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Abstract

Estimation-over-graphs (EoG) is a class of estimation problems that admit a natural graphical representation. Several key

problems in robotics and sensor networks, including sensor network localization, synchronization over a group, and

simultaneous localization and mapping (SLAM) fall into this category. We pursue two main goals in this work. First, we

aim to characterize the impact of the graphical structure of SLAM and related problems on estimation reliability. We draw

connections between several notions of graph connectivity and various properties of the underlying estimation problem.

In particular, we establish results on the impact of the weighted number of spanning trees on the D-optimality criterion in

2D SLAM. These results enable agents to evaluate estimation reliability based only on the graphical representation of the

EoG problem. We then use our findings and study the problem of designing sparse SLAM problems that lead to reliable

maximum likelihood estimates through the synthesis of sparse graphs with the maximum weighted tree connectivity.

Characterizing graphs with the maximum number of spanning trees is an open problem in general. To tackle this problem,

we establish several new theoretical results, including the monotone log-submodularity of the weighted number of span-

ning trees. We exploit these structures and design a complementary greedy–convex pair of efficient approximation algo-

rithms with provable guarantees. The proposed synthesis framework is applied to various forms of the measurement

selection problem in resource-constrained SLAM. Our algorithms and theoretical findings are validated using random

graphs, existing and new synthetic SLAM benchmarks, and publicly available real pose-graph SLAM datasets.

Keywords

SLAM, measurement selection, resource-constrained SLAM, estimation over graphs, pose-graph pruning, number
of spanning trees, graph complexity

1. Introduction

Estimation-over-graphs (EoG) is a rich class of estimation

problems that admit a natural graphical representation. In

these problems, each vertex corresponds to an unknown

state, and each edge corresponds to a noisy relative measure-

ment between the corresponding states. Simultaneous locali-

zation and mapping (SLAM), synchronization problems over

various groups, and sensor network localization are several

notable examples of EoGs with important applications in

robotics and sensor networks. An instance of EoG is often

characterized by a measurement model, a graph G = (V,E),
and a set of noisy measurements z : E!M. The objective

then is to find an optimal drawing of graph �̂ : V! X in the

state space X, consistent with the given measurement model

and measurements (e.g., in the maximum likelihood (ML)

sense). For example, in d-dimensional pose-graph SLAM

(d 2 f2, 3g), both X and M correspond to the special

Euclidean group SE(d). In this work, we explore and exploit

the overlooked interplay between the graphical and

estimation-theoretic facets of SLAM and several other EoGs.

The graphical representation of EoGs provides a com-

pact overview of the underlying estimation problem. In par-

ticular, graph connectivity is related to the notion of

redundancy in estimation. Intuitively, an EoG with a well-

connected topology is expected to be more resilient to a

fixed level of noise. A simple example is illustrated in

Figure 1. This figure shows the ML estimates (MLEs) for

two popular synthetic pose-graph SLAM datasets whose

ground truths resemble grids. In this example, these
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datasets are regenerated with identical noise regimes.

Estimation errors and confidence ellipses in City10K (left)

are notably smaller than those in Manhattan (right). This

difference can be attributed mainly to the better connectiv-

ity of the City10K dataset.

Any well-defined graph connectivity measure must be

monotone (i.e., non-decreasing) in the edge set. Therefore,

graph connectivity can be maximized by simply adding all

available edges to the graph (or, equivalently, collecting all

possible measurements). Nevertheless, adding edges places

a computational burden on the so-called back-end which is

responsible for solving the underlying optimization prob-

lem. Thus, arbitrarily selecting new edges is not sustainable

and prioritization based on information content is inevita-

ble. This is especially important in the case of resource-

constrained platforms, where there is often a hard limit on

the number of measurements that can be collected, pro-

cessed, and utilized (see, e.g., Carlone and Karaman, 2017;

Davison, 2005; Giamou et al., 2018; Huang et al., 2013;

Paull et al., 2015; Tian et al., 2018).

This paper aims to answer the following questions.

1. Analysis: How precisely does the graph topology influ-

ence the underlying estimation problem?

2. Synthesis: For a suitable connectivity measure that

characterizes a certain aspect of estimation reliability,

how can one design sparse, yet well-connected topolo-

gies that lead to a tractable (i.e., budget-feasible) and

reliable estimation?

Answering the first question enables us to characterize

desirable graph topologies for an EoG problem such as

SLAM from an intrinsic perspective and independent of

any geometric aspects of the problem (i.e., realized mea-

surements or a graph drawing). Subsequently, in the second

question we seek to design efficient algorithms for synthe-

sizing such graphs under sparsity constraints as a proxy for

the resource constraints arising in solving the underlying

estimation problem.

In the SLAM literature, the impact of graph connectiv-

ity on estimation error is intuitively understood through

the notion of loop closure ‘‘size.’’ Closing a ‘‘larger’’ loop

is preferred over closing ‘‘smaller’’ loops as it reduces

more of the uncertainty in a robot’s belief over its trajec-

tory and the map (Bailey and Durrant-Whyte, 2006). We

formalize this intuition by relating different measures of

graph connectivity to several aspects of estimation relia-

bility. Aside from presenting novel insights into an over-

looked aspect of SLAM, our theoretical developments

ultimately provide us with a unique set of tools for rea-

soning about estimation error based only on the topology

of the underlying graph G, i.e., without knowing the rea-

lized measurements, any particular drawing of the graph,

or solving the inference problem. This is in contrast to the

generic estimation-theoretic approach, in which the gra-

phical facet of the EoG problem is neglected, and instead,

the Fisher information matrix (FIM) is computed by eval-

uating the Jacobian at the current MLE of, e.g., a robot’s

trajectory. In comparison, the proposed graph-theoretic

framework is robust to common convergence issues and

linearization errors by virtue of not depending on a spe-

cific (estimated or nominal) trajectory, and demands less

computational efforts by not requiring the solution of the

resulting optimization problem and operating on a mini-

mal representation of the problem. It is also more flexible

when planning over longer horizons because it is indepen-

dent of any particular metric realization of (current and/or

future) trajectories and measurements.

The motivation behind our work originates from the

work of Olson and Kaess (2009), where they insightfully

highlighted the crucial role played by graph connectivity in

SLAM. Olson and Kaess (2009) empirically observed that

as the average degree in pose graphs increases, the value of

the log-likelihood cost function at the MLE approaches its

value at ground truth. We start our analysis by presenting a

formal explanation for this observation. We then establish a

connection between the graph Laplacian matrix and the

FIM, which fully characterize, respectively, the graphical

and estimation-theoretic facets of EoGs. This insight

enables us to establish stronger links between the two

aspects of SLAM based on the algebraic connectivity

(Godsil and Royle, 2001) (Fiedler value) and the weighted

Fig. 1. MLEs for two datasets with identical noise models. The bridges highlighted in the Manhattan dataset are indicative of its

weak connectivity.
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number of spanning trees (WST). Among the existing com-

binatorial and spectral graph connectivity criteria, the num-

ber of spanning trees (sometimes referred to as graph

complexity or tree connectivity) stands out: despite its com-

binatorial origin, it can also be characterized solely by the

spectrum of the graph Laplacian (Godsil and Royle, 2001).

As we shall see in this paper, tree connectivity is strongly

tied to the standard D-optimality criterion (D-criterion for

short), defined as the determinant of the (asymptotic) ML

estimator covariance matrix. Consequently, one can accu-

rately estimate the determinant of the estimation error cov-

ariance matrix using only the topology of the (weighted)

graph underneath.

Based on the insight highlighted above, we address

the second question, i.e., minimizing the determinant of

the estimation error covariance in SLAM while maintain-

ing computational tractability through the synthesis of

sparse graphs with maximum tree connectivity. In partic-

ular, we tackle several forms of the measurement selec-

tion problem in which one seeks to select a D-optimal k-

subset of loop closures. This problem has been studied

extensively in the recent SLAM literature (see, e.g.,

Davison, 2005; Huang et al., 2013; Ila et al., 2010; Kaess

and Dellaert, 2009). However, here we take a rather dif-

ferent graph-theoretic approach by exploiting the afore-

mentioned connection between tree connectivity and

D-optimality.

Graphs with the maximum number of spanning trees

among a family of graphs with the same vertex set are

called t-optimal. The problem of characterizing unweighted

t-optimal graphs among the set of graphs with n vertices

and m edges remains open and has been solved only for

specific pairs of n and m (see, e.g., Cheng, 1981; Kelmans,

1996; Petingi and Rodriguez, 2002; Shier, 1974). The span

of these special cases is too narrow for the types of graphs

that typically arise in SLAM and related applications.

Furthermore, the (n,m) constraint is usually insufficient for

describing the true set of (physically) realizable graphs and

cannot capture implicit physical and operational constraints

that exist in these problems. Finally, it is not immediately

clear how these results can be extended to the case of

(edge) weighted graphs. The edge weights are essential

parts of EoGs as they reflect the precision or information

(i.e., inverse of variance) of the corresponding measure-

ments. We address these challenges by proposing a pair of

approximation algorithms with provable guarantees and

near-optimality certificates.

In this paper, we extend the theoretical results presented

in Khosoussi et al. (2014) and Khosoussi et al. (2016a) on

the connection between the WST and the D-criterion.

Moreover, this work extends the algorithms and theoretical

results presented by Khosoussi et al. (2016b) to new formu-

lations, and show how our approach can be used for D-opti-

mal measurement selection in several scenarios. Finally, in

this paper we provide an extensive experimental evaluation

and validation based on real and synthetic datasets.

1.1. Outline

Section 2 provides a mathematical formulation of SLAM

and several related EoG problems. We provide answers to

the above-mentioned analysis question by linking different

measures of graph connectivity to various aspects of estima-

tion reliability in Section 3. Subsequently, in Section 4 we

tackle the synthesis question and formally define the edge

selection problem (ESP) for designing sparse graphs with

the maximum weighted tree connectivity. In Section 5, we

develop a pair of approximation algorithms for solving the

synthesis problem. The proposed framework is extended to

more general settings in Sections 6 and 7. In Section 8, we

show how our graph-theoretic framework can be applied to

various measurement selection problems in SLAM. In

Section 9, we evaluate the performance of our algorithms

on both synthetic graphs and real benchmark datasets.

Section 10 concludes the paper. In addition, for the reader’s

convenience Appendix A provides a brief review of the ter-

minology and a number of results from estimation theory,

linear algebra, and spectral graph theory. Appendix B is

where we present the proofs.

1.2. General notation

Throughout this paper, bold lower-case and upper-case let-

ters are reserved for vectors and matrices, respectively. The

standard basis for Rn is denoted by feign
i = 1 where n is usu-

ally clear from the context. Sets are shown by upper-case

letters. jXj denotes the cardinality of set X. For any finite

set W,
W

k

� �
is the set of all k-subsets of W. We often

use ½n� to denote the set fi 2 N : i ł ng. The eigenvalues

of symmetric matrix M are denoted by

lmin(M)= l1(M)ł � � � ł ln(M)= lmax(M). Here 1, I

and 0 denote the vector of all ones, the identity, and the

zero matrices with appropriate sizes, respectively. We use

S1 � S2 (respectively S1 � S2) to indicate that S1 � S2 is

positive definite (respectively positive semidefinite). We

use k � k to denote the Euclidean norm, and the weighted

Euclidean norm of vector e with respect to matrix W � 0

is denoted by k ekW ¼D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e�We
p

. Here S
n
.0 and S

n
ø 0 denote

the sets of positive definite and positive semidefinite n× n

matrices, respectively. The Kronecker product is denoted

by �. The block-diagonal matrix whose main diagonal

blocks are W1, . . . ,Wk is denoted by diagðW1, . . . ,WkÞ.

2. EoG problems

In this section, we mathematically formulate SLAM and

two other classes of EoG problems. For each problem, we

compute the FIM. It will soon become clear that the graph

Laplacian is closely related to the FIM in these problems.

The connection between the Fisher information and

Laplacian matrices enables us to study the impact of graph

topology on estimation in the following sections.
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2.1. Synchronization over Rd

Synchronization over R
d (Rd-Sync) is one of the simplest

classes of linear-Gaussian EoG problems. Rd-Sync is a gen-

eralization of the time-synchronization problem in sensor

networks (see Barooah and Hespanha, 2007). Let fxign
i = 1

represent the unknown states and fzigm
i = 1 represent relative

pairwise noisy measurements where both xi and zi belong to

R
d . In R

d-Sync, the pairwise measurement between xi and

xj is generated according to the following simple model,

zij = xi � xj + eij, (i, j) 2 E ð1Þ

in which eij is a zero-mean Gaussian noise.

Assumption 1. Let ei be the noise corrupting the ith mea-

surement. We assume that (i) Cov½ei, ej�= 0d × d for i 6¼ j

and (ii) ei ; N(0,s2
i Id).

R
d-Sync with n variables can be naturally represented by

a graph G = (½n�,E), in which (i) variable xi is represented

by the vertex i 2 ½n�, (ii) relative measurement zij is repre-

sented by the edge fi, jg 2 E, and (iii) edges are weighted

by the precision (inverse of variance) of the corresponding

measurements, i.e., w : E! R.0 : ek 7!s�2
k . Owing to the

relative nature of measurements, ML estimation in R
d-Sync

is ill-posed unless we anchor a vertex. Let A be the reduced

incidence matrix of G (see Appendix A.1). Furthermore, let

x and z denote the stacked vectors of states after anchoring

an arbitrary vertex and measurements, respectively. The

measurement model can be written as

z= (A� Id)
Tx+ e ð2Þ

in which e ; N(0,S) is the stacked vector of measurement

noise. It is easy to verify that S�1 =W� Id where

W ¼D diag(w(e1), . . . ,w(em)) ð3Þ

Proposition 1. (Barooah and Hespanha, 2007). The FIM in

R
d-Sync is given by I=Lw � Id in which Lw is the

reduced weighted Laplacian matrix of G.

Remark 1. The ML estimator in R
d-Sync, as a linear-

Gaussian estimation problem, is unbiased and efficient

(i.e., achieves the Cramér–Rao lower bound (CRLB)).

2.2. Compass-SLAM

Compass-SLAM is a simplified SLAM problem in which

the robot orientation is assumed to be known, e.g., using a

‘‘compass’’. Duckett et al. (2000, 2002) proposed one of the

early SLAM algorithms based on this model. The goal in

Compass-SLAM is to estimate the robot and potentially land-

marks’ positions in R
d (d 2 f2, 3g), fpig

n
i = 1 using noisy

translational measurements fzigm
i = 1. This simplification

reduces the ML estimation in SLAM to a linear-Gaussian

estimation problem, whose globally-optimal solution can be

computed easily by solving a linear least squares problem.

Remark 2. The ML estimator in Compass-SLAM, as a lin-

ear-Gaussian estimation problem, is unbiased and efficient.

The underlying structure of Compass-SLAM can be

represented by a graph similar to R
d-Sync. Let R be a

block-diagonal matrix, consisting of fRigm
i = 1 in which

Ri 2 SO(d) is the rotation matrix corresponding to the

robot orientation making the ith observation, i.e.,

R ¼D diag(R1, . . . ,Rm) ð4Þ

Let p and z be the stacked vector of robot and potentially

landmarks’ positions and translational measurements. After

anchoring an arbitrary vertex, the measurement model in

Compass-SLAM can be expressed as

z=RT(A� Id)
Tp+ e ð5Þ

in which A is the reduced incidence matrix of G and

e ; N(0,S) is the measurement noise.

Assumption 2. Let ei be the noise affecting the ith mea-

surement. We assume that (i) Cov½ei, ej�= 0d × d for i 6¼ j

and (ii) ei ; N(0,s2
i Id).

Proposition 2. The FIM in Compass-SLAM is given by

I=Lw � Id in which Lw is the reduced weighted

Laplacian matrix of G.

2.3. SLAM

This section mainly concerns the 2D pose-graph SLAM

problem with relative-pose measurements.
1

The state vector

is x ¼D p�u�
� ��

, and z= ½z�p z�u �
�

is the stacked vector of

translational and rotational measurements. The measure-

ment model can be expressed as

z= h(x)+ e ð6Þ

in which e ; N(0,S). The measurement function h, after

computing the correct regularization terms for the rotational

component of measurements (Carlone, 2013; Carlone et al.,

2014; Carlone and Censi, 2014), is given by

h(x) ¼D hp(x)
hu(u)

� �
=

R�(A� I2)
� 0

0 A�

� �
p

u

� �
ð7Þ

We make the following assumption regarding the structure

of the noise covariance matrix.

Assumption 3. We assume the rotational and translational

measurements in SLAM are corrupted by block-isotropic

noise, i.e., the noise covariance matrix S can be written as

S = diag(Sp,Su), where

Sp = diag(s2
p1
I2, . . . ,s2

pm
I2) ð8Þ

Su = diag(s2
u1
, . . . ,s2

um
) ð9Þ

According to (78), for p(z; x)=N(z; h(x),S) the FIM is

given by

I(x)= J(x)TS�1
J(x) ð10Þ
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where J(x) ¼D ∂h(x)=∂x. The Jacobian matrix J(x) can be

easily computed:

J(x) ¼D ∂h(x)

∂x
=

Jp
p J

p
u

Ju
p Ju

u

" #
ð11Þ

Jp
p ¼

D ∂hp

∂p
=R�(A� I2)

� ð12Þ

J
p
u ¼

D ∂hp

∂u
= eRD ð13Þ

Ju
p ¼

D ∂hu

∂p
= 0 ð14Þ

Ju
u ¼

D ∂hu

∂u
=A� ð15Þ

Here eR is defined as eR ¼D GR� in which G is given by

G ¼D Im �
0 1

�1 0

� �
ð16Þ

It is easy to verify that G�G =R�R= eR� eR = I; in fact,

G 2 SO(2m). The other new term, D 2 R
2m× n, has the fol-

lowing structure: for each ek 2 E, (D)2k�1:2k, ik
= pjk

� pik

where ik is the index of the node observing the jk th node in

the kth measurement. Other entries in D are all zero. As

noted by Carlone (2013), D ¼D D�D is a diagonal matrix

with the following structure: Di, i is equal to the sum of

squared distances between the ith robot pose and every

node observed by it:

Di, i =
X

j2Nout(i)

k pi � pjk2 ð17Þ

where Nout(v) is the set of nodes observed by v 2 V. Now

we can compute the FIM I(x):

I(x)=
Lwp
� I2 (Awp

� I2)GDwp

�� Lwu
+ D�

wp
Dwp

" #
ð18Þ

in which � denotes the top-right block; Lwp
and Lwu

are

the reduced weighted Laplacian matrices of G when edges

are weighted according to wp : ek 7!s�2
pk

and wu : ek 7!s�2
uk

,

respectively; Wp is the diagonal matrix of edge weights

based on wp; Awp
¼D A

ffiffiffiffiffiffiffi
Wp

p
is the reduced weighted inci-

dence matrix of G when edges are weighted by wp defined

above; Dwp
¼D

ffiffiffiffiffiffiffi
Wp

p
D; and Dwp

¼D D�
wp

Dwp
is a diagonal

matrix with the following structure:

Dwp i, i
=

X
j2Nout(i)

wp(i, j) k pi � pjk2 ð19Þ

3. Topology and estimation reliability

3.1. Average degree

We now demonstrate that the ratio between the value of the

log-likelihood cost function evaluated at the true value and

the MLE can be accurately approximated by a simple

function of the underlying graph structure. To simplify

our notation, let xH and x8 be the MLE and the true value

of x, respectively. Olson and Kaess (2009) investigated

the ratio between the minimum of the log-likelihood

objective function f H ¼D f (xH), and its value at the true x,

f 8 ¼D f (x8). Figure 1 illustrates these values in a toy exam-

ple. Define g ¼D f H=f 8. It is easy to see that (i) 0 ł g ł 1

and (ii) g ! 1� as xH ! x8. Therefore, g ’ 1 indicates

that the MLE is close to the ground truth in objective

value. Using Monte Carlo simulations, Olson and Kaess

(2009) empirically observed that as the average node

degree of the graph, i.e., �d ¼D 1
n

Pn
i = 1 deg (i) increases, g

on average approaches 1 (see Olson and Kaess, 2009:

Figure 5). According to their interpretation, g is a ‘‘coarse

measure of overfitting’’ (Olson and Kaess, 2009). We

repeated their experiment and observed the same beha-

vior. The blue points in Figure 2 correspond to the aver-

age of g in a series of Monte Carlo simulations over a

large number of randomly generated SLAM problems

with different average degrees (similar to Figure 5 in

Olson and Kaess, 2009). For each random pose-graph, we

generated 50 independent and identically distributed rea-

lizations of measurement noise. We then computed g for

each realization of noise, and averaged it over the 50

Monte Carlo simulations. In what follows we provide a

theoretical explanation for this empirical observation.

