
2136 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

On the Complexity and Distributed Construction
of Energy-Efficient Broadcast Trees

in Wireless Ad Hoc Networks
Ashwinder S. Ahluwalia and Eytan H. Modiano, Senior Member, IEEE

Abstract—This paper addresses the energy-efficient broadcast-
ing problem in ad hoc wireless networks. First, we show that
finding the minimum-energy broadcast tree is NP-complete. We
then develop a distributed clustering algorithm that computes
energy-efficient broadcast trees in polynomial time. Our distrib-
uted algorithm computes all N possible broadcast trees simul-
taneously, while requiring O(N2) messages to be exchanged
between nodes. We compare our algorithm’s performance to the
best-known centralized algorithm, and show that it constructs
trees consuming, on average, only 18% more energy. We also
consider the possibility of having multiple source nodes that can be
used to broadcast the message and adapt our algorithm to compute
energy-efficient broadcast trees with multiple source nodes. We
observe a reduction in the amount of energy needed to form the
broadcast tree that is linear in the number of source nodes.

Index Terms—Broadcast, complexity, energy efficiency, wireless
networks.

I. INTRODUCTION

ENERGY-EFFICIENT communication is of paramount im-
portance in networks of small battery-operated devices

(e.g., sensor networks). In this paper, we are interested in
the construction of energy-efficient broadcast trees in ad hoc
networks, as posed in [8]. Starting with a given source node
s, the problem is to find a broadcast tree that allows s to send
a message to all other nodes, using the minimum amount of
energy. Although it is tempting to do so, we do not simul-
taneously deal with other issues such as channel contention
and mobility—we believe that a well-formed solution to this
problem can serve as an intuitive start to algorithms that also
include other issues.

We focus on a specific type of ad hoc network where all
nodes are stationary (usually referred to as a “static” ad hoc
network), and equipped with an omnidirectional transmitter.
We assume that the transmission range of the transmitter can
be adjusted from 0 up to a maximum range Rmax. Previous
energy-efficient routing research has focused on environments
where the transmitter can only be turned off or transmit at
range Rmax ([9]). In that case, the minimum-energy broadcast
problem amounts to finding a broadcast tree with the minimum
number of transmitting nodes. This problem is the connected

Manuscript received May 14, 2002; revised November 25, 2003; accepted
July 31, 2004. The editor coordinating the review of this paper and approving
it for publication is Y.-D. Yao.

The authors are with the Massachusetts Institute of Technology, Cambridge,
MA 02139-4307 USA (e-mail: ash@mit.edu; modiano@mit.edu).

Digital Object Identifier 10.1109/TWC.2005.853824

Fig. 1. Multicast advantage.

dominating-set problem that is known to be NP-complete and
for which, many heuristics exist [9].

In contrast, our model assumes that transmitters can adjust
their power levels so that they can operate at any range in
between zero and some maximum range Rmax ([6], [10]–[14]).
The transmitter is referred to as omnidirectional because it does
not focus the message transmission in a particular direction.
Therefore, when the omnidirectional transmitter sends a mes-
sage at range r, all nodes within distance r can receive the
message, regardless of their position. Naturally, when the node
transmits a message at a higher range, it consumes more power.
In analyzing the range–power tradeoff, we adopt a common
communications model, where the power required to transmit
the message is proportional to rα (typically α ≥ 2).

Note that because each node can only transmit up to distance
Rmax, it is possible that the source node s cannot reach all
nodes in the network directly. Therefore, some nodes will have
the responsibility to forward messages on behalf of s. We can
then rephrase the problem as one of assigning each node ni a
range ri at which to forward received messages. The total cost
of the broadcast tree can then be expressed as

∑
rα
i .

This is a very uncommon cost function for graph-
connectivity problems, in that cost is node weighted instead of
edge weighted. Consider the example shown in Fig. 1. In this
situation, we denote the cost incurred when node s transmits
at a distance just large enough to reach b as Power(s, b), and
define Power(s, a) analogously. If s attempts to send a message
to node b, this message will not be received by node a because
a’s distance to s is larger than b’s distance to s (das > dbs).
However, s could optionally transmit at Power(s, a), in which
case the message would be received by both a and b (because
dbs < das). By transmitting to a, s can get a transmission to b

1536-1276/$20.00 © 2005 IEEE

AHLUWALIA AND MODIANO: ENERGY-EFFICIENT BROADCAST TREES IN WIRELESS AD HOC NETWORKS 2137

for “free,” due to the use of omnidirectional antennas. In [8],
this was referred to as the “multicast advantage.” In general,
the power required for a node s to transmit a message to a set of
nodes N is maxnεN Power(s, n). A transmission at this power
will be received by all nodes in N .

This paper is organized as follows. In Section II, we for-
mulate the minimum-energy broadcast-tree problem and prove
that it is NP-complete. In Section III, we consider distributed
algorithms for the construction of energy-efficient broadcast
trees and compare those to the centralized algorithm of [8]. In
Section IV, we consider the case where the broadcasts can be
initiated at multiple source nodes and adapt our algorithm to
compute energy-efficient broadcast trees with multiple source
nodes. Finally, in Section V, we conclude the paper with a
discussion of our results, assumptions, and future directions.

II. PROBLEM FORMULATION AND COMPLEXITY

We can state the ad hoc wireless-broadcasting problem as
follows. Given a set of nodes N and their coordinates on the
two-dimensional plane. Additionally, we are given a range R,
which represents the maximum distance any node can transmit
a message, and a constant α > 0, representing the power-
loss exponent. We construct the undirected graph G = (V,E),
where V = N and (i, j) ε E ⇐⇒ dij ≤ R. Assuming this
graph is connected, the wireless-broadcasting problem can be
stated as follows:

Given a source s ε N construct the minimum cost
directed tree T (rooted at s) that connects s to every node
in N − {s} via a directed path according to the following
cost function. Define f(x) = max{dα

xj : (x, j) ε T}. Then
cost of T is defined as

∑
nεN f(n).

Hereafter, we refer to the decision version of this problem,
where we are asked to determine whether there exists such a
tree with cost less than l ε Z+, as BCAST. Naturally, one is in-
terested in the complexity of the above problem. Unfortunately,
the first contribution of this paper, stated in Theorem 1 below,
tells us that this problem is computationally difficult and cannot
be solved in polynomial time.
Theorem 1: BCAST is NP-complete.
Proof of this theorem is based on a reduction from the

connected-node cover problem in planar graphs, and is given
in the Appendix.

