IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005
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Abstract—We consider the throughput/delay tradeoffs for
scheduling data transmissions in a mobile ad hoc network. To
reduce delays in the network, each user sends redundant packets
along multiple paths to the destination. Assuming the network
has a cell partitioned structure and users move according to a
simplified independent and identically distributed (i.i.d.) mo-
bility model, we compute the exact network capacity and the
exact end-to-end queueing delay when no redundancy is used.
The capacity-achieving algorithm is a modified version of the
Grossglauser-Tse two-hop relay algorithm and provides O(IV)
delay (where IN is the number of users). We then show that
redundancy cannot increase capacity, but can significantly im-
prove delay. The following necessary tradeoff is established:
delay/rate > O(N). Two protocols that use redundancy
and operate near the boundary of this curve are developed, with
delays of O(v/N) and O(log(N)), respectively. Networks with
non-i.i.d. mobility are also considered and shown through sim-
ulation to closely match the performance of i.i.d. systems in the
O(+v/N) delay regime.

Index Terms—Fundamental limits, queueing analysis, stochastic
systems, wireless networks.

1. INTRODUCTION

N this paper, we consider the effects of transmitting redun-

dant packets through multiple paths of an ad hoc wireless
network with mobility. Such redundancy improves delay at the
expense of increasing overall network congestion. We show that
redundancy cannot increase network capacity, but can signif-
icantly improve delay performance, yielding delay reductions
by several orders of magnitude when data rates are sufficiently
less than capacity.

We use the following cell partitioned network model: The
network is partitioned into C nonoverlapping cells of equal size
(see Fig. 1). There are N mobile users independently roaming
from cell to cell over the network, and time is slotted so that
users remain in their current cells for a timeslot, and potentially
move to a new cell at the end of the slot. If two users are within
the same cell during a timeslot, one can transfer a single packet
to the other. Each cell can support exactly one packet transfer
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Fig. 1.

users.

A cell-partitioned ad hoc wireless network with C' cells and N mobile

per timeslot, and users within different cells cannot communi-
cate during the slot. Multihop packet transfer proceeds as users
change cells and exchange data. The cell partitioning reduces
scheduling complexity and facilitates analysis. Similar cell par-
titioning has recently been considered by Cruz et al. in [4].

We consider the following simplified mobility model: Every
timeslot, users choose a new cell location independently and
identically distributed over all cells in the network. Such a mo-
bility model is, of course, an oversimplification. Indeed, ac-
tual mobility is better described by Markovian dynamics, where
users choose new locations every timeslot from the set of cells
adjacent to their current cell. However, analysis under the sim-
plified independent and identically distributed (i.i.d.) mobility
model provides a meaningful bound on performance in the limit
of infinite mobility. With this assumption, the network topology
dramatically changes every timeslot, so that network behavior
cannot be predicted and fixed routing algorithms cannot be used.
Rather, because information about the current and future loca-
tions of users is unknown, one must rely on robust scheduling
algorithms. Furthermore, it is shown in [1], [5] that network ca-
pacity depends only on the steady-state channel distribution, and
hence the capacity region under an i.i.d. mobility model is iden-
tical to the capacity of a network with non-i.i.d. mobility with
the same steady-state distribution (see [1, Corollary 5, p. 88]).
Thus, our capacity results hold also for cases where mobility
is described by simple Markovian random walks, considered in
Sections VII and VIII. Delay analysis for non-i.i.d. mobility is
also presented, and simulations demonstrate that throughput and
delay performance is qualitatively similar to the i.i.d. case.

We compute an exact expression for the per-user transmis-
sion capacity of the network (for any number of users N > 3),
and show that this capacity cannot be increased by using re-
dundant packet transfers. When no redundancy is used, a mod-
ified version of the Grossglauser—Tse two-hop relay algorithm
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in [6] is presented and shown to achieve capacity. The queueing
delay in the network is explicitly computed and shown to be
O(N)/(u— A;) (where p is the per-user network capacity, and
A; is the rate at which user ¢ transfers packets intended for its
destination). Furthermore, it is shown that no scheduling algo-
rithm can improve upon O(N) delay performance unless redun-
dancy is used.

