply and
demand, the U.S. Congress passed the National Organ
Transplant Act (NOTA) in 1984. According to this leg-
islation, deceased donor organs are viewed as national
resources in the United States, and as such, their allocation
has to be based on fair and equitable policies. Moreover,
the sale of organs, as well as money transfers of any nature
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in the acquisition of organs, are strictly prohibited. Instead,
the policy for allocating the organs should utilize waiting
lists and have the form of a priority method. That means
that patients in need of a transplant register on waiting lists.
Then, once an organ is procured, all medically compati-
ble patients are ranked according to some priority rules,
and the organ is successively offered to them according to
their ranking, until it is accepted by a patient. Subsequent
to the NOTA, the U.S. Congress established in 1984 the
Organ Procurement and Transplantation Network (OPTN)
in order for it to maintain a national registry for organ
matching and develop allocation policies.

Naturally, the aforementioned allocation policies are of
central importance and have to accomplish major objectives
in alleviating human suffering, prolonging life, and provid-
ing nondiscriminatory, fair, and equal access to organs for
all patients, independent of their race, age, blood group,
or other peculiar physiological characteristics. Some of the
main challenges in designing a kidney allocation policy are
the following:

e Fairness constraints: What does fair and equal access
to organs mean? Due to the subjective nature of fair-
ness, there is no single fairness criterion that is universally
accepted by policy makers and academics alike. As such,
a great challenge lies in identifying the appropriate fairness
constraints that the allocation outcomes of a policy should
ideally satisfy. An example of such a constraint could be a
lower bound on the percentage of organs allocated to a par-
ticular group of patients—say, requiring that at least 47%
of all transplants are received by recipients of blood type O.
In the absence of such a constraint, these groups would
otherwise be handicapped and not have access to organs
because of their physiological characteristics. A number of
such criteria have been studied by OPTN policy makers;
see RFI (2008).

e Efficiency: Because a successful transplantation typi-
cally prolongs the life of a patient while also improving his
quality of life, the policy needs to ensure that the number
of quality-adjusted life-year gains garnered by transplanta-
tion activities is as high as possible. This is also in line
with the view of organs as national resources. Again, this
objective is of paramount importance to the current policy
design; see OPTNKTC (2008).

e Prioritization criteria: The policy needs to be based on
medically justified criteria and physiological characteristics
of patients and organs. However, ethical rules disallow the
use of criteria that can be deemed as discriminatory (e.g.,
race, gender, etc.).

e Simplicity: Patients need to make important decisions
about their treatment options, together with their physi-
cians. To this end, they need to be able to estimate the
probability of receiving an organ, or at least understand the
allocation mechanism. For that reason, the priority method
that is used needs to be simple and easy to communicate.

o [mplementation: Suppose that one has selected the
desired fairness constraints, prioritization criteria, and a

simple priority method. How does he then balance the
emphasis put on the different prioritization criteria, so as
to design a policy whose allocation outcomes would max-
imize efficiency while satisfying the fairness constraints?

All of the above challenges were faced by the OPTN pol-
icy makers in 2004 when they initiated the development of
a new national allocation policy that will eventually replace
the current one. In 2008, the OPTN released a concrete pro-
posal in a Request for Information publication (RFI 2008)
that is currently under consideration by the U.S. Depart-
ment of Health and Human Services.

In this work, we deal with the implementation challenge
in designing a national allocation policy while accounting
for all the other challenges above. In particular, we focus
on perhaps the simplest, most common, and currently in
use priority method, namely, a point system. We make the
following contributions:

1. We present a novel method for designing allocation
policies based on point systems in a systematic, data-driven
way. Our method offers the flexibility to the policy maker to
select the fairness constraints he desires, as well as the pri-
oritization criteria on which the point system will be based.
The method then outputs a conforming point system pol-
icy that approximately maximizes medical efficiency while
satisfying the fairness constraints.

2. To validate our method, we use it to design poli-
cies under different scenarios of interest to policy mak-
ers. Under a particular scenario, we design a policy that
(a) matches the fairness constraints of the recently proposed
policy by U.S. policy makers, and (b) is based on the same
criteria and simple scoring rule format. Critically though, it
achieves an 8% increase in anticipated extra life-year gains,
as demonstrated by numerical simulations that are based on
the statistical and simulation tools currently in use by U.S.
policy makers (see below).

3. We use our method to perform a sensitivity analysis
that explores the consequences from relaxing or introduc-
ing fairness constraints—for instance, what is the impact of
reducing the percentage of transplants to patients on dial-
ysis for greater than 15 years by 1%? In the case of some
constraints, relaxations of fairness constraints can result in
life-year gains on the order of 30%. As such, we believe
this is a valuable tool in the policy design process.

4. We develop a means of designing approximately opti-
mal policies in problems of dynamic allocation that are
massively high dimensional. In particular, these are allo-
cation problems where the number of “classes” of objects
being allocated, and the number of “bins” these objects
may be allocated to, are themselves intractably large. To
the best of our knowledge, this approach is novel.

Performance in all of our numerical studies is evaluated
using the same statistical and simulation tools, as well as
data, as the U.S. policy makers use. Those tools and data
sets were obtained directly from their developers, namely,
the United Network for Organ Sharing (UNOS), which is
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the nonprofit organization that operates the OPTN, and the
Scientific Registry of Transplant Recipients (SRTR).

An electronic companion to this paper is available as part
of the online version at http://dx.doi.org/10.1287/opre.1120
.1138.

1.1. Literature Review

The model-based analysis of the organ allocation process
has attracted significant interest in the academic litera-
ture. One of the first papers in this vein is by Ruth et al.
(1985), in which the authors develop a simulation model to
study the problem. Shechter et al. (2005) also introduce a
discrete-event simulation model for the evaluation of poten-
tial changes to the liver allocation process. In this work, we
utilize the simulation model developed by the SRTR; see
KPSAM (2008).

The organ allocation process was also analyzed by
Righter (1989) and David and Yechiali (1995) via a
stochastic assignment problem formulation. In their work,
they analyze stylized models that fit into that framework.
In this work, we also utilize an assignment problem formu-
lation, but only for the training phase of our methodology:
the output allocation policies of our framework are rather
simple, based on scoring rules and in full compliance with
policies that U.S. policy makers consider, unlike the above-
referenced work. In a similar vein, Zenios et al. (2000)
introduce a fluid model approximation of the organ allo-
cation process that allows them to explicitly account for
fairness and medical efficiency in the allocation. Our frame-
work accounts for fairness in accordance with the consider-
ations of policy makers. Zenios (2002), Roth et al. (2004),
Segev et al. (2005), and Ashlagi et al. (2011) study the
problem of living donation and the allocation of kidneys.
Kong et al. (2010), Sandikci et al. (2008), and Akan et al.
(2012) also tackle the problem of liver allocation.