III. DISTRIBUTED BROADCAST-TREE ALGORITHMS

Wieselthier, et al. considered the above broadcast problem
[8] and proposed a centralized algorithm to construct energy-
efficient broadcast trees. They showed that their algorithm,
the broadcast incremental protocol (BIP), performed well as
compared to minimum-spanning trees (MST) and shortest
path trees. The BIP algorithm assumes the same model for
power–range tradeoff that we assume in this paper (power
proportional to rα), so it is particularly relevant. Additionally,
to our knowledge, BIP is the best known algorithm for this
problem [15]. Consequently, we will use the performance of
BIP as a measuring stick in judging our distributed algorithm.
As discussed below, BIP assumes that each node does not

have a range limitation (Rmax = ∞). This is an important
distinction from our formulation, in which we assume that
each node has some predefined range limit that is due to the
transmitter’s power limitation. However, BIP can be easily
modified to account for the transmission-range limitation.

BIP is a greedy algorithm that mimics Prim’s algorithm
[17] for constructing MSTs. Throughout its execution, BIP
maintains a set of nodes T that denote the tree made so far
(initially, T = {s} and the power of s is set to 0). At each step,
BIP attempts to increase the power of a node t ε T to reach
a node in n ε N − T . Specifically, BIP increases the power
of the node t that requires the least additional power to reach
a node in N − T . The node n is then added to T , and the
process is repeated until T = N . Once the tree is constructed,
a sweep algorithm is run on the tree to reduce the power of
nodes in specific cases where a node can be reached by multiple
transmitters.

Although BIP has already been shown to construct low-cost
trees, it’s centralized nature requires one node to collect the
position information of every node in the graph, compute the
BIP tree, and distribute the solution to all other nodes in the net-
work (alternatively, each node can gather the information and
compute the tree independently). This can result in considerable
time, message complexity, and power consumption. Addition-
ally, this requires that the node performing the computation also
has considerable resources (energy, processor, and memory). In
the low-cost resource-limited environment that is typical in ad
hoc networks, this may not always be feasible. These reasons
motivate a need for a localized distributed algorithm that can
compute broadcast trees efficiently. A localized algorithm is
one in which nodes’ decisions are based on network conditions
within some limited distance [16].

In this section, we describe a localized distributed algorithm
that computes broadcast trees. Our algorithm requires limited
exchange of information between nodes that are within trans-
mission range of each other. In the first portion of the proposed
distributed algorithm, nodes calculate a clustering on the graph
[9], [18]. Then, the clusters are joined together using a well
known distributed algorithm for computing MSTs in directed
graphs. A useful feature of our algorithm is that it constructs
energy-efficient clusters. While our primary interest is in the
formation of an energy-efficient broadcast tree; this clustering
approach can be very useful for general (nonbroadcast) energy-
efficient communications.

A. Distributed Construction of Broadcast Trees

At the beginning of the algorithm each node has the follow-
ing information.

1) Each node i knows the distance to every node in i’s
neighborhood. A node’s neighborhood is defined as the
set of nodes that are within distance R (the maximum
distance that a node can transmit a message). Nodes that
are in i’s neighborhood are referred to as neighbors of i.

2) Each node i also knows the distance of each neighbor to
every node in the neighbor’s neighborhood. We refer to
the set of i’s neighbors, and i’s neighbors’ neighbors as
i’s two-hop neighborhood.

2138 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

As an example, this information could be gathered by deter-
mining pairwise node delay via timestamps. Notice that each
node only requires localized information about some small
portion of the network (the two-hop neighborhood). This is
a key difference from previous algorithms that require each
node to have global network information. Also, note that this is
only meaningful in networks with limited range—if each node
had unlimited range, having two-hop neighborhood information
would be equivalent to having global information. In networks
with limited range however, the two-hop neighborhood may
constitute a small fraction of the graph. Of course, this also
holds for networks in which the range of nodes is limited
for reasons other than inherent transmitter limitations (e.g.,
interference avoidance).

In our initial development of a distributed algorithm, we
assume that the network is synchronized via a global clock,
no messages are lost, and that there is no interference. We
then extend the algorithm to work without the benefit of a
global clock, in networks where interference and packet loss
is possible.
1) The Formation of Clusters: In the first phase of the

algorithm, a clustering is constructed on the nodes using the
aforementioned distance information. Once this phase is com-
plete, each node will be assigned to at least one cluster, and each
cluster will have one “clusterhead” node. We define the cost of a
particular cluster as the power required for the clusterhead node
to transmit to all other nodes in the cluster (in one transmission).
In addition, we consider the cost of a particular clustering to be
the sum of the costs of its clusters. Given this cost function, we
attempt to develop a minimum cost clustering.

a) Centralized clustering algorithm: Before describing
our distributed clustering algorithm, we first describe a cen-
tralized clustering scheme. Throughout the execution of the
centralized algorithm, each node i’s range is referred to as
ri, and each node is either unmarked or marked, reflecting its
membership in a cluster. The algorithm begins with ri = 0, for
all i, and all nodes unmarked, and proceeds as follows.

1) For each node i, compute the function αi(r). If i was to
increase its range to r, this function represents the average
additional energy cost incurred for each new unmarked
node within distance r of i. More precisely,

αi(r) =
P (r) − P (ri)

Ui(ri, r)

ri < r ≤ R

P (x) power to transmit at range x;
Ui(x1, x2) number of unmarked nodes in between

distances x1 and x2 of i;
ri node i’s present transmission range.

2) For each node i, compute the range at which αi(r) is
minimized. This is the most cost-efficient range increase
(in a greedy sense) for node i. Denote this range as rmini,
and the value of α at this range as amini.

3) Find the node j that has the smallest value of amin—this
is the node that (globally) has the most cost-efficient

range increase. Increase rj to rminj , and mark nodes j
and all nodes within distance rminj of j.

4) Repeat steps 1)–3) until all nodes are marked.