We then consider modifying the two-hop relay algorithm
to allow redundant packet transmissions. It is shown that no
scheme which restricts packets to two hops can achieve a better
delay than O(v/N). A scheduling protocol that employs redun-
dant packet transmissions is developed and shown to achieve
this delay bound when all users communicate at a reduced data
rate of O(1/v/N). A multihop protocol is then developed to
achieve O(log(N)) delay by further sacrificing throughput.
Finally, the necessary condition delay/rate > O(N) is es-
tablished for any routing and scheduling algorithm, and the
two-hop relay algorithms are shown to meet this bound with
equality while the multihop algorithm deviates from optimality
by no more than a logarithmic factor.

Earlier work on the capacity of ad hoc wireless networks is
found in [1]-[13], [15]. Gupta and Kumar present asymptotic
results for static networks in [7], [8], where it is shown that
per-user network capacity is O(1/v/N), and hence vanishes as
the number of users IV increases. The effect of mobility on the
capacity of ad hoc wireless networks was first explicitly devel-
oped in [6], where a two-hop relay algorithm was developed and
shown to support constant per-user throughput which does not
vanish as the size of the network grows. These works do not
consider the associated network delay, and analysis of the fun-
damental queueing delay bounds for general networks remains
an important open question.

In [9], it is shown that for a network with a mixture of
stationary users and mobile relay nodes, delay can be improved
by exploiting velocity information and relaying packets to
nodes moving in the direction of their destination. Routing
for fully mobile networks using table updates is considered in
[10]. Schemes for improving delay via diversity coding and
multipath routing are considered in [11], [12], although these do
not consider delays due to path sharing, queueing, or stochastic
arrivals. Delay improvement via redundant packet transfers is
considered in [13]. This idea is related to the notion of content
replication considered for static peer-to-peer systems in [14]
and for mobile networks in [15]. Our i.i.d. mobility model is
similar to that used in [15], where mobile infostations are used
to store content for users requesting file access. Throughput
and delay tradeoffs were perhaps first considered in [16], where
delay of multihop routing is reduced by increasing the coverage
radius of each transmission, at the expense of reducing the
number of simultaneous transmissions the network can support.
Similar radial scaling techniques have recently appeared in
[17]-[19]. While our work was developed prior to the work
in [17]-[19] and does not directly consider radial scaling, for
completeness we include a detailed comparison with these
approaches at the end of Section VI.

In this paper, we analyze the capacity and delay of cell
partitioned networks and consider the full effects of queueing.
Our contributions are threefold: First, we develop an expression
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for network capacity and compute the exact delay of a capacity
achieving strategy. Second, we demonstrate that redundant
packet transfers can significantly reduce delay at the cost
of reducing throughput. Third, we establish a fundamental
delay/rate tradeoff curve that bounds performance of any
routing and scheduling algorithm. Protocols for three different
rate regimes are developed and shown to operate on or near the
boundary of this curve.

A. Concerning the Cell-Partitioned Network Assumptions

The cell partitioned model is used to enable a simple and
insightful network analysis, and not necessarily to propose a
practical communication scheme. While a direct implementa-
tion of a cell-partitioned network simplifies scheduling deci-
sions by enabling control actions to be independently distributed
over each cell, extra management is required to maintain the
cell structure and to coordinate communication between mobile
users. First, mobile users must determine their own cell loca-
tions. This might be accomplished through satellite positioning
signals, assuming each user is equipped with a Global Posi-
tioning System (GPS) receiver. Alternatively, location might be
determined by triangulating against pre-established ground bea-
cons. These ground beacons could additionally act as control
stations that handle control signaling between users. We assume
that control information for each cell is passed over reserved
bandwidth channels.

