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Fairness and Optimal Stochastic Control
for Heterogeneous Networks

Michael J. Neely , Eytan Modiano , Chih-Ping Li

Abstract— We consider optimal control for general networks
with both wireless and wireline components and time varying
channels. A dynamic strategy is developed to support all traffic
whenever possible, and to make optimally fair decisions about
which data to serve when inputs exceed network capacity. The
strategy is decoupled into separate algorithms for flow control,
routing, and resource allocation, and allows each user to make
decisions independent of the actions of others. The combined
strategy is shown to yield data rates that are arbitrarily close to
the optimal operating point achieved when all network controllers
are coordinated and have perfect knowledge of future events. The
cost of approaching this fair operating point is an end-to-end
delay increase for data that is served by the network.

Index Terms— Wireless Networks, Stochastic Optimization,
Queueing Analysis, Distributed Computing, Satellite Networks

I. INTRODUCTION

Modern data networks consist of a variety of heterogeneous
components, and continue to grow as new applications are
developed and new technologies are integrated into the existing
communication infrastructure. While network resources are
expanding, the demand for these resources is also expanding,
and it is often the case that data links are loaded with more
traffic than they were designed to handle. In order to provide
high speed connectivity for future personal computers, hard-
ware devices, wireless units, and sensor systems, it is essential
to develop fair networking techniques that take full advantage
of all resources and system capabilities. Such techniques must
be implemented through simple, localized message passing
protocols between neighboring network elements.

In this paper, we design a set of decoupled algorithms
for resource allocation, routing, and flow control for general
networks with both wireless and wireline data links and time
varying channels. Specifically, we treat a network with N
nodes and L links. The condition of each link at a given time t
is described by a link state vector ~S(t) = (S1(t), . . . , SL(t)),
where Sl(t) is a parameter characterizing the communication
channel for link l. For example, if l is a wireless link, Sl(t)
may represent the current attenuation factor or noise level.
In an unreliable wired link, Sl(t) may take values in the
two-element set {ON, OFF}, indicating whether link l is
available for communication. We consider a slotted system
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Fig. 1. (a) A heterogeneous network with wireless and wireline data links,
and (b) a close-up of one node, illustrating the internal queues and the storage
reservoir for exogenous arrivals.

model with slots normalized to integral units t ∈ {0, 1, 2, . . .}.
Channels hold their state for the duration of a timeslot, and
potentially change states on slot boundaries. For simplicity of
exposition, we assume there are a finite (but arbitrarily large)
number of possible channel state vectors, and that the vectors
~S(t) are independent and identically distributed (i.i.d.) over
timeslots. We note that the algorithms we design under this
i.i.d. assumption can be applied to yield similar performance
for systems with general ergodic channel state variations.

For each channel state ~S, let Γ~S denote the set of link
transmission rates available for resource allocation decisions
when ~S(t) = ~S. In particular, every timeslot t the network
controllers are constrained to choosing a transmission rate
vector ~µ(t) = (µ1(t), . . . , µL(t)) such that ~µ(t) ∈ Γ~S(t)

(where µl(t) is the transmit rate over link l and has units
of bits/slot). Use of this abstract set of transmission rates
Γ~S maintains a simple separation between network layer and
physical layer concepts, yet is general enough to allow network
control to be suited to the unique capabilities of each data link.
We assume all sets Γ~S are compact (closed and bounded).

As an example, consider the heterogeneous network of Fig.
1 consisting of three separate groups of links A, B, and C:
Set A represents a wireless sensor system that connects to
a wired infrastructure through two uplink access points, set
B represents the wired data links, and set C represents the
two downlink channels of a basestation that transmits to two
different users 1 and 2. For a given channel state ~S, the set
of feasible transmission rates Γ~S reduces to a product of rates
corresponding to the three independent groups:

Γ~S = ΓA
~SA
× ΓB × ΓC

~SC
(1)
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Set ΓA
~SA

might contain a continuum of link rates associated
with the channel interference properties and power allocation
options of the sensor nodes, and depends only on the link
states ~SA of these nodes. Set ΓB might contain a single
vector (C1, . . . , Ck) representing the fixed capacities of the
k wired links. Set ΓC

~SC
might represent a set of two vectors

{(φS1 , 0), (0, φS2)}, where φSi is the rate available over link i
if this link is selected to transmit on the given timeslot t when
Si(t) = Si. We further note that the ground network shown in
the figure can be augmented to include a collection of satellite
nodes, increasing route diversity and enabling connectivity to
other sub-networks.

Data is transmitted from node to node over potentially
multi-hop paths to reach its destination. Data arrives to
the network according to random processes with well
defined time average rates, and we let λ

(c)
n represent

the long term average rate of new exogenous arrivals to
source node n intended for destination node c (in units of
bits/slot). Let (λ(c)

n ) be the matrix of exogenous arrival rates.
The network layer capacity region Λ is defined as the closure
of the set of all arrival matrices that are stably supportable
by the network, considering all possible multi-hop routing
and resource allocation policies (possibly those with perfect
knowledge of future events). We emphasize that, while the
channel states may change from slot to slot, the set Λ is fixed
and depends only on the steady state channel probabilities and
the link transmission rate sets Γ~S [1] [27].

The set Λ can be shown to be compact and convex [1]. In
[27], a routing and power allocation policy was developed to
stabilize a general wireless network whenever the rate matrix
(λ(c)

n ) is within the capacity region Λ. The purpose of our
current paper is to treat heterogeneous networks and develop
distributed algorithms for flow control, routing, and resource
allocation that provide optimal fairness in cases when arrival
rates are either inside or outside the network capacity region.

Specifically, we define a set of utility functions g
(c)
n (r),

representing the ‘satisfaction’ received by sending data from
node n to node c at a time average rate of r bits/slot. The utility
functions are assumed to be non-decreasing and concave. The
goal is to support a fraction of the traffic demand matrix (λ(c)

n )
to achieve long term throughputs (r(c)

n ) that maximize the sum
of user utilities. The optimal sum utility is thus defined by the
following optimization problem:

Maximize:
∑

n,c g
(c)
n (r(c)

n ) (2)

Subject to: (r(c)
n ) ∈ Λ (3)

0 ≤ r
(c)
n ≤ λ

(c)
n for all (n, c) (4)

Inequality (3) is the stability constraint and ensures that the
long term admitted rates are stabilizable by the network.
Inequality (4) is the demand constraint that ensures the rate
provided to session (n, c) is no more than the incoming traffic
rate of this session.

Because the functions g
(c)
n (r) are non-decreasing, it is clear

that if (λ(c)
n ) ∈ Λ, then the above optimization is solved by the

matrix (r∗(c)n ) = (λ(c)
n ). If (λ(c)

n ) /∈ Λ, then the solution (r∗(c)n )
will lie somewhere on the capacity region boundary. The above

optimization could in principle be solved if the arrival rates
(λ(c)

n ) and the capacity region Λ were known in advance, and
all users could coordinate by sending data according to the
optimal solution. However, the capacity region depends on
the channel probabilities, which are unknown to the network
controllers and to the individual users. Furthermore, the in-
dividual users do not know the data rates or utility functions
of other users. In this paper, we develop a practical dynamic
control strategy that yields a resulting set of throughputs (r(c)

n )
that are arbitrarily close to the optimal solution of (2)-(4). The
distance to the optimal solution is shown to decrease like 1/V ,
where V is a control parameter affecting a tradeoff in average
delay for data that is served by the network.

Previous work on network fairness and optimization is
found in [4]-[16]. Utility optimization problems similar to (2)-
(3) are considered for static wireless downlinks with infinite
backlog in [4], and for static multi-hop wireless networks in
[7]. Further static resource allocation problems for wireless
and wireline systems are treated in [5]-[16]. Much of this work
uses convex optimization and Lagrangian duality to achieve a
fixed resource allocation that is optimal with respect to various
utility metrics. In [11] [12], distributed pricing mechanisms are
used to provide proportional fairness in static flow networks.
Control laws based on continuous time differential equations
are used in [12] [15] to ensure flows converge to a utility
optimal operating point, and dual sub-gradient methods are
considered in [13]. The relationship between duality theory,
utility optimization, and classical internet congestion control
techniques is explored in [16].

We note that fixed allocation solutions may not be ap-
propriate in cases when optimal control involves dynamic
resource allocation. Dynamic policies might be required for
optimality even when the underlying network is static [18].
The capacity of a multi-user wireless downlink with randomly
varying channels is established in [33], and utility optimization
in a similar system is treated in [17]. These formulations do
not consider stochastic arrivals and queueing, and the resulting
algorithms are developed and analyzed under the assumption
that channel probabilities are fully known.

The design of dynamic controllers to stabilize stochastic
wireless and wireline networks is considered in [19]-[27]
using a powerful theory of Lyapunov drift. However, this
work primarily addresses queueing stability and does not
provide methods for achieving both stability and performance
optimization, as required to solve the general fairness problem
(2)-(4) for stochastic networks. Dynamic algorithms for fair
scheduling in wireless downlinks are addressed in [29] [30]
[31], but do not yield optimal performance for all input rates,
as discussed in the next section. A special case solution of
(2)-(4) is developed in [32] for a class of wireless downlinks
with linear utility functions and ON/OFF channels.

