IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 4, AUGUST 1996

639

Efficient Algorithms for Performing
Packet Broadcasts in a Mesh Network

Eytan Modiano, Member, IEEE, and Anthony Ephremides, Fellow, IEEE

Abstract—We consider processors communicating over a mesh
network with the objective of broadcasting information among
each other. One instance of the problem involves a number of
nodes all with the same message to be broadcasted. For that
problem, a lower-bound on the time to complete the broadcast,
and an algorithm which achieves this bound are presented. In
another instance, every node in the mesh has packets to be
broadcast arriving independently, according to a Poisson random
process. The stability region for performing such broadcasts is
characterized, and broadcast algorithms which operate efficiently
within that region are presented. These algorithms involve inter-
acting queues whose analysis is known to be very difficult. Toward
that end we develop an approximation which models an n-
dimensional infinite Markov chain as a single-dimensional infinite
Markov chain together with an n-dimensional finite Markov
chain. This approximate model can be analyzed and the results
compare favorably with simulation.

I. INTRODUCTION

COMMON task for network protocols is the broadcasting
Aof information from one node to the rest of the nodes in
the network. This task is often required during the execution
of parallel algorithms in a network of processors, or other
situations where the nodes of a mesh network generate packets
to be broadcast at random time instances. The latter case,
which is of interest here, is motivated by the following
problem: A number of satellites, laid out in space in a mesh
topology, must occasionally broadcast information to the rest
of the satellites. Each satellite is able to receive information
from all of its neighbors simultaneously, but can only transmit
in one direction at a time. This assumption follows from the
use of optical beams for communication; it runs contrary to
usual assumptions about wireless or cable communications.!
However, a similar situation may also arise in wireless systems
employing highly directive antennas. Furthermore, it applies to
the envisioned architectures of multisatellite personal commu-
nication systems. The objective is then to develop a minimum
delay algorithm for performing these message broadcasts.

Manuscript received March 1993; revised April 1995; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor N. Shacham. This work
was supported by The Naval Research Laboratory and by the National Science
Foundation under Grant NSF-EEC94-02384.

E. Modiano is with the Communications Division, MIT Lincoln Laboratory,
Lexington, MA 02173 USA (email: modiano@ILmit.edu).

A. Ephremides is with the Electrical Engineering Department, University
of Maryland, College Park, MD 20742 USA (email: tony @eng.umd.edu).

Publisher Item Identifier S 1063-6692(96)06092-X.

!In the case of optical beams, each node can have individual mirrors looking
at its transmitting neighbors permanently, while it must slew its transmission
mirror toward each receiving neighbor separately. In this paper, for simplicity,
we assume the slew delay to be negligible; however we seek algorithms which
require very little slewing.

A similar problem was considered in [1], where efficient
algorithms were developed for performing multiple broadcasts
in a binary hypercube, rather than in a mesh. A n X n
mesh is a two-dimensional (2-D) n-ary hypercube and differs
from a binary hypercube in that each node has a constant
number of neighbors (4), regardless of n, while in a binary
hypercube the number of neighbors each node has depends on
the size of the cube, a fact which alters the routing problem
considerably. Therefore, while our approach to solving the
mesh broadcast problem is similar to that in [1], we cannot
employ algorithms similar to those proposed in [1] for the
binary hypercube. At the same time, the mesh topology is
essential for the multisatellite systems while the hypercube
topology was mainly motivated by interconnection network
applications.

To broadcast a packet, a node needs to transmit the packet
along a spanning tree routed at its own location. If no
interfering transmissions take place, the packet will be received
by all of the nodes with a delay which depends on the selected
tree and the order in which the arcs of the tree are traversed.
Also, the delay encountered will be at least equal to the depth
of the selected tree. This simple communication task is called
a single node broadcast. In a n x n mesh any spanning tree
has depth at least equal to n — 1 and therefore a single node
broadcast requires at least n — 1 time units. In fact, the time
to complete the broadcast depends on the tree-depth and the
degree of the nodes of the tree. Thus, although there are many
spanning trees of depth » — 1 in a mesh, they are not all
optimal. A simple algorithm that completes a broadcast in n
time slots is as follows: We partition the mesh into vertical
and horizontal rings as shown in Fig. 1.2 The start node first
transmits the packet along its vertical ring, then each node on
the vertical ring transmits the packet along the horizontal ring.
Since the time to cover a ring is n/2 slots, the total broadcast
time is n.

In Section II, we consider the case of multiple “start” nodes,
that is, we assume that we have d “start” nodes all of which
contain the same packet to be broadcast. Our problem here is
to find a placement for the d “start” nodes, and an associated
broadcast algorithm, to complete the broadcast in minimum
time. We show that in that case the broadcast time is lower-
bounded by n/ V/2d and we provide an algorithm which meets
this bound.

2Notice from Fig. 1 that any two nodes on the ring are at most n/2 hops
apart. This is due to the wraparound property of the mesh where the two
nodes at opposite ends of each ring are connected to each other.

3 For simplicity of the presentation, throughout this paper we assume that
n takes on even values only.

1063-6692/96$05.00 © 1996 IEEE

640

/ Horizontal Ring

BEES

Vertical Ring

4 hd ¢

Fig. 1. A mesh with its vertical and horizontal rings.

Finally, in Section III, we consider what is the main focus
of this paper, namely the case of, so called, multiple-node
broadcasts in the mesh network. In this case, every node has
its own packets to broadcast across the mesh. We assume
that each node generates packets independently according to a
Poisson random process of rate \. We begin by showing that
a necessary and sufficient condition for stability for multiple-
node broadcasts in a mesh is given by, A < 1/(n? — 1). We
then discuss broadcast algorithms that will operate within this
stability region. Again, although these assumptions were mo-
tivated by multisatellite applications, they are also applicable
to wireless networks with highly directive antennas which
are nowadays becoming realistic alternatives for spectrally
efficient indoor or cellular-like wireless systems.