Once the above algorithm terminates, the final ri values
specify a clustering (because nodes are only marked if they
belong to a cluster). Each node with nonzero ri is considered a
clusterhead, and all nodes within distance ri of i are considered
members of i’s cluster (note that a particular node may be a
member of more than one cluster). Since we choose the range
increase that minimizes the average additional cost incurred per
node marked, we are hopeful that the clustering produced is cost
efficient.

Interestingly, the greedy behavior of the above algorithm can
be implemented distributively, with one important difference.
The distributed algorithm, for reasons stated earlier, does not
attempt to find a global minimum, but instead attempts to find
the local minima. Although this may result in less power-
efficient clusterings, such inefficiencies are inherent to many
localized algorithms.

b) Distributed clustering algorithm: As in the global al-
gorithm, each node i maintains a range value ri initially set to
0, and is initially unmarked. Additionally, we ensure that each
node i maintains up-to-date values of: 1) rj for all neighbors j;
and 2) Marked status of all nodes in the two-hop neighborhood.
The algorithm we propose operates in stages. During each
stage, local minima are computed, and the ranges of some
nodes are consequently increased. Information about the range
increases are then propagated. Once this has been completed,
each node has updated its state information to reflect the last
stage’s changes, and the next stage begins.

Note that because we are assuming that all nodes are syn-
chronized, we describe the algorithm in stages and substages,
where each stage and substage begin on predefined clock
boundaries. In each stage, each node executes the following
substages:

Substage 1) If node i is unmarked, it computes, for each
neighbor j, the minimum value of αj(r) for
r ≥ distance(i, j). That is, i finds the most cost-
efficient range increase for j, looking only at
those ranges that would allow i to be a member
of j’s cluster. Denote the value of the range and
α found through this computation as rminj→i

and aminj→i, respectively.
Each node i then finds the neighbor node k with
minimum value of amink→i and sends k a Pre-
ferred message containing range value rmink→i.
This message is sent at full power, so that it can
be heard by all of i’s neighbors.
If i is already marked, it does not participate in
this substage.

In addition, each node i (marked or unmarked) executes the
following steps.

Substage 2) At this substage, i has received all Preferred
messages from its unmarked neighbors. If i re-
ceives a Preferred message with range value
r′ from all unmarked nodes within distance r′

(indicating that it is a local minima), i increases

AHLUWALIA AND MODIANO: ENERGY-EFFICIENT BROADCAST TREES IN WIRELESS AD HOC NETWORKS 2139

ri to the value r′. Upon increase, it transmits
a Range_Increase message at maximum power,
telling all neighbor nodes that i has increased
its range to r′. If i is not already a member
of a cluster, it also broadcasts a Marked_Status
message to its two-hop neighborhood, indicating
that i has been marked (by virtue of becoming a
clusterhead).

Substage 3) If i receives a Range_Increase message from a
neighbor j, such that the distance from i to j
is less than the new value of rj , i is a member
of j’s cluster. Consequently, if i is not already
a member of another cluster, it broadcasts a
Marked_Status message to its two-hop neighbor-
hood, indicating that i has been newly marked.
Additionally, at this substage, i may receive a
Marked_Status message from a neighbor that
has just become a clusterhead (in the previous
substage). It forwards this message at maximum
power (to ensure that it goes to all nodes two
hops away from the clusterhead).

Substage 4) At this substage, each node i may receive a
Marked_Status message from a newly marked
neighbor j. It retransmits this message at max-
imum power, to ensure that it reaches j’s two-
hop neighborhood. At the next substage, all
messages will have reached their intended re-
ceivers. Therefore, in the next substage, each
node i will have up-to-date information on rj for
all neighbors j, and the Marked status of every
node in the two-hop neighborhood. After this
substage, a new stage begins.

The algorithm terminates once all nodes have been marked
(and hence no Preferred messages are being generated). Be-
cause nodes only mark themselves when they have become a
member of a cluster, this also means that, upon termination,
the final values of ri produce a clustering. Note the following
properties of this algorithm.

1) The algorithm terminates in a linear number of stages.
Consider any stage of the algorithm where not all nodes
have been marked. We show that at least one new node
will be marked in this stage. Let amini be the minimum
value of αi for node i. There must exist some node j for
which aminj is minimum over all nodes. Because this
is the global minimum, in the next stage, all unmarked
nodes within distance rminj of j will send j a Preferred
message with range value rminj (if not, aminj would
not have been the global minimum). Therefore, in the
next stage, j will increase its range, and some set of
previously unmarked nodes will be newly marked. This
further implies that in every stage, at least one node is
marked, completing the proof.

2) The algorithm uses O(N2) messages. In each stage, there
is at most one Preferred message and one Range_Increase
message per unmarked node, resulting in O(N) messages
per node per stage, and O(N2) messages total. Addi-
tionally, each node transmits a Marked_Status message

when it has been marked (this occurs once per node
throughout the algorithm). Because each node has two-
hop neighborhood information, it can compute a spanning
tree upon which to forward this Marked_Status message.
Therefore, it takes at most O(N) messages to forward the
Marked_Status message to the two-hop neighborhood.
Hence, we have at most O(N2) Marked_Status messages,
and O(N2) Preferred/Range_Increase messages.

A clustering sweep procedure: Note that in the clustering
produced by the algorithm above, it is quite possible that a
node is simultaneously a member of more than one cluster.
That is, clusters may overlap. As in the BIP procedure, there
is a similar opportunity to implement a “sweep”-like algorithm
[8]. This “sweep” goes through the clustering in a distributed
manner, and finds nodes whose range can be reduced, while still
making sure every node is still a member of at least one cluster.
The ranges of these nodes are then reduced to produce a lower
power clustering. We implemented a very simple cluster-sweep
procedure that performs this operation.
2) Joining Clusters Together: After a clustering has been

found, we use a well-known distributed algorithm for construct-
ing directed MST (DMST) [7] to join the clusters together.
Specifically, this can be accomplished as follows.

1) Construct the directed graph G′ = (V ′, E′) where V ′ =
V , and the cost of each edge (i′, j′) is equal to
max(0, P (distance(i′, j′)) − P (ri)), where ri < R, and
P (x) denotes the power to transmit at a range x. This
represents the incremental power required to establish a
link from i′ to j′, after the clustering has been performed.

2) Once the cost of each edge has been computed, we run
the algorithm for computing a DMST on G′ for source s.
By definition of the directed spanning tree, we will have
constructed a broadcast tree rooted at s.