Assumption 4 (Additive Gaussian noise). We assume that

measurements are corrupted by an additive Gaussian noise,

i.e., z= h(x8)+ e in which z is the measurement, h is the

measurement function and e ; N(0,S) is the noise.
2

The negative log-likelihood cost function for the model

specified in Assumption 4 can be written as

f (x)= k z� h(x) k2

S�1 . To compute g, we need to com-

pute both f H and f 8. According to the definition, f 8 is the

value of the negative log-likelihood at x= x8. Note that

f 8 ¼D f (x8) is a random variable as it depends on z, and

x� x °

f °

f�

x

f(
x)

Fig. 2. Here f (drawn in black) is a pictorial representation of the

negative log-likelihood objective function. The MLE xH and the

ground truth x8, together with their objective values, are

specified.
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consequently e. The following proposition gives the distri-

bution of f 8.

Proposition 3. Under Assumption 4, f 8 ; x2
n8 in which

n8 = dim (z).
According to Proposition 3, f 8 follows a x2

n8 distribution

with dim (z) degrees of freedom. Now let us examine the

behavior of f H ¼D f (xH). Note that xH depends on z and

therefore is a random variable. Consequently, f H, as a func-

tion of xH and z, is also a random variable. The following

well-known result provides the distribution of f H when the

measurement function is affine in x.

Proposition 4. Under Assumption 4 and for linear mea-

surement models we have f H ; x2
nH in which

nH = dim (z)� dim (x).
Proposition 4 characterizes the distribution of f H for

affine measurement functions corrupted by additive

Gaussian noise (Assumption 4). It is impossible to analyti-

cally characterize the distribution of f H for general (non-

linear) measurement functions. However, we can always

linearize sufficiently smooth nonlinear measurement func-

tions using the first-order Taylor expansion around x= x8.

Given a sufficiently small linearization error, one can use

Proposition 4 to approximate the distribution of f H.

According to Proposition 3 and Proposition 4, the distribu-

tion of f 8 and f H is determined by the size of z and x. For

example, in 2D pose graphs we have n8 = 3m and

nH = 3(m� n). Ee ; N(0,S)½g� can be roughly approximated

by

Ee ; N(0,S)½g�’
Ee ; N(0,S)½f H�
Ee ; N(0,S)½f 8� ð20Þ

’
nH

n8
ð21Þ

= 1� n

m
ð22Þ

The rough approximation made in (20) can be justified by

the first-order Taylor expansion of g = f H=f 8 at

f H =Ee ; N(0,S)½f H�’ nH and f 8 =Ee ; N(0,S)½f 8�= n8; this

naı̈ve approximation is introduced only to reproduce the

aforementioned empirical observations (Olson and Kaess,

2009), as we will see shortly in Figure 3.

Using the handshaking lemma, we can express (22) in

terms of the average degree of the graph, i.e.,

Ee ; N(0,S)½g�’ 1� 2=�d ð23Þ

Equation (23) reveals the relation between the expected

value of g, as a measure of estimation accuracy, and the

average node degree �d, as the simplest measure of graph

connectivity. According to (23), as the average degree

increases, g in expectation approaches 1, which indicates

an accurate MLE. The red points in Figure 3 are drawn

according to (23). According to this figure, (23) is consis-

tent with our and Olson and Kaess’s (2009) empirical

observations regarding the average value of g (blue points

in Figure 3).

The average degree is proportional to the ratio between

the number of (vector-valued) measurements (e.g., odome-

try and loop-closure measurements) and the number of

(vector-valued) variables (e.g., robot poses). Therefore, for

a fixed number of poses, maximizing the average degree is

equivalent to merely maximizing the number of measure-

ments. The average degree, as a connectivity measure, is

insensitive to topological differences between graphs with

the same number of edges (per vertices). Hence, although

(23) is consistent with the empirical results, �d is not sophis-

ticated enough to capture and reflect the differences

between graph structures with the same number of mea-

surements. Nonetheless, our analysis provides an insight

into how making new observations ultimately leads to a

more precise estimate in terms of the value of the log-

likelihood function.

3.2. Algebraic Connectivity

Now we present another result on how in R
d-Sync and

Compass-SLAM, a ‘‘well-connected’’ graph is necessary

for achieving reliable estimates. The following remark sets

the stage for our main result.

Remark 3. Let Cov½e� � 0 be a n× n estimation error

covariance matrix in which e 2 R
n denotes the estimation

error. Let lmax ¼D ln(Cov½e�) be the largest eigenvalue of

Cov½e�. The following statements hold regarding lmax:

1. lmax specifies the worst-case variance among all unit

directions (Joshi and Boyd, 2009);

2. geometrically speaking, if Cov½e� is the covariance

matrix of a Gaussian distribution, the ‘‘hyperdiameter’’

of the uncertainty hyperellipsoid is determined byffiffiffiffiffiffiffiffiffi
lmax

p
.

In the optimal experimental design literature, the design

that minimizes the largest eigenvalue of the estimation
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0
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Fig. 3. Average of g in 50 Monte Carlo simulations for different

average node degrees (blue). Estimated value of E½g�’ 1� 2
�d

(red).
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error covariance matrix is known as the E-optimal (eigen-

value-optimal) design (Pukelsheim, 1993). For any simple

connected undirected graph G, the second-largest eigenva-

lue of the (weighted) Laplacian matrix l2(Ls).0 is known

as the algebraic connectivity (or Fiedler value) of G; see

Appendix A.1. A closely related quantity is the smallest

eigenvalue of the reduced Laplacian l1(L) which also

reflects graph connectivity as shown by the following pro-

position as shown by the following proposition.

Proposition 5. Let L be the reduced Laplacian matrix of

simple undirected graph G. The following statements hold:

1. 0 ł lmin(L)ł 1;

2. lmin(L)= 0 iff G is disconnected and lmin(L)= 1 is

maximum iff G is complete;

3. lmin(L) is monotone in the edge set of the graph; i.e.,

adding a new edge to G cannot decrease lmin(L);
4. (Pirani and Sundaram, 2014): let w : E(G)! R.0 be

a weight function and Lw be the reduced Laplacian of

G after anchoring v0 with edge weights given by w; it

holds that lmin(Lw)ł w
z
max, where w

z
max ¼D maxu ; v0

w(v0, u).

The following theorem sheds light on the connection

between the algebraic connectivity, the smallest eigenvalue

of the reduced Laplacian of the graph, and the worst-case

estimation error variance in R
d-Sync and Compass-SLAM.

Theorem 1 (Algebraic connectivity and worst-case error

variance). Let Cov½xH� be the estimation error covariance

matrix of the ML estimator in R
d-Sync and Compass-

SLAM. Let Ls
w

be the corresponding weighted Laplacian

matrix. Then we have lmax(Cov½xH�)= l�1
1 (Lw).

Furthermore, it holds:

lmax(Cov½xH�)ø 1=l2(Ls
w
) ð24Þ

lmax(Cov½xH�)ø 1=wzmax ð25Þ

Theorem 1 states that the worst-case estimation error

variance in R
d-Sync and Compass-SLAM can be

expressed in terms of graph connectivity as captured by

l1(Lw). It also shows that reducing the worst-case estima-

tion error variance in these EoG problems requires suffi-

ciently strong algebraic connectivity and a sufficiently

large w
z
max (i.e., a high-precision measurement to the

anchored node). According to Pirani and Sundaram (2014),

(25) provides a tighter bound than (24). Needless to say,

scaling the information content (precision) of every edge

scales lmax(Cov½xH�), l1(Lw), and l2(Ls
w
) by the same

amount.

3.3. Tree connectivity

In what follows we demonstrate that the weighted number

of spanning trees, as a measure of graph connectivity (see

Appendix A.1), has a significant impact on the determinant

of the estimation error covariance of the ML estimator in

several EoG problems, including SLAM. The D-criterion

provides a scalar measure of the uncertainty encoded in a

covariance matrix. In particular, the square root of the

determinant of the covariance matrix is proportional to the

hypervolume of the confidence hyperellipsoids in multi-

variate Gaussian distributions (see Joshi and Boyd, 2009).

Furthermore, from an information-theoretic standpoint, the

log-determinant of the covariance matrix of a multivariate

Gaussian random variable is proportional to its differential

entropy up to an additive constant.

Before presenting our main results, we point out several

standard numerical tricks that are crucial for handling large

problems. First, note that minimizing detCov½xH� is equiv-

alent to minimizing log detCov½xH�; however, we directly

compute the latter in order to avoid overflow and underflow.

Similarly, rather than working with the weighted number of

spanning trees tw(G)= detLw (Theorem 12), we often use

the weighted tree connectivity as defined in the following.

Definition 1 (Tree connectivity). The tree connectivity of

graph G is formally defined as

t(G) ¼D log t(G) if G isconnected
0 otherwise

	
ð26Þ

Similarly, for graphs weighted by a positive weight function

w : E(G)! R.0 (sometimes, for convenience and without

loss of generality, w : E(G)! Rø 1), the weighted tree con-

nectivity is defined as

tw(G) ¼D
log tw(G) if G isconnected
0 otherwise

	
ð27Þ

In SLAM and many other real-world EoGs, the

Laplacian and the Fisher information matrices are sparse.

Algorithm 1 outlines a standard procedure for efficiently

computing the log-determinant of sparse positive-definite

matrices. Unlike the Fisher information matrix, the covar-

iance matrix in SLAM is generally dense. Therefore, in

practice log detCov½xH� is computed indirectly via

log det I(x):

log detCov½xH�’ log det I(xH)�1 ð28Þ

=� log det I(xH) ð29Þ

In the worst case of dense matrices, log-determinant can be

computed in O(n3) time where n is the number of poses.

Algorithm 1. log det (S) for a sparse S � 0

1: function LogDet Sð Þ
2: // Choose a fill-reducing permutation heuristic P

3: P COLAMD(S) 8 e.g., column approximate
minimum degree

4: // Sparse Cholesky factor C s.t. S=CC�

5: C SparseCholesky(PSP�)
6: return 2

P
i logCi, i

7: end function
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Nonetheless, in many practical sparse scenarios that arise

in robotics, Algorithm 1 performs much faster given a suf-

ficiently good fill-reducing permutation. Now we are ready

to present our main results.

Theorem 2 (D-optimal Rd-Sync and Compass-SLAM). In

R
d-Sync and d-dimensional Compass-SLAM we have

log det (Cov½xH�)=� dtw(G) ð30Þ

in which the edge weights are given by the precision of the

corresponding measurements (see Section 2).

Theorem 2 states that in R
d-Sync and Compass-SLAM,

under the specified assumptions, maximizing the WST in

the underlying graph is equivalent to minimizing the hyper-

volume of uncertainty ellipsoids, and maximizing the D-

criterion. Graphs with the maximum (weighted) number of

spanning trees among a family of graphs are called t-opti-

mal. Theorem 2 suggests that D-optimality and t-optimality

are indeed equivalent under the above-mentioned assump-

tions. Now we extend Theorem 2 to SLAM.

Theorem 3. Consider the SLAM problem (Section 2.3) and

let n be the number of poses, d ¼D k DT
wp

Dwp
k‘, and l1 ¼D

lmin(Lwu
). Also define ‘t(G) ¼D 2twp

(G)+ twu
(G) and

ε(x) ¼D log det I(x)� ‘t(G). Then we have

0 ł ε(x)ł n log (1 + d=l1) ð31Þ

Note that ‘t(G) ¼D 2twp
(G)+ twu

(G) only depends on the

weighted tree connectivity of the underlying graph. The

above theorem gives lower and upper bounds for the gap

ε(x) between ‘t(G) and the actual D-criterion. More specif-

ically, Theorem 3 states that ‘t(G) is a universal graphical

lower bound on the D-criterion for any trajectory x or par-

ticular realization of measurements z. Therefore, ‘t(G) can

be used as a special graphical surrogate function for maxi-

mizing the D-criterion in SLAM whenever, e.g., a reliable

estimate of the geometry x is not available (we discuss a

number of examples in the second part of this paper).

Theorem 3 also shows that the gap between the D-criterion

and its graphical lower bound ‘t(G) is bounded. Now let us

focus on this upper bound. From (19) we know that d is

the maximum weighted sum of squared distances between

a pose and any other pose observed by it, i.e.,

d = max
i2½n�

X
j2Nout(i)

wp(i, j) k pj � pik2

( )
ð32Þ

Thus, d depends on a number of factors such as sensor

characteristics (e.g., sensing range and field of view), the

distance between consecutive poses (odometry), and the

precision of translational measurements wp. The other para-

meter that appears in Theorem 3 is the smallest eigenvalue

of Lwu
. From Proposition 5 recall that l1 is (i) positive iff

the graph is connected (which is the case in SLAM), (ii)

monotone in the edge set, and (iii) bounded by the

maximum precision among all rotational measurements

connected to the anchored node. In addition, scaling the

rotational weights wu scales l1 by the same factor.

Corollary 1 follows directly from Theorem 3.

Corollary 1. We have

lim
d=l1!0+

log det I(x)= 2twp
(G)+ twu

(G) ð33Þ

This corollary implies the asymptotic tightness of our

graphical lower bound ‘t(G) on the D-criterion, i.e., the

approximation gap ε(x) vanishes as d=l1 approaches zero.

SLAM problems may approach this asymptotic regime as

discussed above.

In the rest of this section we explore the implications of

Theorem 3 in the special case of isotropic rotational and

translational measurement noise.

Corollary 2. Suppose the covariance matrix for rotational

and translational measurements is isotropic, i.e., Sp = s2
pI

and Su = s2
uI. Let ~l1 be the smallest eigenvalue of the

reduced Laplacian and ~d ¼D k DTDk‘. Under the following

condition, the gap is guaranteed to be ε(x)ł a � n:

s2
u=s2

p ł ( exp (a)� 1)~l1=~d ð34Þ

’ a~l1=~d, for a ’ 0 ð35Þ

Corollary 3. Suppose the covariance matrix for rotational

and translational measurements is isotropic. Let I(xjT) be

the FIM associated to an arbitrary spanning tree, e.g., the

odometry subgraph. Then,

lim
d=l1!0+

log det I(x)� log det I(xjT)= 3t(G) ð36Þ

A natural choice for T is the odometry spanning

tree Todo. In this case, Dinf(G) ¼D log det I(x)�
log det I(xjTodo) can be interpreted as the information

gained by closing loops as compared with the dead-

reckoning scenario. According to Corollary 3, Dinf(G) will

be proportional to the tree connectivity of G when d=l1 is

sufficiently small. The following corollary directly follows

from Corollary 3 and Cayley’s formula (see Theorem 11).

Corollary 4. In the SLAM problem defined in Section 2.3

with isotropic noise we have

lim
d=l1!0+

Dinf(Kn)= 3(n� 2) log (n) ð37Þ

Theorems 2 and 3 establish a basis for comparing the

graphical structure of different instances of EoG problems

based on their number of spanning trees. It is important to

note that two graphs are comparable based on tree connec-

tivity only if they have the same number of vertices. For a

fair comparison of the tree connectivity of graphs with a

different number of vertices, we need to somehow normal-

ize the absolute tree connectivity by the graph size.
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Definition 2 (Normalized tree connectivity). Suppose G is

a graph with n vertices and K is the complete graph over n

vertices. We define the normalized tree connectivity of G,

denoted by �t(G), as �t(G) ¼D t(G)=t(K).
According to this definition, the tree connectivity of

each graph is normalized by the tree connectivity of the

complete graph with the same number of vertices. In other

words, to any simple connected graph G, �t(G) assigns a

score that reflects the tree connectivity of G relative to the

tree connectivity of the complete graph with the same num-

ber of vertices. The following corollary directly follows

from the above definition and Cayley’s formula (see

Theorem 11).

Corollary 5. Let G be a simple undirected graph with n

vertices. The following statements hold regarding the nor-

malized tree connectivity of G:

1. �t(G)= t(G)
(n�2) log (n);

2. 0 ł �t(G)ł 1;

3. �t(G)= 0 if and only if G is acyclic;

4. �t(G)= 1 if and only if G is the complete graph.

Corollary 6 follows from Corollary 3.

Corollary 6. In the SLAM problem defined in Section 2.3

with isotropic noise, we have

lim
d=l1!0+

Dinf(G)

Dinf(K)
= �t(G) ð38Þ

Hence, under the assumption of isotropic noise, the nor-

malized tree connectivity can be interpreted as the ratio of

the information gained relative to dead reckoning, between

the realized graph G and the complete graph K. Finally, we

note that a similar normalization scheme can be designed

for weighted graphs. Such an extension, however, would

require making explicit assumptions regarding the weights

of the missing edges.

Remark 4. Typical SLAM problems are naturally sparse.

Consequently, normalizing the tree connectivity using the

complete graph with the same number of vertices can be

misleading since in practice K is not achievable for a mov-

ing robot. As will become clear in Section 5, our graph

synthesis frameworks provides us with lower and upper

bounds for the maximum tree connectivity of sparse graphs

based on a more realistic model. Those bounds can be

readily used instead of t(K).