A simple approach to the realization of such multiple-
node broadcasts would be to require each node, when it
has a packet to broadcast, to initiate a broadcast along a
spanning tree routed at itself. This kind of algorithm we call
an “unsynchronized algorithm.” Such algorithms, despite their
simplicity, do not tend to perform well in heavy traffic and
are very difficult to analyze. Also, the lack of coordination
between the nodes can result in an excessive need for rotating
the transmitter’s mirror which may result in large slewing
delays. We therefore focus our attention on synchronized
algorithms (algorithms where the nodes attempt to coordinate
their broadcasts).

We develop two basic synchronized broadcast algorithms
which attempt to minimize average delay while at the same
time having a stability region equal to the one of the multiple-
node broadcast as described above. Unfortunately, both al-
gorithms involve n interacting queues which give rise to a
n-dimensional Markov chain. Obtaining analytical expressions
for the steady state behavior of such a system is known to be
very difficult, if not impossible. Even a numerical evaluation of
an n-dimensional Markov chain is computationly prohibitive
[7]. This leads to the development of an approximate model
for the analysis of interacting queues. The results from the
approximate model compare satisfactorily with simulation,
particularly when arrival rates are low.

In this paper, we do not focus on the exact sequencing of
the transmissions among neighboring nodes. Rather, we try

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 4, AUGUST 1996

to obtain good bounds on delay performance for any such
broadcast protocol. It is well known [2], [7], [8] that computing
or even bounding the delay performance in interacting queue
systems is a problem of formidable complexity. Thus, the
value of tight bounds for design purpose is significant.

II. MULTIPLE START NODE BROADCASTS

We begin by considering the problem of performing mes-
sage broadcasts in a multiple start node environment. Often it
is possible to equip more than one single node with the same
message in the expectation that subsequently the broadcast
to the remainder of the mesh nodes will require less time to
be completed. In the context of the satellite-mesh application,
this situation can be achieved by a single broadcast from one
or more terrestrial nodes that may reach a small subset of
the mesh consisting, say, of d out of the n? total number of
satellites. Our objective is to find a placement for the d start
nodes, and an associated broadcast algorithm, so that the time
to complete the broadcast is minimized. We begin by providing
a lower bound on the broadcast time for a mesh with d start
nodes and we go on to show an algorithm which meets this
bound.

Let AV be the set of all n X n nodes and S be the set of all
d start nodes. Then, let R(d) be the “radius” of a mesh with
d start-nodes defined as follows:

R(d) &

max {min distance (x,s)}
zeN | s€S

where distance(z, s) is the minimum number of hops needed
to reach z from s or vice-versa.

So R(d) is the greatest distance that any node must traverse
in order to reach a start node. Clearly, it will take at least
R(d) time slots in order to broadcast a message throughout
the entire mesh. Also for d > 1, R(d) will depend on where
the start nodes are placed. Next we provide a lower bound
on R(d) which is independent of where the start nodes are
located.

Proposition 1: Consider any start node and let n, (i) be
the number of nodes exactly i hops away from node z. Then

1 1=0 n
4 0<i< -
n 2
ne(i)=q4i-2 i=g5
4(n —1))
2
1 1=7N

Proof: For simplicity we consider only even values of n.
This clearly holds for i = 0. We next number the columns of
the mesh based on their distance from the column containing
node z.* Clearly, there is only one column of distance O (the
one containing x); for 0 < j <n/2 there are two columns of
distance j: for j = n/2 there is one column; and for j >n/2
there are no columns. Now we consider the case of i < n/2.
When i < n/2 a column of distance j has exactly two nodes

4The distance between two columns of a mesh is the obvious distance
between any node of one column and the node on the other column that lies
on the same row with the first node. The distance between any two rows is
defined similarly.

MODIANO AND EPHREMIDES: EFFICIENT ALGORITHMS FOR PERFORMING PACKET BROADCASTS IN A MESH NETWORK 641

of distance ¢ from z if j <4, and only one such node if
J = i It has no nodes of distance ¢ from z if i < j. So the
number of nodes distance 3 from z is equal to E;;%, (number
of columns of distance ;) (number of nodes of distance 7 in
column of distance j) = 1 x 2+ E:Z}(2x 2) + 2 x 1 = 4.
For 7 = n/2, a column of distance 0 has one node of distance
¢ from 2. When 0 < j <4, any column of distance j has two
nodes of distance i from z and when j = ¢, any column
of distance j has exactly one node of distance i. So, for
i=n/2, the number of nodes of distance 4 from z is equal to
1x1+4 2123*1(2 % 2)+1 x 1 = 47 — 2. Finally, we consider
the case of /2 < i <n and, again, when j <4 —n/2, column
J contains zero nodes of distance ¢ from z. When j = i —n/2,
column j contains one node of distance ¢ from z and when
J>1—mn/2, column 5 contains two nodes of distance 7 from
z. Therefore, the number of nodes with distance i from z is
equal to 2 + E;ﬁjﬂ“(Z X 2)+2=4(n-1). QED.

Proposition 1 tells us how many nodes are exactly 4 hops
away from node x. We can now use Proposition 1 to determine
how many nodes are within 7 hops of z. Let N,(r) be the
number of nodes within hops of z. Then, using Proposition
1, when r <n/2 we have

i=r
No(r)=1+4) 4i=2"+2r + 1.
i=1
Suppose we have d start nodes. Then let N (d, r) be the number
of nodes within a distance r of any start node. Then clearly

N(d,r) <dNy(r) = d(2r* 4+ 2r + 1).

In order for every node to be within a distance r of a start
node we must have

n® < N(d,r) < d(2r? +2r + 1).

For this inequality to be satisfied we must have
2
0< 2% +2r + <1—%)

which leads to

Hence, when we have d start nodes the radius must be at
least n/(v/2V/d).

Theorem 1: Given a mesh with d start nodes, any broadcast
algorithm must take at least

Vavd

time slots to complete the broadcast.

Proof: Since the radius of such a mesh must be at least
n/(v/2v/d)—1 links, and only one link can be traversed during
one time slot, the theorem immediately follows.