Another stream of research focuses on the decision-
making behavior of patients by dealing with organ accep-
tance policies. David and Yechiali (1985) model the
candidate’s problem as an optimal stopping problem.
Similar acceptance policies are developed by Ahn and
Hornberger (1996), Howard (2002), Alagoz (2004), and
Alagoz et al. (2007). The present paper will test policies
on a simulator developed by SRTR for OPTN; this simu-
lator assumes a specific, exogenous acceptance model for
patients built from historical data. Although the acceptance
model ignores endogeneity, it allows us to simulate out-
comes in precisely the manner policy makers currently do.

Recent work by Su and Zenios (2004, 2005) attempts
to combine the above streams of research by explicitly
accounting for the acceptance behavior of patients in the
development of an allocation policy. In a similar vein, Su
and Zenios (2006) propose an allocation mechanism that
elicits the utilities of the patients. For more details, we refer
the reader to the review by Zenios (2005).

In all the above-referenced work dealing with organ allo-
cation policies, the authors design general near-optimal

dynamic policies. These papers take the important perspec-
tive of designing a fundamentally new allocation system
from the ground up. In our work, we restrict our attention
to policies that comply with the precise constraints imposed
by current practice. That is, we focus our attention on poli-
cies based on simple point systems of the precise format
as the ones currently in use and proposed by U.S. policy
makers. Moreover, instead of designing a particular policy,
we develop a framework that admits various fairness con-
straints and prioritization criteria. In other words, we design
a mechanism that can fit directly in the current decision-
making process of the U.S. policy makers.

2. Distribution and Allocation Policies

In this section, we briefly review the distribution pro-
cess and the operation of the UNOS/OPTN as coordina-
tors and developers of national policies for the allocation
of deceased donor kidneys to patients. We then discuss
the requirements such policies need to meet, and focus on
policies that are based on point systems or scoring rules.
Finally, we review the current policy in use in the United
States (which itself is based on a scoring rule), as well as
updates on the development of a new scoring-rule based
national policy.

In the United States, the nonprofit Organ Procurement
Organizations (OPOs) are directly responsible for eval-
uating, procuring and allocating donated organs within
their respective designated service area. Once consent is
obtained and an organ is procured by an OPO, the OPTN
computerized national registry automatically generates a
list of patients who are medically compatible with the pro-
cured organ. Medical compatibility of patients is deter-
mined by their physiological characteristics and those of the
procured organ (e.g., accounting for ABO incompatibility,!
weight and size, unacceptable antigens, etc.). Subsequently,
the priority method used by the OPO determines the order
in which the organ will be offered to patients. Once a kid-
ney is procured, it can typically be preserved for up to
36—48 hours, after which the organ can no longer be used
for transplantation. For that reason, priority is given to local
patients, although there are rules that determine when pri-
ority should be given to nonlocal patients. After an offer
is made to a patient, he has to decide with his surgeon
whether to accept it or not within a limited amount of time.
In case of rejection, the organ is offered to the next patient
according to the specified order, and so on. In case no
patient accepts the organ within 36-48 hours, the organ is
discarded.

In addition to using the OPTN national registry, the activ-
ities of the OPOs, and their allocation policies in particular,
are coordinated and regulated by the OPTN. That is, the
OPTN provides general guidelines and lays out a national
allocation policy that is suggested to all OPOs. The alloca-
tion policy of every OPO then needs to be consistent with
the national policy, although minor alterations are possible
subject to approval by the OPTN.
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2.1. National Allocation Policies

National policies for the allocation of the deceased donor
kidneys are developed by the OPTN Kidney Transplan-
tation Committee (KTC), and are approved by the U.S.
Department of Health and Human Services. Policies need
to account for numerous legal, economic, institutional, eth-
ical, and other societal factors; the requirements for an allo-
cation policy are included in the OPTN Final Rule (DHHS
2000). Below we summarize the most important guidelines
that policies have to conform to as per the OPTN Final
Rule. In particular, the allocation

(a) shall seek to achieve the best use of donated organs,
and avoid organ wastage;

(b) shall set priority rankings based on sound medical
judgment;

(c) shall balance medical efficiency (extra life-years) and
equity (waiting time), without discriminating patients based
on their race, age, and blood type;

(d) shall be reviewed periodically and revised as
appropriate.

Additionally, the priority method in place needs to be
simple and easy to communicate, as discussed in the
introduction. As such, the ranking of patients is typically
achieved by means of a point system or scoring rule: all
national allocation policies that have been used in practice
have been based on scoring rules. We formally define next
the notion of a scoring-rule based policy and then discuss
the current national policy and suggested revisions.

Point system or scoring-rule based policies. Under a pol-
icy based on a scoring rule, patients are ranked according to
a calculated score, commonly referred to in this context as
the Kidney Allocation Score (KAS). Specifically, a scoring
rule consists of score components and scalar constant score
weights. A score component can be any function of the
characteristics of a patient and/or an organ. Then, once an
organ is procured and needs to be allocated, one calculates
the individual score components for each patient and the
particular procured organ. The KAS for each patient is eval-
uated as the weighted sum of his score components (using
the score weights). To introduce some notation, given a
patient p and an organ o, we denote the jth score compo-
nent with f; , ), and the jth score weight with w;. The
KAS of patient p for receiving organ o, KAS(p, 0), is then
calculated as

KAS(p, 0) =3 w;f; (p.0)-
j

For instance, examples of score components can be
the number of years the patient has been registered on the
waiting list, the life expectancy of the patient in case he
remained on dialysis, or the life expectancy in case he
received the procured organ, etc.

One can think of a scoring-rule based policy as a priority
method that awards points to patients based on different
criteria (the score components); patients are also potentially

awarded different amounts of points per criterion, based on
the score weights. The ranking is then achieved based on
the number of points collected by each patient. The current
policy in use and the one recently proposed by U.S. policy
makers are both examples of scoring-rule based policies
and are discussed next.

Current allocation policy. The current policy has been in
existence for more than 20 years. It is based on a scoring
rule that utilizes waiting time, a measure of the patient’s
sensitization,? and tissue matching,3 of the organ and the
patient as score components. The rationale behind this rule
is as follows. Points are given for waiting time and sensi-
tization in order to serve the fairness objective of the allo-
cation and to provide equal access to organs to all patients
(note that highly sensitized patients have reduced medical
compatibility with donors). On the other hand, because tis-
sue matching is an indication for a successful transplanta-
tion, the points given to matched patients serve the medical
efficiency objective of the allocation. For more details, we
refer the reader to ODADK (2010).

Recent advances in medicine and changes in patients’
needs, however, have rendered the current policy inappro-
priate. More specifically, these changes have rendered the
current policy inconsistent with the OPTN Final Rule; see
Norman (2009) and RFI (2008). For instance, the long
waiting times experienced by the patients, coupled with
advances in medicine that have prolonged the survivability
of patients on dialysis, have resulted in the accumulation
of points for waiting time by the patients. This accumu-
lation of points has then created an imbalance between
the efficiency and fairness objectives of the allocation; see
OPTNKTC (2007). In response to that, and in line with the
requirement of the OPTN Final Rule for periodic review of
the policy, the KTC has been reviewing the policy for the
past few years and is currently in the process of developing
a new policy; see OPTNKTC (2007).