3.4. Tree connectivity: experimental results

We conducted a series of experiments designed to:

1. evaluate the tree connectivity of some of the publicly

available real and synthetic SLAM benchmarks;

2. empirically validate Theorem 3;

3. assess the sensitivity of the asymptotic result provided

by Corollary 1 with respect to the value of d.

To validate Theorem 3 and Corollary 1 numerically, we use

the relative error (RE) defined as

RE ¼D log det I(x)� ‘t(G)

log det I(x)





 



= ε(x)

log det I(x)
ð39Þ

where ‘t(G) ¼D 2twp
(G)+ twu

(G). The datasets used in our

experiments are all 2D pose-graph SLAM datasets. The

non-diagonal noise covariance matrices have been modi-

fied to satisfy our assumptions about the noise covariance

matrix (e.g., block-isotropic for Theorem 3 and isotropic

for Corollary 3). In some cases, we have also removed par-

allel edges for simplicity.
3

RE, through the FIM, depends

on x. Recall that the inverse of the FIM evaluated at the

ground truth results in the CRLB. Moreover, the covariance

matrix of the ML estimator is usually approximated by

computing the inverse of the Fisher information matrix at

the MLE. Among the datasets used in this section,

Manhattan (Olson, 2008) (a synthetic 2D pose-graph data-

set) is the only one for which the ground truth is publicly

available. Therefore, RE in other datasets is evaluated at

the solution obtained by minimizing the negative log-

likelihood cost function using Gauss–Newton initialized by

the popular bootstrapping technique proposed in Konolige

et al. (2010).

The normalized tree connectivity for several publicly

available datasets is shown in Table 1. The entries in

Table 1 are sorted (in descending order) based on the nor-

malized tree connectivity �t(G). First, note that the RE is

typically small, except in the case of the Lincoln Lab data-

set. A small RE indicates that log det I(x) is already close

to ‘t(G) as predicted by Theorem 3 and Corollary 1. This

empirical observation hence suggests that in these datasets,

the actual value of the gap ε(x) is small despite the large

value of the upper bound provided by Theorem 3 (e.g., in

Manhattan d ’ 1296:91). In such cases, the log-determinant

of the FIM is almost entirely characterized by the tree con-

nectivity of the underlying graph.

It is important to note that evaluating log det I(x) at the

solution returned by iterative schemes such as Gauss–

Newton is subject to local minima and other convergence

failure modes. The large RE in the case of Lincoln Lab

dataset (highlighted in red) is partially due to the fact that

Gauss–Newton has failed to converge to the true MLE. By

Table 1. A list of publicly available 2D pose-graph datasets,

sorted according to �t(G).

Dataset �t(G) Average degree RE (%)

M10K 0.22 12.86 0.07
Intel 0.13 3.89 0.06

City10K 0.12 4.13 0.51

Lincoln Lab 0.11 3.90 58.00

Manhattan 0.09 3.11 1.00
RingCity 0.05 2.76 1.08
Freiburg 0.04 2.46 0.04
CSAIL 0.02 2.24 0.12
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contrast, approximating the D-criterion with the lower

bound provided by Theorem 3 is naturally robust to such

convergence errors.

Note that in Table 1, the ranking based on the number

of spanning trees is not consistent with the ranking based

on the average degree of the graph (see the entries high-

lighted in green). As mentioned earlier, this is because the

average degree, as a graph connectivity measure (Olson

and Kaess, 2009), is too simple to capture the topological

differences between two graphs with the same number of

measurements per variables.

Our next experiment is based on the Manhattan dataset.

The FIM in this case is computed at the ground truth. In

these experiments l1 is kept fixed. Figure 4 shows how RE
evolves with respect to scaling d when the noise is isotro-

pic. Scaling d can be done by scaling either s2
p or p. Figure

4 is obtained by scaling d according to bdorig in which

dorig ’ 1296:91 is the original value of d in the Manhattan

dataset. As illustrated in Figure 4, the log-determinant of

the Fisher information matrix approaches the limit value

predicted by Corollary 1 as d approaches zero (see also the

special case in Corollary 3).

We also repeated this experiment for the case of block-

isotropic noise. To make the original isotropic noise of

Manhattan compatible with the assumption of block-

isotropic noise, we added random perturbations to the orig-

inal noise variances. In Figure 5, we scale d according to

bdorig (this time dorig ’ 6:21× 104 owing to random per-

turbations). Figure 5 shows once again that the approxima-

tion gap ε(x) vanishes as d approaches zero.

Finally, Figure 6 shows how the D-criterion log det I(x)
evolves as a function of t(G) for more than 44× 103 ran-

dom spanning subgraphs of the Intel Research Lab dataset.

Each subgraph contains a random subset of loop-closure

edges of the original dataset. For each possible number of

loop-closures, we generated 50 random spanning sub-

graphs. The predicted value is ‘t(G). Note that for a fixed

value of tree connectivity t(G), variation in the D-criterion

(i.e., thickness of the blue line in Figure 6) reflects varia-

tion in ε(x); see Theorem 3. Figure 6 suggests that in this

experiment, the difference in the D-criterion of SLAM sub-

problems that have the same tree connectivity is quite small

(thickness of blue line relative to the value of D-criterion).

This therefore indicates that in this case, tree connectivity

almost entirely characterizes the D-criterion.

4. Maximizing tree connectivity

So far we have demonstrated that the WST is closely related

to the D-criterion in SLAM and two other EoGs. This

observation allows us to reason about the estimation error

covariance in such problems based solely on the topology

of the underlying graph. Thus, in principle, one can design

reliable SLAM problems by synthesizing graph topologies

with the maximum WST. Motivated by this insight, in this

and the following sections we formulate and tackle the

combinatorial optimization problem of designing graphs

with the maximum WST under sparsity constraints. We will

particularly focus on combinatorial optimization problems

that can be used to solve the measurement selection prob-

lem in several different settings (see Section 8).

4.1. Characterizing t-optimal graphs in Gn,m

We begin by simplifying our notation. Recall that weighted

tree connectivity induces a partial ordering on the set of

undirected graphs with positive edge weights: two graphs G

and H are comparable if and only if jV(G)j= jV(H)j. Let
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Gn be the set of simple undirected graphs with n vertices.

Now suppose G 	 Gn and a positive weight function

w : E(Kn)! R.0 are given. In the most general case, one

may seek t-optimal graphs with respect to G and w, i.e.,

maximize
G2G

tw(G) ð40Þ

Recall that in the special case of uniform edge weights,

tw(G) in (40) can be replaced by the number of spanning

trees t(G) without affecting the set of optimal solutions. Let

GH 2 G be an optimal design. Note that the number of ver-

tices and the edge weights in (40) are assumed to be given

and, thus, the decision variables are graph edges. To empha-

size on this point, let E ¼D fE(G) : G 2 Gg be the collection

of the edge sets of the graphs in G. With a slight abuse of

notation, (40) can be rewritten as

maximize
E2E

tw(½n�,E) ð41Þ

Lemma 1. The set of optimal solutions of (40) is invariant

under scaling w by any constant a.0.

Define wmin ¼D minw(u, v). According to the above

lemma, if wmin\1 we can scale every weight by any

a ø w�1
min without affecting the t-optimal topologies in (40).

Therefore, without losing any generality we can assume the

following.

Assumption 5. We assume that w(u, v)ø 1 for all adjacent

vertices u and v.

For clarity, let us define the WST and weighted tree con-

nectivity as functions of the edge set of the graph. For any

n ø 2 and w : E(Kn)! Rø 1 define

tn,w: 2E(Kn) ! Rø 0 : E 7! tw(½n�,E) ð42Þ

Similarly, we define

tn,w: 2E(Kn) ! Rø 0 : E 7! tw(½n�,E) ð43Þ

Consequently, (41) can be rewritten as

maximize
E2E

tn,w(E) ð44Þ

or, equivalently, since log is monotone

maximize
E2E

tn,w(E) ð45Þ

It will become clear soon why using tn,w is preferred over

tn,w. Note that (41)–(45) represent the most general case of

t-optimal graph synthesis. A natural special case is when

G=Gn,m, i.e., the set of all simple undirected graphs

with n vertices and m edges. This special case can be

expressed as

maximize
E	E(Kn)

tn,w(E)

subject to jEj= m
ð46Þ

The cardinality constraint enforces a desired sparsity level.

In practice, sparsity of the graph is a crucial factor in deter-

mining the amount of resources needed for solving the

problems that arise over graph structures and networks. In

particular, the number of measurements in SLAM influ-

ences the computational cost of each iteration in Newton-

based iterative solvers.

The problem of characterizing graphs in Gn,m with the

maximum number of spanning trees remains open, and is

solved only for a number of special cases; see Boesch et al.

(2009) for a recent survey. For example, such graphs have

been characterized for specific ranges of m (as a function

of n) such as when n� 1 ł m ł n + 3 (almost-tree graphs)

and
n

2

� �
� n=2 ł m ł

n

2

� �
(almost-complete graphs).

Another major result is due to Cheng (1981) who proved

that the family of regular complete multipartite graphs are

Fig. 6. Log-determinant of the FIM log det I(x) as a function of t(G) for over 44× 103 randomly generated spanning subgraphs of

the Intel Research Lab dataset. Here log det I(x) is evaluated at the MLE of the original dataset. The prediction is based on the lower

bound ‘t(G) provided by Theorem 3, i.e., by using only the graphical structure of the problem.
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t-optimal among all graphs with the same number of ver-

tices and edges. More results can be found in Shier (1974),

Cheng (1981), Wang (1994), Kelmans (1996), and Petingi

and Rodriguez (2002). Unfortunately the span of these spe-

cial cases is too narrow for many real applications includ-

ing EoGs. Furthermore, the

Gn,m constraint alone is typically insufficient for character-

izing the true set of feasible graphs under spatial and physi-

cal constraints. Finally, these results do not cover the case

of weighted graphs (or parallel) edges which is essential

for our graphical formalism of estimation problems. In the

following section, we focus on a class of special cases of

(41) that can be used for designing near-D-optimal EoG

problems, and particularly SLAM.

4.2. The edge selection problem

Suppose a connected base graph and a positive weight func-

tion over the set of all possible edges are given. Informally,

in the edge selection problem (ESP) we seek t-optimal

graphs within the set of graphs whose edge sets are at most

k elements different from that of the base graph. This is for-

mally defined as follows.

Problem 1 (k-ESP). The input in k-ESP is as follows: (i)

to be set of n ø 2 vertices V = ½n�; (ii) a planning horizon

k 2 N; (iii) a connected base graph Ginit = (V,Einit); (iv) a

weight function w : E(Kn)! Rø 1; (v) and a set of c ø k

candidate edges C. We seek to solve the following combi-

natorial optimization problem:

maximize
E	C

tn,w(Einit [ E)

subject to jEj= k
ð47Þ

Figure 7 illustrates an instance of k-ESP.

Remark 5. At first glance, the Gn,m constraint may seem

to be a special case of k-ESP with Einit = [ and

C =
½n�
2

� �
. However, it is worth emphasizing that this is

not the case as Einit = [ violates the assumption of con-

nectedness of the base graph. In some applications, Ginit is

naturally connected and therefore we do not lose any prac-

tical generality by making this assumption. For example, in

pose-graph SLAM the odometry subgraph (i.e., the path

graph with n vertices and weighted edges) is a natural

choice for Ginit.

Remark 6. It is trivial to see that the problem of pruning a

k0-subset of a candidate set of edges in the base graph can

also be posed as an instance of k-ESP if the base graph

remains connected after removing the candidate set.

Solving the general case of k-ESP by exhaustive search

requires examining
c

k

� �
=Y(ck) graphs which is imprac-

tical even in rather small problems. For example, for c = 30

and k = 10 exhaustive search has to compute more than

3× 107 Cholesky decompositions. To the best of the

authors’ knowledge, there is no known faster algorithm for

finding t-optimal graphs or solving the k-ESP problem in

general. In the following sections, we provide efficient

near-optimal approximation algorithms for this problem.

4.4. 1-ESP

Let us first consider 1-ESP as the simplest instance of

k-ESP. As will become clear shortly, the solution of 1-ESP
can be used as a building block for finding near-optimal

solutions for the general k-ESP problem. An optimal edge

in 1-ESP can be found by examining every candidate edge

e 2 C, and choosing the one that maximizes the WST of

the resulting graph (½n�,Einit [ feg). Finding an optimal

design using this brute force strategy requires computing

the tree connectivity of c graphs (one for each candidate

edge). If the base graph is dense (worst case), computing

tree connectivity can be done in O(n3) operations using the

Cholesky decomposition of the reduced weighted

Laplacian matrix (similar to Algorithm 1). The total time

complexity in this case is thus O(cn3). We can improve this

computational complexity by leveraging the matrix deter-

minant lemma. According to Lemma 5, the solution of 1-

ESP is given by

eH 2 argmax
e2C

w(e)De ð48Þ

Fig. 7. An example of k-ESP. The candidate edges are drawn

with dashed lines. The number written on each edge is the

weight assigned to that edge.
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where De ¼D aTe L
�1
initae. Given the Cholesky factor of Linit,

one can compute w(e)De for all candidate edges in O(cn2)
time. Therefore, in this way, the Cholesky factor of Linit

needs to be computed only once, which takes O(n3) opera-

tions. This results in O(n3 + cn2). Solving 1-ESP using this

procedure will therefore be much faster than the naı̈ve brute

force algorithm outlined above. This process is summarized

in Algorithm 2.

Remark 7 (Effective resistance). It is worth noting that De

is the so-called effective resistance between the two end-

points of e in the base graph Ginit. The effective resistance

induces a metric on graphs. Therefore, one can interpret De

as the distance between the two endpoints of e in the base

graph (resistance distance). This metric arises also in a

broad range of applications; see Ghosh et al. (2008) for a

survey. This insight provides an intuitive interpretation for

(48). In the special case of unit edge weights, the optimal

candidate edge for maximizing the tree connectivity of the

graph in 1-ESP is the one that connects the vertices that

are furthest (as measured by the resistance distance) from

each other in the base graph.

5. Approximation algorithms for k-ESP

5.1. Greedy algorithm

The greedy algorithm finds an approximate solution for

k-ESP by solving k instances of 1-ESP using the procedure

described above. After solving each subproblem, an opti-

mal edge is moved from the candidate set C to the base

graph. The next instance of 1-ESP is then defined using

the updated candidate set and base graph. In the worst case

(dense graphs), a naı̈ve implementation of the greedy algo-

rithm runs in O(kcn3) time. As mentioned above, this run-

time can be reduced to O(kn3 + kcn2) by leveraging the

matrix determinant lemma (Lemma 5). However, in this

case we need to recompute the Cholesky factor of the

updated base graph after solving each 1-ESP. Note that the

Cholesky factor of the updated base graph can be com-

puted by performing a rank-one update on that of the base

graph in the previous round. This operation can be done in

O(n2) time. Therefore, an improved implementation of the

greedy algorithm runs in O(n3 + kcn2) time. This proce-

dure is described in Algorithm 4. It must be noted that

when the base graph and set of candidate edges are sparse,

the computational complexity of the greedy algorithm

scales much better with n and depends on the sparsity pat-

tern of the corresponding Laplacian matrices.

5.2. Performance guarantees

Now we analyze the performance of the greedy algorithm

described in Algorithm 5.

Definition 3 (Tree-connectivity gain). Given an instance of

k-ESP, the tree connectivity gain is defined as

Fw : E 7! tn,w(Einit [ E)� tn,w(Einit) ð49Þ

The domain of Fw is restricted to 2C.

Here Fw is a set function that takes as input a subset of

the candidate edges E 	 C, and returns the marginal

increase in weighted tree connectivity after adding the

edges in E to a given base graph Ginit. Now k-ESP (47) can

be expressed as

maximize
E	C

Fw(E)

subject to jEj= k
ð50Þ

Algorithm 2. 1-ESP

1: function OneESP C,Cð Þ 8 C: Candidate Set, C:
Cholesky factor of Linit

2: m 0 8 Maximum value
3: for all e 2 C do 8 Parallelizable loop
4: we  w(e)
5: De  Reff(e,C)
6: if weDe.m then
7: eH  e
8: m weDe

9: end if
10: end for
11: return eH

12: end function

Algorithm 3. Effective resistance

1: function Reff euv,Cð Þ 8 Effective Resistance
2: // column of the reduced incidence matrix
3: auv  reduce(eu � ev)
4: // solve Cxuv = auv

5: xuv  ForwardSolver(C, auv) 8 Lower triangular
6: Duv  k xuvk2

7: return Duv

8: end function

Algorithm 4. Greedy Edge Selection

1: function GreedyESP Linit,C, kð Þ
2: E [
3: L Linit

4: C Cholesky(L)
5: while jEj\k do
6: eH

uv  OneESP(CnE,C)
7: E E [ feH

uvg
8: // column of the reduced incidence matrix
9: auv  reduce(eu � ev)

10: L L+ w(eH

uv)auva
�
uv

11: C CholeskyUpdate(C,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w(eH

uv)
p

auv) 8 Rank-one update
12: end while
13: return E
14: end function
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Theorem 4. The set function Fw is normalized, monotone,

and submodular for any n ø 2, positive weight function w,

and connected base graph.

Maximizing an arbitrary monotone submodular function

subject to a cardinality constraint generalizes the maximum

coverage problem (Hochbaum, 1996) and, hence, is NP-

hard in general. A classical result is due to Nemhauser

et al. (1978) who have shown that the greedy algorithm is

an h-approximation algorithm for maximizing any normal-

ized monotone submodular function subject to a cardinality

constraint where h ¼D 1� 1=e ’ 0:63. Corollary 7 follows

directly from Theorems 4 and 14 (Nemhauser et al., 1978).

Corollary 7. Let OPT be the optimal value of (47), tgreedy
be the weighted tree connectivity of the graph synthesized

by the greedy algorithm, and tinit be that of the base

graph. It holds

tgreedy ø h �OPT+ ð1� hÞ � tinit ð51Þ

Remark 8. Theorem 4 also allows us to reduce the number

of lower triangular linear systems that need to be solved in

each round of the greedy algorithm; this is known as the

lazy (or accelerated) greedy algorithm (Krause and

Golovin, 2012; Minoux, 1978). We leverage this idea to

speed up the greedy algorithm in Section 9.4.