Next we provide a placement for the d start nodes and an
associated broadcast algorithm which meets the above bound.
When d is equal to one we have already obtained an optimal
algorithm earlier. Although optimal the algorithm does not
meet the above bound, therefore, the bound is not tight for

&

cuts

>
oy

Fig. 2. A mesh partitioned into d diamond-shaped segments.

all values of d; we show next that for some values of 7 and
d an algorithm which meets the bound can be found. When
d is equal to two we can place the two start nodes as far
apart as possible (place one node in the center of the mesh
and the other at the furthest corner) and it is easily verifiable
that the radius of this topology is n/2. A broadcast algorithm
for this topology with delay n/2 can now be easily realized
by applying the single start node algorithm at each of the two
start nodes. For d greater than two it is not as simple to find an
optimal broadcast algorithm. In fact, as in the case of d = 1,
the optimal algorithm does not always meet the above bound.
In [4], an algorithm was developed which came within a factor
of /2 of the bound by partitioning the mesh into d square
segments. Here we present an improvement to that algorithm
by partitioning the mesh into diamond shaped segments.> The
following algorithm meets the above bound for certain values
of d and comes within a small factor for all other values of
d. Consider values of d for which d/2 is a perfect square
and its square root divides n. We can now partition the mesh
into d diamond shaped segments as shown in Fig. 2. A start
node can be placed in the center of each of these segments
so that the farthest node from the start node is n/v/2d hops
away. Now, each of these diamond segments can be spanned,
in parallel, in n//2d slots and the total broadcast time for the
mesh becomes n/ m, which meets our lower bound.

For values of d/2 which are not a perfect square we can
always use a smaller number of start nodes, say d’, for which
d’/2 is a perfect square and d’' >d — /2d. Similarly, if the
/d/2 does not divide n the diamond segments will not all be
of the same size, but will all have a radius <n/v/2d + 1.

III. MULTIPLE-NODE BROADCAST ALGORITHMS

We consider now an n x n mesh with n? nodes, each
of which generates packets independently according to a
Poisson random process of rate A to be broadcast to the
rest of the nodes in the mesh. The packets take exactly one
time slot to be transmitted, each node can only transmit to
one of his neighbors during a given slot, but can receive

>This idea is due to C. Kruskal of the Computer Science Department at the
University of Maryland, College Park.

642

100
80
60
40
20

Delay in slots

Probability of lost packet

Fig. 3. Delay versus probability of lost packet () with n = 10 and

A = 0.00.

packets from all of his neighbors simultaneously.® We begin by
providing a necessary condition for stability for any multiple-
node broadcast algorithm.

Proposition 2: In order for a multiple-node broadcast algo-
rithm to be stable the following must hold:

1
n? -1

A<

Proof: The average number of packets generated in the
mesh during a single time slot is An2. Broadcasting of any
packet requires at least n? — 1 transmissions because n? — 1
nodes must receive the packet, and no transmission can be
heard by more than one packet at a time. Therefore, during
each slot an average demand for at least An?(n® — 1) packet
transmissions is generated in the system. Now, since each
node can only transmit in one direction at a time, at most n?
transmissions can take place during one time slot. Therefore,
for the system to be stable we must have An?(n? — 1) < n?,
which proves our claim. It can be similarly shown that if
nodes were allowed to broadcast along all four outgoing
arcs simultaneously the requirement for stability would be
A< 4/n2 — 1. Next, we will show that the condition of
Proposition 2 is sufficient by providing an algorithm which
is stable for all arrival rates satisfying this bound.

A. A Simple Synchronized Multiple-Node Broadcast Algorithm

In this section, we describe a method for performing mul-
tiple node broadcasts that simply serves as a means for
calculating delay bounds and is not intended as a specific
actual protocol for performing these broadcasts. Thus, the
algorithm to be described is based on performing periodic,
complete, multinode broadcasts, throughout the entire system.
A multinode broadcast is the task where each node in the sys-
tem broadcasts one packet (the same one) to every other node
in the system. By performing periodic multinode broadcast
cycles we allow each node to broadcast exactly one packet
per cycle. ‘

Proposition 3: A multinode broadcast takes O(n* — 1) time
slots to be performed.

Proof- Each node must receive n? — 1 messages, and
since it has only four links on which a message can be
received, our claim holds.

61n accordance with the nature of the satellite mesh example that requires
optical links amongst the nodes.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 4, AUGUST 1996

Consider the following multinode broadcast algorithm.

Step 1) Every node broadcasts one message along its
vertical ring, so that every node on the ring ends
up containing all of the messages from the ring.
If a node has no packets to send it sends a null
packet. Similarly, if a node has more than one
packet, it must wait for the next cycle before
broadcasting its second packet.

All nodes broadcast all of the messages from their
vertical ring along their horizontal ring, so that all
nodes in the mesh end up acquiring all of the
messages transmitted.

Step 2)

During each slot every node across a vertical ring performs
an one-packet transmission to its neighbor in the same di-
rection, for the duration of the first step. During the second
step, a variable number of slots is needed to perform similar
unidirectional transfers along the horizontal rings, depending
on the number of packets each vertical ring accumulates during
the first step. If null packets are counted, then n(n — 1) slots
are needed. The incorporation of “null” or “dummy” packets
in the transmission process simplifies the calculations by
maintaining a constant cycle duration, but foregoes potential
overall delay savings that might be realized if such dummy
packet transmissions were not permitted. Thus the resulting
performance would tend to be pessimistic.

1) Delay Analysis: Step 1) takes a total of n — 1 time slots,
because all nodes can broadcast their messages in parallel
along the ring. By the same reasoning, Step 2) takes n(n — 1)
slots. Therefore, the algorithm takes a total of n? — 1 time
slots to be performed.