The cell-partitioned network model restricts communication
to one transmission per cell per timeslot. This restriction alle-
viates the interference problems associated with two users si-
multaneously transmitting in the same cell. However, this does
not solve the intercell interference problem, as a transmitter in
one cell may be very close to a receiver in its neighboring cell.
Such interference can be mitigated by requiring users in neigh-
boring cells to transmit over orthogonal frequency bands. It is
well known that for rectilinear cell partitionings as in Fig. 1,
only four separate frequency bands are needed to ensure that
no neighboring cells use the same frequency, and this number
can be reduced to three if cells are arranged in a hexagonal pat-
tern. Additional frequency bands can be added to increase the
frequency reuse distance, at the cost of reducing the bit rate of
each user-to-user transmission. From a theoretical perspective,
we note that the capacity expression derived for cell partitioned
networks in Section II is very close to the maximum throughput
estimates of the Grossglauser—Tse relay strategy, which uses a
nearest neighbor transmission policy for networks with full in-
terference and no bandwidth subdivision. Thus, cell-partitioned
networks can serve as useful theoretical models for analyzing
more complex systems, and the protocols we develop for cell
partitioned networks can be applied to these other settings.

Throughout this paper, we assume that the number of cells is
of the same order as the number of users, so that the user/cell
density d is constrained to be O(1) (independent of N). This
is a necessary constraint in cases when the network area is in-
creased while maintaining the same average number of users per
unit area and the same transmission power (and hence, trans-
mission radius) for each user. In the opposite case, when the
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network area is fixed but the number of users /V grows large (in-
creasing the number of users per unit area), it is possible to con-
sider cell densities that increase with IV, although the d = O(1)
constraint can still be imposed by appropriately scaling the cell
size. Note that in this case, it would be possible to maintain a
cell size for which the user/cell density increases to infinity with
N. However, this would require the coordination of an increas-
ingly large number of users in each cell, and it would necessarily
shrink network capacity to zero with growing N (as shown in
the next section). It could, however, provide an alternate means
of improving network delay, as described in [17]-[19]. Indeed,
in the extreme case where there is only one cell containing all
nodes, it is clear that any user could reach any other user in just
a single hop. A detailed comparison of our results with those of
[17]-[19] is given in Section VI.

B. Paper Outline

In the next section, we establish the capacity of the cell-parti-
tioned network and analyze the delay of the capacity-achieving
relay algorithm. In Section III, we develop delay bounds for
transmission schemes with redundancy, and in Section IV, we
provide scheduling protocols which achieve these bounds. In
Section V we prove necessity of delay/rate > O(N), and
show that the given protocols operate on the boundary of this
rate—delay tradeoff curve. Simulations and Markovian mobility
models are considered in Sections VI and VII.

II. CAPACITY, DELAY, AND THE TWO-HOP RELAY ALGORITHM

Consider a cell-partitioned network such as that of Fig. 1. The
shape and layout of cell regions is arbitrary, although we assume
that cells have identical area, do not overlap, and completely
cover the network area. We define

e N = number of mobile users,

e (' = number of cells,

* d = N/C = user/cell density.

Users move independently according to the full-mobility
model, where the steady-state location of each user is uniform
over all cells.

Let \; represent the exogenous arrival rate of packets to user
¢ (in units of packets per slot). Packets are assumed to arrive as
a Bernoulli process, so that with probability \; a single packet
arrives during the current slot, and otherwise no packet arrives.
Other stochastic inputs with the same time average arrival rate
can be treated similarly, and the arrival model does not affect
the region of rates the network can support (see [1]).

We assume packets from source 7 must be delivered to a
unique destination j. In particular, we assume the number
of users N is even and consider the one-to-one pairing:
1~ 23<4,....(N—1) < N;sothat user | communi-
cates with user 2 and user 2 communicates with user 1, user 3
communicates with user 4 and user 4 communicates with user
3, and so on. Other source—destination scenarios can be treated
similarly (see Section II-C).

Packets are transmitted and routed through the network ac-
cording to some scheduling algorithm. The algorithm chooses
which packets to transmit on each timeslot without violating the
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physical constraints of the cell-partitioned network or the fol-
lowing additional causality constraint: A user cannot transmit
a packet that it has never received. Note that once a packet has
been received by a user, it can be stored in memory and trans-
mitted again and again if so desired. We assume that packets are
equipped with header information so that they can be individu-
ally distinguished for scheduling purposes.