Our distributed algorithm first computes a clustering, sweeps
the clustering, and then runs the DMST algorithm to join the
clusters together. Note that the algorithm in [7] computes the
DMST rooted at every node with O(N2) message complexity.
Therefore, our algorithm computes the broadcast tree rooted at
every node simultaneously.
3) Implementation Considerations: Although this synchro-

nous algorithm works fine when there is a global clock and we
assume no messages are lost or reordered, this is not at all a
reasonable expectation of real-world environments. In practice,
keeping global clocks up to date requires considerable message
complexity and node coordination. Additionally, messages can
be lost in wireless communication, requiring retransmissions
that cause arbitrary message delays. Although the presentation
in [7] demonstrated that clusters can still be joined successfully
under these conditions, the clustering phase of our algorithm is
of concern.

To extend our clustering algorithm to work without global
synchronization, and in the presence of arbitrary message de-
lays we can note the following. In each stage, three substages
occur: 1′) Preferred messages are sent, 2′) some nodes increase
their range and send a Range_Increase, and 3′) Marked states
are propagated. If we ensure a node does not proceed to
substage k + 1′ without receiving the messages of substage k′,

2140 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

the clustering developed will be identical to the synchronous
case. For a node to make the same decision as in the synchro-
nous algorithm in a substage k + 1′, it must have received all
messages destined to it, and sent off in any previous substage
(all state information must be up to date). Hence, the algorithm
can tolerate reordering of messages within a substage as long as
the algorithm requires nodes to wait for all messages to arrive
before proceeding to the next substage.

We can do this as follows. Assume that every node has up-
to-date information from the previous stage (values of ri for
each neighbor, and the Marked status of each node in the two-
hop neighborhood). In substage 1′, each unmarked node sends a
Preferred message, as in the synchronous algorithm. Each node
is not allowed to enter a substage 2′ until it has received all Pre-
ferred messages from its unmarked neighbors. Once a node is
allowed to enter substage 2′, it sends off a Range_Increase mes-
sage as in the synchronous algorithm. If it will not increase its
range, the node sends off a Non_Action_Range_Increase mes-
sage to indicate this. As with substage 2′, no node is allowed
to enter substage 3′ until a substage 2′ message is received
from all neighbor nodes. Once a node enters substage 3′, it
sends off a Status message only if it was unmarked in the last
stage. Once a node has received a Status message from every
unmarked neighbor, it composes and sends a Status_Summary
message, which lists all nodes that have been marked in this
stage (this ensures that a Marked update from a node travels
two hops). A node is then not allowed to enter the next stage
until a Status_Summary message has been received from all
neighbors (note that once this is done, the node has received all
messages destined for it in this stage, and therefore has up-to-
date information). This algorithm ensures that no two neighbor
nodes are out of synchronization by more than one substage,
regardless of message delay.

Since the above algorithm tolerates messages delivered with
arbitrary delay, it can further be extended to tolerate networks
where messages can be lost through the use of a link-layer
retransmission protocol (ARQ). Such a protocol guarantees
the eventual delivery of packets, although the delivery time
of the packet may vary based on the need for retransmission.
However, since the above algorithm can tolerate packets that
are arbitrarily delayed, we are assured that it will terminate
successfully.

B. Simulation Results

To gauge the performance of our algorithm against BIP,
we simulated the performance of BIP, and our distributed
algorithm, in networks restricted to the 1 by 1 unit square. In
simulating these algorithms at a particular network size, we first
constructed a set of 100 instances, each having the same number
of nodes. For each instance, nodes were randomly placed (with
uniformly distributed coordinates)in the unit square, and one
node was randomly chosen to be the source. Each algorithm
was then executed on each of the 100 instances. After a tree
was computed, the appropriate sweep procedure was executed
on the tree. We compared the performance of our algorithm
to BIP for networks with between 10 and 300 nodes. The
results (shown in Fig. 2) display the relative performance of our

Fig. 2. Distributed versus centralized cluster formation.

Fig. 3. Distributed versus centralized cluster joining.

algorithm as compared to BIP, averaged over the 100 instances.
As can be seen from the figure, our distributed algorithm
consumed, on average, 18% more energy than the central-
ized BIP.

Also shown in the figure is the result of using the centralized
clustering algorithm described earlier.1 As can be seen from
the figure, the centralized clustering algorithm performs only
marginally better than the distributed clustering algorithm. This
tells us that the inefficiency due to the distributed formation
of clusters is minimal. In order to further explore this issue,
we also compared our algorithm to an alternative algorithm
that uses a variation of BIP to join the clusters. This algorithm
uses our distributed clustering procedure to form the clusters,
and then uses BIP to join the clusters, as opposed to the
distributed spanning-tree algorithms (DMST). The results of
this new algorithm are shown in Fig. 3. As can be seen from
the figure, joining the clusters together using the centralized
BIP leads to a significant reduction in total energy consumption,
and performs nearly as well as the centralized BIP. This, taken
with the results of Fig. 2, suggest that the inefficiency in the

1Clusters were formed using the centralized algorithm described earlier;
however, they were joined using the distributed spanning-tree algorithm
(DMST).

AHLUWALIA AND MODIANO: ENERGY-EFFICIENT BROADCAST TREES IN WIRELESS AD HOC NETWORKS 2141

Fig. 4. Impact of transmission range (N = 100 nodes).

distributed construction of the broadcast trees is not in the
distributed formation of the clusters, but rather in the distributed
“joining” of clusters.

It is interesting to note that our results were largely insen-
sitive to the maximum transmission range of the nodes. To
explore this, we considered the implementation of both BIP
and our distributed algorithm when the maximum transmission
range of the nodes is limited. This allows for a direct and
fair comparison between BIP and our distributed algorithm.
In Fig. 4, we plot the deviation of our algorithm from BIP
versus the maximum transmission range of the nodes. We also
plot the deviation of BIP with limited transmission range from
BIP with unlimited range. As can be seen from the figure,
we found that as long as the maximum transmission range of
the nodes was greater than the minimum range required to
achieve connectivity, the cost of forming a broadcast tree using
either BIP or our distributed algorithm was largely unchanged.
Notice that in the case of BIP, the energy consumption with
a limited transmission range has a zero deviation compared to
BIP with an unlimited range. Hence, at all relevant transmission
ranges, our algorithm consumed about 18% more energy than
BIP. Moreover, this observation implies that most nodes in the
broadcast tree use relatively small transmission ranges.