Our simple synchronized algorithm uses the above multin-
ode broadcast algorithm periodically as follows. We perform
a complete multinode broadcast according to the above al-
gorithm every m? — 1 time units. If a node has no packet
to send, it simply sends a null packet. This algorithm serves
each node every n? — 1 time units. Therefore, the queue at
each node behaves as an M/D/1 queues with synchronization.
That is, we have an M/D/1 queue, where service is offered at
prespecified instants of time which are n? — 1 slots apart. The
delay associated with such a system is the same as the delay
for an ordinary M/D/1 system with service duration n? -1
plus the expected duration of the time elapsing between the
arrival instant of some customer and the beginning of the next
slot. This quantity is called the average synchronization time
and is equal to half the service time. Therefore, the delay for
this algorithm, D, is

_ 3 A(n? —1) '
D=~ ”(5 T = A2 - 1)))'

Also, an M/D/1 queue with arrival rate A and service time
n? — 1 is stable if and only if

1
A< .
“n2-1
This algorithm has the same stability region as that de-
scribed in Proposition 2; however, the delay associated with
this algorithm is very high even for very low arrival rates.
For very high arrival rates every node has a packet to send,

MODIANO AND EPHREMIDES: EFFICIENT ALGORITHMS FOR PERFORMING PACKET BROADCASTS IN A MESH NETWORK 643

therefore no slots go unutilized and the algorithm is optimal.
However, for low arrival rates, the algorithm yields many
unused slots and results in delay of O(n?). One would
expect that a good algorithm would result in O(n) delay
for low arrival rates, because a single node broadcast can
be performed in n slots. In the next sections we consider
alternative broadcast algorithms which perform as well as this
algorithm for high arrival rates and result in much less delay
for low arrival rates.

B. A Synchronized Multiplenode Broadcast
Algorithm with Lost Packets

The previous algorithm was based on performing complete
multinode broadcasts in a synchronized fashion. The problem
with such algorithms is that at low traffic rates very few of
the nodes have a packet to be broadcast, and therefore in
performing a complete multinode broadcast many time slots
are wasted. In this algorithm, we attempt to take into account
the fact that at low artival rates complete multinode broadcasts
are wasteful. This algorithm performs synchronized “partial
multinode broadcasts.” As before, this algorithm is based on
dividing the mesh into vertical and horizontal rings so that
every node is associated with exactly one vertical and one
horizontal ring. The algorithm is then as follows.

Step 1) As before, every node broadcasts one message
along its vertical ring, so that every node on the
ring ends up acquiring all of the messages from
the ring.

Every ring selects, according to some priority
scheme, up to d packets to be further broadcast
through the mesh. The packets not selected on
that ring are discarded (clearly, actual rather than
null packets are selected first; if a ring does not
have enough actual packets then the remaining
slots are filled with null packets). All nodes on a
given vertical ring have the same d packets, to be
broadcast through the mesh.

All nodes broadcast the d “select” packets through
their horizontal rings.

1) Delay Analysis: The duration of each cycle is easily
computed as before. Spanning the vertical rings again takes
n — 1 slots. Spanning the horizontal rings takes an additional
d(n — 1) slots. Therefore, the cycle length, S, is equal to
(d+1)(n - 1).

Assuming that each node has packets arriving according to
a Poisson random process of rate)\, the queue at each node
behaves as a synchronized M/D/1 queue with arrival rate)\ and
service time (d + 1)(n — 1). Notice that this is so regardless
of the scheme used to select the d packets. This is so because
at every cycle, the queue at each nonempty node is reduced
by one. The only effect that the priority scheme has is to
determine which of the messages actually reaches the rest of
the nodes and which are permanently lost. The delay for this
queue is simply

Step 2)

Step 3)

3 AS
Delay = (5 + Z—(ITS))S

where S is the cycle length and is equal to (d+ 1)(n — 1). Of
course such a queue is stable as long as A < 1/[(d+1)(n—1)].
Notice, that if we select d equal to n what we have is
the complete multinode broadcast algorithm of the previous
section. Also, notice that delay is minimized when d is equal
to one. However, the drawback of this algorithm is that excess
packets are lost. That is, if a ring has more than d nonempty
nodes, the packets which are not selected are forever lost.’
Clearly, if d is taken equal to n, no packets will be lost, but
delay could be intolerable for low arrival rates. If d is taken
to be one, delay is minimized, but the probability of a lost
packet could be high. Next we evaluate the probability of a
lost packet.

2) Probability of Lost Packets Analysis: In order to com-
pute the probability of a packet being lost [i.e., a packet is lost
if it is at the top of its node’s queue at Step 1), but does not
get selected at Step 2] we must decide on a priority scheme
for selecting the d packets to be served. For computational
simplicity we assume that the d packets are chosen at random.
Now the probability of a lost packet can be expressed as the
ratio of the average number of lost packets on the ring to
the average number of nonempty nodes on the ring during a
single cycle (in the steady-state).

Consider an arbitrary (vertical) ring with n nodes.

Let N be the total number of packets on the ring at the
beginning of a cycle in the steady state, that is the number
of nonempty nodes on the ring and L be the number of lost
packets during the sycle. Clearly L is equal to the maximum
of N —d and zero.

Then

n
E[N] =) iP(N =)

i=1

and

E[L) = i (i — d)P(N = i).
i=d+1

It is easy to show that in the steady state the distribution of
N is given by [3]

PV =i)= (T)osra-osr @

Finally, @, the steady-state probability that a packet is lost
can be expressed as
ElL]
Q= BIN])]
In Fig. 3 we plot delay versus @ for n = 10 and)\ = 0.001.
Each of the delay values on the horizontal axis corresponds to a
different value of d. These d values are marked on the curve.
When d = n the algorithm performs “complete” broadcasts
and no packets are lost. Similarly, when d = 0, all of the
packets. are lost. Of course, the delay values are very high
when d = n. For smaller delays we must use smaller values
for d and sustain a larger probability of losing a packet.

70r could be rescheduled for retransmission at a later time; however, we
do not address the question of retransmissions in this paper.