Development of a new policy. Since 2004, the KTC has
considered more than 40 different scoring rules that involve
various score components; see OPTNKTC (2010). We first
discuss the criteria upon which the score components are
based, and then discuss the components. For a patient p
and an organ o, the criteria are:

1. Tissue matching or HLA matches, i.e., the number of
HLA shared by patient p and organ o;

2. Age of patient p and/or donor of organ o, denoted by
AGE(p) and AGE(o0);

3. Wait time, which is equal to the number of years
patient p has been registered at the waitlist;

4. Dialysis time, which is equal to the years patient p
has spent on dialysis, denoted by DT(p);

5. Blood group of patient and/or donor;

6. Expected posttransplant survival of patient p from
receiving organ o;

7. Expected waitlist survival of patient;

8. Life years from transplant, denoted by LYFT(p, 0),
which is equal to the expected incremental quality-adjusted
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life-years gain of patient p from receiving organ o, com-
pared to remaining on dialysis (for a precise definition, we
refer the reader to Wolfe et al. 2008);

9. Donor profile index, denoted by DPI(0), which is
a number between O and 1, indicating the quality of
the donated organ (0 corresponds to an organ of highest
quality);

10. Calculated panel reactive antibody, denoted by
CPRA(p), which is a number between 0 and 100, measur-
ing the sensitization of the patient (0 corresponds to the
lowest level).

A typical scoring rule proposed by the KTC includes
three to five score components that are functions of
(some of) the above criteria. In most cases, the components
are either linear functions (e.g., points are awarded per year
on dialysis, or per life-year from transplant, etc.), or nonlin-
ear functions of one or more criteria (e.g., for patient p and
organ o, points are awarded according to (1 — DPI(0)) x
LYFT(p, 0), or DPI(0) x DT(p), or |AGE(p) — AGE(0)|,
etc.), including stepwise or indicator functions (e.g., points
are awarded if patient p is highly sensitized, CPRA(p) >
80, or if he is aged less than 18 or 35, AGE(p) < 18 or 35,
etc.). For more details, we refer the reader to OPTNKTC
(2007, 2008).

As mentioned above, the KTC considered more than
40 different scoring rules, each of which utilizes a subset of
the score components above. Furthermore, based on simu-
lation experiments, the KTC evaluated the performance of
the proposed scoring rules and identified weights that were
deemed appropriate (see OPTNKTC 2008). The dominant
proposal up to this point, published in 2008 in a request
for information document (RFI 2008), entails the follow-
ing score components: LYFT x (1 — DPI), DT x DPI, DT
and CPRA. The associated score weights are 0.8, 0.8, 0.2
and 0.04. That is, the Kidney Allocation Score under the
dominant proposal is

KAS(p, 0) = 0.8LYFT(p, 0) x (1 — DPI(0)) + 0.8DT(p)
x DPI(0) +0.2DT(p) + 0.04CPRA(p).

The first two components are the life-years from transplant
and dialysis time, scaled by the donor profile index. The
scaling ensures that in the case of a high-quality organ (DPI
close to 0), emphasis is given on life-years from trans-
plant, whereas in case of a low-quality organ (DPI close
to 1), emphasis is given on dialysis time. The last two
components are the dialysis time and calculated panel reac-
tive antibody score of the patient. More information and
motivating aspects can be found within the Request For
Information document (RFI 2008). As an example, con-
sider an organ o of medium quality, with DPI(0) = 0.55.
Then, patients are awarded 0.8 x (1 —0.55) =0.36 points
for every quality-adjusted incremental life-year they would
gain in expectation, 0.8 x 0.5540.2 = 0.64 points for every
year they have spent on dialysis, and 0.04 points for every
point of their CPRA score.

Although medical expertise and the OPTN Final Rule
can guide the identification of the score components of
clinical validity, the task of finding the right selection or
subset of these components and the appropriate weights is
more involved, as the experimentation of the OPTN KTC
with more than 40 different rules suggests. A natural ques-
tion in response to the proposed scoring rule is whether
this is the best we can do. In particular, does there exist
another scoring rule of the same format, based on the crite-
ria and score components considered by policy makers, that
dominates the proposed one, i.e., is equally or more fair
and more efficient? Admittedly, this is an involved ques-
tion to answer; to illustrate this, consider only changing the
weights in the proposed scoring rule above. The outcomes
by such a change can perhaps be evaluated only via simu-
lation; simulating a single specific scoring rule takes hours.
This severely curtails the efficacy of a search for a pol-
icy that while possessing the requisite fairness properties is
also efficient. Our proposed methodology provides a valu-
able tool in this search and takes a step towards answering
the questions posed above.

3. Designing Allocation Policies

We propose a method for designing scoring-rule based
policies for the allocation of deceased donor kidneys to
patients. Specifically, we propose a data-driven method that
computes in a systematic way score weights associated to
prespecified score components, so that the resulting pol-
icy achieves a near-optimal medical utility (measured by
life-years from transplant gains). In other words, after one
has decided upon the components he wishes to include in
a scoring rule, our method utilizes historical data to effi-
ciently compute associated weights so as to maximize the
efficiency of the policy. In addition, our method can also
take as input fairness constraints on the allocation out-
comes; although we defer the precise definition of the class
of admissible constraints for §3.1, we note here that our
method captures a multitude of important and commonly
studied constraints of interest to policy makers. Then, the
method computes the score weights, so that the resulting
policy is as efficient as possible, and the fairness constraints
are approximately satisfied.

Figure 1 illustrates the functionality of the proposed
method. Typically, policy makers select their desired score
components that would feature in the scoring rule and con-
straints that the allocation outcomes need to satisfy. Our
method provides an efficient, scalable, and systematic way
of striking the right balance between the selected score
components by designing a policy that approximately maxi-
mizes medical efficiency, subject to the selected constraints.

As an application of our method, we use historical data
from 2008 to construct multiple scoring-rule based policies
that utilize the same criteria for components as the ones
considered by the OPTN Kidney Transplantation Commit-
tee. Within the different case studies we present, we also
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Figure 1. An illustration of the functionality of the pro-
posed method.
Historical data
Score Score
components weights

~

Fairness constraints

design a policy that possesses similar fairness characteris-
tics with the KTC dominant proposal. Numerical studies
then suggest that this policy constructed by our method
achieves an 8% improvement in life-years from transplant,
using the same statistical and simulation tools and data as
U.S. policy makers use. Furthermore, we perform a trade-
off analysis by considering deviations from the fairness
constraints of the proposed policy. In particular, we study
the effect in life-year gains, in case of emphasizing or
deemphasizing the priority given to patients who have been
waiting for a long time or are sensitized. Our method effi-
ciently redesigns policies accordingly. The results indicate
that the performance gain in life-years from transplant can
be as high as 30%. Details on the case studies are included
in §4. We next present our proposal in full detail.