A scheduling algorithm is stable if the \; rates are satisfied for
all users so that queues do not grow to infinity and average de-
lays are bounded. Assuming that all users receive packets at the
same data rate (so that \; = A for all ¢), the capacity of the net-
work is the maximum rate A that the network can stably support.
Note that this is a purely network layer notion of capacity, where
optimization is over all possible routing and scheduling proto-
cols. Below, we compute the network capacity, assuming users
change cells in an i.i.d. fashion every timeslot. In [1], [5] it is
shown that the capacity region depends only on the steady-state
user location distribution. Hence, any Markovian model of user
mobility which in steady state distributes users independently
and uniformly over the network yields the same expression for
capacity. A simple example of such a Markovian model is con-
sidered in Section VIII.

Theorem 1: The capacity of the network is

B=—5 (D

where

L\ N2
q:1_<1_§) 3

and hence the network can stably support users simultaneously
communicating at any rate A < p.

Note that p represents the probability of finding at least two
users in a particular cell, and g represents the probability of
finding a source—destination pair within a cell. The proof of the
above theorem involves proving that A < p is necessary for net-
work stability, and that A < y is sufficient. Sufficiency is estab-
lished in Section II-D, where a stabilizing algorithm is provided
and exact expressions for average delay are derived. A formal
proof of necessity is given in Appendix A. Here we provide an
abbreviated argument to gain intuition.

Intuitive Explanation: Suppose all users send at rate )\, so
that N\ represents the sum rate of new packets entering the
network. Each of these packets must be transmitted over the
network at least once, and are transmitted two or more times
if they reach their destinations via a relay node. The maximum
rate of single-hop transfers between sources and destinations is
CJq (the average number of cells containing a source—destination
pair on a given timeslot). All other transmission opportunities
must serve packets that take two or more hops to the destination,
and the rate of such transmissions is at most Cp— C'q (where Cp
is the average number of cells that can support a packet transfer
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Fig. 2. A plot of the limiting capacity (1 — e=¢ — de~4)/(2d) as a function of the user per cell density d.

during a given timeslot). Hence, N\ < Cq + %, yielding
the necessary condition. O

Taking limits as N — oo, we find the network capacity tends
to the fixed value (1 — e~? — de~?)/(2d). This value tends to
zero as d tends either to zero or infinity. Indeed, if d is too large,
there will be many users in each cell, most of which will be idle
as a single transmitter and receiver are selected. However, if d is
too small, the probability of at least two users being in a given
cell vanishes. Hence, for nonzero capacity, the ratio d = N/C
should be fixed as both N and C' scale up. The optimal user
per cell density d* and the corresponding capacity p* are d* =
1.7933, u* = 0.1492 (see Fig. 2). Thus, when the number of
users [V is large, the maximum throughput of a cell-partitioned
network is close to its limiting maximum of 0.1492 packets/slot.
Throughputs arbitrarily close to this value can be achieved by
scaling the number of cells C with N to maintain a constant
user per cell density d*.

This p* capacity value is close to the maximum throughput
estimate of 0.14 packets/slot for the O(1) throughput strategy
given by Grossglauser and Tse in [6], where the 0.14 number
is obtained by a numerical optimization over a transmit prob-
ability 6. In the Grossglauser—Tse strategy, transmitting users
send to their nearest neighbors to obtain a high signal to in-
terference ratio on each transmission. The proximity of their
optimal throughput to the value of u* suggests that when the
transmit probability is optimized, the nearest neighbor transmis-
sion policy behaves similarly to a cell-partitioned network. The
same value p* arises when users send independent data to a fi-

nite collection of other users according to a rate matrix (\;j).
In this case, p* represents the maximum sum rate into or out of
any user provided that no user sends or receives more than any
other, as described in Section II-C.

A. Feedback Does Not Increase Capacity

We note that the optimal throughput p of Theorem 1 cannot
be improved even if all users have perfect knowledge of future
events (see proof of Theorem 1). Thus, control strategies which
utilize redundant packet transfers, enable multiple users to over-
hear the same transmission, or allow for perfect feedback to
all users when a given packet has been successfully received,
cannot increase capacity.

Corollary 1: The use of redundant packet transfers, mul-
tiuser reception, or perfect feedback cannot increase network
capacity.