The main contribution of our work is the development
of a novel control policy that yields optimal performance
for general stochastic networks and general fairness metrics.
The policy does not require knowledge of channel statistics,
input rates, or the global network topology. Our analysis
establishes a new and important Lyapunov drift technique that
enables stability and performance optimization to be achieved
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simultaneously, extending the stability results developed in
[19]-[27]. This work presents a fundamental approach to
stochastic network optimization [1] [2] [3]. We note that
alternative optimization approaches have recently been con-
sidered in [28] [34] using fluid limit models, and in [35]
using stochastic gradient theory (see, for example, [36]). Our
Lyapunov optimization technique is related to the theory of
static and stochastic gradients (see Chapters 4.7-5.7 of [1]).
However, our techniques were developed within the framework
of Lyapunov stability theory for queueing systems, and yield
explicit network utility and delay guarantees.

In the next section, we illustrate the challenges of stochastic
network optimization with a simple downlink example. In
Section III we develop a fair scheduling algorithm for general
networks under the special case when all active input reser-
voirs are “infinitely backlogged.” In Section V we construct a
modified algorithm that yields optimal performance without
the infinite backlog assumption. This is another important
contribution of our paper, and our solution illuminates the
differences between optimizing an expectation and optimizing
a concave function of an expectation. Example simulations for
wireless networks and N × N packet switches are presented
in Section VI, and distributed implementation strategies for
wireless networks are discussed in Section VII.

II. A SATELLITE DOWNLINK EXAMPLE

Consider a satellite node (or wireless basestation) that
transmits data to two downlink users 1 and 2 over two different
channels (as illustrated by considering only the triangle-node
of the network in Fig. 1). Time is slotted and packets for
each user arrive to the basestation according to independent
Bernoulli processes with rates λ1 and λ2. Let U1(t) and
U2(t) represent the current backlog of packets waiting for
transmission to user 1 and user 2, respectively. Channels
independently vary between ON and OFF states every slot
according to Bernoulli processes, with ON probabilities p1 and
p2, and we assume that p1 < p2. Every timeslot, a controller
observes the channel states and chooses to transmit over either
channel 1 or channel 2. We assume that a single packet can be
transmitted if a channel is ON and no packet can be transmitted
when a channel is OFF, so that the only decision is which
channel to serve when both channels are ON.

The capacity region Λ for this system is described by the
set of all rates (λ1, λ2) that satisfy:

λ1 ≤ p1 , λ2 ≤ p2 , λ1 + λ2 ≤ p1 + (1− p1)p2

These conditions are necessary for stability because the long
term output rate from any channel i is at most pi, and the
maximum sum rate out of the system is p1 + (1 − p1)p2.
Furthermore, it is shown in [20] that the ‘Maximum Weight
Match’ (MWM) policy of serving the ON queue with the
largest backlog achieves stability whenever input rates are
strictly interior to the above region.

Now define g1(r) = g2(r) = log(r), and consider the pro-
portional fairness control objective of maximizing log(r1) +
log(r2), where r1 and r2 are the delivered throughputs over
channels 1 and 2 (see [11] for a discussion of proportional

fairness). We evaluate three well known algorithms with
respect to this fairness metric: The Borst algorithm [29], the
‘proportionally fair’ Max µi/ri algorithm [30] [31], and the
MWM policy [20].

The Borst algorithm chooses the non-empty channel i with
the largest µi(t)/µi index, where µi(t) is the current transmis-
sion rate offered over channel i, and µi is the average of µi(t).
This algorithm is shown in [29] to provide optimal fairness
for wireless networks with an ‘infinite’ number of channels,
where each incoming packet is destined for a unique user with
its own channel. Although the algorithm was not designed for
the 2-queue downlink described above, it is closely related
to the Max µi/ri policy, and it is illuminating to evaluate its
performance in this context. Applied to the 2-queue downlink,
the Borst algorithm reduces to serving the non-empty ON
queue with the largest value of 1/pi. Because p1 < p2, this
algorithm effectively gives packets destined for channel 1 strict
priority over channel 2 packets. Thus, the service of queue 1 is
independent of the state of channel 2, and conditioning on the
event that a packet is served from channel 1 during a particular
timeslot does not change the probability that channel 2 is ON.
It follows that the rate of serving channel 1 packets while
channel 2 is ON is given by λ1p2 (assuming queue 1 is stable
so that all λ1 traffic is served). Thus, the stability region of
the Borst algorithm is given by:

λ1 ≤ p1 , λ2 ≤ p2 − λ1p2 (5)

which is a strict subset of the capacity region (see Fig. 2).
Consider now the related policy of serving the non-empty

queue with the largest value of µi(t)/ri(t), where ri(t)
is the empirical throughput achieved over channel i. This
differs from the Borst algorithm in that transmission rates
are weighted by the throughput actually delivered rather than
the average transmission rate that is offered. This Max µi/ri

policy is proposed in [30] [31] and shown to have desirable
proportional fairness properties when all queues of the down-
link are infinitely backlogged. To evaluate its performance for
arbitrary traffic rates (λ1, λ2), suppose the running averages
r1(t) and r2(t) are accumulated over the entire timeline, and
suppose the system is stable so that r1(t) and r2(t) converge
to λ1 and λ2. It follows that the algorithm eventually reduces
to giving channel 1 packets strict priority if λ1 < λ2, and
giving channel 2 packets strict priority if λ2 < λ1. Thus, if
λ1 < λ2 then these rates must also satisfy the inequalities
(5), while λ2 < λ1 implies the rates must satisfy the inverted
inequalities λ2 ≤ p2 and λ1 ≤ p1−λ2p1. Thus, at first glance
it seems that the stability region of this policy is a subset of the
stability region of the Borst algorithm. However, its stability
region has the peculiar property of including all feasible rate
pairs (λ, λ) (see Fig. 2).

In Fig. 2 we consider the special case when p1 = 0.5, p2 =
0.6, and plot the achieved throughput of the Borst, Max
µi/ri, and MWM policies when the rate vector (λ1, λ2) is
scaled linearly towards the vector (0.5, 1.0), illustrated by the
ray in Fig. 2(a). One hundred different rate points on this
ray were considered (including example points a - e), and
simulations were performed for each point over a period of 5
million timeslots. Fig 2(a) illustrates the resulting throughput
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policy and the Max µi/ri policy. Input rates (λ1, λ2) are pushed toward point
(0.5, 1.0), and the simulated throughputs under the Borst, Max µi/ri, and
MWM policies are illustrated.

of the Borst algorithm, where we have included example points
d′ and e′ corresponding to input rate points d and e. Note
that the Borst algorithm always results in throughput that is
strictly interior to the capacity region, even when input rates
are outside of capacity. Fig. 2(b) illustrates performance of
the Max µi/ri and MWM policies. Note that the MWM
policy supports all (λ1, λ2) traffic when this rate vector is
within the capacity region. However, when traffic is outside
of the capacity region the achieved throughput moves along
the boundary in the wrong direction, yielding throughputs
that are increasingly unfair because it favors service of the
higher traffic rate stream. Like the Borst policy, the Max µi/ri

policy leads to instability for all (stabilizable) input rates on
the ray segment c-d, and yields throughput that is strictly
interior to the capacity region even when inputs exceed system
capacity (compare points e and e′). However, the throughput
eventually touches the capacity region boundary, reaching
the proportionally fair point (0.4, 0.4) when input rates are
sufficiently far outside of the capacity region.

It is clear from this simple downlink example that there is
a need for a ‘universally fair’ algorithm, one that performs
well regardless of whether inputs are inside or outside of the
capacity region. For this example, such an algorithm would
yield throughput that increases toward the point d of the figure,
and then moves on the boundary of the capacity region toward
the fair operating point thereafter. In the following, we develop
such an algorithm for general multihop networks.

III. CONTROL OF HETEROGENEOUS NETWORKS

Consider a heterogeneous network with N nodes, L links,
and time varying channels ~S(t) (see example in Fig. 1). Each
link l ∈ {1, . . . , L} represents a directed communication
channel for transmission from one node to another, and we
define tran(l) and rec(l) as the corresponding transmitting
and receiving nodes, respectively. Each node of the network
maintains a set of output queues for storing data according to
its destination. All data (from any source node) that is destined
for a particular node c ∈ {1, . . . , N} is classified as commodity
c data, and we let U

(c)
n (t) represent the backlog of commodity

c data currently stored in the network layer at node n (see
Fig. 1). A network layer control algorithm makes decisions

about routing, scheduling, and resource allocation in reaction
to current channel state and queue backlog information. The
objective is to deliver all data to its proper destination,
potentially by routing over multi-hop paths.