5.3. Convex relaxation

In this section, we propose a second approximation algo-

rithm for k-ESP through a convex relaxation inspired by

that of Joshi and Boyd (2009). Let us begin by assigning an

indicator variable pi 2 f0, 1g to each candidate edge

ei 2 C. We can then express the problem as an integer pro-

gram where finding the optimal set of candidate edges is

equivalent to finding optimal pi’s. Let p ¼D ½p1 p2 � � �pc�T
be the stacked vector of indicator variables. Let Linit denote

the reduced weighted Laplacian matrix of Ginit. Define,

Lw(p) ¼D Linit +
Xc

i = 1

piw(ei)Lei
=AWpA�, ð52Þ

where Lei
is the reduced elementary Laplacian, A is the

reduced incidence matrix of Gall ¼
D
(½n�,Einit [ C), and Wp

is the diagonal matrix of edge weights assigned by the fol-

lowing weight function,

wp : e 7! pie w(e) e 2 C

w(e) otherwise

	
ð53Þ

in which pie 2 fpigc
i = 1 is the indicator variable associated

to the candidate edge e.

Lemma 2. If Ginit is connected, Lw(p) � 0 for any

p 2 ½0, 1�c.

As before, for convenience we assume Ginit is connected.

Now consider the following integer program.

maximize
p

log detLw(p)

subject to
Pc
i = 1

pi = k

p 2 f0, 1gc

ðP1Þ

It is easy to verify that the above optimization problem is

equivalent to k-ESP in (47). First, recall that according to

the generalized matrix-tree theorem (Theorem 12) the

objective is equal to the weighted tree connectivity of

Gall = (½n�,Einit [ C) when edges are weighted by wp. In

this new narrative, the ith candidate edge is selected iff

pi = 1. The combinatorial hardness of k-ESP is embodied

in the p 2 f0, 1gc
constraint. A natural choice for relaxing

P1ð Þ is to replace each pi 2 f0, 1g with pi 2 ½0, 1�:

maximize
p

log detLw(p)

subject to
Pc
i = 1

pi = k

p 2 ½0, 1�c
ðP2Þ

where, after a minor abuse of notation, p is the stacked vector

of pi ’s.
4

It should be immediately clear that the feasible set of

P2ð Þ contains that of P1ð Þ, and therefore the optimal value of

P2ð Þ is an upper bound for the optimal value of P1ð Þ. Note

that P2ð Þ is a convex optimization problem since

log detLw(p) is concave on fp : Lw(p) � 0g, which contains

½0, 1�c when Ginit is connected (Lemma 2), and the feasible

set is convex. An ‘1-regularized variant of P2ð Þ is an instance

of the MAXDET problem (Vandenberghe et al., 1998),

maximize
p

log detLw(p)� l
Pc
i = 1

pi

subject to p 2 ½0, 1�c
ðP3Þ

P3ð Þ is also closely related to the graphical lasso (Friedman

et al., 2008). The new term in the objective of P3ð Þ pro-

motes sparsity, while the log-determinant term rewards

stronger tree connectivity. The penalty coefficient l is a

Algorithm 5. Greedy Dual Edge Selection

1: function GreedyDualESP(Linit,C,D)
2: E [
3: L Linit

4: C Cholesky(L)
5: while (Fw(E)\D) & (E 6¼ C) do
6: eH

uv  OneESP(CnE,C)
7: E E [ feH

uvg
8: // column of the reduced incidence matrix
9: auv  reduce(eu � ev)

10: L L+ w(eH

uv)auva
�
uv

11: C CholeskyUpdate(C,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w(eH

uv)
p

auv) 8 Rank-
one update

12: end while
13: return E
14: end function
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parameter that controls the desired degree of sparsity, i.e., a

larger l yields a sparser graph.

5.4. Rounding

Problems P2ð Þ (and P3ð Þ) can be solved in polynomial time

using interior-point methods (Boyd and Vandenberghe,

2004; Joshi and Boyd, 2009). After finding a globally opti-

mal solution pH for the relaxed problem P2ð Þ, we need to

map it into a feasible p for P1ð Þ and pick k candidate edges

accordingly. The following lemma follows trivially from

the fact that P2ð Þ is a relaxation of P1ð Þ.

Lemma 3. The solution pH is an optimal solution for

k-ESP iff pH 2 f0, 1gc
.

In the more likely case of pH containing fractional val-

ues, we need a rounding procedure to set k auxiliary vari-

ables to one and others to zero. The most intuitive heuristic

choice is to pick the k edges with the largest pH

i (Joshi and

Boyd, 2009). We call this strategy the deterministic round-

ing by sorting. The relaxation approach described so far

can be seen as a graphical specialization of the algorithm

proposed by Joshi and Boyd (2009). In the rest of this sec-

tion, we extend their results and shed more light on the con-

nection between P1ð Þ and P2ð Þ.
Consider a simple randomized rounding scheme in

which we independently sample pi ;Bern(pH

i ) for i 2 ½c�
and pick corresponding candidate edges accordingly.

5

Random graphs generated in this way are called anisotro-

pic random graphs (ARGs) (Cohen, 1986). This model

generalizes the well-studied Gilbert–Erös–Rényi random

graph model (Gilbert, 1959) by allowing anisotropic edge

probabilities. The naı̈ve procedure for computing the

expected WST in ARGs involves a summation over expo-

nentially many terms. Nonetheless, Cohen (1986) has

shown that the expected number of spanning in ARGs is

equal to the WST when edges are weighted by their corre-

sponding probabilities, and thus can be computed effi-

ciently using the matrix-tree theorem. In what follows, we

generalize this result to the case of edge-weighted ARGs

and leverage it to analyze the performance of the rounding

scheme introduced above. Later on we generalize this result

even further to the sensor selection problem studied by

Joshi and Boyd (2009).

Theorem 5. Let k� and t�w denote the number of selected

candidate edges and the WST attained by the randomized

rounding algorithm outlined above with edge (occurrence)

probabilities p= ½p1 p2 � � � pc��. It holds:

1. E½k��=
Pc

i = 1 pi;

2. E½t�w�= detLw(p).

Theorem 5 states that the randomized rounding

described above, on average, selects
Pc

i = 1 pi candidate

edges and, in expectation, attains detLw(p) WST. Now

note that these expressions appear in the constraints and

the objective of the relaxed problem P2ð Þ, respectively.

Consequently, this implies that the relaxed problem can be

interpreted as the problem of finding the optimal edge sam-

pling probabilities p for the randomized algorithm

described above.

Corollary 8. The objective in problem P2ð Þ is to find the

optimal edge sampling probabilities pH such that the WST

is maximized in expectation, while the expected number of

newly selected edges is equal to k.

Put differently, problem P2ð Þ can be seen as a convex

relaxation of k-ESP at the expense of maximizing the

objective and satisfying the constraint, both in expectation.

Similarly, problem P3ð Þ is equivalent to

maximize
p

logE½detLw(p)� � lE
Pc
i = 1

pi

� �
subject to p 2 ½0, 1�c

ðP03Þ

where pi ;Bern(pi) and pi?pj for all i, j 2 ½c� (i 6¼ j).

This new interpretation can potentially be used to design

randomized rounding procedures based on the randomized

scheme described above. Using pH in the above-mentioned

randomized scheme, Theorem 5 ensures that, on average,

we attain detLw(p
H) by picking k new edges in expecta-

tion. Needless to say, merely sampling candidate edges with

the probabilities in pH is not sufficient to guarantee attain-

ing a feasible solution with high probability.

Now recall the deterministic rounding by sorting scheme

and let Ssort be the edges selected by this algorithm. For

any S 	 C, let pk(S) denote the conditional probability of

the event in which the randomized scheme selects S, given

that k�= k candidates have been selected. We have

pk(S)}

Q
ei2S

pH

i

Q
ej2CnS

(1� pH

j ) jSj= k

0 otherwise

(
ð54Þ

Theorem 6. Ssort 2 arg maxS	C pk(S).

According to Theorem 6, the deterministic rounding via

sorting is equivalent to selecting the most probable feasible

subset of candidates, when candidates are selected with the

probabilities in pH. Theorem 5, Corollary 8, and Theorem

6 can be extended to the more general case of D-optimal

sensor selection studied in Joshi and Boyd (2009). The only

non-trivial piece is provided below.

Theorem 7 (Determinant of random sum of rank-one

matrices). Given m pairs of real n-vectors fuigm
i = 1 and

fvigm
i = 1, and random variables fpigm

i = 1 such that

pi ;Bern(pi) i 2 ½m� ð55Þ

pi?pj i, j 2 ½m�, i 6¼ j ð56Þ

we have
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E det
Xm

i = 1

piuiv
�
i

 !" #
= det

Xm

i = 1

piuiv
�
i

 !
ð57Þ

Note that the second statement in Theorem 5 follows

from Theorem 7 as a special case in which fuig and fvig
are the columns of the reduced (weighted) incidence

matrix.

5.5. Certifying near-optimality

It is intractable to compute OPT in real-world instances of

k-ESP for (even offline) empirical evaluation of a proposed

approximate solution. As a proxy, we can use the approxi-

mation algorithms presented in this section to find lower

and upper bounds for OPT. Let tH

cvx be the optimal value of

P2ð Þ, and tcvx be the suboptimal value obtained after round-

ing the fractional solution of P2ð Þ (e.g., picking the k largest

pH

i ‘s). Corollary 9 follows from the analysis presented for

the proposed approximation algorithms.

Corollary 9. Let Ugreedy ¼D ztgreedy + (1� z)tinit in which

z ¼D h�1 ’ 1:58. It holds that

max (tgreedy, tcvx)łOPTł min (Ugreedy, t
H

cvx) ð58Þ

The lower bounds are the suboptimal values attained by

the approximation algorithms. More interestingly, Ugreedy

follows from Corollary 7, and tH

cvx is an upper bound for

OPT since the feasible set of P2ð Þ contains that of P1ð Þ
(i.e., k-ESP). These bounds can be computed by running

the greedy and convex relaxation algorithms. In the

instances of k-ESP where OPT is beyond our reach, these

bounds can be used to assess and certify the quality of any

other solution. Let E0 be an arbitrary k-subset of C and

t0 ¼D tn,w(E
0 [ Einit). E0 can be, e.g., (i) the solution of the

greedy algorithm, (ii) the solution of P2ð Þ after rounding,

(iii) an existing design (e.g., an existing pose-graph prob-

lem), or (iv) a heuristic suboptimal solution proposed by,

for example, an expert. Let U denote the upper bound in

(58). From Corollary 9 we have, OPT� t0ł U� t0 and

OPT=t0ł U=t0 for the approximation gap and ratio,

respectively.

6. A dual approach: D-ESP�

Our ultimate goal is to design sparse graphs with strong

tree connectivity. We pursued this objective in k-ESP by

searching for a graph with the maximum weighted tree

connectivity among all graphs with certain number of

edges constrained by a base graph and a candidate edge

set. Alternatively, one may seek the sparsest graph that

attains a desired weighted tree connectivity. This dual prob-

lem is formally defined below.

Problem 2 (D-ESP�). Problem D-ESP� aims to select as

few edges as possible from a given set of candidate edges

C, such that adding those edges to a given connected base

graph Ginit = (½n�,Einit) results in a tree connectivity gain

of at least 0 ł D ł Fw(C), i.e.,

minimize
E	C

jEj
subject to Fw(E)ø D

ð59Þ

Note that in k-ESP, one seeks to adapt the ‘‘perfor-

mance’’ to a given budget constraint on the number of

edges (measurements in EoGs). Alternatively, in D-ESP�

we aim to find the most resources-efficient D-valuable sub-

set of edges (measurements). In the rest of this section, we

explain how our approximation algorithms designed for

k-ESP and their analyses can be adapted to the dual prob-

lem D-ESP�.

6.1. Greedy algorithm

The greedy algorithm proposed for k-ESP in Algorithm 5.2

solves k instances of 1-ESP. The same algorithm can be

applied to D-ESP� after a minor modification of the stop-

ping criterion: instead of solving exactly k instances of

1-ESP, we continue solving a sequence of 1-ESP’s until

the tree connectivity gain is at least D (or, alternatively,

until we run out of edges in C which indicates an empty

feasible set). The greedy algorithm for approximating the

solution of (59) is outlined in Algorithm 5.

6.2. Performance guarantees

Recall that the performance guarantee presented for the

greedy algorithm for k-ESP was made possible by Theorem

4 and the seminal work of Nemhauser et al. (1978). Wolsey

(1982, Problem (Q)) has analyzed the performance of the

greedy algorithm for solving the submodular set covering

problem:

minimize
A	W

P
ai2A

fi

subject to z(A)= z(W)
ð60Þ

in which fi.0 for all ai 2W and z: 2W ! R is any mono-

tone submodular function. Now note that D-ESP� (59), is a

special case of (60), in which W = C, fi = 1 for all ai 2 A,

and finally z is A 7! minfD,Fw(A)g. This function is

monotone submodular since Fw is monotone submodular

(Theorem 4) and constant truncation preserves both proper-

ties (Theorem 15) as noted by Wolsey (1982).

Let fgreedy and OPT be the value of the greedy algorithm

and the optimal value of (60). For the general case of (60),

where z does not need to be an integer-valued function,

Wolsey (1982: Theorem 1) has established three a poster-

iori performance guarantees of the form

fgreedy ł (1 + log g)OPT ð61Þ

for several different values of g. These bounds are a pos-

teriori in the sense that the value of g can be determined

only after running the greedy heuristic. The following

Khosoussi et al. 275



corollary states one of these bounds for the performance of

the greedy algorithm (Algorithm 6.2) in D-ESP�.

Corollary 10. Let kopt and kgreedy be the optimal value of

(59) and the value achieved by Algorithm 5, respectively.

Also, let eFgreedy be the tree connectivity gain achieved by

the greedy algorithm one step before termination. It holds:

kgreedy ł (1 + log g)kopt ð62Þ

where g ¼D D=(D� eFgreedy).

6.3. Convex relaxation

We now demonstrate how the dual problem D-ESP� can be

formulated as an integer program and relaxed similar to

P1ð Þ. As before, let tinit ¼D log detLw(0). The dual problem

can be expressed as

minimize
p

Pc
i = 1

pi

subject to log detLw(p)ø D + tinit
p 2 f0, 1gc

ðD1Þ

Relaxing the integral constraints on p yields the following

convex optimization problem,

minimize
p

Pc
i = 1

pi

subjectto log detLw(p)ø D + tinit
p 2 ½0, 1�c

ðD2Þ

As we saw earlier for k-ESP, D2ð Þ is a convex optimiza-

tion problem when Ginit is connected and can be solved

efficiently using interior-point methods. Let pH be the

minimizer of D2ð Þ. It immediately follows thatPc
i = 1 pH

i

� �
ł kopt.

6.4. Rounding

Lemma 4. pH is an optimal solution for D-ESP� iff

pH 2 f0, 1gc
.

In general, pH may contain fractional values, and thus a

rounding scheme is necessary to map pH into a feasible

(suboptimal) solution for (D1). A natural deterministic

rounding scheme is outlined in Algorithm 6. An efficient

implementation of this algorithm using binary search runs

in O(c log c) time.

As we saw before, the fractional values p can be inter-

preted as the probability of independently selecting candi-

date edges. Hence, similar to Corollary 8, the following

corollary readily follows from Theorem 5.

Corollary 11. The objective in D2ð Þ is to find the optimal

probabilities pH for sampling edges from C such that the

expected value of the number of selected edges is mini-

mized while the expected value of the WST is at least

exp (tinit + D), i.e.,

minimize
p

E½
Pc
i = 1

pi�

subject to logE½detLw(p)�ø D + tinit
p 2 ½0, 1�c

ðD02Þ

where pi ;Bern(pi) and pi?pj for all i, j 2 ½c� (i 6¼ j).

Thus, sampling edges independently with probabilities

in pH will result in selecting

E

Xc

i = 1

pi

" #
=
Xc

i = 1

pH

i

edges on average, while also satisfying the constraint in

expectation. Now, as we saw earlier for k-ESP, this narra-

tive can provide a new interpretation for the deterministic

rounding procedure in Algorithm 6. Recall that pk(S) was

defined to be the conditional probability of sampling

exactly the set S 	 C, given that exactly k candidates have

been selected. Let Sk 2 arg maxS	C pk(S). Now from

Theorem 6 it readily follows that Algorithm 6 selects Skmin

where kmin is the smallest k 2 ½c� such that Fw(Sk)ø D.

6.5. Certifying near-optimality

Finding an optimal solution of D-ESP� by brute force is

impractical in real-world instances of the dual problem,

and thus kopt is generally beyond our reach in practice even

for offline empirical evaluation. Fortunately, as we saw in

the case of k-ESP, our approximation algorithms can pro-

vide lower and upper bounds for kopt that can be used as

proxies.

Corollary 12. Define z� ¼D 1=(1 + log g) where g is the

parameter defined in Corollary 10. Let kcvx be the number

of new edges selected by the deterministic rounding proce-

dure in Algorithm 6. Then,

max ( z�kgreedy
� �

,
Xc

i = 1

pH

i

& ’
)ł kopt ł min (kgreedy, kcvx)

ð63Þ

Algorithm 6. Deterministic rounding for d-ESP�

1: function RoundDualESP pH

 �

2: p 0
3: i 0
4: // returns the indices of the sorted pH

5: s SortDescending(pH) 8 Such that
pH

s1
ø pH

s2
ø . . . ø pH

sc

6: // implemented as binary search
7: while ( log detLw(p)\D + tinit) & (p 6¼ 1) do
8: psi

 1
9: i i + 1

10: end while
11: return psort = p
12: end function
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These bounds can be computed by running the corre-

sponding approximation algorithms. They can then be used

to bound the gap between kopt and any suboptimal design

E0 with a value of k0. Let kL denote the lower bound in

Corollary 12. Then we have k 0 � kopt ł k0 � kL and

k0=kopt ł k0=kL.

7. Random edge selection

In some applications, candidate edges represent potential

choices whose existence (or ‘‘occurrence’’) is revealed only

after solving the ESP. This may be due to the fact that

determining the occurrence of a candidate edge requires

performing a costly operation. For example, to determine

whether a potential loop-closure edge exists between two

particular poses in pose-graph SLAM, a robot first has to

match the corresponding pair of images or laser scans (and,

in multi-robot scenarios, exchange observations (Giamou

et al., 2018)), which incurs a cost in terms of mission-

critical resources. This type of uncertainty can be incorpo-

rated into k-ESP by utilizing the mathematical machinery

developed earlier in Theorem 5 (and Theorem 7) for ana-

lyzing randomized rounding. For simplicity, let us assume

that the edges of the base graph are deterministic. Our

results, however, can be trivially extended to the case where

the base graph also contains random edges, as long as it

remains connected with a positive probability. ARGs can

capture the uncertainty over the occurrence of candidate

edges (see the discussion that led to Theorem 5). In partic-

ular, we consider the case where the ith candidate edge is

‘‘operational’’ with probability pi and ‘‘fails’’ with probabil-

ity 1� pi, independent of other candidates.

Now given a k-ESP with occurrence probabilities of the

candidate edges fpigc
i = 1, one may instead seek to maximize

the expected WST by choosing k candidates. We call this

the random edge selection problem (RESP) or k-RESP:

maximize
E	C

E½tn,w(Einit [ E)�
subject to jEj= k

ð64Þ

From Theorem 5 recall that the objective is equal to the

WST after scaling candidate edge weights by the corre-

sponding occurrence probabilities. Thus, any k-RESP can

be cast and solved (approximately) as a k-ESP after scaling

the edge weights.