Proof: The capacity region given in Theorem 1 considers
all possible strategies, including those which have perfect
knowledge of future events. Hence, with full knowledge of
the future, any strategy employing redundant packet transfers,
multiuser reception, or perfect feedback can be transformed
into a policy which does not use these features simply by
removing the feedback mechanism (all feedback information
would be a priori known) and deleting all redundant versions of
packets, so that only packets which first reach their destination
are transmitted. Thus, such features cannot expand the region
of stabilizable rates.
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However, the capacity region can be achieved without feed-
back, redundancy, or perfect knowledge of the future (as de-
scribed in the next section) and hence these features do not im-
pact capacity. O

B. Heterogeneous Demands

Before proceeding with our delay results, we consider the
case of communication with heterogeneous rates (\;;), where
Aij represents the rate user ¢ receives exogenous data intended
for user j. Define the symmetric capacity region as the region
of all stabilizable data rates such that no user is transmitting
or receiving at a higher total data rate than any other. Let K
represent the maximum number of destination users to which a
source transmits (i.e., for each user ¢, at most K of the A;; terms
are nonzero).

Theorem 2: The symmetric capacity region of the network
has the form

_ ,—d _ —d
S < U — ) forN), Vi @
J

(1 —e"4—de %)
Z Ay < 2d

+O(K/N), Yi. ()

Proof: This proof is similar to the proof of Theorem 1, and
the differences are given in Appendix C. O

In the next subsection, we present a capacity-achieving
strategy together with an exact delay analysis. To simplify the
discussion, throughout the rest of this paper we assume that
each user communicates with rate )\ to a unique destination
according to the pairing 1 < 2, 3 < 4, etc., so that K = 1
and the exact capacity result 4 = (p + ¢)/(2d) of Theorem 1
applies for all network sizes N.

C. Delay Analysis and the Two-Hop Relay Algorithm

In this subsection, we consider a modified version of the
Grossglauser—Tse relay algorithm of [6], and show the algo-
rithm is capacity achieving with a bounded average delay. The
algorithm restricts packets to two-hop paths, where on the first
hop, a packet is transmitted to any available user. This user will
act as a “relay” for the packet. The packet is stored in the buffer
of the relay until an opportunity arises for it to be transmitted
by the relay to its destination. Note that the notion of relaying
is vitally important, as it allows throughput to be limited only
by the rate at which a source encounters other users, rather than
by the rate at which a source encounters its destination.

Cell Partitioned Relay Algorithm: Every timeslot and for
each cell containing at least two users.

1) If there exists a source—destination pair within the cell,
randomly choose such a pair (uniformly over all such pairs
in the cell). If the source contains a new packet intended
for that destination, transmit. Else remain idle.

2) If there is no source—destination pair in the cell, designate
a random user within the cell as sender. Independently
choose another user as receiver among the remaining
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Fig.3. A decoupled diagram of the network as seen by the packets transmitted

from a single user to the corresponding destination. Service opportunities at the
first stage are Bernoulli with rate g. Service at the second stage (relay) queues
is Bernoulli with rate (p — ¢)/(2d(N — 2)).

users within the cell. With equal probability, randomly
choose one of the two options.

» Send a Relay packet to its Destination: If the desig-
nated transmitter has a packet destined for the desig-
nated receiver, send that packet to the receiver. Else
remain idle.

* Send a New Relay Packet: 1If the designated trans-
mitter has a new packet (one that has never before
been transmitted), relay that packet to the designated
receiver. Else remain idle.

Since packets that have already been relayed are restricted
from being transmitted to any user other than their destination,
the above algorithm restricts all routes to two-hop paths. The
algorithm schedules packet transfer opportunities without con-
sidering queue backlog. Performance can be improved by al-
lowing alternative scheduling opportunities in the case when no
packet is available for the chosen transmission. However, the
randomized nature of the algorithm admits a nice decoupling
between sessions (see Fig. 3), where individual users see the net-
work only as a source, destination, and intermediate relays, and
transmissions of packets for other sources are reflected simply
as random ON/OFF service opportunities.