It is often useful to restrict routing options so that data
follows a particular path or set of paths to the destination. To
enforce this constraint, for each commodity c ∈ {1, . . . , N}
we define Lc as the set of all data links l that are acceptable
for commodity c data to traverse. As a general algorithm
might schedule multiple commodities to flow over the same
link on a given timeslot, we define µ

(c)
l (t) as the rate offered

to commodity c traffic along link l during timeslot t.1 The
transmission rates and routing variables are chosen by a
dynamic scheduling and routing algorithm. Specifically, the
network makes the following control decisions every slot:
• Resource (Rate) Allocation: Choose a transmission rate

vector ~µ(t) = (µ1(t), . . . , µL(t)) such that ~µ(t) ∈ Γ~S(t)
• Routing/Scheduling: For each link l and each commodity

c, choose µ
(c)
l (t) to satisfy the following constraints:∑

c

µ
(c)
l (t) ≤ µl(t) (6)

µ
(c)
l (t) = 0 if l /∈ Lc (7)

We note that defining all sets Lc to be equal to the set of all
network links effectively removes the routing cosntraints (7)
and reduces to the case of unconstrained routing. This creates
the most options, although it is often useful to constrain routes
via the Lc sets to ensure more predictable performance and
maintain FIFO or near FIFO delivery. For example, in cases
where the network topology is fixed and it is desirable to route
all data associated with a particular source-destination pair
over a single path, then the sets Lc can be defined as a tree of
links from each source to the destination c. In cases where it
is preferred to have two or more different sources of the same
commodity use paths that cross but do not merge, then this
single “commodity” can be re-defined as several commodities
to distinguish the different source-destination pairs (which also
increases the total number of distinct queues U

(c)
n (t) in the

network).
A set of flow controllers act at every node to limit the

new data admitted into the network layer. Specifically, new
data of commodity c that arrives to source node n is first
placed in a transport layer storage reservoir (n, c). A control
valve determines the amount of data R

(c)
n (t) released from this

reservoir on each timeslot (see Fig. 1). The R
(c)
n (t) process

acts as the exogenous arrival process to the queue U
(c)
n (t).

Endogenous arrivals consist of commodity c data transmitted
to node n from other network nodes. Define Ωn as the set of
all links l such that tran(l) = n, and define Θn as the set
of all links such that rec(l) = n. Every timeslot the backlog
U

(c)
n (t) changes according to the following queueing law:

U
(c)
n (t + 1) ≤ max

[
U

(c)
n (t)−

∑
l∈Ωn

µ
(c)
l (t), 0

]
+
∑

l∈Θn
µ

(c)
l (t) + R

(c)
n (t) (8)

1We find that the capacity achieving solution needs only route a single
commodity over any given link during a timeslot.
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The expression above is an inequality rather than an equal-
ity because the endogenous arrivals may be less than∑

l∈Θn
µ

(c)
l (t) if nodes have little or no commodity c data to

transmit. The above dynamics hold for all node pairs n 6= c.
Data leaves the network when it reaches its destination, and
so we define U

(n)
n (t)M=0 for all n and all t.

Let A
(c)
n (t) represent the new commodity c data arriving

to the system at source node n during slot t, and let L
(c)
n (t)

represent the current backlog in the flow control reservoir at
time t. The control decision variables R

(c)
n (t) are chosen every

timeslot according to the following restrictions:

• Flow Control: Choose R
(c)
n (t) such that:

R(c)
n (t) ≤ L(c)

n (t) + A(c)
n (t) for all t∑

c

R(c)
n (t) ≤ Rmax

n for all t

where the constants Rmax
n are chosen to be positive and

suitably large, to be made precise in the development of our
two different flow control strategies CLC1 and CLC2. The
first flow control constraint ensures that admitted data is less
than or equal to the actual data available, and the second is
important for limiting the burstiness of the admitted arrivals.

A. The Network Capacity Region

Due to the routing constraints (7), some commodities might
never be able to visit certain nodes. Further, some nodes might
only be associated with destinations, and hence these nodes
do not keep any internal queues. Hence, we define Kn as
the number of internal queues kept by node n, where Kn ∈
{0, 1, . . . , N − 1}. Define D as the set of all node-commodity
pairs (n, c) associated with internal queues in the network, and
let D represent the number of such queues:

D M=
N∑

n=1

Kn

The integer D defines the relative dimension of the network.
We assume that all active traffic sessions are within the set D,
so that R

(c)
n (t)M=0, g

(c)
n (r)M=0 for all (n, c) /∈ D. We further

define U
(c)
n (t)M=0 for all t when (n, c) /∈ D.

Suppose the time average admission rates to
the network are ergodic with time averages
r
(c)
n

M= limt→∞
1
t

∑t−1
τ=0 E

{
R

(c)
n (τ)

}
. The network layer

capacity region Λ is the set of all time average rate matrices
(r(c)

n ) that the network can stably support, considering all
possible routing and resource allocation algorithms that
satisfy the constraints (6)-(7) and the queueing dynamics (8)
described above. Stability of a queue with general arrival and
transmission rate processes is defined as follows:

Definition 1: A queue U(t) with general stochastic ar-
rival and transmission rate processes is strongly stable if:

lim sup
t→∞

1
t

t−1∑
τ=0

E {U(τ)} < ∞

That is, we define strong stability (hereafter called “sta-
bility”) in terms of a finite time average backlog.

In [1] [27], the network capacity region Λ is characterized
for the special case of unconstrained routing, where the
constraints (7) are removed. It is not difficult to extend this
result to include routing constraints (7). We thus state the
following modified version of the network capacity theorem
from [1] [27], omitting the proof for brevity.

Theorem 1: (Network Capacity) If channels ~S(t) are i.i.d.
over slots, a fixed input rate matrix (r(c)

n ) is in the capacity
region Λ if and only if r

(c)
n = 0 for all (n, c) /∈ D and there

exists a stationary randomized resource allocation algorithm
that chooses particular transmission rates µ

∗(c)
l (t) based only

on the current channel state ~S(t), and satisfies for all slots t:

E

{∑
l∈Ωn

µ
∗(c)
l (t)−

∑
l∈Θn

µ
∗(c)
l (t) | U(t)

}
= r(c)

n ∀n 6= c

µ
∗(c)
l (t) = 0 if tran(l) = c or if l /∈ Lc

where U(t) = (U (c)
n (t)) represents the matrix of current queue

backlogs.
The above expectation is taken over the probability

distribution of the current channel state ~S(t) and the dis-
tribution of the randomized resource allocation decisions
that depend on this channel state. Because channels are
i.i.d., the above expectation is the same every slot t, and
does not depend on U(t). The expectation is intentionally
conditioned on U(t) as the existence of a policy that
satisfies this equality will be used later. It can be shown
that the capacity region Λ depends only on the steady state
channel probability distribution [1] [27], and hence the region
Λ described by Theorem 1 is unchanged if actual channels are
non-i.i.d. but are ergodic with the same steady sate distribution
as in the i.i.d. case.

The capacity region Λ can be shown to be compact and
convex with D effective dimensions (see [1] for a similar
result). It shall be useful to define the parameter µsym to be the
largest rate that is simultaneously supportable by all sessions
(n, c) ∈ D, so that (µsym1(c)

n ) ∈ Λ (where 1(c)
n is equal

to 1 if (n, c) ∈ D, and zero else). Geometrically, the value
µsym represents the edge size of the largest D-dimensional
hypercube that can be fit into the capacity region Λ, and is
a value that unexpectedly arises in our analysis. We assume
throughout that µsym > 0.

B. Dynamic Control for Infinite Demand

Here we develop a practical control algorithm that stabilizes
the network and ensures that utility is arbitrarily close to
optimal, with a corresponding tradeoff in network delay. Recall
that functions g

(c)
n (r) represent the utility of supporting rate r

communication from node n to node c (we define g
(c)
n (r) = 0

if there is no active session of traffic originating at node n and
destined for node c). To highlight the fundamental issues of
routing, resource allocation, and flow control, in this section
we assume that all active sessions (n, c) have infinite backlog
in their corresponding reservoirs, so that flow variables R

(c)
n (t)

can be chosen without first establishing that this much data is
available in the reservoir. Flow control is imperative in this
infinite backlog scenario, and the resulting problem is simpler
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as it does not involve the demand constraint (4). A modified
algorithm is developed in Section V for the general case of
finite demand matrices (λ(c)

n ) and finite buffer reservoirs.
The following control strategy is decoupled into separate

algorithms for resource allocation, routing, and flow control.
The strategy combines a novel flow control technique together
with a generalization of the Dynamic Routing and Power
Control (DRPC) strategy of [27].

Cross-Layer Control Algorithm 1 (CLC1):
• Flow Control — (algorithm FLOW) Every timeslot, the

flow controller at each node n observes the current level
of queue backlogs U

(c)
n (t) for each commodity c ∈

{1, . . . , N}. It then chooses R
(c)
n (t) as the solution of an

optimization problem. Specifically, it chooses R
(c)
n (t) =

x
(c)
n , where the x

(c)
n values solve the following:

Maximize :
N∑

c=1

[
V g(c)

n (x(c)
n )− 2x(c)

n U (c)
n (t)

]
(9)

Subject to: (x(c)
n ) ≥ 0 ,

N∑
c=1

x(c)
n ≤ Rmax

n (10)

where V > 0 is a chosen constant that effects the
performance of the algorithm.