In some applications, one may wish to choose candi-

dates such that k operational edges are selected in expecta-

tion. Let o(E) denote the number of operational edges after

selecting E. This problem can be expressed as

maximize
E	C

E½tn,w(Einit [ E)�
subject to E½o(E)�ł k

ð65Þ

Note that E½o(E)�=
P

i2E pi and, thus, this constraint can

be easily incorporated into our convex relaxation scheme.

Furthermore, after a small modification, a greedy algorithm

provides a 1=2 � (1� 1=e) approximation factor for solving

(65) (Leskovec et al., 2007).

8. Applications

The theoretical results presented in Section 3 (particularly,

Theorem 3) reveal that designing D-optimal SLAM prob-

lems is closely related to designing graphs with the maxi-

mum WST. This led to the study of a class of constrained

t-optimal graph synthesis problems. In this section, we

show how our near-optimal graph synthesis framework can

be used for measurement selection and pose-graph (edge)

pruning in SLAM.

8.1. Measurement selection

Mobile robots are constrained by weight, size, and power

budgets, limiting the capability of onboard hardware. This

may leave a robot unable to process all the raw data its sen-

sors provide to it in real time. Therefore, SLAM systems

must be able to adapt to an allocated budget of mission-

critical resources (e.g., battery, bandwidth, and CPU time).

This is a critical prerequisite for scalable and long-term

autonomy. Measurement selection is one of several mechan-

isms through which SLAM systems can achieve resource

adaptation. In measurement selection, a robot seeks to select

an ‘‘information-rich’’ budget-feasible subset of existing,

newly acquired, and/or potential measurements. In this work,

a budget-feasible subset refers to a subset of size at most k

measurements for a given budget k. Measurement selection

in SLAM can bring substantial resource savings in three dif-

ferent ways: (i) by reducing the computational cost per itera-

tion of sparse linear back-end SLAM solvers; (ii) by reducing

the computational cost of SLAM front-end loop-closure

detection; and (iii) by reducing data transmission during

inter-robot loop-closure discovery in collaborative SLAM.

We briefly discuss each of these cases in the following.

1. Back-end computational cost. The computational

cost per iteration of Newton-based solvers is monotone

in the measurement set. In particular, the number of

non-zero entries (NNZ) in the Cholesky factor

Fig. 8. Expressing the k-ESP depicted in Figure 7 as an integer

program with indicator variables p1,p2,p3.
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(excluding numerical cancelation) is determined by the

NNZ in the information matrix and the resulting fill-

in. The NNZ in the coefficient matrix is Y(m + n)
where m and n denote the number of loop closures and

poses, respectively, while fill-in depends on the spar-

sity pattern of the information matrix and the heuristic

ordering used (see, e.g., Dellaert and Kaess, 2006).

Although measurement selection techniques should

ideally consider both m and the fill-in, finding the fill-

in minimizing ordering is NP-hard (see, e.g., Frey

et al., 2018). Despite the natural sparsity of SLAM,

the number of loop closures grows rapidly if a robot

revisits an area multiple times, or in collaborative

SLAM, where multiple robots may cross one another’s

trajectories repeatedly. These scenarios are especially

important in the context of lifelong SLAM where, e.g.,

a service robot operates in an office building or cam-

pus (Huang et al., 2013). Pruning highly redundant

pose graphs becomes inevitable because of the limited

mission-critical resources available onboard. Figure 9

illustrates this type of scenario using a realistic syn-

thetic dataset generated by g2o’s simulator (Kümmerle

et al., 2011). This figure shows the impact of pruning

loop closures on the runtime of a Gauss–Newton sol-

ver. Note that the computational cost of online incre-

mental solvers such as iSAM (Kaess, 2008) that

require periodic batch updates has a similar depen-

dence on m; see also (Kaess and Dellaert, 2009)

2. Front-end computational cost. Loop-closure detec-

tion and establishing relative pose measurements

require matching two observations (‘‘sensor registra-

tion’’ hereafter). Standard SLAM front-ends first select

a potential subset of all pairs of robot poses for sensor

registration. This is typically done by taking into

account various criteria such as geometric information

(i.e., sensor characteristics, pose estimates and their

uncertainties) and appearance-based similarity metrics

(Gálvez-López and Tardos, 2012; Giamou et al., 2018;

Mur-Artal et al., 2015). After this initial pruning, we

may still be left with a considerable number of poten-

tial loop-closure candidates. This situation arises when

pose estimates are highly uncertain, or when

appearance-based schemes are weakened by perceptual

aliasing. Resource-constrained platforms may benefit

from front-end measurement selection by restricting

the search for loop closures to the k ‘‘best’’ candidate

matches. Selecting potential measurements at this stage

(i.e., before sensor registration) necessitates taking into

account the stochastic nature of potential loop closures.

Note that by constraining the number of sensor regis-

trations, one also controls the growth of NNZ in the

information matrix (and hence the cost per iteration of

the SLAM back-end).

3. Communication cost in cooperative SLAM. Inter-

robot loop closure detection in cooperative SLAM

incurs an additional communication cost as robots

have to exchange their corresponding observations

with each other (e.g., laser scans, visual features, etc.;

see, e.g., Giamou et al., 2018). In general, the mini-

mum number of exchanges needed to verify a set of

potential inter-robot loop closures between two robots

is determined by the vertex cover number of a bipartite

exchange graph whose edges represent potential loop

closures and whose vertices correspond to robot poses

(Giamou et al., 2018). Consequently, by limiting the

number of inter-robot sensor registrations to k or

fewer, we also guarantee that at most k exchanges will

be needed for loop-closure verification.
6

8.2. Related works

Joshi and Boyd (2009) and Shamaiah et al. (2010) proposed

approximation algorithms for D-optimal sensor selection

under linear measurement models with additive Gaussian

Fig. 9. A synthetic Manhattan-like pose graph generated using g2o’s simulator (Kümmerle et al., 2011). Sensor range and field of

view are 5 meters and p radians, respectively (default parameters). In addition, loop closures can be established only if the headings of

the corresponding two poses are at most p radians apart. The robot follows a random walk (each step: 1 meter forward motion or p=2

rotation) in a 45 m× 45 m environment. There are 3000 poses and about 81, 000 loop closures. Gauss–Newton can solve this (low-

noise regime) problem in few iterations (\5). For example, the total runtime for solving the original dataset on an Intel Core i7-

6820HQ CPU operating at 2.70 GHz is about 4.52 seconds.
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noise. The approach of Joshi and Boyd (2009) is based on

convex relaxation, while Shamaiah et al. (2010) leverage

the submodular property of the log-determinant and provide

near-optimality guarantees. Although these works are origi-

nally proposed for linear-Gaussian models, they can be

applied to nonlinear measurement models in SLAM using a

fixed linearization point.
7

Our approximation algorithms for

k-ESP exploit the same structures to maximize the WST.

However, backed by our results in Section 3, we apply a

novel graphical approach to D-optimal measurement selec-

tion in SLAM. In hindsight, our approach can be intuitively

interpreted as a special graphical linearization specifically

designed for SLAM as an EoG problem.

Controlling the growth of computational complexity of

SLAM systems is essential for scalability and has been a

central research direction: (see Bailey and Durrant-Whyte,

2006; Cadena et al., 2016: and references therein). Pruning

state variables (i.e., nodes in the graphical representation of

SLAM) is one of the most common approaches. Nodes can

be pruned by marginalizing out the corresponding variables

from the belief. However, this process creates fill-in.

Consequently, the reduced belief is often approximated by

pruning the fill-in, i.e., pruning edges from the underlying

Gaussian Markov random field (Thrun et al., 2004). Many

variations of node pruning and belief sparsification have

been proposed (see, e.g., Carlevaris-Bianco et al., 2014;

Choudhary et al., 2015; Eade et al., 2010; Huang et al.,

2013; Kretzschmar and Stachniss, 2012; Mazuran et al.,

2016; Paull et al., 2016, 2015; Vallve et al., 2018; Vial et al.,

2011; Wang et al., 2013). The key difference between our

approach and these works is that we prune edges (i.e., loop

closures in pose graphs) directly from the pose graph, while

the above-mentioned works prune nodes (variables) and the

resulting fill-in (edges in the underlying probabilistic graphi-

cal model). It is worth noting that in principle, belief sparsifi-

cation schemes may also be used for pruning measurements

instead of fill-in (Huang et al., 2013). However, by directly

pruning measurements we neither commit to a particular lin-

earization point, nor do we introduce unnecessary artifacts in

the belief. In addition, the belief created by measurement

selection is ‘‘conservative’’ and ‘‘consistent’’ (Vial et al.,

2011) by design.
8

We also note that by pruning a loop clo-

sure between poses i and j, one also avoids the fill-in that

would have been created after marginalizing out either one

of these poses in the first place.

Davison (2005) pioneered information-theoretic mea-

surement selection by proposing an active search strategy

for visual SLAM that greedily matches features based on

mutual information. This work was later extended by Chli

and Davison (2009) who adopted a Gaussian mixture

model. Kaess and Dellaert (2009) presented a computation-

ally efficient measurement selection scheme similar to

Davison (2005) for discarding redundant and uninformative

measurements. Ila et al. (2010) study pose-graph SLAM

and propose a strategy for evaluating the information gain

of potential loop closures before allocating resources to sen-

sor registration. Kretzschmar and Stachniss (2012) pre-

sented a scheme for discarding laser scans based on approx-

imating the mutual information between laser scans and

grid maps. More recently, Carlone and Karaman (2017)

took advantage of submodularity of the log-determinant

and approximate submodularity of the smallest eigenvalue

of the information matrix (E-optimality criterion) for select-

ing the k most informative visual measurements in visual

inertial navigation for resource-constrained micro aerial

vehicles. The objective function used for measurement

selection in Carlone and Karaman (2017) also takes into

account the probability of successfully tracking features.

Our work is similar to the above-mentioned works in that

we also select an informative subset of measurements,

albeit based on a graphical surrogate for the D-criterion;

see Section 8.5 for a discussion of the advantages of our

approach. Inspired by Ila et al. (2010), we also present a

front-end (potential) loop-closure selection scheme based

on tree connectivity to perform sensor registration only for

information-rich candidate loop closures (detected based on

visual similarity or geometry). Our framework takes the

probability of obtaining positive matches from potential

loop closures into account by exploiting the closed-form

expression for computing the expected WST in random

graphs (see Theorem 5).

8.3. D-optimal measurement selection

The measurement selection problem is captured by our

k-ESP t-optimal graph synthesis formulation. There is,

however, a subtle difference between the two formulations.

In the synthesis problems studied so far, each edge is

weighted by a single weight function. However, in SLAM

each relative pose measurement is composed of two com-

ponents (i.e., translational and rotational), each of which

has its own precision; see wp and wu in Theorem 3. Thus,

we need to revisit the synthesis problem in a more general

setting, where multiple weight functions assign weights,

simultaneously, to a single edge.
9

Fortunately, our near-t-

optimal graph synthesis framework and its analysis can be

easily generalized to handle the expression that appears in

Theorem 3 with multiple weight functions.

1. Greedy algorithm: For the greedy algorithm, we just

need to replace Fw with

C : E 7! 2Fwp
(E)+ Fwu

(E) ð66Þ

which appears in ‘t(G); see Theorem 3. Note that C is

a linear combination of normalized monotone submod-

ular functions with positive weights, and therefore is

also normalized, monotone, and submodular.

2. Convex relaxation: The convex relaxation approach

can also be generalized by replacing the concave

objective function log detLw(p) with the following

concave function,
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2 � log detLwp
(p)+ log detLwu

(p) ð67Þ

which appears as ‘t(G) in Theorem 3.

Therefore, we can easily use the approximation algorithms

developed for k-ESP to find a near-optimal k-subset of the

measurements.

8.4. D-optimality-aware SLAM front-end

In this section, we motivate and develop a SLAM front-end

that is capable of allocating mission-critical resources to

search for potential loop closures that significantly improve

D-optimality through improving the tree connectivity of the

underlying graph. It is worth emphasizing that this scenario

is different from the measurement selection problem pre-

sented above (i.e., back-end measurement selection), where

candidate edges correspond to (true) loop closures that have

already been extracted from raw observations (i.e., after

sensor registration); see Figure 10(a).

We propose a D-optimality-aware SLAM front-end

based on k-RESP (Section 7) for selecting a subset of

potential candidates before performing sensor registration

(Figure 10(b)). In our model, we assume a prior occurrence

probability can be computed for any potential loop closure,

and that loop closures occur independently. The occurrence

probabilities can be estimated based on sensor specifica-

tions (e.g., sensing range) and estimated robot trajectory, or

through the use of similarity scores provided by a place

recognition system such as DBoW2 (Gálvez-López and

Tardos, 2012; see also Tian et al., 2018). The independence

assumption provides tractability, and allows us to use the

provable guarantees presented for k-RESP. We evaluate

this model in Section 9 with real and synthetic SLAM data-

sets. Now suppose that due to resource constraints, a robot

is only capable of performing k sensor registrations within

a fixed interval of h poses. Consequently, in each interval,

the robot has to gather an initial set of candidates P consist-

ing of potential loop closures between either (i) a pose in

the next h poses and one of the previous poses, or (ii) two

of the h new poses. We then estimate the occurrence

probabilities for each potential candidate in P. At this

point, we need to select k promising potential edges from

P, perform scan registration (for full verification and com-

puting the relative transformation between the correspond-

ing poses), and add the resulting loop-closure

measurements to the pose graph.

This problem is closely related to k-RESP, where the

goal is to select k random edges such that the expected

WST in the resulting graph is maximized. Using a similar

idea, we solve the following problem:

maximize
E	P

2 logE½tn,wp
(E)�+ logE½tn,wu

(E)�
subject to jEj= k

ð68Þ

Like k-RESP, the proposed near-t-optimal approximation

algorithms and their provable guarantees readily generalize

to this case. In practice, it is necessary to prefilter P by

removing highly improbable candidates before solving the

above problem since selecting a false potential loop closure

with a low occurrence probability may still seem desirable

for maximizing the expected WST. Unlike Ila et al. (2010),

this work explicitly takes into account both the occurrence

probability and information gain (albeit using our graphical

approximation) by incorporating expected values in our

objective function. Furthermore, while Ila et al. (2010)

mainly considered the case where h = 1, our approach

shows more flexibility in dealing with longer horizons as

we only need to reason about the resulting graph topologies

and not relying on open-loop estimates. Indeed, estimating

the information gain by evaluating the Jacobian at the open-

loop estimate may lead to erroneous selections.

The D-optimality-aware front-end based on k-RESP as

proposed above can also be used for inter-robot loop-

closure detection in collaborative SLAM. Robots need to

share their observations with their peers in order to estab-

lish inter-robot loop closures (see, e.g., Cieslewski and

Scaramuzza, 2017; Dong et al., 2015; Giamou et al., 2018).

As such, in addition to computational costs of sensor regis-

tration, in collaborative SLAM robots are also subject to

communication costs that prevent them from sharing the

entirety of their beliefs and observations for inter-robot

loop closure detection (Giamou et al., 2018; Tian et al.,

2018). Our D-optimality-aware front-end can ensure that

the limited allocated resources are used to extract highly

informative (in expectation) inter-robot loop closures.

Potential inter-robot loop closures and their probabilities

can be obtained by exchanging compact clues such as bag-

of-words vectors (see Cieslewski and Scaramuzza, 2017;

Giamou et al., 2018; Tian et al., 2018). By selecting k infor-

mative potential inter-robot loop closures, one can bound

both the number of observation exchanges (i.e., communi-

cation cost) and sensor registrations (i.e., computational

cost) for inter-robot loop closure detection by k. It is worth

noting that while it is true that in the worst case verifying k

potential inter-robot loop closures requires exchanging k

Fig. 10. An overview of SLAM pipeline after incorporating the

proposed measurement selection frameworks. In (a),

measurement selection is performed after the existence of edges

have been confirmed with sensor registration. In (b) we have to

choose random edges with occurrence probabilities to maximize

the expected weighted tree connectivity.
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observations, in practice this can often be done by fewer

exchanges as shown in Giamou et al. (2018) (see Tian et al.

(2018) for inter-robot loop-closure detection under bud-

geted communication using a precise model of communica-

tion cost).

Since the expected WST only depends on the structure

of the graph and not on the underlying geometry, it is

uniquely suited to multi-robot settings where inter-robot

geometry has not yet been reliably established. This is in

contrast to the D-criterion which requires an accurate

(fixed) linearization point for robots’ trajectories.

Consequently, in Section 9 we present experimental results

for collaborative SLAM scenarios to motivate measurement

selection.

8.5. Observed D-optimality versus tree

connectivity

Recall that in general nonlinear estimation problems such

as SLAM, evaluating the D-criterion requires a lineariza-

tion point. In principle, one should seek the asymptotic cov-

ariance matrix of the ML estimator, or equivalently, the

CRLB, which is given by the inverse of the FIM I(x) evalu-

ated a the true value x= xtrue. Since xtrue is not available,

the D-criterion is usually approximated by evaluating

log det I(x) at the MLE (hereafter, ‘‘observed D-criterion’’).

In Section 9 we empirically demonstrate that measure-

ment selection based on our graphical surrogate objective

provides a comparable performance to measurement selec-

tion based on the observed D-criterion, while being signifi-

cantly faster. Here we briefly discuss three advantages of

using tree connectivity over the observed D-criterion for

measurement selection in SLAM.

Computational cost. From a computational standpoint,

measurement selection based on the observed D-criterion

would be more expensive than the proposed approach.

Here we justify this using a worst-case computational com-

plexity analysis; see Section 9 for experimental results.

Recall that in each round of the greedy algorithm, we need

to assess the remaining candidate loop closures. Rather

than evaluating the actual objective function once for each

candidate, we can compute the Cholesky factorization only

once in each round, and then use the matrix determinant

lemma for comparing the candidates (see Section 4.2 and

Algorithm 2). Using the tree connectivity as the objective

function, in the rth round of the greedy algorithm we need

to compute two Cholesky decompositions of n× n matrices

(for Lwp
and Lwu

), followed by solving 2 � cr (for Lwp
and

Lwu
) n× n triangular linear systems where cr ¼D c� r + 1

is the number of remaining candidates. The total floating-

point operations (flop) count for the most expensive steps

in each round of the greedy algorithm is therefore

; 2 � n3 + 2 � cr � n2. Now in the case of D-criterion, we

need to compute the Cholesky factor of the 3n× 3n infor-

mation matrix, followed by solving 3 � cr (3 is the dimen-

sion of each measurement in pose-graph SLAM) triangular

linear systems. The flop count for the D-criterion objective

is ; (3n)3 + 3 � cr � (3n)2 = 27 � n3 + 27 � cr � n2 (i.e.,

roughly 13.5 times the flop count for tree connectivity).
10

Linearization error and convergence failure. In practice,

the solution obtained by iterative methods such as Gauss–

Newton (applied to the negative log-likelihood) is treated

as the MLE. These techniques are subject to local minima

and, therefore, may fail to convergence to the correct solu-

tion. Measurement selection under such erroneous evalua-

tions of the D-criterion objective is clearly unreliable.