3.1. Methodology

Given a list of n score components, related historical
data of patients’ and donated organs’ characteristics, and
constraints on the allocation outcomes (precisely defined
below), we calculate score weights w, ..., w,, such that the
resulting scoring rule policy satisfies the constraints approx-
imately, while maximizing life-years from transplant.

Consider a fixed time period over which we have com-
plete (ex facto) information about all patients registered in
the waitlist (preexisting and arriving) in that time period.
In particular, we know their physiological characteristics,
the time of their initial registration, as well as the evolu-
tion of their medical status and availability for a transplant
during that time period. Suppose we also have complete
information about the organs that are procured during the
period, that is, the time at which they are procured and
their physiological characteristics. We index the patients by
p=1,..., P and the organs by o =1, ..., 0. We say that
patient p is eligible to receive organ o, or equivalently that
the patient-organ pair (p, o) is eligible for transplantation,
if at the time of the organ procurement all conditions below
are met:

1. The patient is registered at the waitlist for a
transplant;

2. The patient is actively waiting for a transplant and his
medical status is appropriate for transplantation;

3. The patient is medically compatible with the organ.
Let € be the set of patient-organ pairs eligible for trans-
plantation, i.e.,

‘¢ ={(p,0): patient p is eligible to receive o}.

Note that one can construct € simply by using the arrival
information and characteristics of the organs and the
patients, and the evolution of the availability and medical
status of the patients.

Additionally, one can also compute the score components
for each eligible patient-organ pair, as well as the life-years
from transplant. Let f; , , be the value of the jth com-
ponent score, j=1,...,n, and LYFT(p, 0), the life-years
from transplant for pair (p, o) € €.

We now define the class of admissible constraints on the
allocation outcomes alluded to thus far. First, let X(p. o) be
defined for every eligible patient-organ pair (p, o) as

1, if organ o is assigned to patient p,

X =
.0) 0, otherwise.

A constraint is admissible for our method if it is linear,
that is, if it can be modeled as a linear constraint with
respect to variable x. To the best of our knowledge, all
fairness constraints considered by policy makers thus far
in the United States are of that form; in fact, they corre-
spond to lower bounds on the percentage distributions of
transplant recipients across different groups of patients (see
RFI 2008 and §4.2 for more details). However, the class of
constraints that can be modeled in this way is broader; for
instance, one can also impose lower bounds for a specific
group of patients on the average life-years from transplant
gained among the actual transplant recipients, the average
time spent on dialysis among the actual transplant recip-
ients, etc. As an example, a lower bound L on the num-
ber of organs allocated to a specific group of patients G C
{1,..., P} can be expressed as

IINDY

pebo:(p,0)e€

.X'(p, 0) 2 L

For instance, setting G to be the set of all patients of blood
type O could enforce a lower bound on transplants for
patients of this blood type.

We denote the input fairness constraints with Ax < b for
some matrix A and vector b. We now present our method,
which consists of three steps:

Step 1 (An Idealized Matching Problem): Consider a
social planner with foresight who has knowledge of the set
of all eligible pairs € and the life-years from transplant
score for every pair in the set. Suppose also that patients
accept all organs offered to them. In this setup, the problem
of allocating organs to patients so as to maximize medical
efficiency, i.e., life-years from transplant, subject to fairness
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constraints Ax < b, can be formulated as a linear optimiza-
tion problem:

maximize ) LYFT(p,0)x, ,

(p,0)e€

subject to Y x, <1, Vp
0:(p,0)e€

> X<l Vo M)

p:(p,o)e€
Ax<b

x=0.

Note that a fractional value for x, , can be interpreted
as the probability of assigning organ o to patient p in a
randomized policy. Its solution suggests an allocation with
perfect hindsight (as opposed to an implementable policy).
The next two steps will use this idealized solution to con-
struct an implementable policy in a unique way.

Step 2 (Dual Information): By linear optimization dual-
ity, if y is the vector of optimal-dual multipliers associated
with the constraints Ax < b for problem (1), then prob-
lem (1) is equivalent with the one below:

maximize Y LYFT(p,0)x, , —y Ax+y'b

(p,0)e€

subject to ) Xpo <1, Vp
o0:(p,0)e€ (2)

Y Xpa<1l. Yo
p:(p,0)e€

x=0.

Note that problem (2) is a matching problem. We equiva-
lently rewrite the objective of (2) as ¢’x + y”b, utilizing
the cost vector ¢ defined as
C(p.oy =LYFT(p, 0) — (yTA)(p,o), Y(p,o)€€.

We next use this dual information to construct an imple-
mentable policy.

Step 3 (Approximate Dynamic Programming): Note that
our goal is to design a policy that approximately solves
the above matching problem online, i.e., a policy that
sequentially matches organs at their time of procurement to
available patients without utilizing any future information.
An implementable policy will require the following:

1. An estimate of the value of assigning a particular
organ, o, to a particular patient, p (technically, one may
think of this as a differential value function for the associ-
ated stochastic optimization problem).

2. An interpretable formula for the above differential
value that uses permissible features of the patient and organ
in a clinically acceptable way. Our goal is to rank patients
not by any artificial score coefficients, but rather based on
the selected score components.

One possible policy is scoring potential allocations on
the basis of the coefficients ¢, , computed above. Unfor-
tunately, the ¢, , coefficients are calculated for patients
on the waiting list and received organs from some histori-
cal data set, and as such it is likely that we will not have
access to ¢, , for all pairs (p, 0) moving forward. More
importantly, a scoring policy based on these coefficients
will not satisfy the second requirement above. As such, we
consider using the coefficients to inform the calibration of
an acceptable scoring rule. In particular, we find acceptable
score weights w by solving the optimization problem

; 2
minimize ) (C(p, o = Wo— 2 W;fi . 0))
=1

(p,0)e€

subject to w e ¥,

where the set ¥ enforces clinical and ethical requirements

(for instance, by requiring that the resulting policy be con-

tinuous or monotone in certain score components, etc.).
The method is summarized as Procedure 1.

Procedure 1 (Computation of score weights)

Input: list of n score components, data for linear
constraints (A, b), historical data: set of eligible patient-
organ pairs €, life-years for transplant LYFT(p, 0), and

values of score components, fiiop J=1,...n, for
every eligible pair (p, o).
Output: weights for scoring rule, w,, ..., w,.

1. solve problem (1)

2. y < vector of optimal dual multipliers associated

with constraints Ax < b

Cip.o) < C(p.oy=LYFT(p,0) = (y" A), . Y (p,0) €€

4. use (potentially constrained) linear regression to find
W, Wy, ..., W,, such that for all (p, 0) € 6

(O]

C(p,o) ~ Wy + wlfl,(p,o) +ee+ wnfn, (p,o)*

3.2. Discussion

In this section, we discuss (a) why and when one should
expect the proposed method to perform well in practice and
(b) the relative merits of our contribution.