Theorem 3: Consider a cell-partitioned network (with N
users and C' cells) under the two-hop relay algorithm, and
assume that users change cells i.i.d. and uniformly over each
cell every timeslot. If the exogenous input stream to user ¢ is
a Bernoulli stream of rate A; (where A; < p), then the total
network delay W; for user ¢ traffic satisfies

N—-1-X
E{Wi} = —— ©)
where the capacity p is defined in (1).
Proof: The proof uses reversibility of the first stage queue,
and is provided in Appendix B. O

Note that the decoupling property of the cell partitioned relay
algorithm admits a decoupled delay bound, so that the waiting
time for user ¢ packets depends only on the rate of the input
stream for user ¢, and does not depend on the rate of other
streams—even if the rate of these streams is greater than ca-
pacity. It follows that the network is stable with bounded de-
lays whenever all input streams are less than capacity, i.e., when
Ai < u for all users <. Thus, the relay algorithm achieves the
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capacity bound given in (1) of Theorem 1. It is perhaps counter-
intuitive that the algorithm achieves capacity, as it often forces
cells to remain idle even when choosing an alternate sender
would allow for a packet to be delivered to its destination. The
intuition is that all cases of idleness arise because a queue is
empty, an event that becomes increasingly unlikely as load ap-
proaches capacity.

The form of the delay expression is worth noting. First note
the classic 1/(p — A;) behavior, representing the asymptotic
growth in delay as data rates are pushed toward the capacity
boundary. Second, note that for a fixed loading value p; = \;/p,
delay is O(N), growing linearly in the size of the network.

The exact delay analysis is enabled by the Bernoulli input as-
sumption. If inputs are assumed to be Poisson, the delay theory
of [1], [5] can be used to develop a delay bound, and the bound
for Poisson inputs is not considerably different from the exact
expression for Bernoulli inputs given in (6). These results can
also be extended to the case when the mobility model conforms
to a Markovian random walk (see analytical discussion and sim-
ulation results in Sections VII and VIII).

III. SENDING A SINGLE PACKET

In the previous subsection, we showed that the cell-parti-
tioned relay algorithm yields an average delay of O(N/(u —
A:)). Inspection of (6) shows that this O(N) characteristic
cannot be removed by decreasing the data rate A. The following
questions emerge: Can another scheduling algorithm be con-
structed which improves delay? What is the minimum delay
the network can guarantee, and for what data rates is this delay
obtainable? More generally, for a given data rate \ (assumed to
be less than the system capacity 1), we ask: What is the optimal
delay bound, and what algorithm achieves this? In this section,
we present several fundamental bounds on delay performance,
which establishes initial steps toward addressing these general
questions. We assume throughout that the user per cell density
d is a fixed value independent of N, and use d = d* = 1.7933
in all numerical examples.

A. Scheduling Without Redundancy

Suppose that no redundancy is used: that is, packets are not
duplicated and are held by at most one user of the network at any
given time. Thus, a packet that is transmitted to another user is
deleted from the memory storage of the transmitting user. Note
that this is the traditional approach to data networking, and that
the two-hop relay algorithm is in this class of algorithms.

Theorem 4: Algorithms which do not use redundancy cannot
achieve an average delay of less than O(NV).

Proof: The minimum delay of any packet is computed by
considering the situation where the network is empty and user 1
sends a single packet to user 2. It is easy to verify that relaying
the packet cannot help, and hence, the delay distribution is geo-
metric with mean C = N/d. O

Hence, the relay algorithm not only achieves capacity, but
achieves the optimal O(N) delay performance among all strate-
gies which do not use redundancy. Other policies which do not
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use redundancy can perhaps improve upon the delay coefficient,
but cannot change the O(N) characteristic.

B. Scheduling With Redundancy

Although redundancy cannot increase capacity, it can con-
siderably improve delay. Clearly, the time required for a packet
to reach the destination can be reduced by repeatedly transmit-
ting this packet to many users of the network—improving the
chances that some user holding an original or duplicate version
of the packet reaches the destination. Consider any network al-
gorithm (which may or may not use redundant packet transfers)
that restricts packets to two-hop paths.

Theorem 5: No algorithm (with or without redundancy)
which restricts packets to two-hop paths can provide an average
delay better than O(v/N).

To prove this result, again consider the sending of a single
packet from its source to its destination. Clearly, the optimal
scheme is to have the source send duplicate versions of the
packet to new relays whenever possible, and for the packet to
be relayed to the destination as soon as either the source or a
duplicate-carrying relay enters the same cell as the destination.
Let T’y represent the time required to reach the destination under
this optimal policy for sending a single packet. In the following
lemma, we bound the limiting behavior! of E {T}, proving
Theorem 5.