Formally, from Theorem 3 we know that log det I(x)=
2twp

(G)+ twu
(G)+ ε(x). The first two terms are indepen-

dent of x and thus the error between the D-criterion evalu-

ated at the ground truth and, e.g., a local minimum ~x can

be written as

j log det I(~x)� log det I(xtrue)j= je(~x)� e(xtrue)j ð69Þ

In general, this error term is unbounded and can grow arbi-

trarily large depending on the error in ~x. Similarly, even in

cases where the true MLE is available, significant estima-

tion errors may still cause the observed D-criterion to devi-

ate significantly from the true D-criterion (i.e., evaluated at

the true value), which can potentially affect the quality of

selected measurements. By contrast, the proposed tree con-

nectivity surrogate objective is inherently immune to such

convergence errors since it does not depend on x; see

the case of the Lincoln Lab dataset in Table 1 for an

example.

9. Experiments

In this section, we present experimental results based on

randomly generated graphs, realistic simulations, and real

SLAM benchmark datasets to validate our theoretical

results and evaluate the performance of the proposed

approximation algorithms. The experiments are specifically

designed to demonstrate and evaluate the use of our near-t-

optimal graph synthesis framework for measurement selec-

tion in SLAM. We implemented our algorithms in

MATLAB. Problem P2ð Þ (convex relaxation) is modeled

using YALMIP (Löfberg, 2004) and solved using SDPT3

(Tütüncü et al., 2003). The fractional solution of the convex

program is rounded using the deterministic (sorting) round-

ing scheme. We used an Intel Core i7-6820HQ CPU oper-

ating at 2.70 GHz to run our experiments.

We introduce in Figure 11(a) a dataset based on KITTI

odometry sequence 0 (Geiger et al., 2013). This sequence

was chosen due to the existence of a significant number of

loop closures created by overlaps in the trajectory. In the

experiments of Section 9.3, the occurrence probabilities for

candidate edges in k-RESP are generated according to the

normalized DBoW2-based score a described in Gálvez-

López and Tardos (2012). While this quantity is not an

exact empirical probability estimate of edge likelihood, our

experiments demonstrate that they are suitable proxies. In

order to simulate loop-closure candidates that would arise
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in a multi-agent scenario, the dataset was partitioned into

fifths, with each fifth representing a distinct robot’s trajec-

tory and measurements. The candidate edge set is restricted

to those that are incident on poses associated with two dis-

tinct robots. The 2D pose constraints for odometry and

loop-closure candidates were generated using ORB-SLAM

(Mur-Artal et al., 2015). Stereo image pairs from the

KITTI dataset were used to generate 3D odometry and loop

closures which were projected into a 2D plane. The loop-

closure candidate poses and edges were discovered and

assigned probabilities using the version of DBoW2

included in ORB-SLAM. Candidates with normalized

score less than a threshold of 0.2 were omitted in order to

prefilter outliers and unlikely matches.

To evaluate the performance of our proposed methods

on problem instances with a large number of poses and

candidate edges, we created a series of synthetic,

Manhattan-like grid world datasets, which we will refer to

as Atlas datasets, using the 2D simulator included in g2o

(Kümmerle et al., 2011). The odometry and loop closures

generated by the simulator are corrupted with additive

zero-mean Gaussian noise with s�2
u = 5000 and

s�2
p = 500. The simulator includes loop closures between

poses within a range of 5 meters and angular field of view

of 1808. The overlapping fraction of poses’ fields of view

were used to generate (exact) probabilities for candidate

edges in the k-RESP problem, which were then assigned

as valid or invalid by random sampling. Only the edges that

were randomly sampled as valid are available for solving

the resulting pose graph if they are selected; the remainder

are treated as false positives. Thus, the measurement noise

and probabilities used in our SLAM front-end experiments

are exact for the Atlas dataset, providing an idealized sce-

nario with ground truth in which to test our proposed algo-

rithm on large-scale problems in Section 9.3. In order to

keep the number of candidate edges manageable, the maxi-

mum degree for any vertex was limited to 40 via an initial

random pruning of edges. The dense graphs studied here

could arise in scenarios where one or more robots

frequently revisit certain areas where they are able to estab-

lish loop closures. Limiting this density by selecting an

informative subset of candidate edges is a means of main-

taining high localization and mapping accuracy while con-

trolling resource consumption; see Section 8.

Figure 11(b) displays the largest Atlas dataset created,

which contains 5000 poses. The same strategy of partition-

ing the datasets into fifths used on the KITTI dataset was

used, providing a large number of inter-robot loop closures.

Table 2 summarizes the number of poses and loop closures

in the KITTI and Atlas datasets.

9.1. Near-t-optimal graph synthesis: randomly

generated graphs

We conducted a series of experiments on randomly gener-

ated graphs to evaluate the performance of the proposed

approximation algorithms. In each experiment, a random

base graph was generated with n 2 f20, 50g vertices. In

these experiments, the set of candidate edges is

C =E(Kn)nEinit. Figure 18 illustrates the performance of

our approximate solutions for k-ESP.

In the first experiment, we kept k = 5 fixed and gradu-

ally increased the number of edges in the base graph jEinitj.
Note that this is equivalent to gradually reducing the

Table 2. Dataset details and algorithm runtimes for edge cardinality budget k = 150. All runtimes reported in seconds. Our D-

optimality-aware front-end is able to quickly select a tiny fraction of all available candidate edges for loop-closure verification. This

leads to a sparse pose graph that can be optimized efficiently via solvers such as g2o. ‘‘Valid Edges’’ refers to actual loop closures,

while ‘‘Total Edges’’ refers to all potential loop-closure candidates.

Dataset Poses Valid
Edges

Total
Edges

% Edges
Checked

WST
Runtime (s)

D-Crit.
Runtime
(s)

WST
Batch
Runtime (s)

D-Crit.
Batch
Runtime (s)

Full
g2o Iter.
Time (s)

WST
g2o Iter.
Time (s)

KITTI 00 2049 300 514 29 0.89 9.36 0.38 2.20 0.0023 0.0025
Atlas1K 1000 2459 6094 2.5 11.32 28.18 0.98 4.12 0.0079 0.0013
Atlas2K 2000 10,517 26,013 0.6 120.48 230.13 4.84 17.26 0.44 0.0027
Atlas3K 3000 14,596 36,476 0.4 211.96 412.29 6.25 20.78 0.93 0.0041
Atlas4K 4000 21,730 53,935 0.3 474.91 859.69 8.89 27.76 7.40 0.0057
Atlas5K 5000 27,006 66,371 0.2 712.80 1317.2 10.67 32.65 7.66 0.0069

Fig. 11. Left: KITTI odometry sequence 00. Right: 2D Atlas

simulation (5000 poses). Each trajectory is partitioned into five

sub-trajectories representing different robots.
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cardinality of the candidate set C. We then ran the proposed

greedy and convex approximation algorithms, and recorded

the tree connectivity of the resulting graphs. For n = 20, we

also found OPT via exhaustive search. In practice, finding

OPT is only feasible in small graphs. The results are

depicted in Figures 12(a) and (b). In these figures, tgreedy
and tcvx denote the tree connectivity achieved by the

greedy and convex relaxation followed by deterministic

rounding, respectively. We also report the optimal value of

the convex program (before rounding) tH

cvx, which is an

upper bound on OPT; see Corollary 9. Hence, although

OPT is not available in the case of n = 50, we can still

assess the proposed approximate algorithms using tH

cvx. As

we can see from these figures, both algorithms are able to

design graphs with a value close to OPT.

In the second experiment, we kept the base graph fixed

with n = 50 vertices and jEinitj= 200 edges. The number of

candidate edges is thus c = 1025. We then gradually

increased the value of k from 1 to 100. Figure 12(c) shows

the results. Unlike the previous figures, here we can see that

the optimality gap for the convex relaxation algorithm

becomes noticeable as k increases. According to this figure,

the greedy algorithm begins to significantly outperform the

convex relaxation once k ø 20 and attains near-t-optimal

designs as certified by tH

cvx.

9.2. Near-D-optimal measurement selection and

graph pruning in SLAM

Now we evaluate the graphical measurement selection

scheme proposed in Section 8.3 using the KITTI, Atlas,

and Intel Research Lab datasets. The original Intel

Research Lab dataset was collected by Hähnel (2003). We

extracted the graph from the preprocessed version provided

as part of g2o (Kümmerle et al., 2011). In our experiments,

the base graph consists of the n = 943 poses and

jEinitj= 942 odometry edges. The candidate set C is the set

of loop closures with c = 895 edges extracted from the orig-

inal dataset. For the edge weights, we use the information

matrices provided in the g2o dataset. Since the translational

and rotational measurements have different precisions, two

weight functions (wp and wu) assign weights to each edge

of the graph. Our goal is to pick k loop closures for varying

values of k such that ‘t(G)= 2twp
(G)+ twu

(G) is maxi-

mized (i.e., our graphical surrogate for the D-criterion).

Computing the true OPT through exhaustive search is not

practical in this dataset.

Figure 13 shows the results for different values of

1 ł k ł c. In Figure 13(a) we see the values obtained by

running the greedy algorithm (tgreedy), convex relaxation

before and after rounding (tH

cvx and tcvx, respectively), and

the upper bound on OPT based on the approximation fac-

tor proved for the greedy algorithm (Ugreedy); see Corollary

9. While both approximation algorithms generally perform

well, once again we can see that the greedy algorithm out-

performs convex relaxation with deterministic rounding,

especially for 80 ł k ł 560. Based on Corollary 9, OPT is

bounded from above by U ¼D minfUgreedy, tH

cvxg. For small

values of k, the tightest upper bound on OPT is given by

U= Ugreedy (blue curve). However, for k ø 60, the convex

relaxation provides a significantly tighter upper bound on

OPT (green curve). Figures 12 and 13 suggest that the

greedy algorithm can find provably near-optimal designs,

while the fractional solution of the relaxed program can

provide even stronger (albeit a posteriori) certificates for

Fig. 12. Problem k-ESP on randomly generated graphs.

Khosoussi et al. 283



the near-optimality of the greedy design. Figure 13(b) dis-

plays the distribution of a conservative estimate of the sub-

optimality ratios (%) of the proposed approximation

algorithms defined as tcvx=U× 100 and tgreedy=U× 100.

Recall that in Section 3.4 experimental results were pre-

sented to validate our graphical approximation of the D-cri-

terion. Now in Figure 14 we assess the accuracy of this

approximation in the context of measurement selection.

Figure 14(a) shows the D-criterion for the loop closures

selected by the greedy algorithm in Figure 13. We have

used g2o (Kümmerle et al., 2011) to solve each problem

(for 1 ł k ł 895). As expected, the true value is consis-

tently close to ‘t(G)= 2twp
(G)+ twu

(G). The box plot in

Figure 14(b) shows a summary of the distribution of RE

(%) defined in (39).

Figure 15 illustrates the pose graphs synthesized by the

greedy algorithm for six different values of k in the Intel

Research Lab dataset. We have used the MLE based on the

original dataset to visualize the trajectory of the robot. The

objective value attained by the greedy algorithm and an

upper bound for OPT are provided above each figure.

Figure 15(f) shows the original dataset with 895 loop clo-

sures drawn in blue.

Given a fixed linearization point, the D-criterion (after

normalization) can be expressed as a function of selected

loop closures,

fD : E 7! log det (Iinit +
X
e2E

Ie)� log det Iinit ð70Þ

where Iinit � 0 and Ie are the information matrices associ-

ated with the base graph and loop closure e, respectively.

Here fD is normalized, monotone, and submodular

(Shamaiah et al., 2010). Therefore, a near-optimal solution

for the problem of maximizing fD subject to a cardinality

constraint on E can be found by the greedy algorithm

(Nemhauser et al., 1978; Shamaiah et al., 2010). We ran

the greedy algorithm once for our graphical surrogate func-

tion based on the WST, and once for fD. The linearization

point used for evaluating fD is the MLE based on the edges

in the base (odometry) graph. We then took the measure-

ments selected by each algorithm, and evaluated their

resulting D-criterion using the best available linearization

point (ground truth for synthetic data, and the MLE using

all loop closures for KITTI). Figures 16 and 17 display the

D-criterion achieved by each algorithm (namely, greedy

WST and greedy observed D-optimality) and their runtimes

in the KITTI and Atlas datasets. The lazy evaluation

method (Krause and Golovin, 2012; Minoux, 1978) was

used to speed up the computation time of both greedy algo-

rithms. In order to make the runtime of both algorithms

tractable for datasets containing tens of thousands of candi-

date loop closures, the full problem solution (i.e., selecting

k edges out of all c candidate edges) was compared with

an approach that randomly partitioned the candidate edges

into multiple smaller batches. For the KITTI dataset, from

each batch of 25 candidates, 10 edges were selected.

Similarly, for the Atlas5K dataset, 10 edges were selected

for each random batch of 1300 candidates. These batch

sizes and sampling rate of 10 edges per batch were chosen

so that the maximum edge selection budget k used in our

experiments (see the x-axis of Figures 16 and 17) was spent

after all batches were examined, enabling a comparison

with the full problem solution. This batch approach addi-

tionally serves the purpose of simulating a scenario where

Fig. 13. Problem k-ESP for pose-graph SLAM in the Intel Research Lab dataset. (a) The performance of the proposed approximation

algorithms, as well as two upper bounds on OPT for varying k. (b) A summary of the distribution of a lower bound on the

suboptimality ratio (%) computed using the tightest upper bound U= minftH

cvx,Ugreedyg on OPT for each approximation algorithm.
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intermittent availability of communication and/or the

sequential acquisition of measurements produces smaller

problem instances. We also include results for a baseline

edge selection strategy that simply chooses a completely

random subset of k edges.

According to Figure 16(a), greedy edge selection based

on the proposed objective function (WST) performs nearly

as well as picking edges greedily based on the observed D-

criterion, once again indicating that WST provides a suit-

able proxy for D-optimal measurement selection. For both

objective functions, the batch approach incurs a slight

performance penalty, but is still superior to the random

baseline. Figure 16(b) demonstrates that WST is cheaper

to compute and, thus, runs significantly faster than the

D-criterion for both full and batch algorithm variants. Even

on a relatively small dataset such as KITTI, the batch

approach provides significant runtime savings for both

objective functions.

Since the Atlas datasets are much larger and denser than

the KITTI dataset, the runtime savings in Figure 17(b)

associated with the batch approach are much more signifi-

cant. Computing the WST objective function is also signifi-

cantly faster than computing the D-criterion for both full

and batch approaches. Figure 17(a) demonstrates that the

batch approach does not reduce solution quality signifi-

cantly, and that the WST is once again a meaningful surro-

gate for D-criterion maximization.

9.3. D-optimality-aware SLAM front-end

In this section, we evaluate the proposed D-optimality-

aware SLAM front-end of Section 8.4 using both the

KITTI and Atlas datasets. Owing to the random nature of

potential loop closures in this setting, we compare the per-

formance of the greedy algorithm based on expected WST

(68) with the greedy algorithm applied to an objective

function proposed by Carlone and Karaman (2017):

~fD : E 7! log det (Iinit +
X
e2E

peIe)� log det Iinit ð71Þ

in which pe is the occurrence probability of potential loop

closure e. We took the valid (i.e., true) loop closures

selected by each algorithm, and evaluated their resulting D-

criterion using the best available linearization point (ground

truth for synthetic data, and the MLE using all loop clo-

sures for KITTI). This was also done for a random poten-

tial measurement selection baseline.

Figure 18(a) displays the results for the KITTI dataset.

In spite of the fact that the D-criterion greedy algorithm is

aiming to explicitly maximize the D-criterion, our WST

objective function provides comparable results.

Furthermore, the timing results in Figure 18(b) and Table 2

indicate that the WST function is nearly an order of magni-

tude faster on this dataset. The batch algorithms also retain

performance similar to the full greedy solutions while

requiring less runtime. In this dataset, batches of 25 candi-

date edges were formed, and 10 edges were greedily

selected from each batch.

Note that the D-criterion improvement from using a

D-optimality-aware front-end strategy over the random

baseline in Figure 18(a) is greater than the improvement in

the back-end case of Figure 16(a). This is because the back-

end task has no invalid loop closures (i.e., potential candi-

dates that did not correspond to true loop closures), whereas

Fig. 14. Greedy k-ESP on the Intel Research Lab Dataset. In (a), the horizontal axis shows the number of loop-closure edges selected

by the greedy algorithm. The base graph here is the odometry-only subgraph. The red curve (marked by triangles) shows the value of

the log-determinant of the information matrix at the MLE. The blue curve (marked by circles) shows the approximated D-criterion

computed only using the graphical structure of the problem. The box plot in (b) gives a summary of the relative error (%) defined in

(39) between the 895 data points shown in (a).
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Fig. 15. Greedy design for k loop closures (out of 895). Loop-closure edges are shown in blue, and odometry measurements are

shown in black. Red circles are the robot poses. See https://youtu.be/5JZF2QiRbDE for the complete evolution of pose graphs

designed by the greedy algorithm.
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Fig. 16. Comparison of D-criterion (a) and runtime (b) for the full and batch variants on the back-end k-ESP scenario (only valid

edges as candidates) with the KITTI dataset.

Fig. 17. Comparison of D-criterion (a) and runtime (b) for the full and batch variants on the back-end k-ESP scenario (only valid

edges as candidates) on the Atlas5K dataset.

Fig. 18. Comparison of D-criterion (a) and runtime (b) for the full and batch variants of WST and D-criterion greedy algorithms for

the front-end SLAM scenario on the KITTI dataset.
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in the front-end task the greedy algorithms take the edge

probability into account when selecting edges, while the

random baseline selects a number of invalid potential loop

closures.

Figures 19 and 20 display the performance of the various

algorithms on two of the Atlas datasets. Since ground truth

is available, the absolute trajectory error (ATE) is presented

in addition to the D-criterion with respect to the ground-

truth trajectory. In Figures 19(a) and 20(a), the WST objec-

tive function performs similarly to the observed D-criterion

in terms of the (true; i.e., evaluated at the ground truth) D-

criterion, while only requiring a fraction of the runtime (see

Section 9.4 for further details). The same is true in terms of

the ATE in Figures 19(c) and 20(c). In the batch variant, a

mere 10 edges were selected for each random batch of

1300 candidates. The slight performance decrease caused

by partitioning the data into batches is acceptable, espe-

cially considering the greatly reduced runtimes reported in

Figures 20(b) and 19(b).