• Routing and Scheduling — Each node n observes
the backlog in all neighboring nodes j to which it is
connected by a link l (where tran(l) = n, rec(l) = j).
Let W

(c)
l (t) = U

(c)
tran(l)(t) − U

(c)
rec(l)(t) represent the

differential backlog of commodity c data. Define
W ∗

l (t)M=max[c| l∈Lc]{W
(c)
l (t), 0} as the maximum

differential backlog over link l (maxed with 0), and
let c∗l (t) represent the maximizing commodity. Data of
commodity c∗l (t) is selected for (potential) routing over
link l whenever W ∗

l (t) > 0.

• Resource Allocation — The current channel state ~S(t) is
observed, and a transmission rate vector ~µ(t) is selected
by maximizing

∑
l W

∗
l (t)µl(t) subject to the constraint

~µ(t) ∈ Γ~S(t). The resulting transmission rate of µl(t) is
offered to commodity c∗l (t) data on link l (provided that
W ∗

l (t) > 0). If any node does not have enough bits of
a particular commodity to send over all outgoing links
requesting that commodity, null bits are delivered.

The flow control algorithm is decentralized, where the
control valves for each node n require knowledge only of
the queue backlogs in node n. We note that the constraint∑

c R
(c)
n (t) ≤ Rmax

n (for all n) in the flow control optimiza-
tion (9) can be replaced with the simpler and less restrictive
constraint R

(c)
n (t) ≤ Rmax

n (for all (n, c)), allowing for each
R

(c)
n (t) value to be obtained by maximizing a concave function

of one variable. However, this would increase the the delay
bound (presented in Theorem 2 of the next subsection) roughly
by a factor equal to the largest number of distinct commodities
that are sourced at any single node.

The routing and scheduling algorithm acts according to
a differential backlog strategy similar to the backpressure
strategy developed in [19], and is decentralized provided that

each node i knows the backlog levels of its neighbors. The
resource allocation strategy of maximizing

∑
l W

∗
l (t)µl(t) is

the most complex part of the algorithm, but can be distributed
over the independent portions of the network (as in (1)), or
can be approximated as described in Section VII.

C. Intuitive Description of the Policy

The flow control policy (9) uses a parameter V that deter-
mines the extent to which utility optimization is emphasized.
Indeed, if V is large relative to the current backlog in the
source queues, then the admitted rates R

(c)
n (t) will be large,

increasing the time average utility while consequently increas-
ing congestion. This effect is mitigated as backlog grows at
the source queues and flow control decisions become more
conservative. The routing and scheduling algorithm uses
backpressure from neighboring nodes to route in directions
of the largest differential backlog. Below we show that the
algorithm can be used to drive network utility arbitrarily
close to optimal by suitably increasing the V parameter,
with a corresponding increase in network congestion.
Intuitively, congestion grows because more “learning time”
is required to achieve a finer and finer optimization. The
queue backlogs and backlog differentials will help the
controllers learn “good” directions to route and “good”
amounts of data to admit, and the “noise” of fluctuating
queues will have less influence when queue sizes are large.
We note that in our more recent work [37], we characterize
the fundamental tradeoff between utility and delay.

D. Algorithm Performance

To analyze the performance of the above CLC1 algorithm,
we define the maximum transmission rates out of and into a
given node n as follows:

µout
max,n

M= max
[~S,~µ∈Γ~S ]

∑
l∈Ωn

µl , µin
max,n

M= max
[~S,~µ∈Γ~S ]

∑
l∈Θn

µl

We assume that each node n knows its own value of
µout

max,n, which is reasonable as nodes would typically have
a pre-specified set of modulation and coding strategies to
choose from, with a well defined maximum. Assume that
the flow control constants Rmax

n are selected to satisfy
Rmax

n ≥ µout
max,n for all n. As Rmax

n is only used at node n,
it can easily be set to satisfy this inequality. Assume utilities
g
(c)
n (r) are non-negative, non-decreasing, and concave, and

define Gmax
M=max

[
P

c r
(c)
n ≤Rmax

n ∀n]

∑
n,c g

(c)
n (r(c)

n ). Define
the constant B as follows:

B M=
1
N

N∑
n=1

[
(Rmax

n + µin
max,n)2 + (µout

max,n)2
]

(11)

Theorem 2: If channel states are i.i.d. over timeslots and
all active reservoirs have infinite backlog, then for any flow
parameter V > 0 the CLC1 algorithm stabilizes the network
and yields the following performance bounds:2

2The algorithms developed in this paper yield similar results for general
ergodic channel processes, where the B parameter in (12) and (13) is increased
by an appropriate factor T related to steady state “mixing times” [1] [27].
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∑
n,c

U
(c)
n ≤ BN + V Gmax

2µsym
(12)

lim inf
t→∞

∑
n,c

g(c)
n (r(c)

n (t)) ≥
∑
n,c

g(c)
n (r∗(c)n )− BN

V
(13)

where (r∗(c)n ) is the optimal solution of (2) subject to constraint
(3), and where:∑

n,c

U
(c)
n

M= lim sup
t→∞

1
t

t−1∑
τ=0

[∑
n,c

E
{

U (c)
n (τ)

}]

r(c)
n (t) M=

1
t

t−1∑
τ=0

E
{

R(c)
n (τ)

}
(14)

The above result holds for all V > 0. Thus, the value of
V can be chosen so that BN/V is arbitrarily small, resulting
in achieved utility that is arbitrarily close to optimal. This
performance comes at the cost of a linear increase in network
congestion with the parameter V . By Little’s theorem [38],
average queue backlog is proportional to average bit delay,
and hence performance can be pushed towards optimality with
a corresponding tradeoff in end-to-end network delay.

The proof of Theorem 2 follows from a novel Lyapunov
drift argument, where the utility metric is incorporated into
the drift condition so that stability and utility optimization
can be simultaneously achieved. This analysis is provided in
Section IV. Below we present a simple corollary that is useful
in characterizing the performance of CLC1 under suboptimal
resource allocations (proved at the end of Section IV).

Corollary 1: If the resource allocation policy of CLC1 is
replaced with any (potentially randomized) resource allocation
policy ~µ(t) that satisfies the following for all slots t:∑

l

W ∗
l (t)E {µl(t) | U(t)} ≥ θ

(
max

~µ∈Γ~S(t)

∑
l

W ∗
l (t)µl

)
− C

for some fixed constants θ and C such that 0 < θ ≤ 1 and
C ≥ 0, then ∑

n,c

U
(c)
n ≤ 2C + BN + V Gmax

2µsymθ
(15)

lim inf
t→∞

∑
n,c

g(c)
n (r(c)

n (t)) ≥
∑
n,c

g(c)
n (r̃∗(c)n )− 2C + BN

V
(16)

where (r̃∗(c)n ) is the optimal solution to the following opti-
mization:

Maximize:
∑

n,c g
(c)
n (r(c)

n ) (17)

Subject to: (r(c)
n ) ∈ θΛ

0 ≤ r
(c)
n ≤ λ

(c)
n

That is, allocating resources to come within a factor θ of
the optimal solution of the CLC1 resource allocation yields a
utility that is close to the optimal utility with respect to a θ
scaled version of the capacity region. The above corollary is
related to similar “sub-optimal” Lyapunov scheduling results
presented for stability analysis (see, for example, [39] [40],

and Chapter 4.3.6 of [1]). It is also closely related to a
similar “imperfect scheduling” result developed for utility
optimization in [14] from a convex programming perspective.

E. Maximum Throughput and the Threshold Rule

Suppose utilities are linear, so that g
(c)
n (r) = α

(c)
n r for

some non-negative weights α
(c)
n . The resulting objective is

to maximize the weighted sum of throughput, and the re-
sulting FLOW algorithm has a simple threshold form, where
some commodities receive as much of the Rmax

n delivery
rate as possible, while others receive none. In the special
case where the user at node n desires communication with
a single destination node cn (so that g

(c)
n (r) = 0 for all

c 6= cn), the flow control algorithm (9) reduces to maximizing
V αncn

r−2U
(cn)
n r subject to 0 ≤ r ≤ Rmax

n , and the solution
is the following threshold rule:

Rncn
(t) =

{
Rmax

n if U
(cn)
n (t) ≤ V αncn

2
0 otherwise

The qualitative structure of this flow control rule is intu-
itive: When backlog in the source queue is large, we should
refrain from sending new data. The simple threshold form is
qualitatively similar to the threshold scheduling rule developed
in [32] for server scheduling in a downlink with ON/OFF
channels and deterministic constraints on the channel states
and packet arrivals.

F. Proportional Fairness and the 1/U Rule

Consider now utility functions of the form g
(c)
n (r) = log(1+

βr
(c)
n ) (for some constant β > 0). It is shown in [11] that

maximizing a sum of such utilities over any convex set Λ
leads to proportional fairness.3 In the special case when there
is only one destination cn for each user n, the flow control
algorithm reduces to maximizing V log(1 + βr) − 2U

(cn)
n r

subject to 0 ≤ r ≤ Rmax
n , which leads to the following ‘1/U ’

flow control function:

Rncn(t) = min

[
max

[
V

2U
(cn)
n (t)

− 1
β

, 0

]
, Rmax

n

]
Here we see that the flow control valve restricts flow according
to a continuous function of the backlog level at the source
queue, being less conservative in its admission decisions when
backlog is low and more conservative when backlog is high.