Lemma 1:

E{T 2
e~ < lim {Tn} < .
N—oco /N 1—ed

Proof:
Lemma 1(a) Lower Bound: To prove the lower bound, note
that during timeslots {1,2, ..., v/N}, there are fewer than /N
users holding the packet. Hence,

Pi[Ty > VN| > (1 —1/C)VNVN

(where (1 — 1/C)VN is the probability that nobody within a
group of /N particular users enters the cell of the destination
during a given timeslot). Recall that the user per cell density d
is defined d 2 N/C. Thus,

[E{TN} >[E {TN|TN > \/N} PT[TN > \/N]

z\/ﬁ(1 - %)N — e /N.

Lemma 1(b) Upper Bound: To prove the upper bound, note that
E{Tn} < Si + Sy, where S; represents the expected number
of slots required to send out duplicates of the packet to v/ N dif-
ferent users, and S5 represents the expected time until one user
within a group of /N users containing the packet reaches the
cell of the destination. The probability of the source meeting

a new user is at least 1 — (1 — 1/C)N_m for every timeslot

—d2
!Using the inequality e V= e=¢ < (1 — %)N < e~4, explicit bounds of
the form oV N < E {Tn} < Bv/N can also be derived.
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Minimum Average Delay E[T, | versus Number of Users N
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Fig. 4. The exact minimum delay of a two-hop scheduling scheme versus the number of users /V at the optimal user per cell density d*, together with the upper

and lower bounds of Lemma 1. Curves are plotted on a log — log scale and have slope 1/2, illustrating the O(+/N') behavior.

where fewer than /N users have packets, and hence, the av-
erage time to reach a new user is less than or equal to the inverse
of this quantity (i.e, the average time of a geometric variable).
As the source must encounter \/N users, we have

VN VN
S < — —-
1-(1-1/C)N-VN 1-e¢

To compute So, note that P(success), the probability that
one of the /N users reaches the destination during a slot, is
given by the probability there is at least one other user in the
same cell as the destination multiplied by the conditional prob-
ability that a packet-carrying user is present given there is at
least one other user in the cell. The former probability is 1 —
(1 —1/C)N-1, and the latter is at least vV N /N

1—e @

VN

1—(1-1/C)N™!
VN

P(success) > (7

VN

1—e—d"

Hence, S5 <

Summing S; and Sy proves the result.
O
An exact expression for the minimum delay E {Tx} is pre-
sented in Appendix D by using a recursive formula. In Fig. 4,
we plot the exact expression as a function of /V together with
the upper and lower bounds of Lemma 1 for the case d = d* =
1.7933.

C. Multiuser Reception

To increase the packet replication speed throughout the net-
work, it is useful to allow a transmitted packet to be received
by all other users in the same cell as the transmitter, not just the
single intended recipient. This feature cannot increase capacity,
but can considerably improve delay by enabling multiple dupli-
cates to be injected into the network with just a single trans-
mission. However, the O(v/N) result of Theorem 5 cannot be
overcome by introducing multiuser reception (see Appendix E).
For the remainder of this paper, we assume multiuser reception
is available when proving fundamental performance limits, but
we do not require multiuser reception in any of our algorithms
that demonstrate achievability of these limits.

IV. SCHEDULING FOR DELAY IMPROVEMENT

In the previous section, an O(y/N) delay bound was de-
veloped for redundant scheduling by considering a single
packet for a single destination. Two complications arise when
designing a general scheduling protocol using redundancy:
1) all sessions must use the network simultaneously, and 2)
remnant versions of a packet that has already been delivered to
its destination create excess congestion and must somehow be
removed.

Here we show that the properties of the two-hop relay algo-
rithm make it naturally suited to treat the multiuser problem. The
second complication of excess packets is overcome by the fol-
lowing in-cell feedback protocol, in which a receiving node tells
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its transmitter which packet it is looking for before transmission
begins. We assume all packets are labeled with send numbers
SN, and the in-cell feedback is in the form of a request number
RN delivered by the destination to the transmitter just before
transmission. In the following protocol, each packet is retrans-
mitted v/N times to distinct relay users.