IV. MULTIPLE-SOURCE BROADCAST

In our analysis so far, we have assumed there is only one
source from which one message is sent to all other nodes in
the network. However, in many networks, it may be useful
to have several sources send the same message to every node
in the network. For example, in a sensor network, certain
special “supervisor” sensors may have satellite links to a central
communication center. If a control command is to be issued
from the communication center, destined to reach all sensors,
it can be sent to all supervisor nodes via satellite, and then
forwarded to the entire sensor network. In such a scenario,
significant energy could be saved by broadcasting the message
from many supervisor nodes, instead of just one. We investi-
gate this possibility, and construct variants of our distributed
algorithm and BIP to work in this case.

The multiple-source problem can be formally presented as
follows. We are given a set of nodes N and their coordinates

on the two-dimensional plane. Additionally, we are given a
range R, which represents the maximum distance any node
can transmit a message, and a constant α > 0, representing the
power-loss exponent. We construct the undirected graph G =
(V,E) where V = N and (i, j) ε E ⇐⇒ dij ≤ R. Assuming
this graph is connected, the problem can be stated formally as:

Given a set of sources S ⊆ N construct the minimum
cost directed forest2 F (where each tree in this forest is
rooted at some s ε S) such that, ∀n ε N − S, ∃s ε S such
that there is a directed path from s to n in F . The cost
of F is defined as

∑
n ε N f(n), where f(x) = max{dα

xj :
(x, j) ε F}.

Note that because this is a generalization of BCAST, the
decision version of this problem is also NP-complete.
1) Multiple-Source BIP: To modify BIP to work for mul-

tiple sources, we can note the following: the proof of BIP’s
correctness relies on the fact that at each iteration, the tree
being constructed T contains a path from the single source s to
every node in T . Each time a node is added to T , this property
is maintained. Therefore, the tree at the end of the algorithm
contains a path from the source to every other node (and for
this reason, is a valid tree). Analogously, in the multiple-source
problem, we can maintain a forest F such that there is a path
to every node in the forest from at least one source node. When
adding a node from N − F to F we can use the same criteria
as in the original BIP (least additional power). If we continue
to add nodes in this way, the forest constructed at the end
of the algorithm will ensure a path to every node from some
source node. This algorithm can be described more completely
as follows.

Throughout its execution, maintain a set of nodes F that
denote the forest made so far. Additionally, maintain a power
pi for each node in F (initially, F = S and ps is set to zero for
each node s ε S). At each step, increase the power of a node
f ε F to reach a node n ε N − F . Specifically, increase the
power of the node f that requires the least additional power to
reach a node in N − F (the additional power for f to reach
node n is Power(f, n) − pf). Once a node n has been chosen
to be added by some node f , n is added to F with pn = 0,
and pf is increased to Power(f, n). This process continues until
F = N .

We consider the above algorithm as an extension of BIP to
the multiple-source problem.
2) Distributed Algorithm With Multiple Sources: To under-

stand how we might extend the distributed algorithm, we must
generalize each step that it takes. This would include the
clustering algorithm, the clustering sweep, and the DMST al-
gorithm used to join clusters together. Note that the distributed
clustering algorithm presented above generates a clustering that
is source independent. That is, the clustering developed is not
effected by the choice of source node. Therefore, this algorithm
can still be used in the multiple-source case. A similar argument
can be applied to the clustering sweep.

Peculiarly, note also that if we did not modify the DMST
algorithm we would still construct a valid tree. However, this

2A forest is a collection of subtrees.

2142 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

Fig. 5. Performance of the multiple-source variant of BIP, relative to BIP with one source.

Fig. 6. Performance of the multiple-source variant of our distributed algorithm, relative to algorithm with one source.

tree would only utilize one source, and may consequently miss
an opportunity for cost savings. To fix this, we first look at how
to remedy the multiple-source problem in graphs with nonnega-
tive edge weights (with no geometric restriction), where the cost
of a forest is the sum of the edge weights. In this environment,
we add a directed edge to the original graph between each pair
of sources in S with cost zero (if the edge already exists, we
modify its cost to be zero). Note, that if we now compute the
minimum-cost single-source directed spanning tree rooted at
any node s in S, the resulting tree will specify the minimum-
cost forest.

In the multiple-source BCAST environment, where the cost
function and geometric restrictions are different, we employ a
similar idea. We modify the use of the DMST algorithm as
follows. Note that originally the cost of each directed edge
(i′, j′) in our graph G′ is set to max(0, P (distance(i′, j′)) −
P (ri)), where ri is the range assigned from the clustering-
sweep algorithm, and P (x) denotes the power to transmit at

a range x. We add a directed edge to G′ between each pair of
sources in S with cost zero. We then run the DMST algorithm
of [7] on this modified graph. Note that although the DMST
algorithm calculates the broadcast tree rooted at every node,
our modified algorithm is based on a DMST algorithm that
computes a forest with only source nodes as roots.
3) Performance: We simulated the efficiency of the modi-

fied BIP algorithm and our distributed algorithm on graphs with
multiple sources to gauge their performance. The results of our
simulation are shown in Figs. 5 and 6. As discussed previously,
for simulation at a particular network size, we first constructed
a set of 100 instances, each having the same number of nodes.
For each instance, nodes were randomly placed with uniformly
probability in the unit square, and a random set of sources was
chosen. Each algorithm was then run on each of the 100 in-
stances. After a tree was computed from any algorithm, the
sweep procedure from [8] was run on the tree before compari-
son. The results were then averaged over the 100 instances.

AHLUWALIA AND MODIANO: ENERGY-EFFICIENT BROADCAST TREES IN WIRELESS AD HOC NETWORKS 2143

Fig. 5 demonstrates that the power of the BIP tree decreases
at about twice the rate of increase in the number of source
nodes. Hence, with 2% of the nodes being designated to be
source nodes, a 4% reduction in power is achieved. Addition-
ally, the cost savings begin to diminish as the percentage of
source nodes increases. The behavior of our distributed algo-
rithm, shown in Fig. 6, seems to be very similar. In this case, a
reduction of 5% in energy is achieved with the addition of 2% in
source nodes. Again, this reduction in energy use diminishes as
the percentage of source nodes is increased. This seems to indi-
cate that the use of additional sources is only marginally useful
for the purposes of minimizing energy consumption. However,
notice that the location of the source nodes was assumed to
be random. It is rather likely that if source nodes were chosen
optimally, the energy savings would be far more significant.