644

C. A Synchronized Multiple Node Broadcast
Algorithm with No Lost Packets

The algorithm described in the previous section is encour-
aging in that it shows that multiple-node broadcasts can be
performed without having to sustain the unacceptable delay of
a complete multinode broadcast. The major drawback of the
algorithm is that it allows the loss of packets. However, it is
evident from the results of the previous section that for low
arrival rates the probability of a lost packet is very low. This
suggests that if, instead of allowing packets to be lost, we let
packets which were not selected for transmission rejoin their
queues, the overall affect on delay may be minimal. We are
therefore led to considering the following protocol:

Step 1) As before, every node broadcasts one message
along its vertical ring, so that every node on the
ring acquires all of the messages generated from
that ring.

Every ring selects, according to some priority
scheme, up to d packets to be further broadcast
through the mesh. The un-selected packets rejoin
their nodes queues and re-attempt transmission
during the next cycle. (If a ring has fewer than
d packets then the remaining slots are filled with
null packets.) Clearly, all nodes on a given vertical
ring have the same d packets to be broadcast
through the mesh.

All nodes broadcast the d “select” packets through
their horizontal rings.

Step 2)

Step 3)

Since there are n nodes on the ring and up to d of them
can receive service during a cycle of duration (d+ 1)(n — 1),
in order for the algorithm to be stable we must have A <
d/n(d + 1)(n — 1)]. Clearly, for d<n the stability region
of this algorithm is smaller than the stability region of the
mesh described in Proposition 2. However, this algorithm can
accommodate all admissible arrival rates by increasing the
value of d, since with d = n the algorithm has the same
stability region as that of the mesh.

Although this algorithm presents only a slight modification
to that of the previous section, that modification makes the
algorithm very difficult to analyze. In the previous algorithm
analysis was simple because whether or not a node’s packet
was served, the node’s queue was reduced by one (at the
possible cost of a lost packet). This resulted in essentially n
independent queues each operating as an M/D/1 system whose
analysis is well known. By allowing the unserved packets to
rejoin the queues, the n queues become highly dependent on
one another. This is because the event of one queue getting
service is dependent on whether or not the other queues in the
system were served. It is also obvious that the performance
of this algorithm depends on how the queues to be served are
selected.? For the purpose of simplifying the analysis of this
scheme we assume, as we did in the previous section, that the
d packets are chosen at random.

8 A desirable service policy is one that would minimize delay. We believe
that that policy is the one which at each cycle serves the d largest queues.
However, proof of that conjecture is by no means obvious.

~ [EEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 4, AUGUST 1996

We would like to compute the average delay in this system.
Because of the dependence between the n queues the queue
sizes in a ring of n nodes form an n-dimensional infinite
Markov chain. Obtaining closed form expressions for the
steady-state behavior of such a system is generally very
difficult. Even a numerical evaluation of such systems can
be very computationally complex [7].

A similar situation arises in the analysis of a buffered
ALOHA system. In [2] and [8], approximate models for the
analysis of ALOHA were developed. The basic idea behind
these approximations was to split the system into two Markov
chains. One single-dimensional, infinite, chain tracking the
state of a single user and the other a n-dimensional, finite,
Markov chain tracking the state of the rest of the system.

Before we begin with the approximation, we consider
a special case of the problem where an exact solution is
attainable. This is the case when d is equal to one. We can
obtain the solution for the case of d = 1 by considering
the state of the entire ring. Clearly, for the entire ring with
d = 1, at each cycle the number of packets on the ring is
reduced by one as long as the ring is not empty. Also since the
ring contains n nodes each with independent Poisson arrivals
of rate A(d + 1)(n — 1) = A2(n — 1) packets per cycle,
packets arrive at the ring according to a Poisson process of
rate 2An(n —1). Therefore the entire ring behaves as an M/D/1
queue with synchronization and with service time 2(n—1) and
arrival rate 2An(n — 1). Of course, the average delay for this
queue is well known and given by

o 3 22n(n — 1)
Delay(d = 1) = 2(n 1)(2 + - 2n(n—1) 1)>

Unfortunately, a similar approach can not be taken for
values of d which are greater than one (except d = n which
was solved in the previous section). This is because for other
values of d the entire ring is no longer a simple M/D/1.
In fact it is no longer M/D because, since only one packet
is allowed per node during a cycle, service will depend on
the way packets are distributed among the nodes and is not
deterministic. In what follows we consider an approximation
for the n-dimensional infinite Markov chain which is based on
the two-chain model described earlier.

1) The Two-Chain Model: The idea behind having two
Markov chains, one for a single user and the other for the
rest of the nodes, is that while a single infinite chain with n
dimensions is very difficult to analyze, each of the two smaller
chains are analyzable and when solved together provide an
approximation to the original chain. The one-dimensional
(1-D) infinite user-chain represents the buffer size and state
for a single user and can be solved by conditioning on the
state of the system-chain. In turn, the system-chain tracks the
interaction between the different users.

2) The User’s Markov Chain: The uset’s Markov. chain
represents the queue size for a single user. It is therefore
an infinite chain. Fig. 4 shows the user-chain. Arrivals are
Poisson and departures are geometrically distributed with
parameter P, representing the probability that a node is
“selected” during a given cycle. Thus, the user-chain is an
M/G/1 with geometrically distributed service time.

MODIANO AND EPHREMIDES: EFFICIENT ALGORITHMS FOR PERFORMING PACKET BROADCASTS IN A MESH NETWORK

QoD QD@

Fig. 4. The user’s chain.

@-------------@ © o
QD) v) @) x-0

The system-chain.

This is an approximation to the real system because we
assume that the probability of a successful transmission is
independent of the number of packets in the queue. The
average queue size, 7, for this system can be easily computed
using the well known formulas for an M/G/1 and the first and
second moments of the geometric distribution, namely

_AS(2-)S)

"= P, ~ AS) ®
and the average delay is obtained using Little’s formula
delay = S AS(2-)S) @

PR A Y:)

where S is the cycle duration and is equal to (d + 1)(n — 1)
and the term S/2 accounts for the synchronization delay of
one-half cycle.