Consider the airline network revenue management set-
ting analyzed in Talluri and van Ryzin (1998). In that set-
ting, an airline is operating flights and is selling different
itinerary tickets to incoming customers, so as to maximize
net expected profits from sales subject to capacity con-
straints (which correspond to the numbers of seats on the
different aircraft operating the flights). The authors ana-
lyze a simple control policy that decides whether to sell an
itinerary ticket to a passenger or not, and demonstrate that
the policy is asymptotically optimal under some conditions.
For the organ allocation problem, a simplified version of
the policy that we described in the previous section can be
cast in the same framework as in Talluri and van Ryzin
(1998); one can then derive a similar result of asymptotic
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optimality, following the same procedure. In particular, in
Talluri and van Ryzin (1998), the authors analyze the per-
formance of the following simple bid-price control policy:
one first solves a capacity allocation problem assuming that
demand is deterministic and equal to the mean demand.
Based on the optimal-dual multipliers associated with the
resource capacity constraints in that problem, one then cal-
culates a “bid price” for every unit of a particular resource.
An itinerary ticket is then sold to a customer if the money
offered by the customer exceeds the sum of prices of the
resources he would consume. In our procedure, if we ignore
the regression step, we also assume deterministic demand
and solve a similar allocation problem.* We then calcu-
late “bid prices” y associated to the fairness constrains
and assign the organ to the patient who achieves the high-
est profit (LYFT), adjusted for the “bid prices.” For more
details, we refer the reader to the paper by Talluri and
van Ryzin (1998). Finally, note that in our procedure we
eventually use the score components to make decisions
instead of the “bid prices,” as per policy design require-
ments. If the selected score components are correlated with
the “bid prices” and the fairness constraints those corre-
spond to, we expect our procedure to work well. However,
this would not be the case if the selected score compo-
nents have limited explanatory power and are uncorrelated
with the fairness constraints. As we emphasized above, our
methodology is not a replacement for professional medical
judgment; the selection of score components is precisely
one of the steps where medical judgment is required to
guide our procedure.

Apart from the above discussion regarding the perfor-
mance of our method in practice, we next provide numeri-
cal evidence. Before that, we summarize the relative merits
of our contribution.

1. The proposed method uses detailed historical medical
data to extract near-optimal score weights in an efficient
manner. In particular, the method is highly scalable and can
learn the parameters from potentially highly detailed and
complicated historical data sets, with no need for simplifi-
cations, clustering, or grouping of patients’ and/or organs’
characteristics.

2. The method offers the flexibility and allows policy
makers to focus only on identifying score components and
desired fairness properties of allocation outcomes in the
design of a new policy. The method undertakes the more
involved part of finding the appropriate weights and bal-
ancing the score components. Although medical intuition
can help in making educated guesses for the weights, there
is little guarantee that a policy designed in such way would
yield the desired results. Furthermore, even if a set of
weights yields a policy with the desired outcomes, there
can be another policy delivering a superior performance.
Due to the computational intensity of simulations, one sim-
ply cannot explore all possible combinations of weights.
Our contribution is towards this direction, by using mathe-
matical tools to automatically extract near-optimal weights
from historical data.

3. The failure of the current kidney allocation policy in
place to keep up with advances in medicine and the changes
in patients’ needs throughout the years has demonstrated
that in such a dynamic and complex environment, revisions
to policies are likely to be required in the future as well,
a fact that is also recognized by the OPTN Final Rule.
Furthermore, even in the current process of developing a
new policy, there is no guarantee that the Office of Civil
Rights will approve the criteria of life-years from trans-
plant, dialysis time, etc., suggested by the OPTN policy
makers. In both cases, our method will expedite the devel-
opment of a new policy, because it would require only an
updated list of score components and fairness properties to
be specified.

4. Our method allows for sensitivity analysis; specifi-
cally, one can efficiently evaluate the outcomes of relax-
ing some or introducing new fairness constraints. In the
next section, we provide such an analysis that reveals the
dependence of medical efficiency on fairness concepts, and
illustrate how it can be used in practice by policy mak-
ers. In particular, note that one of the main goals that the
OPTN policy makers have set for a new national policy
is to deemphasize the role of waiting time and increase
medical efficiency (see §2.1). Our analysis provides a char-
acterization of the trade-offs involved.

In the next section, we provide numerical evidence of the
usefulness of the described method. In particular, we use
historical data to design multiple new scoring policies under
different scenarios and also perform a sensitivity analysis.

4. Numerical Evidence and the
Design of New Allocation Policies

We utilize the method described in the previous section
to design new scoring-rule based policies for kidney allo-
cation that have different fairness requirements and/or are
based on different score components. Specifically, we con-
sider different fairness requirements and score components
derived from policies that have been proposed by the OPTN
Kidney Transplantation Committee (see §2.1) to set up
three realistic case studies. Briefly, the intent and outcomes
of these case studies are as follows:

e Case Study 1: Here we design policies that are based
on all score components considered by policy makers,
discussed in §2.1. Using the methodology of the previous
section we require the approach to preserve the fairness
properties of the current dominant proposal considered by
the KTC (referred to also as the KTC policy or proposal
in this section). Furthermore, we impose constraints on our
methodology to guarantee that the resulting scoring rule is
clinically valid. Our methodology produces a policy that,
in addition to being clinically valid and exhibiting similar
fairness properties as the dominant proposal, provides an
8% increase in life-year gains relative to that proposal. This
demonstrates the value of the approach in designing poli-
cies given requirements on fairness, as well as, vis-a-vis
the task of guiding the selection of a small but appropriate
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set of score components from a large family of potential
score components.

e Case Studies 2 and 3: Similar to the previous study,
this study requires fairness criteria that correspond to a per-
haps more balanced allocation of organs among different
age groups of patients (as opposed to the dominant proposal
that has been criticized as providing too few transplants
to older age groups). Surprisingly, we develop a clinically
acceptable policy that allays these criticisms of the dom-
inant proposal while providing essentially the same life-
years gains as the dominant proposal. This demonstrates the
value of our methodology vis-a-vis designing policies that
must satisfy stringently specified fairness criteria. We fur-
ther consider various relaxations of the fairness criteria and
construct corresponding policies to show how our approach
allows policy makers to perform a sensitivity analysis rel-
ative to fairness requirements.

To ensure a fair comparison, we evaluate the perfor-
mance of all policies we study by using the same statistical
models and tools, as well as data sets with the OPTN KTC
policy makers. We first provide details about the data and
models, and then present our methodology and results.