V. CONCLUSION

A primary contribution of this paper was in showing that
the problem of forming minimum energy broadcast trees is
NP-complete. Additionally, we developed a distributed algo-
rithm that computes suboptimal broadcast trees using O(N2)
message complexity in polynomial time. This algorithm com-
putes all N possible broadcast trees (one for each on N possible
source nodes) and only consumes 18% more power on average
than trees produced by the centralized broadcast incremental
protocol (BIP) algorithm. A nice feature of the algorithm is that
it forms energy-efficient clusters that can be used for general
energy-efficient communication (e.g., point to point). We also
introduced the multiple-source broadcasting problem, where a
number of nodes can be used as source nodes to broadcast the
message. This idea of multiple source nodes opens an inter-
esting avenue for future research. For example, the problem of
optimal positioning of the source nodes, in order to minimize
the amount of energy needed to form a broadcast tree, is an
interesting direction for future research.

Another interesting direction for future research is to con-
sider the effect of mobility. The distributed algorithms de-
scribed in this paper would work effectively in static topologies
or topologies with limited mobility. However, with signifi-
cant mobility, the problem of finding and maintaining routes,
even without consideration of energy, is challenging [1]. The
distributed clustering algorithm described in this paper holds
some promise of performing well in a mobile environment as
the “clustering” is localized and, therefore, not as affected by
mobility.

APPENDIX

PROOF OF NP-COMPLETENESS

Before presenting the proof of Theorem 1, we start by going
over the theorems, algorithms and definitions that we use to
prove BCAST’s NP-completeness.

Node Cover: Given an undirected graph G = (V,E), a node
cover is a set of nodes S ⊆ V , such that for every edge
(i, j) ε E, i ε S or j ε S.

Connected Node Cover: A connected node cover of a graph
G = (V,E) is a node cover S, such that the graph induced by
S on G is connected.

Fig. 7. POGD for the graph G with additional edge {B, D}.

Fig. 8. G is also a planar graph. This demonstrates a planar embedding for
the graph G.

Fig. 9. POGD for the graph G.

Connected Dominating Set: A dominating set of a graph G =
(V,E) is a subset S ⊆ V , such that every node in V is either in
S or is a neighbor of a member of S. A connected dominating
set is a set S, such that the subgraph induced by S is connected,
and S is a dominating set (Fig. 7).

Planar Graph: A planar graph G = (V,E) is a graph that can
be drawn in the plane without any edges overlapping. In other
words, there exists a function π1 : V → R × R, such that if
we draw a point at π1(v) for all vεV , and then draw a straight-
line segment from π1(i) to π1(j) in the plane for all (i, j) ε E,
no line segments will cross. The function π1 is referred to as a
planar embedding of the planar graph G (Fig. 8).

Planar Orthogonal-Grid Drawing: Given a planar graph G =
(V,E), a planar orthogonal-grid drawing (POGD) of G is a
drawing on a grid such that each vertex is mapped to a grid point
via some function π2 : V → Z × Z, and each edge is mapped
to a sequence of horizontal and vertical grid segments, such that
no two edges ever cross (Fig. 9).

Unit Disk Graph: A graph G = (V,E) is considered a unit
disk graph if there exists a mapping π3 : V → Q × Q to points
on the two-dimensional grid such that (i, j) ε E π3(i) and π3(j)
are less than distance 1 apart (Fig. 10).

2144 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

Fig. 10. Example showing G is also a unit disk graph. This is a demonstration
of π3.

Fig. 11. Constructing the POGD in Step 1 of the reduction.

Having defined the terms above, we are now in a position to
present the results of other papers used in our proof.
Theorem 2—NP Completeness of Planar Connected Node

Cover: Given a planar graph G = (V,E) of maximum degree
less than or equal to 4, determining the existence of a connected
node cover V ∗ ⊆ V of G such that |V ∗| ≤ k, for some given
k ε Z+, is NP-complete. Proved in [3]. Hereafter, we refer to
this decision problem as PLANAR.
Theorem 3—Orthogonal-Grid Drawings of Planar Graphs:

Given a planar graph G = (V,E) of maximum degree less than
or equal to 4, an orthogonal-grid drawing of this graph can
be drawn in polynomial time, such that the size of the grid is
polynomial in |V |. Proved in [4].
Theorem 4—Connected Domination in Unit Disk Graphs:

Finding a minimum-sized connected dominating set of a unit
disk graph is NP-complete. We refer to the decision version
of the connected dominating-set problem (i.e., “Does there
exist a connected dominating set of size no more than k?”) as
CDSUDG. We reproduce the reduction used in the proof of this
theorem (from [5]) below.

Given an instance of PLANAR, with graph G = (V,E),
maximum node-cover size k ε Z+, we convert it to an instance
of the CDSUDG problem as follows.

1) We first construct the POGD of G using the algorithm
mentioned in Theorem 3 (this is done on an example
graph in Fig. 11).

2) We then multiply the size of the grid by 6 so that each line
segment of length one is mapped to a segment of length
6. At this point, we set r = 1 grid length (hereafter, we
also refer to a node transmitting at range r as using one
unit of power). This illustrated in Fig. 12.

3) Place a node at every grid point in the POGD, and denote
this set of nodes as P [For example, if the line segment
from (0, 0) to (0, 2) is in the orthogonal-grid drawing, P
contains nodes at positions (0, 0), (0, 1), and (0, 2)]. Note

that each vertex v ε V in the instance of PLANAR maps
to a node in p ε P , such that π2(v) = p (where π2 is the
function in the definition of a POGD). For each p ε P
such that π2(v) = p for some v ε V , we refer to p and
all nodes in P that are within one grid length of p as the
node region of v. Those nodes that are in the node region
by virtue of being within one grid length of p are called
the end nodes of that node region. The other node (the
one that is mapped to from V via π2) is referred to as the
center node of this node region. See Fig. 13.