One drawback of this 1/U policy is that the resulting flow
control variables R

(c)
n (t) are real numbers (not necessarily

integers or integer multiples of a given packet length), and
hence it is implicitly assumed that packets can be fragmented
for admission to the network. The CLC2 algorithm presented
in Section V overcomes this issue.

3Strictly speaking, the proportionally fair allocation seeks to maximizeP
n,c log(r

(c)
n ), leading to

P
n,c

r
∗(c)
n −r

(c)
n

r
∗(c)
n

≥ 0 for any other operating

point (r
(c)
n ) ∈ Λ. We use non-negative utilities log(1+βr) and thereby obtain

a proportionally fair allocation with respect to the quantity r
∗(c)
n +1/β, lead-

ing to
P

n,c
r
∗(c)
n −r

(c)
n

r
∗(c)
n +1/β

≥ 0. This can be used to approximate proportionally

fair scheduling for large β. Alternatively, it can be used with β = 1, yielding
a utility function log(1+r) which is different from proportionally fair utility
but still has many desirable fairness properties.
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IV. PERFORMANCE ANALYSIS

Here we prove Theorem 2. We first develop a novel Lya-
punov drift result enabling stability and performance optimiza-
tion to be performed using a single drift analysis.

A. Lyapunov Drift with Utility Metric

Let U(t) = (U (c)
n (t)) represent a process of queue backlogs

that evolves according to some probability law, and define
the Lyapunov function L(U) =

∑
n,c(U

(c)
n )2. Let R

(c)
n (t)

represent an input process affecting the system, and suppose
these values are bounded so that

∑
n,c g

(c)
n (R(c)

n (t)) ≤ Gmax

for all t (for some value Gmax). Assume utility functions
g
(c)
n (r) are non-negative and concave, and let g∗ represent a

“target utility” value. For a given queue backlog vector U(t),
we define the conditional Lyapunov drift ∆(U(t)) as follows:

∆(U(t))M=E {L(U(t + 1))− L(U(t)) | U(t)} (18)

where the conditional expectation is with respect to the random
one-step queueing dynamics given the current backlog U(t).

Lemma 1: (Lyapunov Optimization) If there are positive
constants V, ε, B such that for all timeslots t and all unfinished
work matrices U(t), the Lyapunov drift satisfies:

∆(U(t))− V
∑

n,c E
{

g
(c)
n (R(c)

n (t)) | U(t)
}
≤ B

−ε
∑

n,c U
(c)
n (t)− V g∗ (19)

then time average utility and congestion satisfies:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{

U (c)
n (τ)

}
≤ B + V Gmax

ε
(20)

lim inf
t→∞

∑
n,c

g(c)
n (r(c)

n (t)) ≥ g∗ − B

V
(21)

where r
(c)
n (t) is defined in (14).

Proof: Assume the (19) holds.Taking expectations over the
distribution of U(t) and using the definition of ∆(U(t)) in
(18) together with the law of iterated expectations yields:

E {L(U(t + 1))− L(U(t))} − V
∑

n,c E
{

g
(c)
n (R(c)

n (t))
}
≤

B − ε
∑

n,c E
{

U
(c)
n (t)

}
− V g∗

The above holds for all timeslots t. Summing over t ∈
{0, 1, . . . ,M − 1} yields:

E {L(U(M))} − E {L(U(0))}
−V

∑M−1
τ=0

∑
n,c E

{
g
(c)
n (R(c)

n (τ))
}
≤ BM

−ε
∑M−1

τ=0

∑
n,c E

{
U

(c)
n (τ)

}
− V Mg∗ (22)

Using non-negativity of the Lyapunov function and the utility
functions as well as the fact that

∑
n,c g

(c)
n (R(c)

n (τ)) ≤ Gmax,
we rearrange the terms of (22) and divide by Mε to yield:

1
M

M−1∑
τ=0

∑
n,c

E
{

U (c)
n (τ)

}
− E {L(U(0))}

Mε
≤ B + V Gmax

ε

Taking the lim sup as M →∞ yields the backlog bound (20).

The utility bound (21) is proved similarly. Indeed, we again
rearrange (22) and divide by MV to yield:∑
n,c

1
M

M−1∑
τ=0

E
{

g(c)
n (R(c)

n (τ))
}
≥ g∗−B + E {L(U(0))} /M

V

By concavity of g
(c)
n (r) together with Jensen’s

inequality, it follows that 1
M

∑M−1
τ=0 E

{
g
(c)
n (R(c)

n (τ))
}

≤

g
(c)
n

(
1
M

∑M−1
τ=0 E

{
R

(c)
n (τ)

})
. Using this fact in the left

hand side of the above inequality and taking the lim inf as
M →∞ yields the result.

The above lemma suggests that a good control strategy is
to greedily minimize the following drift metric every timeslot:

∆(U(t))− V
∑
n,c

E
{

g(c)
n (R(c)

n (t)) | U(t)
}

This is indeed the principle behind our control algorithm. To
begin, we first develop an expression for Lyapunov drift from
the queueing dynamics (8). First note that any general queue
with backlog U(t) and queueing law U(t+1) = max[U(t)−
µ(t), 0] + A(t) has a Lyapunov drift given by:

E
{
U2(t + 1)− U2(t) | U(t)

}
≤ µ2

max + A2
max

−2U(t)E {µ(t)−A(t) | U(t)} (23)

where Amax and µmax are upper bounds on the arrival
and server variables A(t) and µ(t). This well known fact
follows simply by squaring the queueing equation and taking
expectations. Applying the general formula (23) to the specific
queueing law (8) for queue (n, c) and summing the result over
all (n, c) pairs yields the following expression for Lyapunov
drift (see [1] [27] for details):

∆(U(t)) ≤ NB − 2
∑
n,c

U (c)
n (t)E

{∑
l∈Ωn

µ
(c)
l (t)

−
∑
l∈Θn

µ
(c)
l (t)−R(c)

n (t) | U(t)

}
(24)

where B is defined in (11).
Now define the flow function Ψ(U(t)) and the network

function Φ(U(t)) as follows:

Ψ(U(t))M=
∑
n,c

E
{

V g(c)
n (R(c)

n )− 2U (c)
n R(c)

n | U
}

(25)

Φ(U(t))M=2
∑
n,c

U (c)
n E

{∑
l∈Ωn

µ
(c)
l −

∑
l∈Θn

µ
(c)
l | U

}
(26)

where we have represented U(t), µ(c)
l (t), and R

(c)
n (t) as

U, µ
(c)
l , and R

(c)
n for notational convenience. Subtracting the

utility component V
∑

n,c E
{

g
(c)
n (R(c)

n ) | U
}

from both sides
of (24) yields:

∆(U(t))− V
∑

n,c E
{

g
(c)
n (R(c)

n (t)) | U
}
≤

NB − Φ(U(t))−Ψ(U(t)) (27)

Given a particular U(t) matrix at time t, the CLC1 policy
is designed to greedily minimize the right hand side of (27)
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over all possible routing, resource allocation, and flow control
options. We therefore have the following lemma:

Lemma 2: The Ψ(U(t)) and Φ(U(t)) functions satisfy:

ΨCLC1(U(t)) ≥
∑
n,c

[
V g(c)

n (r∗(c)n )− 2U (c)
n (t)r∗(c)n

]
(28)

ΦCLC1(U(t)) ≥ 2
∑
n,c

U (c)
n (t)E

{∑
l∈Ωn

µ
∗(c)
l (t)−

∑
l∈Θn

µ
∗(c)
l (t) | U(t)

}
(29)

where (r∗(c)n ) are any particular values that satisfy (10) for all
n, and (µ∗(c)l (t)) are any particular (potentially randomized)
routing and resource allocation decisions at time t.

That the CLC1 flow control strategy (9) maximizes Ψ(U(t))
over all feasible choices of the R

(c)
n (t) values follows immedi-

ately by comparing (9) and (25). That the routing and resource
allocation policy of CLC1 maximizes Φ(U(t)) is proven in
[1] [27], and can be understood by switching the sums in the
definition of Φ(U(t)):

Φ(U(t)) = 2
∑

l

∑
c

E
{

µ
(c)
l (t) | U

}[
U

(c)
tran(l) − U

(c)
rec(l)

]
(30)

Therefore, if ΦCLC1(U(t)) represents the above function
when the rates µ

(c)
l (t) are chosen at time t according to

CLC1, and if Φ∗(U(t)) represents the above Φ(U(t)) function
when any alternate feasible rates µ

∗(c)
l (t) are chosen at time

t (possibly via randomization), then from (30) we have:

Φ∗(U(t)) ≤ 2
∑

l

∑
c

E
{

µ
∗(c)
l (t) | U(t)

}
W ∗

l (t)

≤ ΦCLC1(U(t)) (31)

where W ∗
l (t) = max[U (c)

tran(l)(t)− U
(c)
rec(l)(t), 0].