4.1. Data, Statistical Models, and Tools

This work uses highly detailed historical data from the
Scientific Registry of Transplant Recipients (SRTR). The
SRTR data system includes data on all donors, wait-listed
candidates, and transplant recipients in the United States,
submitted by the members of the OPTN, and has been
described elsewhere. The Health Resources and Services
Administration (HRSA), U.S. Department of Health and
Human Services, provides oversight to the activities of the
OPTN and SRTR contractors. The data sets include all
the various physiological and demographic characteristics
of wait-listed patients and donors that are needed for our
study, as well as the evolution of the medical status of the
patients and the arrival process of the donated organs.

In addition, the SRTR has developed sophisticated sur-
vivability models for ESRD patients using historical sur-
vival rates. The models provide an estimate for the
anticipated lifespan of a patient in case he remained on
dialysis, or in case he received a particular kidney, based on
a plethora of physiological attributes (e.g., the patient’s age,
body mass index, diagnosis, as well as tissue matching, the
donor’s age, cause of death, etc.). For more information and
a detailed study of the statistical performance of the mod-
els, we refer the reader to Wolfe et al. (2008, 2009). The
SRTR has also developed an acceptance model that predicts
the probability of a particular patient accepting a particular
organ offered to him, based on the physiological character-
istics of the patient and the donor, the distance, etc.

The above data sets and statistical models have also
been utilized by the SRTR in the development of the
Kidney-Pancreas Simulated Allocation Model (KPSAM).
The KPSAM is an event-driven simulator that simulates the
entire allocation process using historical data for different
allocation policies. It was developed in order to support

studies of alternative policies. The KPSAM is the platform
that the OPTN KTC is utilizing to evaluate the performance
of their proposed policies; see OPTNKTC (2007). For more
details on the data and the simulator, we refer the reader to
Waisanen et al. (2004) and KPSAM (2008).

For the purposes of this study, we obtained the KPSAM
and used its simulation engine in order to obtain realistic
allocation outcomes of the policies we consider. The life-
years from transplant gains are estimated using the afore-
mentioned survivability models, embedded in the KPSAM.

4.2. Methodology

We perform three case studies of designing scoring rules
that have different fairness requirements and/or are based
on different score components. In all studies we design
allocation policies using our method described in §3. Recall
that our method outputs scoring rules, given as input histor-
ical data, fairness requirements, and score components. We
discuss the specific fairness requirements and score com-
ponents of each case study separately (see below). For his-
torical data, we use the first six months of data of the 2008
SRTR database as input to our method (training data).

To evaluate the performance of a policy, we use the
KPSAM to simulate the allocation outcomes of that pol-
icy 100 times, over the remaining six months of the 2008
data set that were not used as training data. To evalu-
ate efficiency, we record the average number of transplan-
tations occurring and the average net expected life-years
from transplant (along with sample standard deviation).
To compare fairness properties across different policies, we
compare the percentage distribution of transplant recipients
across different races, age groups, blood types, sensitiza-
tion groups, as well as diagnosis types and years spent on
dialysis. Note that this practice is in line with the com-
parison criteria studied by the OPTN policy makers (see
OPTNKTC 2008, RFI 2008). As such, we also record the
average aforementioned percentage distributions for the 100
simulation runs (along with sample standard deviations). We
next present the case studies and discuss our results.

4.3. Case Study 1

We design a policy that has the same fairness properties as
the dominant KTC policy and is based on criteria and score
components considered by the KTC. Specifically, we allow
the policy to use any (small) subset of those criteria and
components. In addition, by imposing the appropriate con-
straints in the third (regression) phase of our methodology,
we ensure that the resulting policies are clinically valid
(i.e., they conform qualitatively to features of past KTC
policies/recommendations).

Score components. Rather than preselecting specific
score components, we feed the regression step of our
method with virtually all score components considered by
the KTC (see §2.1). However, in accordance with the for-
mat of KTC policies, we eventually pick only the four
most significant components, which prove to be: LYFT, a



Bertsimas, Farias, and Trichakis: Organ Allocation for Kidney Transplantation

82

Operations Research 61(1), pp. 73-87, © 2013 INFORMS

continuous piecewise-linear function of DT (with potential
break points at 5 and 10 years), CPRA and a stepwise func-
tion of patient age (with potential break points at 50 and 65
years) that gives additional points for passing 50 years of
age, and 65 years of age. These last two score components
are in line with KTC proposals, and in fact make the policy
highly desirable by addressing certain ethical issues raised
over equity across age groups as we discuss later.
Fairness constraints. We require the policy to have
the same fairness properties as the dominant KTC pro-
posal. To enforce that, we simulate the KTC policy and
record the percentage distribution of transplant recipients
across the different groups discussed above. We then use
those recorded percentage distributions as input constraints.
More specifically, we use them to input lower-bound con-
straints on the percentage of organs allocated to the fol-
lowing groups: Caucasian, African—American, Hispanic, or
patients of another race; patients aged between 18-35,
35-50, 50-65, and above 65 years; patients who have spent
less than 5, 5-10, 10-15, or more than 15 years on dialysis;
blood type O, A, B, AB patients; patients diagnosed with
nephritis, hypertension, polycystic kidney disease, diabetes
or other disease; patients with a sensitization level (CPRA)
of 0-10, 10-80, or 80-100. For instance, consider the fair-
ness constraints pertaining to dialysis time. The recorded
percentage distribution of recipients for the KTC policy
is as follows: 54% of the recipients have spent less than
5 years on dialysis, 29.5% between 5-10 years, 11.1%
between 10-15 years, and 5.4% more than 15 years. The
constraints we add then as input to our method are:

54
> 2 Yoz 15p 2 Fwor

p:0<DT(p)<5 0:(p, 0)€€ (p,0)e€

29.5

> > X0 Z 700 > Ko

p:5<DT(p)<10 0: (p, 0)€€ (p,0)e€

> > 11.1
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Results. The output of our method is the scoring rule
assigning the Kidney Allocation Score to a patient-organ

pair (p, o) of

KAS(p, 0) =LYFT(p, 0) + g(DT(p)) + 0.08CPRA(p)
+ 0.5I1(AGE(p) > 50),

Table 1.

where I is the indicator function and

0.65DT, 0<DT<5,
¢gDT)={DT-1.75, 5<DT<I0,
0.2DT +6.25, 10<DT.

According to the above scoring rule, patients are awarded
1 point for every life-year from transplant gain, 0.08 points
per point of their sensitization score, 0.5 points if aged
more than 50, and points based on their dialysis time as
follows: 0.65 points for the first 5 years, 1 point for every
additional year up to 10 years, and 0.2 points for every
additional year beyond that.

The simulation results are reported in Table 1 and
Figure 2. Sample standard deviations for the percentage
distributions are included in the appendix.

Discussion. In this case study we attempt to address the
question: given all the score components and criteria we
can use and the fairness properties of the KTC policy, can
we design a policy that is based on some of those com-
ponents, has the same fairness properties, but is more effi-
cient? The results demonstrate that our method is indeed
capable of doing so, because the policy we design deliv-
ers a 7.8% increase in life-year gains in comparison to the
KTC policy. The score components our policy uses are all
based on components and criteria the KTC has already con-
sidered, and are discussed next.