This completes the analysis of the user’s chain. The only
missing ingredient, in order to compute the delay, is P,. This
is the one term that we will obtain from the system-chain.
Before we turn our attention to the system-chain, there is one
parameter from the user-chain which will be needed later for
the analysis of the system-chain. We will need to know the
probability that there is exactly one packet in the queue. This
is easily derived as follows, let 1I(3) be the probability that
the user’s system is in state 7. Then,

Ay AS
I1(0) =1 E_I_Ps
We can next express II(1) in terms of I1(0) by writing the
steady-state flow equation out of state zero. So

I1(0) = A(0)TE(0) + A(0)PLII(1)

where A(0) is the probability of having no arrivals during a
slot, and is equal to exp(—AS). So,

_ I(0)(1 - A(0)) _ P, —AS(1 = A(0))
T A(0)P, - A(0)P2

2) The System Markov Chain: In [3], a number of ap-
proaches were considered for the system chain. The most
promising of which was a system chain model that merely
represents the identity and state of one user along with the
number of nonempty nodes on the ring. Requiring the system-
chain to contain the state of a single user allows us to more
accurately derive the probability of success for the user-chain.
This is because the probability of success is defined to be
the probability that the user is chosen given that it has a

1I(1)

645

100 T |
n=10 simulation
95 + .
0 d=4 '\
o 90+t
N
85 +
>
o 80+
2 - approximation
70 g t t + t —
— o o < wn w N~
o o o o o . O =)
Q Q Q Q Q < <
o (=1 <)) o [s] o
Arrival Rate
Fig. 6. Delay versus arrival rate (A\) with n = 10 and d = 4.
400 - variable length
. 3504 n=10
2 3004
< 250+
~ 2004 fixed length
F 1504 .
2 e+ T
Ik ——— e e L
0 + + + } t t {
— N [52] < wn w0 N o]
o o o o o o o o
S S o S S S S] o
o] o o S o o (o) o
Arrival Rate

Fig. 7. Delay versus arrival rate (\) with n = 10.

packet to send. Therefore, when the system-chain contains
the state of our user, we can compute the probability of
success by conditioning on the user-state being nonempty.
The system-chain will include information on whether or not
node z is empty as well as the total number of empty nodes
in the system. Let the pair (w, D,) represent the state of the
system, where w equals the number of nonempty nodes and
D, is equal to zero if node z is empty and one otherwise.
Clearly, there are a total of 2n possible states. Fig. 5 shows
the system-chain.

In order to express the transition probabilities for this chain
we define the following two quantities. Let By; j)(k) be the
probability that k£ empty nodes become busy (nonempty) given
that we started in state (4, j) and let C; ;(k,) be the probability
that & busy nodes become empty, and that D,, goes from j to
[. We can now write the probability of going from state (4, 7)
to (i/,5') as follows:

k=n

P((i,9),(i',5)) = D B jy(k)Cij(k = (i — i),).

k=0

The term By; ;y(k) does not depend on the state of node =
and is simply the probability that & of the n — § empty nodes
receive packets. Thus

B(i,5)(F)

= { (" 5 z')<1 — AQ)F A, i k<
07

otherwise.

The term C; ;(k,l) does depend on the state of node z.
Also, it depends on P,, i.e., the probability that a node

646

becomes empty upon receiving service. That probability can be
expressed in terms of the user-chain steady-state probabilities
as follows:

_ I(1)A(0)
7 1~ 1I(0)

where the numerator is the probability that the node had one
packet in the queue and received no new packets while the
denominator represents the probability that the queue was not
empty (a necessary condition in order for the node to receive
service).

In order to compute C; ;(k,l), we consider four cases
representing the possible combinations of values of j and /.
Also, we define the following three term that will help simplify
the expressions:

71= (Z)Pf(l—Pe)d“’“, 72= (d; ! >Pe’“(1—Pe)d_1”’°

and
i+1—d d
73 = —; Z1+(1 Pe)¢+122'
The term Z1 represents the probability that when d nodes
are served k of them become empty. The Z2 term represents
the probability that when d — 1 nodes are served £ of them
become empty, and Z3 is the probability that when d nodes
are served and node z is full & of the nodes become empty
and node z remains full. Of course, all of these quantities are
approximate in that we assume that, P, the probability that
a node becomes empty upon receiving service is independent
of the state of the system.
Casel: j=0and!l =0

C;.0(k,0) is equal to the probability of having no

new arrivals times the probability that £ nodes

become empty given start state (4,7). When k <

d < 1 exactly d nodes are served and

Cio(k,0) = A(0) (Z)Pfa — P4k,

When k < i < d exactly 7 nodes are served and

Ciy0)(k,0) = A(O)(>P’“(1 Pk,

j=0and! =1

C;,0(k,1) is equal to the probability of having at
least one new artival times the probability that k
nodes become empty. When k < d < ¢ exactly d
nodes are served and

Cio(k,1) = (1 — A(0)) (Z)P:u ~ Py,
When k < i < d exactly i nodes-are served and
Clan(hs1) = (1= AO) () A= Py~
When j = 1and [= 0, C; ;(k, 1) is the probability

that k& nodes become empty and node x becomes
empty as well. Finally, when j =1 = 1,C; ;(k, ()

Case 2:

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 4, AUGUST 1996

is the probability that £ nodes become empty and
node z remains full. '
j=land ! =0

C; i (k,1) is the probability that £ nodes become
empty and node z becomes empty as well.

If k< d < i then exactly d nodes are served and
Ci1y(k,0) = (d/i + 1)P.Z2, corresponding to
the probability that node z is served and becomes
empty, and that k of the remaining d — 1 nodes
which are served become empty. Similarly, when
k < i <d, exactly i nodes are served and

P, (Z)Pju — Pk,
j =landl =1

C;,;(k,1) is the probability that k nodes become
cmpty and node z remains full.
Again have two cases, if & < d < ¢ then d
nodes are served and C(;1y(k,1) = Z3 and if
K < i<d,inodes are served and node x is also
served and

C(iyl)(k’, 1) = (1 - Pe) (2)135(1 — Pe)i—k.