B. A Near-Optimal Operating Point

In order to use the Lyapunov drift result to establish the
performance of the CLC1 algorithm, it is important to first
compare performance to the utility of a near-optimal solution
to the optimization problem (2)-(4). Specifically, for any ε > 0,
we define the set Λε as follows:

Λε
M=
{

(r(c)
n ) | (r(c)

n + ε1(c)
n ) ∈ Λ, r(c)

n ≥ 0 for all (n, c)
}

where 1(c)
n is equal to 1 whenever (n, c) ∈ D, and zero

else. Thus, the set Λε can be viewed as the resulting set
of rate matrices within the network capacity region when
an “ε-layer” of the boundary is stripped away from the D
effective dimensions. Note that this set is compact and non-
empty whenever ε ≤ µsym (where µsym is defined in Section
III-A). The near-optimal operating point (r∗(c)n (ε)) is defined

a solution to the following optimization problem:4

Maximize :
∑

n,c g
(c)
n (r(c)

n ) (32)

Subject to: (r(c)
n ) ∈ Λε

r
(c)
n ≤ λ

(c)
n for all (n, c)

This optimization differs from the optimization in (2)-(4) in
that the set Λ is replaced by the set Λε.

Lemma 3: (Continuity of Near-Optimal Solutions) If utility
functions g

(c)
n (r) are non-negative and concave, and if there

is a scalar µsym such that (µsym) ∈ Λ, then:∑
n,c

g(c)
n (r∗(c)n (ε)) →

∑
n,c

g(c)
n (r∗(c)n ) as ε → 0 (33)

Proof: The proof uses convexity of the capacity region Λ,
and is given in Chapter 5.5.2 of [1].

C. Derivation of Theorem 2

The proof of Theorem 2 relies on the following two in-
equalities:

ΨCLC1(U(t)) ≥
∑
n,c

[
V g(c)

n (r∗(c)n (ε))− 2U (c)
n (t)r∗(c)n (ε)

]
ΦCLC1(U(t)) ≥ 2

∑
n,c

U (c)
n (t)(r∗(c)n (ε) + ε) (34)

where (r∗(c)n (ε)) is the optimal solution of problem (32). The
first inequality follows from (28) by using r

∗(c)
n = r

∗(c)
n (ε),

noting that these are valid flow control choices because 1)
all reservoirs are infinitely backlogged and so it is always
possible to choose R

(c)
n (t) = r

∗(c)
n (ε), and 2) the matrix

(r∗(c)n (ε)) is within Λ and hence
∑

c r
∗(c)
n (ε) ≤ Rmax

n for all
n. Inequality (34) follows by plugging the particular µ

∗(c)
l (t)

policy of Theorem 1 (for (r∗(c)n (ε) + ε1(c)
n ) ∈ Λ) into (29).

Plugging the above inequalities directly into the drift ex-
pression (27) yields the following for algorithm CLC1:

∆(U(t))− V
∑
n,c

E
{

g(c)
n (R(c)

n (t)) | U
}
≤ NB

−2
∑
n,c

U (c)
n (t)(r∗(c)n (ε) + ε)

−V
∑
n,c

g(c)
n (r∗(c)n (ε)) + 2

∑
n,c

U (c)
n (t)r∗(c)n (ε)

Canceling common terms yields:

∆(U(t))− V
∑
n,c

E
{

g(c)
n (R(c)

n (t)) | U
}
≤ NB

−2ε
∑
n,c

U (c)
n (t)− V

∑
n,c

g(c)
n (r∗(c)n (ε))

The above drift expression is in the exact form specified by
Lemma 1. Thus, network congestion satisfies:∑

n,c

U
(c)
n ≤ (NB + V Gmax)/(2ε) (35)

4Note that the final constraint (r
(c)
n ) ≤ (λ

(c)
n ) is satisfied automatically

in the case of infinite traffic demand. We include the constraint here as this
optimization is also important in the treatment of general traffic matrices
(λ

(c)
n ) in Section V.
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and time average performance satisfies:∑
n,c

g(c)
n (r(c)

n ) ≥
∑
n,c

g(c)
n (r∗(c)n (ε))−NB/V (36)

The performance bounds in (35) and (36) hold for any
value ε such that 0 < ε ≤ µsym. However, the particular
choice of ε only affects the bound calculation and does
not affect the CLC1 control policy or change any sample
path of system dynamics. We can thus optimize the bounds
separately over all possible ε values. The bound in (36)
is clearly maximized by taking a limit as ε → 0, yielding
by (33):

∑
n,c g

(c)
n (r(c)

n ) ≥
∑

n,c g
(c)
n (r∗(c)n ) − NB/V .

Conversely, the bound in (35) is minimized as ε → µsym,

yielding:
∑

n,c U
(c)
n ≤ (NB+V Gmax)/(2µsym). This proves

Theorem 2. �

The proof of Corollary 1 follows by noting that the sub-
optimal allocation bound changes inequality (29) into:

ΦCLC1(U(t)) ≥ −2C + 2
∑
n,c

U (c)
n (t)E

{∑
l∈Ωn

θµ
∗(c)
l (t)−

∑
l∈Θn

θµ
∗(c)
l (t) | U(t)

}
which thus changes inequality (34) into:

ΦCLC1(U(t)) ≥ −2C + 2θ
∑
n,c

U (c)
n (t)(r∗(c)n (ε) + ε)

The proof then proceeds exactly as before, as noted in [1]. �

V. SCHEDULING WITH ARBITRARY INPUT RATES

The algorithm CLC1 assumes there is always an amount
of data R

(c)
n (t) available in reservoir (n, c), where the flow

variable R
(c)
n (t) is chosen only with respect to the Rmax

n

constraint. Here we assume that all transport layer storage
reservoirs have a finite (possibly zero) buffer, and let L

(c)
n (t)

represent the current backlog in the reservoir buffer. The flow
control decisions are now subject to the additional constraint
R

(c)
n (t) ≤ L

(c)
n (t) + A

(c)
n (t) (where A

(c)
n (t) is the amount of

new commodity c data exogenously arriving to node n at slot
t). Any arriving data that is not immediately admitted to the
network is stored in the reservoir, or dropped if the reservoir
has no extra space.

Assume the A
(c)
n (t) arrivals are i.i.d. over timeslots

with arrival rates λ
(c)
n = E

{
A

(c)
n (t)

}
. It can be shown

that for any matrix (λ(c)
n ) (possibly outside of the capacity

region), modifying the CLC1 flow algorithm to maximize
(9) subject to the additional reservoir backlog constraint
yields the same performance guarantees (12) and (13) when
utility functions are linear [1]. For nonlinear utilities, such
a strategy can be shown to maximize the time average of∑

n,c E
{

g
(c)
n (R(c)

n (t))
}

over all strategies that make imme-
diate admission/rejection decisions upon arrival, but may not
necessarily maximize

∑
n,c g

(c)
n (E

{
R

(c)
n (t)

}
), which is the

utility metric of interest. We solve this problem with a novel
technique of defining additional flow state variables Z

(c)
n (t).

The result can be viewed as a general framework for stochastic
network optimization.

Define flow state variables Z
(c)
n (t) for each reservoir (n, c),

and fix Z
(c)
n (0) = V Rmax

n /2 for all (n, c) (any initial condi-
tion can be used, this one works well experimentally). For
each flow control process R

(c)
n (t), we define a new process

Y
(c)
n (t) as follows:

Y (c)
n (t)M=Rmax

n −R(c)
n (t) (37)

and note that Y
(c)
n (t) ≥ 0 for all t. The Y

(c)
n (t) variables

represent the difference between the maximum value and
the actual value of admitted data on session (n, c). The
Z

(c)
n (t) state variables are updated every slot according to the

following ‘queue-like’ iteration:

Z(c)
n (t + 1) = max[Z(c)

n (t)− γ(c)
n (t), 0] + Y (c)

n (t) (38)

where {γ(c)
n (t)} are additional flow control decision variables.

Define the ‘cost’ function:

h(c)
n (γ)M=g(c)

n (Rmax
n )− g(c)

n (Rmax
n − γ) (39)

Let γ
(c)
n represent the time average value of the decision

variables γ
(c)
n (t). We design a policy to stabilize the network

queues U
(c)
n (t) and the flow state ‘queues’ Z

(c)
n (t) while mini-

mizing the cost
∑

n,c h
(c)
n (γ(c)

n ). The intuitive interpretation of
this goal is as follows: If the Z

(c)
n (t) queues are stabilized, it

must be the case that the time average of the ‘server process’
γ

(c)
n (t) is greater than or equal to the time average of the

‘arrival process’ Y
(c)
n (t): Y

(c)

n ≤ γ
(c)
n . From (37), this implies

r
(c)
n ≥ Rmax

n − γ
(c)
n , and hence:∑

n,c

h(c)
n (γ(c)

n ) =
∑
n,c

g(c)
n (Rmax

n )−
∑
n,c

g(c)
n (Rmax

n − γ(c)
n )

≥
∑
n,c

g(c)
n (Rmax

n )−
∑
n,c

g(c)
n (r(c)

n )

Thus, minimizing
∑

n,c h
(c)
n (γ(c)

n ) over all feasible γ
(c)
n values

is intimately related to maximizing
∑

n,c g
(c)
n (r(c)

n ) over all
feasible r

(c)
n values.