4) We then construct the set Pl as follows. Construct the
subset P ′ ⊂ P , which contains all nodes in P that are
not in node regions. Also, for future reference, we denote
the set P ′′ ⊂ P as the set of nodes in P that are not center
nodes. Pl is then constructed such that: 1) each Pl node
is placed at a grid point; 2) for each node in P ′, there
is exactly one node in Pl located one grid length away;
3) for each node in Pl, there is exactly one node in P ′

located one grid length away; and 4) no node in Pl is
within one grid length of any node in P − P ′ (Fig. 14).
This operation effectively creates a “layer” of nodes
around the original POGD’s edges, which is why we use
the subscript l).

To complete the reduction, we construct a unit disk graph, so
that every node in P ∪ Pl corresponds to a node in the unit disk
graph, and edge (i, j) exists in the unit disk graph iff i and j’s
corresponding nodes are within distance 1 of each other.

Denote |V | as the total number of nodes in the original
PLANAR instance, and |E| as the total number of edges. In
the last step of the reduction in [5], the following lemma was
proved.
Lemma 1: There is a vertex cover of size no more than

k in the original PLANAR instance iff there is a connected
dominating set in the corresponding unit disk graph of size no
more than |V | − |E| − 1 + k + |P ′′|.

A. Proof of Theorem 1

We construct a reduction from PLANAR to BCAST inspired
by the reduction used in [5], showing that we can convert any
instance of PLANAR into an appropriate instance of BCAST
in polynomial time. We confirm the correctness of our trans-
formation by showing that every positive instance of PLANAR
maps to a positive instance of BCAST, and that every negative
instance of PLANAR maps to a negative instance of BCAST.
This demonstrates that BCAST is NP-hard. We go on to prove
that it is NP-complete, by showing BCAST ε NP.

1) The Reduction: In proving the NP-hardness of BCAST,
we can extend the reduction in [5] and use some of the proper-
ties derived there to prove the correctness of our reduction.

To extend the reduction in [5], we construct the BCAST
instance from PLANAR instance as follows. First, we perform
the reduction in [5] to an instance of CDSUDG. We then modify
this reduction as follows.

Choose an arbitrary magnified POGD edge segment, such
that one end of the segment corresponds to a center-node
position (note that the POGD is magnified six times, so it must
be six grid units long, and contain six nodes). Denote the first

AHLUWALIA AND MODIANO: ENERGY-EFFICIENT BROADCAST TREES IN WIRELESS AD HOC NETWORKS 2145

Fig. 12. Multiplying the grid size in Step 2 of the reduction.

Fig. 13. Step 3 of the reduction. P is the set of nodes in the graph on the right. The end nodes in A’s node region are at (6,11) and (6,13).

Fig. 14. Step 4 of the reduction. Black nodes are nodes in P ′, and Pl nodes are white. Nodes denoted with a “+” are in node regions.

four nodes in P along this POGD segment (starting from the
center node) as n1, n2, n3, and n4. Hence, n1 corresponds
to a center node, and n2 to an end node. Adjust the Pl nodes
corresponding to n3 and n4, so that they are not within one grid
length of each other. Note that this adjustment to the CDSUDG
instance can be done for any Pl, while still satisfying the other
conditions required of nodes in Pl. Therefore, the CDSUDG
instance is still valid after this adjustment has been made, and
all proofs concerning the CDSUDG instance [5] still hold for
this modified reduction.

1) The nodes of the BCAST instance are the same as those
in the generated CDSUDG instance (note that this is valid

because each node in the generated CDSUDG instance is
located at integer coordinates).

2) Set the source node of the BCAST instance s to be n3

from above. This is demonstrated in Fig. 15, where the
source is chosen to be at (12, 8).

3) The range of each BCAST node is set to one grid
length.

Note that even with the addition of these steps, the total time
for the reduction is still polynomial.
2) Proving NP-Hardness From This Reduction: Assume

that we have taken a PLANAR instance and converted it to
an instance of CDSUDG, and extended the CDSUDG instance

2146 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

Fig. 15. Step 4 of the reduction, with a box around the nodes n1 through n4. Black nodes are nodes in P ′, and Pl nodes are white. Nodes denoted with a “+”
are in node regions.

as noted above to construct an instance of BCAST. Then, the
following lemma holds.
Lemma 2: There exists a BCAST tree of power no more

than |V | − |E| − 1 + k + |P ′′| iff there exists a connected
node cover of size no more than k in the original instance of
PLANAR.

Proof: Note the following observations about the BCAST
instance constructed.

Observation 1: All neighbors of a node in the instance of
CDSUDG are at distance exactly 1. Because
the range of each node in the BCAST in-
stance is one, this implies that in any BCAST
tree, a given node is either using one unit of
power or zero units of power. Therefore, we
can consider a node in the BCAST instance
as either being “ON” or “OFF.”

Observation 2: The source node must be included in any
connected dominating set in the generated
instance of CDSUDG (because it is the sole
node within one grid length of its correspond-
ing Pl node).

Observation 3: Any connected dominating set (CDS) for the
instance of CDSUDG can be mapped to a
valid tree in the matching BCAST problem.
To do so, turn on only those nodes in the
BCAST instance that are in CDS. This is a
valid BCAST tree, because it includes the
source s as turned “ON” (by Observation
2), and for a given node n in the BCAST
instance, there is a path from s to that node
via “ON” nodes (by virtue of CDS being
a connected dominating set). Additionally,
the number of elements in CDS is equal to
the power used in the BCAST instance (by
Observation 1). Therefore, every solution to
the generated CDSUDG instance maps to a
corresponding BCAST solution. We can also
prove the converse statement. To prove this,
note that the “ON” nodes in a BCAST solu-
tion must constitute a dominating set (other-

wise, there is a node which cannot be reached
by the source in the BCAST solution, imply-
ing it is invalid). Additionally, in any valid
BCAST tree, there is a path from the source
to every “ON” node. This implies the set of
“ON” nodes is also connected. Therefore, we
can map a BCAST solution to a CDS in the
matching CDSUDG problem by selecting the
set of “ON” nodes. Note, that the power used
in the BCAST solution is exactly equal to the
cardinality of the CDS that it maps to.