The designed policy awards points according to life-
years from transplant (LYFT), dialysis time (DT), and sen-
sitization level (CPRA). The policy also uses a stepwise
score component based on patient age that has the same
form as the component pertaining to sensitization in the
current policy in use; see UNOS (2010). Note also that the
policy uses patient age in a manner that allays critiques of
earlier KTC proposals. In particular, age has been used by
the KTC primarily to direct more or higher-quality organs
to younger patients for efficiency purposes. For instance,
the allocation policy currently in use in the United States
gives priority to pediatric patients (aged less than 18 years)
for organs procured from donors aged less than 35, whereas
proposals suggest to extend priority to patients aged less
than 35 as well. This may be perceived as providing an
undue advantage to younger patients. In contrast, the way
our policy utilizes age is in the other direction. That is, to
impose fairness, the policy awards points to patients aged
more than 50 to compensate for the fact that they typically
obtain smaller LYFT scores.

Furthermore, note that the score component pertaining
to DT is continuous piecewise linear. We present here
the use of a piecewise-linear function for the following
reasons: (a) to illustrate how our method can deal with

Simulation results of the KTC policy and the policies designed in Case Studies 1 and 2 in

§§4.3—4.4, for an out-of-sample period of six months in 2008 and 100 runs.

KTC policy Case Study 1 Case Study 2
Number of transplantations (std) 5,799 (23) 5,807 (22) 5,822 (24)
Net life years from transplant (std) 34,217 (185) 36,890 (219) 34,065 (212)
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Figure 2.

Simulated average percentage distributions of recipients across different race, dialysis time, blood type, sen-

sitization, diagnosis, and age candidate groups for the policies designed in Case Study 1 (cyan) and Case

Study 2 (red).
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period of six months in 2008.

a variety of functions for score components, and (b) the
preference of some members of the KTC for continuous
functions,’ due to the concern that discontinuities might
grant patients who are slightly above a particular thresh-
old (or breakpoint) a disproportionate advantage compared
with patients slightly below that threshold; see OPTNKTC
(2007). Note, however, that we found in all policies pre-
sented in this work, one can interchangeably use stepwise
and piecewise functions (delivering statistically indistin-
guishable performance).

Finally, this case study demonstrates that our method
reliably designs policies that perform well based on
input that is directly related to outcomes (fairness con-
straints) and permissible score components. In contrast,
the approach of policy makers in designing policies has

traditionally been to first select a subset of score compo-
nents, identify weights, and then observe (simulation based)
outcomes; and then go through those steps multiple times
if necessary. This is obviously not ideal, a fact demon-
strated amply by our numerical results. Thus, our contri-
bution enables the design of policies in a more natural and
powerful way by considering the desired outcomes directly.
Our method is capable of calibrating multiple score compo-
nents simultaneously and distilling the ones that are impor-
tant. In the absence of an algorithmic method, such a task
might be strenuous or even impossible to carry out.

4.4. Case Study 2

We present a case study similar to Case Study 1, but
with different fairness requirements. We enforce the same
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fairness properties with the KTC policy, but require the
percentages of recipients aged 50-65 and above 65 to be
equal to the percentages of patients at the waitlist aged
50-65 and above 65, respectively. This requirement results
in an (additive) increase of around 17 percentage points
for organs allocated to patients aged 50 and above. This
increase is balanced by a pro rata decrease in the number
of organs allocated to recipients aged between 18 and 50.
We require this at the outset in response to comments made
by a UNOS Ethics Committee in OPTNKTC (2008) that
observed that the dominant KTC proposal resulted in a
decrease in the proportion of transplants among patients in
the 50-65 and 65 and older age groups. The question that
remains is whether the life-year gains provided by the dom-
inant proposal can be retained using a clinically acceptable
policy that, unlike the dominant proposal, does not result
in a large change in the fraction of transplants among older
age groups.

Score components. As in Case Study 1, we use LYFT, a
piecewise-linear function of DT (with break points at 5 and
10 years), CPRA and a stepwise function of patient age
(with break points at 50 and 65 years).

Fairness constraints. We enforce the policy to have the
same fairness properties as the dominant KTC policy, but
with a different age distribution requirement. In particu-
lar, the percentage distribution of patients according to age
for the KTC policy is: 5% for patients aged less than 18,
20.4% for patients aged 18-35, 32.4% for patients aged 35—
50, 30.7% for patients aged 50—65, and 11.5% for patients
aged above 65. For our policy, we require the percentages
of organs allocated to patients aged 50-65 and above 65
to be 41% and 17.8%, respectively (note that those were
precisely the percentages of patients aged 50-65 and above
65 in the waitlist in 2008). Accordingly, we require the
percentages of organs allocated to patients aged 18-35 and
35-50 to be 14% and 22.2%, respectively.

Results. The output of our method is the scoring rule
assigning the Kidney Allocation Score to a patient-organ
pair (p, o) of
KAS(p, 0) =LYFT(p, 0) + h(DT(p)) + 0.12CPRA(p)

+ 2.5I(AGE(p) > 50) + I(AGE(p) > 65),

where
0.75DT, 0<DTKS,
h(DT) = { DT — 1.25, 5<DTL 10,
0.5DT+3.75, 10<DT.

The simulation results are reported in Table 1 and Figure 2.
Sample standard deviations for the percentage distributions
are included in the appendix.

Discussion. This case study, alongside the next one, illus-
trates how our method deals with alternative fairness con-
straints. In particular, we consider the same setup as in Case
Study 1, but introduce a change in the required age per-
centage distribution of recipients. Our method successfully
redesigns a conforming policy.

The change in the age distribution we consider is moti-
vated by comments made by a UNOS Ethics Committee
in OPTNKTC (2008). Based on the fact that, in compari-
son with current practice, the new KTC policy would direct
a higher number of organs, or organs of higher quality,
to younger patients, the committee argued that the KTC
policy might have an unintended consequence of a decrease
in living donor transplants for younger patients, who typi-
cally have higher LYFT scores. In response to that, in this
case study we design a policy that has a more balanced age
distribution, which actually resembles the age distribution
of patients in the waitlist. Perhaps this consideration is just
only one plausible way of addressing the concern raised
by the committee. Nevertheless, it is presented here only
to illustrate the flexibility of our method, rather than tackle
this particular issue.

Finally, note that in comparison with the KTC pol-
icy our policy allocates more organs to elder patients,
a fact that could significantly undermine efficiency. How-
ever, both policies deliver almost identical life-year gains
(see Table 1), which again illustrates that our method is
capable of designing efficient policies.