Of course when i, k, and d lay outside of these boundaries
C(i,5(k,1) = 0. Putting together the four cases we have

Case 3:

C1y(k,0) =

Case 4:

A(0) €Z>Pf(1 — P.)% 7k,
ifk<d<i
A(0) ZBPf(l—Pe)i-’“,
ifk<i<d
0, ifj>dorj>1

C(i,O)(kv 0) =

(1 AO) () PE(1 - Py,
ifk<d<li
(1= A©)(,)P~ P,

ifk<i<d
0, ifk>dork>1

Cu0(k, 1) =

d d-1

z‘+1Pe k
ﬁk<d<i

P k Pk(l_ e)zk
ifh<i<d

0, ifk>dork>1

)Pek(l - Pe)d_l_k)

C('L,l) (kv 0) =

Citl—d (d) e ik
T Pe(k.)Pe(l P.)
d d—1
ca-ract (77)
k d—1—
ContbD = S(ld < S
(1—Pe)(/i>Pf(1—Pe)i;k,
ifk<i<d
0, ifk>dork>1

MODIANO AND EPHREMIDES: EFFICIENT ALGORITHMS FOR PERFORMING PACKET BROADCASTS IN A MESH NETWORK 647

These equations completely specify the transition probabilities
for the system-chain. Next we need to compute P;, i.e., the
probability of node = having a successful transmission. We
have
P, = P(success|D, = 1)
_ P(success, D, = 1)
~ PD,=1)
i=d—1 Z d »

E Pz',l +
. i=0 i=d
- i=n—1

Z P
=0

where P;; is the probability of being in state (i,5). The
numerator represents the probability of success when the
system-chain is in one of the states with node z full. The
denominator represents the probability of the system being in
one of these states. ‘

We have now expressed the system-chain in terms of the
user-chain parameter P. and the user-chain in terms of the
system-chain parameter P;. The two chains can now be solved
together using an iterative algorithm to obtain the results for
the approximation.

We compared the delay results predicted by the approxi-
mation to those obtained through the use of simulation. In
general the approximation works well for low arrival rates
and deteriorates as the arrival rate approaches saturation [3].
In figure [6] we plot Delay vs. A with n = 10 and d = 4. As
can be seen from these figures the approximation yields results
that are very close to those obtained by simulation, especially
for low arrival rates. Additional plots for different values of n
and d are given in [3] and show similar results.

t=n—1

D. A Synchronized Multiple Node Broadcast
Algorithm with Variable Cycle Length

The different broadcast algorithms presented in this paper
attempt to minimize delay by limiting the number of idle
slots during a cycle due to low traffic loads. In the previous
section we described a broadcast algorithm which attempted
to minimize the number of idle slots by limiting the number of
nodes which can broadcast during a cycle, and keeping short,
fixed length cycles. In this section we describe an alternative
algorithm, which allows the cycle length to vary, and lets every
node broadcast a packet during each cycle. The algorithm
works as follows:

Step 1) As before, every node broadcasts one message
along its vertical ring, so that every node on the
ring acquires all of the messages generated from
that ring.

After completing step one, every node broadcasts
all of the packets from its vertical ring along its
horizontal ring, so that every node in the mesh
contains every packet.

When a node finishes its transmission it sends one
“empty” packet for synchronization.

A new cycle begins after all packets have been
broadcast.

Step 2)

Step 3)

Step 4)

Clearly, the cycle length for this algorithm depends on the
number of nodes which have a packet to send.

Let S be the number of slots required to complete the
broadcast of all packets during a cycle in th esteady state and
let V be the number of nodes which have a packet to send at
the beginning of that cycle. Then

S <2n+ N.

This follows from the need to spend n — 1 slots traversing the
vertical rings. Then the circling around the horizontal rings
requires no more than N + n slots, where the n slots are for
synchronization. Therefore, we let the cycle length be 2n+ N.
Every node will have received every packet within that time.
All nodes will know the value of N, and synchronization will
be maintained. Theoretically, we can allow the cycle lengths
to be a little shorter (since the above expression is an upper
bound on S); however, both for simplicity of the algorithm
and its analysis we choose the cycle length to be 2n + N.

The analysis of this algorithm again involves analyzing
interacting queues since arrivals at the different queues depend
on cycle length and those depend on the status of all n? queues.
As in the previous section we resort to an approximate analysis
in which we assume (incorrectly) that the duration of each
cycle is independent of the exact number of packets queued
up at one particular node.

The complete analysis is presented in [3]. Here we merely
present the delay results predicted by the analysis. Let, n,, be
the number of packets queued up at an arbitrary node node z
at the beginning of a cycle in the steady state. And let, D, be
the indicator function for n,, ie., D, = 1 if n, >0 and zero
otherwise. It is clear that in the steady state

E[S] =2n +n%D,
and by Little’s law we know that AE[S] = D,.. Therefore

— 22n
D= ——.
T 1= n2

It was shown in [3] that

A+ D.(1 - 2\[(2n + 1) + (n2 — 1)D,))
T 21— A@n+ 1)+ (n2 - 1)Dy]]

®

The average delay, D, can now be expressed using Little’s
formula, as

e 2n+n%D,

A 2

where the second term represents the synchronization delay of
half a cycle. Also, since S = 2n +n?D,, under a heavy load
the cycle length would be 2n + n?; in order for the algorithm
to be stable we must have

D=

1
A< 2n +n?’ ®
This approximation compares extremely well with simula-
tion, even when arrival rates are very close to saturation [3].
In Fig. 7, we plot delay versus arrival rate when n = 10.
Also in Fig. 7 we plot, for the purpose of comparison, the
delay resulting from the fixed length algorithm of the previous

648

section. The algorithm of the previous section requires that we
choose a value for d. Plotted in Fig. 7 are the delays resulting
from use of the value of d that minimizes the delay of the
algorithm. Hence the comparison is of the variable length
algorithm to the fixed length algorithm with the optimal d. As
can be seen from Fig. 7, under heavy load the fixed length
algorithm results in lower delays than the variable length
algorithms. This is due to the fact that the stability region for
the variable length algorithm is slightly reduced due to the 2n
slots used to maintain synchronization. This is in contrast to
the fixed length algorithm that under heavy load uses a value
of d equal to n and consequently obtaining a stability region
that is equal to the upperbound given by Proposition 2.