Similar to the KITTI data, the performance improvement

in Figures 19 and 20 stemming from use of the greedy algo-

rithms over the random baseline is larger in the k-RESP-

based probabilistic SLAM front-end case than the back-end

experiments in Figure 17(a). Visual inspection indicates

that the improvement for the Atlas datasets is even greater,

owing to the fact that the synthetic probabilities are exact,

as opposed to the normalized visual similarity scores used

for KITTI. This allows greater accuracy in computing the

expected gain for candidate edges when running the greedy

algorithms.

9.4. Runtime

Solving the convex relaxation of k-ESP using YALMIP and

SDPT3 scales poorly as the number of poses/vertices n

increases. In the Intel Research Lab dataset (n = 943), the

runtime is between 10 and 30 seconds for different values of

c. For n = 3500 (Manhattan dataset) and n = 10, 000

(City10K), the runtime is 
 10 minutes.
11

To improve the

scalability of this scheme, one needs to leverage the struc-

tures that are not being exploited by general-purpose tools

such as YALMIP and SDPT3. In practice, the convex relaxa-

tion approach is only useful for certifying the quality of other

designs (e.g., greedy), which is usually done offline.

Figure 22 shows the runtimes for three benchmark pose-

graph datasets, namely Intel Research Lab, Manhattan, and

City10K with, respectively, 943, 3500, and 10, 000 poses.

The greedy algorithm is implemented in MATLAB, does

not exploit rank-one updates of the Cholesky factor

(Algorithm 4), and uses lazy evaluations (Krause and

Golovin, 2012; Minoux, 1978) to speed up the algorithm.

The impact of this improvement is illustrated in Figure 21.

Fig. 19. Comparison of full and batch greedy strategies on the Atlas3K simulated dataset for the D-optimality-aware front-end task.

In the batch algorithms, 10 edges were selected from random batches of 1300.

Fig. 20. Comparison of full and batch greedy strategies on the Atlas5K simulated dataset for the D-optimality-aware SLAM front-end

task. In the batch algorithms, 10 edges were selected from random batches of 1300.
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According to this figure, after the first few rounds, the lazy

greedy algorithm can select the best candidate by just eval-

uating less than 10% of the remaining candidates.

The impact of the number of poses n on the runtime of

the greedy algorithm can be seen in Figure 22. As expected,

the runtime of the greedy algorithm scales much better with

n than that of the proposed convex relaxation scheme.

Figure 22(a) and (b) show the runtime of greedy for c = 20

and 200, respectively. Figure 22(c) shows the runtime of

greedy in c=2-ESP as a function of c. Note that in online

applications, one can control the runtime of greedy by con-

trolling the number of candidate edges c (i.e., batch size in

the ‘‘batch’’ experiments presented earlier). Therefore, by

periodically pruning measurements one can control the run-

time of greedy measurement selection. Needless to say,

more informative edges will be selected if we expand the

candidate set.

Table 2 summarizes the runtime of the k-RESP algo-

rithms used in the D-optimality-aware front-end experi-

ments. The table displays full and batch greedy runtimes

for both D-criterion and WST objective functions after each

has selected 150 edges. The percentage of edges checked

is also displayed, as this influences the fraction of candidate

sensor registrations that would be attempted, further

affecting the runtime. WST is consistently far faster than

the D-criterion in both the full and batch algorithm var-

iants. The reduction in g2o iteration time incurred by the

full WST selection is also given, demonstrating further

computation savings provided by maintaining sparsity

through subselection of candidate edges.

In addition to optimizing our current implementation,

we can speed up the greedy algorithm by taking advantage

of two key structures.

1. In our current implementation, we factorize the

reduced Laplacian from scratch in each round of the

greedy algorithm. As proposed earlier (Algorithm 4),

it would be more efficient if we instead update the

Cholesky factor recursively via rank-one updates.

Unfortunately, cholupdate in MATLAB does not sup-

port sparse matrices. This functionality, however, is

provided by CHOLMOD (Chen et al., 2008) and

CSparse (Davis, 2006) and can be utilized in a C/C++;

implementation to further speed up the greedy

algorithm.

2. In its ith round, the greedy algorithm solves ci linear

systems, with a single triangular coefficient matrix

and ci different right-hand sides where ci = c� i + 1.

Fig. 21. The naı̈ve greedy algorithm needs to evaluate c� i + 1 edges in its ith round. Lazy evaluations (Krause and Golovin, 2012;

Minoux, 1978) can reduce this number significantly. This figure shows the percentage of remaining edges in each round evaluated by

the lazy greedy algorithm for c = 500 and k = 250.

Fig. 22. CPU time (s) for (a) c = 20, (b) c = 200, and (c) c=2-ESP using the proposed greedy algorithm.
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These triangular linear systems can be solved in paral-

lel on multiple CPU/GPU cores.
12

Exploiting this

embarrassingly parallel structure of the greedy algo-

rithm would dramatically reduce the runtime.

10. Conclusion and future work

In this paper, we have explored and exploited the over-

looked interplay between the graphical and estimation-

theoretic facets of SLAM as an EoG problem. First, a theo-

retical explanation was presented for the empirical observa-

tions made by Olson and Kaess (2009) regarding the

impact of average degree on overfitting. We then high-

lighted the intrinsic connection between the FIM and the

Laplacian matrix in several EoG problems, including

SLAM. This observation paved the way to reveal intimate

connections between different notions of graph connectiv-

ity and estimation reliability. Among them, we focused par-

ticularly on the relation between the WST and the D-

criterion. Our theoretical analysis was empirically validated

through extensive experimental evaluation based on pub-

licly available real and synthetic SLAM datasets. This key

insight makes it possible to reason about the D-criterion in

SLAM based only on the weighted tree connectivity of the

graph underneath. Consequently, we studied the combina-

torial optimization problem of designing sparse t-optimal

graphs. Characterizing t-optimal graphs, even in simpler

settings, remains an open problem and, to the best of the

authors’ knowledge, no efficient algorithm for synthesizing

such graphs in the general case is known. We instead pre-

sented a complementary pair of efficient approximation

algorithms with provable guarantees and near-optimality

certificates. This was achieved by establishing a number of

new theoretical results, including log-submodularity of the

WST as a function of graph edges. To the best the authors’

knowledge, this result is new in graph theory. We then

leveraged this structure to show that the greedy algorithm

is a constant-factor approximation algorithm based on the

seminal work of Nemhauser et al. (1978). Our second

approximation algorithm is based on a convex relaxation

approach for sensor selection proposed by Joshi and Boyd

(2009). We provided new intuitive explanations for this

relaxation and a natural rounding scheme. Our approxima-

tion algorithms were extended to two additional settings,

namely ARGs and a dual narrative. We then applied our

algorithmic framework to measurement selection problems

in SLAM. The performance of the proposed framework

was extensively evaluated using randomly generated

graphs, realistic simulations, and real benchmark datasets.

It was demonstrated that the proposed graphical approach

exhibits comparable performance to D-optimal designs,

while being significantly faster and robust to convergence/

linearization errors. Our empirical observations indicate

that in almost all cases, the greedy algorithm can find bet-

ter approximate solutions and is faster than the proposed

convex relaxation scheme. However, the latter still plays a

crucial role in our framework by providing better near-

optimality certificates which are used to certify the quality

of greedy solutions.

The near-t-optimal graph synthesis framework presented

in this work can be readily used in many other domains

where maximizing the number of spanning trees is desired

(often as a measure of network robustness). For instance, a

well-known result in network reliability theory indicates that,

in the so-called all-terminal reliability model, if a uniformly

most reliable network exits, it must have the maximum tree

connectivity among all graphs with the same size (Bauer

et al., 1987; Boesch et al., 2009; Myrvold, 1996). Moreover,

Cheng (1981) noted that D-optimal incomplete block designs

in statistics are associated with t-optimal concurrence graphs

(see Bailey and Cameron, 2009: for a survey). See also

Gutman et al. (1983), Brown et al. (1996), and Kim et al.

(2013) for applications in chemistry and RNA modeling.

We plan to investigate an intriguing overlap between the

parameters that emerged from Theorem 3 and those that

emerged from a convergence analysis due to Carlone (2013)

as part of our future work. Preliminary results suggest that

this theorem can be extended to 3D SLAM. This extension

will be examined in future work. Improving the computa-

tional complexity of the greedy algorithm is another avenue

for future work. Our approach has been recently adopted by

Li et al. (2018) who proposed a faster greedy algorithm with

an approximation ratio of (1� 1=e� ε) for any positive ε.

Finally, we are ultimately interested in a seamless incorpora-

tion of graph topology into planning and decision-making

pipelines beyond measurement selection.
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Notes

1. Extending this model and our following results to the 2D

feature-based SLAM problem is straightforward.

2. Note that here we do not make any other assumptions regard-

ing the structure of the noise covariance matrix S.

3. Note that parallel edges can be replaced by a single edge

weighted by the sum of the weights.
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4. Note that p should not be confused with the notation we used

to refer to the position of a robot throughout its trajectory.

We use p instead of p to distinguish between the integer and

fractional values.

5. For now, we ignore the fact that the rounded solution may

violate the cardinality constraint.

6. In most cases, we can verify all k potential loop closures

using fewer than k data exchanges. The problem of inter-

robot loop-closure detection under communication con-

straints is studied in (Tian et al., 2018).

7. Linearization may cause other problems, see Section 8.5.

8. In the SLAM literature, these terms mean that the pruned

covariance matrix is ‘‘greater’’ than the original covariance

matrix (Loewner order), i.e., we do not underestimate belief

uncertainty.

9. It is important to note that this case (the expression in

Theorem 3) is different from the case in which there are

multiple (parallel) edges (with different weights) between

two vertices. In the latter case, we can simply replace paral-

lel edges with a single edge whose weight is equal to the

sum of parallel edge weights.

10. The presented approximate flop counts are derived for the

worst case of dense matrices; counting flops for sparse pose

graphs is too complex as it depends on the sparsity pattern,

heuristic reordering, etc.

11. We stopped SDPT3 after this time.

12. This idea can be used alongside lazy evaluation (Minoux,

1978) by guessing the number of remaining candidates that

are needed to be evaluated based on empirical observations,

and solving the corresponding triangular linear systems in

parallel.
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Löfberg J (2004) Yalmip: A toolbox for modeling and optimiza-

tion in MATLAB. In: Proceedings of the CACSD Conference.

Taipei, Taiwan. http://users.isy.liu.se/johanl/yalmip .

Mazuran M, Burgard W and Tipaldi GD (2016) Nonlinear factor

recovery for long-term SLAM. The International Journal of

Robotics Research 35(1–3): 50–72.

Meyer CD (2000) Matrix analysis and applied linear algebra.

Philadelphia, PA: SIAM.

Minoux M (1978) Accelerated greedy algorithms for maximizing

submodular set functions. In: Optimization Techniques. New

York: Springer, pp. 234–243.

Mur-Artal R, Montiel JMM and Tardos JD (2015) ORB-SLAM: a

versatile and accurate monocular SLAM system. IEEE Trans-

actions on Robotics 31(5): 1147–1163.

Myrvold W (1996) Reliable network synthesis: Some recent

developments. In: Proceedings of International Conference on

Graph Theory, Combinatorics, Algorithms, and Applications.

Nemhauser GL, Wolsey LA and Fisher ML (1978) An analysis of

approximations for maximizing submodular set functions - I.

Mathematical Programming 14(1): 265–294.

Olson E (2008) Robust and Efficient Robotic Mapping. PhD The-

sis, Massachusetts Institute of Technology, Cambridge, MA,

USA.

Olson E and Kaess M (2009) Evaluating the performance of map

optimization algorithms. In: RSS Workshop on Good Experi-

mental Methodology in Robotics, p. 40.

Paull L, Huang G and Leonard JJ (2016) A unified resource-

constrained framework for graph SLAM. In: 2016 IEEE Inter-

national Conference on Robotics and Automation (ICRA).

IEEE, pp. 1346–1353.

Paull L, Huang G, Seto M and Leonard JJ (2015) Communica-

tion-constrained multi-AUV cooperative SLAM. In: 2015

IEEE International Conference on Robotics and Automation

(ICRA). IEEE, pp. 509–516.

292 The International Journal of Robotics Research 38(2-3)



Petingi L and Rodriguez J (2002) A new technique for the charac-

terization of graphs with a maximum number of spanning

trees. Discrete Mathematics 244(1): 351–373.

Pirani M and Sundaram S (2014) Spectral properties of the

grounded Laplacian matrix with applications to consensus in

the presence of stubborn agents. In: American Control Confer-

ence (ACC), 2014. IEEE, pp. 2160–2165.

Pukelsheim F (1993) Optimal design of experiments, volume 50.

Philadelphia, PA: SIAM.

Shamaiah M, Banerjee S and Vikalo H (2010) Greedy sensor

selection: Leveraging submodularity. In: 49th IEEE Confer-

ence on Decision and Control (CDC). IEEE, pp. 2572–2577.

Shier D (1974) Maximizing the number of spanning trees in a

graph with n nodes and m edges. Journal Research National

Bureau of Standards, Section B 78: 193–196.

Sorenson H (1980) Control and systems theory. In: Parameter esti-

mation: principles and problems. New York: Dekker.

Thrun S, Liu Y, Koller D, Ng AY, Ghahramani Z and Durrant-

Whyte H (2004) Simultaneous localization and mapping with

sparse extended information filters. The International Journal

of Robotics Research 23(7-8): 693.

Tian Y, Khosoussi K, Giamou M, How JP and Kelly J (2018)

Near-optimal budgeted data exchange for distributed loop clo-

sure detection. In: Proceedings of Robotics: Science and Sys-

tems. Pittsburgh, PA, accepted.
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Appendix A. Preliminaries

For the reader’s convenience, here we briefly review a num-

ber of important results, terminologies, and preliminaries

from several areas that are used in this work.

A.1. Graph theory

Consider a simple undirected graph G = (V,E). Here V is

the set of vertices and E 	 V

2

� �
is the edge set of G. V(G)

and E(G) refer to, respectively, the vertex set and edge set

of graph G. Moreover, n(G) ¼D jV(G)j and m(G) ¼D jE(G)j.
Vertex u is adjacent to vertex v (u ; v) if and only if there

is an edge connecting u to v. For any vertex v 2 V,

N(v) 	 V denotes the set of all vertices adjacent to v. We

generally assume the vertices are labeled according to

V = ½n� for an integer n. Let w : E! R be a weight func-

tion that assigns a real weight to any edge of G. Then

(V,E,w) is an edge-weighted graph (or, simply, a weighted

graph). In directed graphs, each edge has an orientation

and thus is represented by an ordered pair, i.e., ~G = (V,~E)

where ~E 	 V×V. An undirected graph is connected if and

only if there is a path between any two vertices. A directed

graph is strongly connected if and only if there is a directed

path between any two vertices. Similarly, a directed graph

is weakly connected if there is a path between any two ver-

tices after ignoring the edge orientations. H= (S,F) is a

subgraph of G = (V,E) if and only if S 	 V and F 	 E. H

is a spanning subgraph of G if and only if and S =V.

Moreover, H is an induced subgraph of G if and only if

F = ffu, vg : u, v 2 S, fu, vg 2 Eg ð72Þ

A connected component of an undirected graph G is a

connected induced subgraph of G whose set of vertices is not

adjacent to the other vertices of G. The number of connected

components of G is shown by nc(G). The degree of vertex

v 2 V, deg (v), is defined as the number of edges incident to

v, i.e., deg (v) ¼D jN(v)j. From the handshaking lemma we

know that
P

v2V deg (v)= 2jEj. In weighted graphs, the

weighted degree of vertex v 2 V is defined as

degw (v) ¼D
P

u2N(v) w(u, v). An undirected tree is a graph

that is (i) connected and (ii) does not have a cycle. Removing

any edge from a tree results in a disconnected graph; thus,

trees are minimally connected graphs. We generally use T for

referring to trees. The complete graph K (or Kn when

jVj= n) is the graph whose any two vertices are connected

with an edge, i.e., E(K)=
V

2

� �
. A spanning tree of G is a

spanning subgraph of G that is a tree. To simplify our nota-

tion, let us assume n(G)= n and m(G)= m. The degree

matrix D 2 R
n× n is defined as D ¼D diag( deg (v1),

. . . , deg (vn)) where V(G)= fv1, . . . , vng. The adjacency

matrix N 2 f0, 1gn× n
is defined as follows:

Nu, v =
1 if u ; v

0 otherwise

	
The incidence matrix As 2 f�1, 0, 1gn×m

is defined for

directed graphs. Let E = fe1, . . . , emg where ei ¼D (ui, vi).
Then we have

As
u, i =

+ 1 if 9v 2 V:ei = (v, u) 2 E

�1 if 9v 2 V:ei = (u, v) 2 E

0 otherwise

8<:
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Sometimes we refer to the incidence matrix of undirected

graphs. In such cases, we have implicitly assumed an arbi-

trary orientation is assigned to the edges of graph. The

graph Laplacian (or Kirchhoff) matrix Ls 2 R
n× n is

defined as Ls ¼D AsA�
s =D�N. Deleting a row/column

from the incidence and Laplacian matrices results in the

following matrices. The reduced incidence matrix A is the

matrix obtained by deleting the row associated to a vertex

from the incidence matrix. The vertex associated to the

deleted row is usually referred to as the anchored or

grounded vertex. In general, it is possible to have multiple

anchors. The reduced Laplacian (also known as the

Dirichlet or grounded Laplacian) matrix L is the matrix

obtained by deleting the column and row associated to a

vertex from the Laplacian matrix. Similar to what we saw

earlier regarding the relation between As and Ls, L=AA�

for the same anchor(s).

Theorem 8. Let l1(Ls)ł l2(Ls)ł � � � ł ln(Ls) be the

spectrum of the Laplacian matrix Ls of an arbitrary graph.

The following statements hold.

1. The Laplacian matrix is positive semidefinite, i.e.,

li(Ls)ø 0 for all i 2 ½n�.
2. The Laplacian matrix has at least one zero eigenvalue

associated to the 1n eigenvector, i.e., Ls1n = 0.

3. The multiplicity of the zero eigenvalue is equal to the

number of connected components of graph nc(G), i.e.,

li(Ls)= 0 for all i 2 ½nc(G)� and lnc(G) + 1(Ls).0.

Theorem 9. The reduced incidence matrix A is full row

rank if and only if the corresponding graph is weakly

connected.

The following corollary directly follows Theorem 9 and

the fact that L=AA�.

Corollary 13. The reduced Laplacian matrix L is positive

definite if and only if the corresponding graph is

connected.

Theorem 10 (Kirchhoff’s matrix-tree theorem). Let L and

Ls be, respectively, the reduced Laplacian and the

Laplacian matrix of any simple undirected graph G after

anchoring an arbitrary vertex out of its n vertices. The fol-

lowing statements are true:

1. t(G)= det (L);
2. t(G)= 1

n

Qn
i = 2 li(Ls).