Cross Layer Control Policy 2 (CLC2): Let η be any fixed
constant such that 0 < η ≤ 1. Every timeslot and for each
node n, choose R

(c)
n (t) = x

(c)
n to solve:

Maximize:
∑

c[ηZ
(c)
n (t)− U

(c)
n (t)]x(c)

n (40)

Subject to:
∑

c x
(c)
n ≤ Rmax

n

x
(c)
n ≤ L

(c)
n (t) + A

(c)
n (t)

Additionally, the flow controllers at each node n choose γ
(c)
n (t)

for each session (n, c) to solve:

Maximize: V g
(c)
n (Rmax

n − γ
(c)
n ) + 2ηZ

(c)
n (t)γ(c)

n (41)

Subject to: 0 ≤ γ
(c)
n ≤ Rmax

n

The flow states Z
(c)
n (t) are then updated according to (38).

Routing and resource allocation within the network is the same
as in CLC1.

The optimization of R
(c)
n (t) in (40) is solved by a simple

‘bang-bang’ control policy, where no data is admitted from
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reservoir (n, c) if U
(c)
n (t) > ηZ

(c)
n (t), and otherwise as much

data as possible is delivered from the commodities of node n

with the largest non-negative values of [ηZ
(c)
n (t) − U

(c)
n (t)],

subject to the Rmax
n constraint. These bang-bang decisions

also enable the strategy to be implemented optimally in
systems where admitted data is constrained to integral units,
a feature that CLC1 does not have.

The γ
(c)
n (t) variable assignment in (41) involves maximizing

a concave function of a single variable, and can be solved
easily by finding the critical points over 0 ≤ γ

(c)
n ≤ Rmax

n .
For example, if g

(c)
n (r) = log(1 + βr), it can be shown that:

γ(c)
n = min

[
max

[
1
β

+ Rmax
n − V N

2Z
(c)
n (t)

, 0

]
, Rmax

n

]
Suppose channels and arrivals are i.i.d. over timeslots, and

let λ
(c)
n = E

{
A

(c)
n (t)

}
. We assume that λ

(c)
n = 0 whenever

(n, c) /∈ D. For simplicity of exposition, we further assume
that new arrivals to node n are deterministically bounded by
Rmax

n , so that
∑

c A
(c)
n (t) ≤ Rmax

n every slot.
Theorem 3: For arbitrary rate matrices (λ(c)

n ) (possibly
outside of the capacity region), for any V > 0, and for
any reservoir buffer size (possibly zero), the CLC2 algorithm
stabilizes the network and yields a congestion bound:∑

n,c

U
(c)
n ≤

NB + 2ηN
∑

n(Rmax
n )2 + V Gmax

2µsym

Further, the time average utility satisfies:

lim inf
t→∞

∑
n,c

g(c)
n (r(c)

n (t)) ≥
∑
n,c

g(c)
n (r∗(c)n )

−
NB + 2ηN

∑
n(Rmax

n )2

V
Proof: Define the Lyapunov function L(U,Z) =∑
n,c(U

(c)
n )2 + η

∑
n,c(Z

(c)
n )2. The drift expression for this

function is given by summing the drift of the U
(c)
n (t) queues

and the Z
(c)
n (t) queues using the general formula (23), where

the queueing laws are given by (8) and (38):

∆(U(t), Z(t)) +
∑
n,c

V E
{

h(c)
n (γ(c)

n (t)) | U,Z
}
≤

NB + 2ηN
∑

n

(Rmax
n )2 − Φ(U(t))

+2
∑
n,c

E
{

U (c)
n (t)R(c)

n (t) + ηY (c)
n (t)Z(c)

n (t) | U,Z
}

−
∑
n,c

E
{

2ηZ(c)
n (t)γ(c)

n (t)− V h(c)
n (γ(c)

n (t)) | U,Z
}

(42)

where we have added to both sides of the above expression the
cost term

∑
n,c V E

{
h

(c)
n (γ(c)

n (t)) | U,Z
}

. The CLC2 policy
is designed to minimize the right hand side of the above
expression over all possible policies. Thus, similar to the proof
of CLC1, plugging particular policies gives bounds for which
the Lyapunov Optimization Lemma (Lemma 1) can be applied,
proving stability of all queues, proving that E

{
Z

(c)
n (t)

}
/t →

0, and leading to the result (see [2] for details).
We note that the transport layer storage reservoir does

not impact the above result, and hence a size-zero reservoir

(in which all data is immediately accepted or dropped upon
arrival) yields the same performance guarantees. We further
note that it is possible to use the same proof to show that
if the input rate matrix (λ(c)

n ) is in the relative interior of
the capacity region Λ (so that (λ(c)

n + δ1(c)
n ) ∈ Λ for some

δ > 0), then the same utility bound of Theorem 3 holds, but
the congestion can be bounded by a constant that depends on
the proximity to the boundary of the capacity region, but does
not depend on V (we omit these details for brevity). This
is intuitively satisfying, as we know from the results of [1]
[27] that the DRPC algorithm (without flow control) bounds
average congestion by a similar constant whenever input rates
are interior to the capacity region.

VI. SIMULATION RESULTS

Here we simulate the CLC2 policy for three simple network
examples. We assume throughout that η = 1/N . We begin
with the 2-queue downlink example of Section II. Packets
arrive from each stream according to Bernoulli processes, and
we assume there are no transport layer storage reservoirs,
so that all arriving data is either immediately admitted or
dropped.5 As before, we assume channel probabilities are
given by p1 = 0.5, p2 = 0.6, and consider one hundred
different rate pairs (λ1, λ2) that are linearly scaled towards
the point (0.5, 1.0). For each point we simulate the CLC2
algorithm for 3 million timeslots, using V = 10000, Rmax

n =
2, and g1(r) = g2(r) = log(1 + r). Note that in this case, we
have µin

max = 0, µout
max = 1, so by (11) we have B = 5. Thus,

for V = 10000 we are ensured by Theorem 3 that the resulting
utility associated with each rate vector (λ1, λ2) differs from
the optimum utility by no more than (5 + 8)/V = 0.0013
(note that N = 1 for this simple example, as there is only 1
transmitting node). The simulation results are shown in Fig.
3(a), where the achieved throughput increases to the capacity
boundary and then moves directly to the fair point (0.4, 0.4).

In Fig. 3(b) we treat the same situation with the exception
that utility for user 2 is modified to 1.28 log(1 + r). This
illustrates the ability to handle priority service, as user 2 traffic
is now given favored treatment. From the figure, we see that as
input rates are increased the resulting throughput reaches the
capacity boundary and then moves in a new direction, settling
and remaining on the new optimal operating point (0.23, 0.57)
once input rates dominate this point.

Note that for this example, we have µsym = 0.4 and
Gmax = 0.784. Thus, by Theorem 3, we know:

U1 + U2 ≤
13 + 0.784V

0.8
(43)

The above bound holds for any input rate vector (λ1, λ2),
including vectors that are far outside of the capacity region.
We next keep the same utility as in Fig. 3(b) but fix the
input rate to (λ1, λ2) = (0.5, 1.0), which dominates the
optimal operating point (0.23, 0.57) (so that utility optimal
control should achieve this point). In Fig. 3(c) we plot the
resulting average queue congestion as V is varied from 1
to 104, together with the bound (43). As suggested by the

5Simulations for infinite transport reservoirs yield almost identical results.
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Fig. 3. Simulation of CLC2: (a) Linearly increasing (λ1, λ2) to (0.5, 1.0)
for V = 10000 and g1(r) = g2(r) = log(1 + r). (b) Modifying utility
2 to: g2(r) = 1.28 log(1 + r). (c)-(d) Fixing (λ1, λ2) = (0.5, 1.0) and
illustrating delay and throughput versus V .

bound, the delay grows linearly with V . In Fig. 3(d) we see
how the achieved throughput of CLC2 approaches the optimal
operating point (0.23, 0.57) as V is increased.