Observation 3 implies that there exists a
connected dominating set of size no more
than J in the CDSUDG instance iff the cor-
responding instance of BCAST contains a
broadcast tree of power no more than J . This
statement, taken together with Lemma 1, im-
plies Lemma 2. �

Lemmas 1 and 2 imply that we can map every instance
of PLANAR to an instance of BCAST in polynomial time,
proving that BCAST is indeed NP-hard. Also, note that the
coordinates of each BCAST node generated this way have
sizes that are, at most, a polynomial function in the number of
nodes (because in [4], the size of the POGD is polynomial in
the number of nodes). This fact further implies that BCAST is
strongly NP-hard. For problems in which a value is a parameter
(in this case, the value is node coordinates), a strongly NP-
complete problem is one that remains NP-complete even if the
parameters are restricted to be polynomially bounded by the
size of the problem instance [2].

In order to complete our proof, we must show that
BCAST ε NP. This is clearly true because verifying the
correctness of a broadcast tree can be done in polynomial time.

REFERENCES

[1] E. Royer and C. K. Toh, “A review of current routing protocols for ad
hoc wireless networks,” IEEE Pers. Commun., vol. 6, no. 2, pp. 46–55,
Apr. 1999.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: Freeman, 1979.

AHLUWALIA AND MODIANO: ENERGY-EFFICIENT BROADCAST TREES IN WIRELESS AD HOC NETWORKS 2147

[3] ——, “The rectilinear Steiner problem is NP-complete,” SIAM J. Appl.
Math., vol. 32, no. 4, pp. 826–834, Jun. 1977.

[4] R. Tamassia and I. G. Tollis, “Planar grid embedding in linear time,” IEEE
Trans. Circuits Syst., vol. 36, no. 9, pp. 1230–1234, Sep. 1989.

[5] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”
Discrete Math., vol. 86, no. 1–3, pp. 165–177, 1990.

[6] W. T. Chen and N. F. Huang, “The strongly connecting problem on
multihop packet radio networks,” IEEE Trans. Commun., vol. 37, no. 3,
pp. 293–295, Oct. 1989.

[7] P. A. Humblet, “A distributed algorithm for minimum weight directed
spanning trees,” IEEE Trans. Commun., vol. 31, no. 6, pp. 756–762,
Jun. 1983.

[8] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “On the construction
of energy-efficient broadcast and multicast trees in wireless networks,”
in Proc. IEEE Conf. Computer Communications (INFOCOM), Tel Aviv,
Israel, Mar. 2000, pp. 585–594.

[9] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum
connected dominating sets,” in Proc. Int. Conf. Communications (ICC),
Montreal, QC, Canada, 1997, pp. 376–380.

[10] B. Daneshrad, Variable Rate Low Power FHSS Baseband Processor.
[Online]. Available: http://www.ee.ucla.edu/~babak/thss/thss.html

[11] M. B. Pursley, H. B. Russell, and J. S. Wysocarski, “Energy-efficient
transmission and routing protocols for wireless multiple-hop networks
and spread-spectrum radios,” in AFCEA/IEEE EuroComm Conf., Munich,
Germany, May 17–19, 2000, pp. 1–5.

[12] N. Jindal and A. Goldsmith, “Capacity and optimal power allocation for
fading broadcast channels with minimum rates,” in IEEE Global Telecom-
munications (GLOBECOM), San Antonio, TX, 2001, pp. 1292–1296.

[13] S. Kandukuri and S. Boyd, “Optimal power control in interference limited
fading wireless channels with outage probability specifications,” IEEE J.
Sel. Areas Commun., Wirel. Commun. Series, vol. 1, no. 1, pp. 46–55,
2001.

[14] K. Leung, “Integrated link adaptation and power control for wireless
IP networks,” in Proc. IEEE Vehicular Technology Conf. (VTC), Tokyo,
Japan, May 2000, pp. 2086–2092.

[15] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder, “Minimum-energy
broadcast routing in static ad hoc wireless networks,” in Proc. IEEE Conf.
Computer Communications (INFOCOM), Anchorage, AK, 2001, vol. 2,
pp. 1162–1171.

[16] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless net-
works,” IEEE J. Sel. Areas Commun., vol. 17, no. 8, pp. 1333–1344,
Aug. 1999.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1991.

[18] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan, “A cluster-
based approach for routing in dynamic networks,” in Proc. ACM SIG-
COMM Comput. Commun. Rev., 1997, vol. 27, pp. 49–64.

Ashwinder S. Ahluwalia received the B.S. and
M.Eng. degrees in electrical engineering and com-
puter science from the Massachusetts Institute of
Technology, Cambridge, MA, in 2002.

His body of research work deals primarily with
graph-optimization problems in wireless ad hoc net-
works, concerning both complexity theoretic results
and algorithms for approximation. He is currently a
Senior Member of Technical Staff at Oracle Corpo-
ration in the Distributed Database Group. At Oracle,
he primarily works on networking and systems prob-

lems that arise from the navigation of large data sets in multitiered database
applications.

Eytan H. Modiano (S’90–M’93–SM’00) received
the B.S. degree in electrical engineering and com-
puter science from the University of Connecticut
at Storrs in 1986, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland, College Park, in 1989 and 1992, respec-
tively.

He was a Naval Research Laboratory Fellow be-
tween 1987–1992 and a National Research Council
Post-Doctoral Fellow between 1992–1993. Between
1993–1999, he was the Project Leader for the Massa-

chusetts Institute of Technology (MIT) Lincoln Laboratory’s Next Generation
Internet (NGI) project. Since 1999, he has been an Associate Professor in the
Department of Aeronautics and Astronautics and the Laboratory for Informa-
tion and Decision Systems (LIDS) at MIT. His research is on communica-
tion networks and protocols with emphasis on satellite, wireless, and optical
networks.

Dr. Modiano had served as a Guest Editor for the IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS (JSAC) Special Issue on Wave-
length Division Multiplexing (WDM) Network Architectures; the Computer
Networks Journal Special Issue on Broadband Internet Access; the Journal of
Communications and Networks Special Issue on Wireless Ad-Hoc Networks;
and for IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY Special Issue on
Optical Networks. He is currently an Associate Editor for Communication
Networks for the IEEE TRANSACTIONS ON INFORMATION THEORY and for
The International Journal of Satellite Communications. He is the Technical
Program Co-Chair for Wiopt 2006 and Infocom 2007.