Theorem 11. (Cayley’s formula) We have

t(Kn)= nn�2 ð73Þ

Definition 4. (Tree value function). Suppose G = (V,E,w)
is a weighted graph with a non-negative weight function.

The value of each spanning tree of G is measured by the

following function,

Vw : TG ! Rø 0 ð74Þ

T 7!
Y

e2E(T)
w(e) ð75Þ

Furthermore, we define the weighted number of trees as

tw(G) ¼D
P

T2TG
Vw(T).

Theorem 12 (Weighted matrix-tree theorem). For

G = (V,E,w) where w : E! R.0 we have tw(G)=
detAWA� in which W ¼D diag(w(e1), . . . ,w(em)).

For edge-weighted graphs, L=AWAT is the reduced

Laplacian matrix. Thus, unweighted graphs can be thought

of the case where w(e)= 1 for all e 2 E.

Lemma 5. Let Guv be the graph obtained by adding

fu, vg 62 E with weight wuv to G = (V,E,w). Let L be the

reduced Laplacian matrix and auv be the corresponding

column of the reduced incidence matrix of G after anchor-

ing an arbitrary vertex. If G is connected,

tw(Guv)= tw(G) � (1 + wuvDG
uv) ð76Þ

where DG
uv ¼

D
aTuvL

�1auv is the effective resistance between

u and v (see, e.g., Ghosh et al., 2008).

Proof of Lemma 5. The reduced Laplacian matrix of Guv

can be written as Luv =L+ wuvauvauv
T. Taking the deter-

minant and applying the matrix determinant lemma con-

cludes the proof. h

Lemma 6. Let G1 be a spanning subgraph of G2. For any

w : E(K)! Rø 0, Lw
G2
� Lw

G1
in which Lw

G is the reduced

weighted Laplacian matrix of G when its edges are

weighted by w.

Proof of Lemma 6. From the definition of the reduced

weighted Laplacian matrix we have

Lw
G2
� Lw

G1
=

X
fu, vg2E(G2)nE(G1)

wuvauva
�
uv � 0 ð77Þ

h

A.2. Estimation theory

An estimator x̂ of parameter x is called an unbiased estima-

tor iff E½x̂�= x.

Theorem 13. (CRLB) Under some regularity conditions

(Sorenson, 1980), the covariance matrix of any unbiased

estimator of x, such as x̂, satisfies Cov½x̂� � I
�1(x), where

I(x) is the FIM,

I(x) ¼D Ez

∂

∂x
log p(z; x)

∂T

∂x
log p(z; x)

� �
ð78Þ

Here the expectation is over z and with respect to p(z; x).
Note that the FIM depends only on the true value of x and

p(z; x), and does not depend on any particular realization

of z.
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An unbiased estimator that achieves CRLB is called an

efficient estimator.

Corollary 14. The following statements are true.

1. The diagonal elements of CRLB are lower bounds for

the variance of any unbiased estimator for each

parameter.

2. The determinant of CRLB is a lower bound for the

determinant of the covariance matrix of any unbiased

estimator.

A.3. Submodular maximization

For a comprehensive survey of key results in submodular

set function optimization see Krause and Golovin (2012).

Suppose W is a finite ground set. Let j: 2W ! R be a real

set function defined over the power set of W. Finally, let

F 	 2W be the set of feasible subsets of W. Then our goal

is to solve the following optimization problem:

maximize
A	W

j(A)

subjectto A 2 F
ð79Þ

Definition 5. Suppose W is a finite ground set. For any set

function j: 2W ! R:

1. j is called normalized if and only if j([)= 0;

2. j is called monotone if j(B)ø j(A) for every A and B

s.t. A 	 B 	W;

3. j is called submodular if and only if for every A and

B s.t. A 	 B 	W and 8s 2WnB we have,

j(A [ fsg)� j(A)ø j(B [ fsg)� j(B) ð80Þ

4. j is called log-submodular if and only if j is positive

and log j is submodular.

Theorem 14 (Nemhauser et al., 1978). Let f : 2W ! R be

a normalized monotone submodular. Let OPT be the opti-

mal value of the following problem,

maximize
A	W

f (A)

subject to jAjł k 2 N
ð81Þ

Then, fgreedy ø (1� 1=e)OPT where fgreedy is the value

achieved by the natural greedy algorithm.

Theorem 15 introduces several operations under which

both monotonicity and submodularity are preserved.

Theorem 15. Both monotonicity and submodularity are

preserved under the following operations.

� For any constant c 2 R, g: 2W ! R : A 7! f (A)+ c is

monotone submodular if and only if f : 2W ! R is

monotone submodular.
� For any constant c 2 R, g: 2W ! R :

A 7! minff (A), cg is monotone submodular if and

only if f : 2W ! R is monotone submodular.
� If fi: 2W ! R for all i 2 ½n� are monotone submodular

and wi for all i 2 ½n� are non-negative, then

g : A 7!
Pn

i = 1 wifi(A) is monotone submodular.
� If f : 2W ! R is monotone submodular, then for any

M 	W, g : A 7! f (A [M) is monotone submodular.

A.4. Linear algebra

Lemma 7. (Schur’s determinant formula (Meyer, 2000)). If

A�1 exists,

det
A B

C D

� �
= detA � det (D� CA�1B) ð82Þ

Lemma 8. For any two N,M 2 S
n
ø 0 we have

det (M+N)ø det (M) ð83Þ

Proof. It is trivial to verify the lemma when M is singular.

For M � 0, we can decompose M as M=M
1
2M

1
2 in which

M
1
2 2 S

n
.0. Then we have

det (M+N)= det (M) det (I+M�
1
2NM�

1
2)) ð84Þ

= det (M)
Yn

i = 1

(1 + li(M
�1

2NM�
1
2)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ø 0

) ð85Þ

ø det (M) ð86Þ

Lemma 9. For any M 2 S
n
.0 and N 2 S

n
.0, M � N iff

N�1 �M�1.

Proof. Owing to symmetry it suffices to prove that

M � N) N�1 �M�1. Multiplying both sides of M � N

by N�
1
2 from left and right results in N�

1
2MN�

1
2 � I � 0.

Therefore, the eigenvalues of N�
1
2MN�

1
2, which are the

same as the eigenvalues of M
1
2N�1M

1
2, are at least 1.

Therefore, M
1
2N�1M

1
2 � I � 0. Multiplying both sides by

M�
1
2 from left and right proves the lemma.

Appendix B. Proofs

Proof of Proposition 1. Let H ¼D (A� Id)
� denote the

measurement function in R
d-Sync. Plugging

p(z; x)= N(z;Hx,S) into the definition of the FIM (78)

results in

I=HTS�1
H ð87Þ

= (A� Id)(W� Id)(A� Id)
� ð88Þ

= (AWA�)� Id ð89Þ
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=Lw � Id ð90Þu

Proof of Proposition 2. The proof is similar to that of

Proposition 1. Define H ¼D R�(A� Id)
�. Plugging

p(z; x)= N(z;Hx,S) into the definition of the FIM (78)

results in

I=HT
S
�1H ð91Þ

= (A� Id)RS
�1RT(A� Id)

T ð92Þ

= (A� Id)(W� Id)(A� Id)
T ð93Þ

= (AWAT)� Id ð94Þ

=Lw � Id ð95Þ

Note that the ith d × d diagonal block of R (i.e., Ri for

which we have RT
i Ri = Id) commutes with that of S�1, i.e.,

s�2
i Id . u

Proof of Proposition 3. Note that f 8 ¼D f (x8)=
k e k2

S
�1 = k�ek2 in which �e ¼D S

�1=2e ; N(0, I). This con-

cludes the proof as k�ek2, by definition, is distributed

according to x2
dim (z). u

Proof of Proposition 4. Define ~H ¼D S
�1

2H, ~z ¼D S
�1

2z,

~c ¼D S
�1

2c and ~e ¼D S
�1

2e ; N(0, I). The MLE is given by

xH = ( ~H
� ~H)

�1
~H
�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~H
y

(~z� ~c) ð96Þ

in which ~H
y ¼D ( ~H

� ~H)�1 ~H
�

is the Moore–Penrose pseu-

doinverse of ~H. Now we evaluate f (x) at x= xH,

f (xH)= k z�HxH � c k2
S
�1 ð97Þ

= k ~z� ~HxH � ~ck2 ð98Þ

= k ~z� ~c� ~H ~H
y
(~z� ~c)k2 ð99Þ

= k (I� ~H ~H
y
)(~z� ~c)k2 ð100Þ

= k (I� ~H ~H
y
)( ~Hx8 +~c+~e� ~c)k2 ð101Þ

= k (I� ~H ~H
y
)( ~Hx8 +~e)k2 ð102Þ

= k (I� ~H ~H
y
)~ek2 ð103Þ

Now note that I� ~H ~H
y

is the orthogonal projection onto

the nullspace of ~H
T

with dimension r ¼D dim (z)� dim (x).

Let fuigr
i = 1 be an orthonormal basis for the nullspace of

~H
T

. Therefore, (I� ~H ~H
y
)~e =

Pr
i = 1 (u

T
i ~e)ui. Now note

that

k (I� ~H ~H
y
)~ek2 =~eT(I� ~H ~H

y
)~e ð104Þ

=~eT
Xr

i = 1

(uTi ~e)ui ð105Þ

=
Xr

i = 1

(uTi ~e)2 ð106Þ

This concludes the proof since (uTi ~e); N(0, 1) and,

moreover, (uTi ~e) and (uTj ~e) are independent for i 6¼ j. h

Proof of Proposition 5. Recall that L=AA� where A is

the reduced incidence matrix of G. It is clear that

lmin(L)ø 0. L is singular iff the graph is disconnected.

Let a be the reduced incidence vector of a new edge. The

reduced Laplacian of graph after adding this new edge is

L+ aa�. Thus, we need to show that

lmin(L+ aa�)ø lmin(L), which follows from Weyl’s

inequality (Horn and Johnson, 1990). Now the fact that

lmin(L) is maximized when G is complete follows from

the monotonicity of lmin(L) in the edge set. The spectrum

of the Laplacian matrix of Kn consists of a zero eigenva-

lue, and l = n with multiplicity n� 1 (Godsil and Royle,

2001). From Cauchy’s interlace theorem (Godsil and

Royle, 2001: Theorem 9.1.1) it follows that the spectrum

of the reduced Laplacian of Kn consists of lmin(L)= 1,

and l = n with multiplicity n� 1. Finally, the last state-

ment follows directly from Pirani and Sundaram (2014:

Theorem 1). h

Proof of Theorem 1. Recall that the FIM in R
d-Sync and

d-dimensional Compass-SLAM is given by I=Lw � Id in

which Lw is the reduced weighted Laplacian matrix of the

graph. According to Cauchy’s interlace theorem (Godsil

and Royle, 2001: Theorem 9.1.1), 0\l1(L)ł l2(Ls
w
).

We have

lmax(Cov½xH�)= l1(I)
�1 ð107Þ

= l1(Lw � Id)
�1 ð108Þ

= l1(Lw)
�1 ð109Þ

ø l2(Ls
w
)�1 ð110Þ

The other statement follows from the above identity and the

fact that l1(Lw)ł w
z
max (Proposition 5). h

Proof of Theorem 2. Based on Propositions 1 and 2 and the

weighted matrix-tree theorem (Theorem 12), we have

log det (Cov½xH�)=� log det (I) ð111Þ
=� log det (Lw � Id) ð112Þ

=� dtw(G) ð113Þ

h

Proof of Theorem 3. Let us first define

P?wp
¼D I� G�(A�

wp
L�1

wp
Awp
� I2)G ð114Þ

Applying Schur’s determinant formula (Lemma 7) on

the top-left block of (18) and using

log det (Lwp
� I2)= 2 � log detLwp

ð115Þ
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= 2 � twp
(G) ð116Þ

results in log det I(x)= 2 � twp
(G)+ log det (Lwu

+E)
where E ¼D D�

wp
P?wp

Dwp
. Note that Pwp

¼D I� P?wp
� 0 and

P?wp
� 0 since they are orthogonal projections.

Consequently E � 0. To show that ε(x)ø 0 we just need

to apply Lemma 8 on the above identity:

log det I(x)= 2 � twp
(G)+ log det (Lwu

+E) ð117Þ

ø 2 � twp
(G)+ log detLwu

ð118Þ

= 2 � twp
(G)+ twu

(G) ð119Þ

= ‘t(G) ð120Þ

Now we have

ε(x) ¼D log det I(x)� ‘t(G) ð121Þ

ł log det (Lwu
+ D�

wp
Dwp

)� log detLwu
ð122Þ

ł log det (Lwu
+ dI)� log detLwu

ð123Þ

= log
Yn

i = 1

li(Lwu
)+ d

li(Lwu
)

ð124Þ

= log
Yn

i = 1

(1 + d=li(Lwu
)) ð125Þ

ł log (1 + d=l1(Lwu
))n ð126Þ

= n log (1 + d=l1(Lwu
)) ð127Þ

Note that (122) follows from applying Fischer’s inequality

(Horn and Johnson, 1990) on the FIM (18). Finally, (123)

follows from Lemma 8 applied to

log det (Lwu
+ D�

wp
Dwp|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�0

+ dI� D�
wp

Dwp|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�0

) ð128Þ

respectively; see (19).

Proof of Lemma 1. Let wa : e 7!aw(e) be the scaled

weight function. It is easy to show that twa
(G)= an�1tw(G).

Therefore, tw(G)ø tw(H), twa
(G)ø twa

(H) for any G and

H with n vertices. h

Proof of Theorem 4.

1. Normalized: By definition Fw([)= tn,w(Einit)� tn,w

(Einit)= 0.

2. Monotone: We need to show that

Fw(E [ feg)ø Fw(E). This is equivalent to showing

that,

tn,w(Einit [ E [ feg)ø tn,w(Einit [ E) ð129Þ

Now note that (V,Einit [ E) is connected since (V,Einit)
was assumed to be connected. Therefore, we can apply

Lemma 5 on the left-hand side of (129); i.e.,

tn,w(Einit [ E [ feg)= tn,w(Einit [ E)+ log (1 + weDe) ð130Þ

Thus we need to show that log (1 + weDe) is non-negative.

Since (V,Einit) is connected, L is positive definite.

Consequently weDe = wea
�
e L
�1ae.0 and, hence,

log (1 + weDe).0.

3. Submodular: Fw is submodular iff for all

E1 	 E2 	 E(Kn) and all e 2 E(Kn)nE2,

Fw(E1 [ feg)�Fw(E1)ø Fw(E2 [ feg)�Fw(E2) ð131Þ

After canceling out tn,w(Einit) we need to show that

tn,w(E1 [ Einit [ feg)� tn,w(E1 [ Einit)

ø tn,w(E2 [ Einit [ feg)� tn,w(E2 [ Einit)
ð132Þ

If e 2 Einit, both sides of (132) become zero. Hence, we

can safely assume that e 62 Einit. For convenience, let us

define E�1 ¼
D

Ei [ Einit for i = 1,2. Therefore, (132) can be

rewritten as

tn,w(E
�
1 [ feg)� tn,w(E

�
1)ø tn,w(E

�
2 [ feg)� tn,w(E

�
2)

ð133Þ

Recall that we assumed that (V,Einit) is connected. Thus,

(V,E�i ) is connected for i = 1, 2, and we can apply Lemma

5 on both sides of (133). After doing so we have to show

that

log (1 + weDG1

e )ø log (1 + weDG2

e ) ð134Þ

where Gi ¼
D
(V,Ei [ Einit,w) for i = 1, 2. It is easy to see

that (134) holds iff DG1

e ø DG2

e . Now note that

DG1

e � DG2

e = aTe (L
�1
G1
� L�1

G2
)ae ø 0 ð135Þ

since LG2
� LG1

(G1 is a spanning subgraph of G2), and

therefore according to Lemma 9, L�1
G1
� L�1

G2
.

h

Proof of Lemma 2. This follows readily from Corollary

13. h

Proof of Lemma 3. This immediately follows from the fact

that pH 2 f0, 1gc
is a feasible solution for k-ESP that is

optimal for the relaxed problem. h

Proof of Theorem 5. The first statement holds since

E½k��=E

Xc

i = 1

pi

" #
ð136Þ

=
Xc

i = 1

E½pi� ð137Þ

=
Xc

i = 1

pi ð138Þ
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For the second statement, see the Proof of Theorem 7. This

statement is a special case of Theorem 7 when fuig and

fvig are the columns of the reduced (weighted) incidence

matrix.

Proof of Theorem 6. Let pH

1 ł pH

2 ł � � � ł pH

c be the sorted

version of fpH

i g
c
i = 1. Now for all i 2 ½c�, define

qH

i ¼
D

1� pH

i . Hence, we have qH

1 ø qH

2 ø . . . ø qH

c . Thus

maximizing (54) can be expressed as

maximize
A	½c�, jAj= k

Y
i2A

pH

i

Y
j2½c�nA

qH

j ð139Þ

It is easy to see that this expression is maximized by pick-

ing AH = fc� igk�1
i = 0, which corresponds to the set selected

by the deterministic rounding procedure. h

Proof of Theorem 7. We begin by applying the Cauchy–

Binet formula:

Ep det
Xm

i = 1

piuiv
T
i

 !" #
ð140Þ

=Ep

X
Q2 ½m�

n

� � det
X
k2Q

pkukv
T
k

 !26664
37775 ð141Þ

=
X

Q2 ½m�
n

� �Ep det
X
k2Q

pkukv
T
k

 !" #
ð142Þ

Since jQj= n we have

rank
X
k2Q

pkukv
�
k

 !
=

n iff pk = 1 for all k 2 Q

g\n otherwise

	
ð143Þ

Hence, the determinant can be non-zero only when pk = 1

for all k 2 Q. Therefore,

det
X
k2Q

pkukv
�
k

 !
ð144Þ

=
det (

P
k2Q

ukv
T
k ) iff pk = 1 for all k 2 Q

0 otherwise

(
ð145Þ

However, from the independence assumption we know that,

P½ ^
k2Q

pk = 1�=
Y
k2Q

pk ð146Þ

Each individual expectation in (142) can be computed as

follows:

Ep det
X
k2Q

pkukv
T
k

 !" #
= det

X
k2Q

ukv
T
k

 !Y
k2Q

pk ð147Þ

= det
X
k2Q

pkukv
T
k

 !
ð148Þ

Plugging (148) back into (142) yields

Ep det
Xm

i = 1

piuiv
�
i

 !" #
=

X
Q2
½m�
n

� � det
X
k2Q

pkukv
�
k

 !

ð149Þ

Note that (149) is nothing but the Cauchy–Binet expansion

of det (
Pm

i = 1 piuiv
T
i ). This concludes the proof. h

Proof of Lemma 4. See the proof of Lemma 3. h
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