A. Packet Switches

Here we consider a simple 3 × 3 packet switch with a
crossbar switch fabric [22] [25]. Packets arrive from three
different input ports, and each packet is destined for one of
three output ports. We let λij represent the rate of packets
arriving to input i and destined for output j. All packets are
stored in virtual input queues according to their destinations,
and we let Uij represent the current number of backlogged
packets waiting at input i to be delivered to output j. The
system is timeslotted, and the crossbar fabric limits scheduling
decisions to permutation matrices, where no input can transfer
more than one packet per slot, and no output can receive
more than one packet per slot. Thus, the following feasibility
constraints are required for stability:

3∑
i=1

λij ≤ 1 ∀j ∈ {1, 2, 3} ,
3∑

j=1

λij ≤ 1 ∀i ∈ {1, 2, 3}

We consider i.i.d. Bernoulli arrivals, and apply the CLC2
algorithm using log(1 + r) utility functions, V = 100, and
Rmax = 3 (the maximum number of arrivals to a single input
during a slot). In this example we assume that all reservoirs
have zero buffers, so that admission/rejection decisions must
be made immediately upon packet arrival. In Fig. 4(a) we
present simulation results for a case when the sum rate to
every input port and every output port is exactly 0.95. Note
that average queue backlog is kept very low, while the resulting
throughput is almost identical to the input rate. This illustrates
that the CLC2 algorithm accepts almost all packets into the
system, and accomplishes this without a-priori knowledge that
the input traffic is feasible.

We next apply the same CLC2 algorithm to a switch where
input port 1 and output port 2 are overloaded, as shown in Fig.
4(b). The resulting throughput from the simulation is given

Rates (λij) Throughput (rij) Backlog (U ij)
.45 .1 .4
.1 .7 .15
.4 .15 .4

.450 .100 .399

.100 .695 .148

.399 .149 .400

3.3 2.4 3.6
2.4 2.9 2.7
3.6 2.7 3.4

(a) Simulation of a switch with feasible traffic

Rates (λij) Throughput (rij) Backlog (U ij)
.9 .2 .3
0 .4 .2
0 .5 0

.598 .100 .298
0 .399 .200
0 .500 0

31.6 45.3 32.1
0 14.1 .29
0 14.2 0

(b) Simulation of an overloaded switch

Fig. 4. Simulation results for the CLC2 algorithm with V = 100 and zero
reservoir buffers. Simulations were run over four million timeslots.

in the figure, and is almost indistinguishable from the utility
maximizing solution of the optimization problem (2)-(4). The
average backlog in each queue is no more than 45.3 packets.

B. Heterogeneous Multi-hop Networks

Here we consider the multi-hop network of Fig. 1, consist-
ing of wireless sensor nodes (nodes {6, 7, 8, 9}), a wireline
network, and a wireless basestation that transmits to two
mobile users. All packets have fixed lengths. The wireline links
are bidirectional and can transmit 3 packets in each direction
during a single slot. The basestation node 0 can transmit to
only one mobile user per slot, and the downlinks to each user
independently vary between ON and OFF states according to
Bernoulli processes, with equal likelihood of being ON or
OFF. The wireless links of the sensor network are always ON,
and can support one packet transfer per slot. However, due to
interference between the various sensor nodes, we assume that
only one sensor link can be activated per slot (including the
outgoing wireless links of the access nodes 4 and 5).

We assume there are four independent sessions using the
network: Two sessions originate from node 9 and consist of
packets destined for nodes 3 and 1, and two sessions originate
from node 4 and consist of packets destined for nodes 8 and
2. All arrival processes are i.i.d. and Bernoulli, with arrival
rates λ93 = λ91 = λ48 = λ42 = 0.7.

These arrival rates are not supportable by the network.
Indeed, note that all packets originating at node 9 must travel
over at least 2 sensor links before reaching a wireline access
node. Likewise, all data from the λ48 stream requires at least
two hops through the sensor network. Because at most one
sensor link can be activated on any timeslot, it follows that
2r93 + 2r91 + 2r48 ≤ 1 is a necessary condition for network
stability, where rij is the throughput of (i, j) traffic. The
basestation places the following additional constraints on the
network flows: r91 ≤ 1/2, r42 ≤ 1/2, and r91 + r42 ≤ 3/4.
It is not difficult to verify that these necessary conditions
describe the feasible flows for the network, as the wired
links to not impose further constraints. Assuming that all
sessions have identical utility functions gij(r) = log(1 + r),
the optimally fair flows are thus given by r∗91 = r∗93 = r∗48 =
1/6 = 0.1667, r∗42 = 0.5.

We implement CLC2 for this network, using V = 1000,
Rmax = 2, and assuming infinite buffer reservoirs. Note that
sensor link activations are determined every slot by choosing
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the link with the largest differential backlog. The resulting
average queue length, summed over all queues in the system,
is 858.9 packets. The throughputs are: r91 = 0.1658, r93 =
0.1662, r48 = 0.1678, r42 = 0.5000. We note that this
performance is not possible unless almost all packets take their
optimal 2-hop paths through the sensor network, and hence the
backpressure routing learns the optimal routes.

VII. DISTRIBUTED CONTROL FOR WIRELESS NETWORKS

Theorem 2 and its corollary demonstrate that it is important
to allocate resources in an effort maximize

∑
l W

∗
l µl, even if

implementation complexity precludes realization of the full
maximum (this is also highlighted in Chapter 4.3.6 of [1]).
Indeed, it is often difficult to achieve the full maximum,
especially in distributed networks with interference. However,
there are several basic network models for which it is possible
to come within a constant factor of optimality using simplified
scheduling techniques, and this is an area of recent active
interest [14] [41] [42].

For example, consider a wireless network where every node
transmits over an orthogonal frequency band. Assume nodes
can transmit or receive from at most one link at a time,
and nodes cannot simultaneously transmit and receive. Such a
model is recently considered in [14] [41]. Let µl(t) represent
the rate that link l can transmit data during slot t if it is chosen
for transmission. The problem of maximizing

∑
l W

∗
l µl in this

case amounts to finding a maximum weight match (MWM) in
the underlying network graph. Such matchings are important
for network stability problems (see [19] [22]), although they
are difficult to compute in a distributed manner because the
matching constraints couple all decisions throughout the net-
work. However, it is well known that a simple contention based
algorithm for greedily selecting a matching comes within a
factor of two of the optimal solution.

Specifically, the contention scheme goes through several
rounds before finalizing a set of links to activate. In the
first round, all nodes attempt to activate their largest weight
outgoing link. Any resulting contentions are resolved locally
by (tentatively) selecting the links with the largest weight
among all competitors, breaking ties arbitrarily. The next
round proceeds by having all non-selected nodes attempt to
activate their largest weight link that does not contend with any
selected link of equal or larger weight. Contentions are again
resolved locally, placing the largest weight contenders in the
“selected” group and removing any lesser weight contenders
previously selected. Proceeding this way, it is easy to see that
each round of contention permanently adds at least one new
link, and so after at most N rounds the algorithm converges to
a matching in which all non-active links are adjacent to at
least one active link with equal or larger weight. It can be
shown that this matching is within a factor of 2 of optimality,
so that the condition of Corollary 1 holds with θ = 1/2.

A more general interference model is recently considered
in [42], where each link l has a set of Kl “competitor
links” that cannot be activated if link l is transmitting. Define
Kmax

M=maxl Kl. It can be shown that, within N rounds, a
similar greedy contention scheme finds a feasible set of links

to activate that comes within a factor of Kmax of the optimal
solution (see [42] for a simlar result). A simpler random
access scheme that uses a collision model and requires only
one contention round is as follows: Each link independently
attempts activation with probability 1/Kmax. If a link has no
contenders, then it is successfully activated. Else, it remains
idle. This random access scheme is similar to the distributed
random access scheme specified in [1] [27]. It is clear that this
scheme satisfies: ∑

l

W ∗
l (t)E {µl(t) | U(t)} ≥

∑
l

W ∗
l (t)µl(t)

(
1

Kmax

)(
1− 1

Kmax

)Kmax

and hence the left hand side is within a factor of 1/Kmax(1−
1/Kmax)Kmax of

∑
l W

∗
l (t)µl(t) (where all links are included

in the summation). Hence, the expectation is certainly within
this same factor of the optimal solution (which must con-
form to valid link activation sets). Note that 1/Kmax(1 −
1/Kmax)Kmax ≈ 1/(Kmaxe) (for large Kmax), and hence
the factor 1/e can roughly be viewed as the cost of using
this single-round random access scheme in comparison to
the multi-round greedy approach. The solution can further be
improved by using multiple random access rounds and/or by
restricting attempts that lead to obvious contentions (such as
attempting to activate two outgoing links from the same node).

VIII. CONCLUSIONS

We have presented a fundamental approach to stochastic
network control for heterogeneous data networks. Simple
strategies were developed that perform arbitrarily close to
the optimally fair throughput point (regardless of the input
traffic matrix), with a corresponding tradeoff in end-to-end
network delay. The strategies involve resource allocation and
routing decisions that are decoupled over the independent
portions of the network, and flow control algorithms that are
decoupled over independent control valves at every node. Flow
controllers require knowledge only of the queue backlog in
their respective source nodes. We note that this technique
of implementing flow control only at the sources is crucial
to ensure no network resources are wasted transmitting data
that will eventually be dropped. It is remarkable that the
overall strategy does not require knowledge of input rates,
channel statistics, or the global network topology. Although
i.i.d. assumptions were made to simplify exposition, the same
policies can be shown to offer similar performance (with
modified delay expressions) for arbitrary ergodic arrivals and
channels, and are robust to cases when channel probabilities
or arrival rates change over time [1]. We believe that such
theory-driven networking strategies will impact the design and
operation of future data networks.
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