IV. CONCLUSION

This paper presents broadcast schemes for a mesh network
with somewhat unusual properties which resulted from a
specific application of satellite broadcasts but with potential
applicability to future LEO satellite systems as well as wireless
networks with highly directive antennas. An interesting exten-
sion to this work would be to consider a more “typical” mesh
topology, where all nodes can transmit to all of their neighbors
simultaneously but only receive from one neighbor at a time.
Work similar to that of this paper was done for a binary
hypercube in [1]. Comparing the performance of these two
topologies when the same number of nodes are involved would
also be interesting. The algorithms described in this paper
are vulnerable to node failures. Many applications require
algorithms which can withstand failures. Inevitably, building
security into a routing algorithm will result in additional delays
due to redundancy. The development of such algorithms, and
the analysis of the tradeoffs between delay and additional secu-
rity, is also an interesting area for future research. Finally, the
model developed here for analyzing interacting queues can be
useful for the analysis of other systems of interacting queues.
It was motivated by similar models used for analyzing the
ALOHA multiple access protocol and offers an improvement
over those models in the way the interaction between the user
and system chain is tracked. In [6], it was shown how this
model can be applied to the ALOHA protocol, and it was
shown that this model can be used to effectively approximate
the performance of the ALOHA protocol at a relatively low
computational complexity. We believe that this model may
prove to be useful in many other systems of interacting queues
and in particular for multiple access schemes. It is of interest
to find other systems with dependent queues, not necessarily
involving multiple access, for whose analysis this model or a
two chain model in general may prove to be useful. .

REFERENCES

[1] G. Stamoulis and J. Tsitsiklis, “Efficient routing schemes for multiple
broadcasts in hypercubes,” Proc. 29th CDC, Honululy, Hawaii, Dec.
1990, pp. 1349-1354.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 4, AUGUST 1996

[2] T.N. Saadawi and A. Ephremides, “Analysis, stability, and optimization
of slotted ALOHA with a Finite number of buffered users,” IEEE Trans.
Automat. Contr., June 1981.

[3] E. Modiano, “Security and performance issues in distributed protocols,”
Ph.D. dissertation, Department of Electrical Engineering, The University
of Maryland, College Park, MD, 1992.

[4] E. Modiano and A. Ephremides, “Efficient routing schemes for multiple
broadcasts in a mesh,” in 26th Annu. Conf. Information Sciences and
Systems, Princeton, NJ, Mar. 1992.

[5] E. Modiano and A. Ephremides, “The performance of a multiple node
broadcast algorithm: An analysis of interacting queues,” in /1993 IEEE
Int. Symp. Inform. Theory, San Antonio, TX, Jan., 1993.

[6] E. Modiano and A. Ephremides, “A method for delay analysis of
interacting queues in multiple access systems,” in INFOCOM 1993,
San Francisco, CA, Apr. 1993.

[7] T. Nakasis and A. Ephremides, “Steady-state behavior of interacting
queues—A numerical approach,” IEEE Trans. Inform. Theory, Mar.,
1990.

[8] A. Ephremides and R. Z. Zhu, “Delay analysis of interacting queues
with an approximate model” IEEE Trans. Commun., Feb., 1987.

[9] G.N. Lance, Numerical Methods for High Speed Computers. London,
U.K.: Iliffe, 1960, pp. 134-138.

Eytan Modiano (M’90) received the B.S. degree
in electrical engineering and computer science from
the University of Connecticut, Storrs, in 1986, and
the M.S. and Ph.D. degrees from the University
of Maryland, College Park, MD, both in electrical
engineering, in 1989 and 1993, respectively.

He was a Naval Research Laboratory Fellow
between 1987 and 1993 and a National Research
Council Post Doctoral Fellow' during 1993-1994
while he was conducting research on security and
performance issues in distributed network protocols.
Presently, he is with the Communications Division of MIT Lincoln Labora-
tory, Lexington, MA, where he is studying various aspects of data networking
over satellites and internetworking of satellite and terrestrial networks. His
research interests are in the areas of communication networks and protocols,
multiple access protocols, queueing systems, and satellite communications.

Anthony Ephremides (F’84) received the B.S. de-
gree from the National Technical University of
Athens, in 1967, and the M.S. and Ph.D. degrees
from Princeton University, Princeton, NJ, in 1969
and 1971, respectively, all in electrical engineering.

He has been at the University of Maryland since
1971, and currently holds a joint appointment as
Professor in the Electrical Engineering Department
and the Institute of Systems Research (ISR). He
is co-founder of the NASA Center for Commer-
cial Development of Space on Hybrid and Satellite
Communications Networks established in 1991 at Maryland as an off-shoot
of the ISR. He was a Visiting Professor in 1978 at the National Technical
University in Athens, Greece, and in 1979 at the EECS Department of the
University of California, Berkeley, and at INRIA, France. During 1985-1986,
he was on leave at MIT and ETH in Zurich, Switzerland. He was the General
Chairman of the 1986 IEEE Conference on Decision and Control in Athens,
Greece. He has also been the Director of the Fairchild Scholars and Doctoral
Fellows Program, an academic and research partnership program in Satellite
Communications between Fairchild Industries and the University of Maryland.
He has been the President of the Information Theory Society of the IEEE
(1987), and served on the Board of the IEEE (1989 and 1990). His interests are
in the areas of communication theory, communication systems and networks,
queueing systems, signal processing, and satellite communications.

Dr. Ephremides received the IEEE Donald E. Fink Prize Paper Award in
1992.