4.5. Case Study 3

In our final case study we demonstrate how our method
can be used to perform a sensitivity analysis with respect
to imposed fairness constraints. Specifically, we explore the
dependence of life-years from transplant gains on the pri-
ority given for dialysis time and sensitization.

To this end, we consider a similar setup as in Case
Study 1, but we relax the constraints pertaining to patient
groups of different dialysis time, i.e., constraints (3), as
well as to patient groups of different sensitization level.
The relaxation is controlled by a slack parameter. We then
study the dependence of life-year gains on that parameter.

Score components. As in Case Study 1, we use LYFT, a
piecewise-linear function of DT (with break points at 5 and
10 years), CPRA and a stepwise function of patient age
(with break points at 50 and 65 years).

Fairness constraints. We use the same fairness proper-
ties with the dominant KTC policy, but we first relax only
the constraints pertaining to dialysis time. The relaxation is
performed by introducing a slack parameter s in the per-
centage requirements of recipients of different groups, that
is, the relaxed constraints take the form

54 —5
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Clearly, for s = 0 one would recover the policy that
was designed in Case Study 1. For s > 0, the require-
ment on matching the percentage distribution (with regard
to patient groups of different dialysis time) achieved by
the KTC policy is relaxed. Thus, one should expect that
policies designed with such relaxed requirements would
achieve higher life-years from transplant gains. Using our
method, we design policies for various values of the slack
parameter s and quantify how the gains in medical effi-
ciency depend on deviations from the selected fairness
constraints. Secondly, we follow the same procedure to
examine the dependence of medical efficiency on the pri-
ority given to sensitized patients. We again use all the con-
straints as in Case Study 1, but this time relax only the
constraints pertaining to patient groups of different sensi-
tization levels. The relaxation is again performed using a
slack parameter s. Note that one can potentially perform a
sensitivity analysis through many other different ways of
relaxing the constraints; for illustration purposes, we focus
here only on the described method of uniformly relaxing
the constraints by a slack parameter.

Results. The results we obtain in the aforementioned sce-
narios are depicted in Figure 3. The figure shows the life-
years from transplant gains (for the six-month period we
consider) of policies designed with relaxed constraints on
patient groups of different dialysis time or sensitization, for
various values of the slack parameter s. The figure also
depicts the operational point of the KTC policy, that is, for
s=0.

Discussion. Comparing the two scenarios we considered,
one can observe that the dependence of medical efficiency
Figure 3. Simulated life years from transplant gains
for policies (designed by our method) with
relaxed constraints on all patient groups of
different dialysis time (solid) or sensitization
(dashed), for various values of the slack
parameter s; for more details see §4.5.
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The marker corresponds to the operational point of the policy proposed
by the UNOS policy makers.

is stronger on dialysis time. Also, the life-years from trans-
plant gains can be as high as 44,300 years, which are 30%
larger than the gains of the KTC policy. Note that although
such a policy might not be implementable, the analysis can
provide insights to policy makers and facilitate their deci-
sion process.

Nevertheless, this case study illustrates how our method
can be used to perform a trade-off analysis that could assist
policy makers in quantifying the impact of certain fairness
requirements.

5. Discussion and Future Directions

We dealt with the important problem of allocating deceased
donor kidneys to waitlisted patients in a fair and efficient
way. We focused on national allocation policies in the
United States and the recent effort to revise the current
policy in place.

Particularly, we studied allocation policies that are based
on point systems; under those policies patients are awarded
points according to some priority criteria, and patients are
then prioritized by the number of points awarded. We iden-
tified the challenges in designing a point system, specifi-
cally, the relative emphasis put on each criterion such that
the resulting policy strikes the right balance between effi-
ciency and fairness.

Our main contribution was a scalable, data-driven
method of designing a point-system based allocation poli-
cies in an efficient and systematic way. The method does
not presume any particular fairness scheme or priority cri-
terion. Instead, it offers the flexibility to the designer to
select his desired fairness constraints and criteria under
which patients are awarded points. Our method then bal-
ances the criteria and extracts a near-optimal point system
policy, in the sense that the policy outcomes yield approx-
imately the maximum number of life-years gains (medical
efficiency) while satisfying the fairness constraints.

To validate our method and demonstrate its usefulness,
we presented three case studies in which we designed
new policies under different scenarios. In one of them, we
designed a new policy that matches in fairness properties
the one that was recently proposed by the U.S. policy mak-
ers, while being based on a format and criteria already con-
sidered by policy makers. Critically, our policy delivers an
8% relative increase in life-years gains. The performance
gain was established via simulation, utilizing the same sta-
tistical tools and data as the U.S. policy makers.

Finally, we presented a trade-off analysis that revealed
the dependence of medical efficiency on the important fair-
ness concepts of prioritizing patients who have either spent
a lot of time waiting, or are medically incompatible with
the majority of donors.

As a pointer for future work, consider the policies that
OPTN policy makers have proposed in which patients
and/or organs are categorized into different groups accord-
ing to some criteria and then specific groups receive pri-
ority in the allocation; see §2.1. For instance, a proposal
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presented in OPTNKTC (2007) suggests categorizing
patients in five different groups according to their expected
life-year gains: top 20% goes to the first group, bottom
20% goes to the last group, etc. Similarly, organs are cat-
egorized according to their quality (DPI). In the allocation
then, group 1 patients are given priority for group 1 organs,
group 2 patients are given priority for group 2 organs, and
so on. Ranking within those groups is again achieved via
a scoring rule, so our model would again be applicable
and useful. Another interesting question, however, is how
can should one decide on the “right” categorization? In the
example we gave, how does one exactly partition patients
into those five groups? As an extension and future work,
one can potentially use modified versions of our framework
to guide such decisions. We present a related case study in
the appendix.

Electronic Companion

An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1138.

Endnotes

1. ABO incompatibility is a reaction of the immune system
that occurs if two different and not compatible blood types
are mixed together; see http://www.nlm.nih.gov/medlineplus/ency/
article/001306.htm.

2. Potential recipients are “sensitized” if their immune system
makes antibodies against potential donors. Sensitization usually
occurs as a consequence of pregnancy, blood transfusions, or pre-
vious transplantation. Highly sensitized patients are more likely
to reject an organ transplant than are unsensitized patients. For
more information, see http://www.ustransplant.org/.

3. When two people share the same human leukocyte antigens
(abbreviated as HLA), they are said to be a “match,” that is, their
tissues are immunologically compatible with each other. HLA are
proteins that are located on the surface of the white blood cells
and other tissues in the body. For more information, see http://
www.stanford.edu/dept/HPS/transplant/html/hla.html.

4. Specifically, consider the deterministic linear optimization
model analyzed in Talluri and van Ryzin (1998), where the dif-
ferent customer classes correspond to patient classes, the profits
correspond to life-years from transplant, and the network capacity
constraints correspond to the fairness constraints. If we instead
use historical samples rather than averages, we recover formula-
tion (1).

5. However, note that stepwise score components are utilized in
the current allocation policy.
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