In-Cell Feedback Scheme With /N Redundancy: In every
cell with at least two users, a random sender and a random re-
ceiver are selected, with uniform probability over all users in the
cell. With probability 1/2, the sender is scheduled to operate in
either “source-to-relay” mode, or “relay-to-destination” mode,
described as follows.

1) Source-to-Relay Mode: The sender transmits packet SNV,
and does so upon every transmission opportunity until
\/N replicas have been delivered to distinct users, or until
the sender transmits SNV directly to the destination. After
such a time, the send number is incremented to SN + 1.
If the sender does not have a new packet to send, remain
idle.

2) Relay-to-Destination Mode: When a user is scheduled to
transmit a relay packet to its destination, the following
handshake is performed.

* The receiver delivers its current RN number for the
packet it desires.

e The transmitter deletes all packets in its buffer
destined for this receiver which have SN numbers
lower than RN.

* The transmitter sends packet RN to the receiver. If
the transmitter does not have the requested packet
RN, it remains idle for that slot.

Notice that the destination receives all packets in order, and

that no packet is ever transmitted twice to its destination.

Theorem 6: The In-Cell Feedback Scheme achieves the
O(V/'N) delay bound, with user data rates of O(1/v/N).

More precisely, if all users receive exogenous data for their
destinations according to a Poisson process of rate \;, the net-
work can stably support rates A; < i, for the reduced network
throughput i given by

v (1 —e™?)
42+ d)VN

where vy is a sequence that converges to 1 as N — oo. Fur-
thermore, average end-to-end delay E {W;} satisfies
1 1i
E{W;} < -+ ——
Wi} < 2 1= pi

= ®)

where p; 2 \;i/ji.

To prove the result, first note that when a new packet reaches
the head of the line at its source queue, the time required for
the packet to reach its destination is at most Ty = S + Sa,
where S; represents the time required for the source to send
out /N replicas of the packet, and S, represents the time re-
quired to reach the destination given that v/N users have the
packet. Bounds on the expectations of S and S which are in-
dependent of the initial state of the network can be computed in
a manner similar to the proof of Lemma 1. The multiuser en-
vironment here simply acts to scale up these expectations by a
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constant factor due to collisions with other users (compare the
upper bound of Lemma 1 with that given in (9) below). This
factor does not scale with N because the average number of
users in any cell is the finite number d. Indeed, in Appendix F
it is shown that

42+ d)VN

where vy is a function that convergesto 1 as N — oo.

Note that the random variable Ty satisfies the sub-mem-
oryless property: The residual time of Ty given that a fixed
number of slots have already passed (without T’y expiring) is
stochastically less than the original time 7.2 This is because
the topology of the network is independent from slot to slot,
and hence, starting out with several duplicate packets already
in the network yields statistically smaller delay than if no such
initial duplicates are present.

The RN/SN handshake ensures that newer packets do
not interfere with older packets, but that replication of the
next packet waiting at the source queue begins on or before
completion of the T “service time” for the current packet
S N. Packets thus view the network as a single queue to which
they arrive and are served sequentially. Although actual service
times may not be i.i.d., their expectations are all independently
bounded by E {Ty }, as are the expected residual service times
seen by a randomly arriving packet. This is sufficient to estab-
lish the following lemma, the proof of which is similar to the
derivation of the standard P-K formula for average delay in an
M/G/1 queue.

C))

Lemma 2: Suppose inputs to a single server queue are
Poisson with sub-memoryless service times that are indepen-
dently bounded in expectation by a value E {T'v }. If the arrival
rate is A, where A < 1/E {Tn}, then average delay satisfies

1 E{Ty}
E(W) <+

(10)

where p £ AE {Tx}. The expression on the right-hand side of
the preceding inequality is the standard expression for delay in
an M /M /1 queue with i.i.d. service times Ty that are restricted
to start on slot boundaries.

Proof: Consider a single packet arriving from a Poisson
stream, and let W, represent the time this packet spends waiting
in the queue before reaching the server. We have

Nq
W,=> Xi+R
=1

(11

where NV, is the number of packets already in the queue, {X;}
are the service times of these packets, and R represents the
residual time until either the packet currently in the server fin-
ishes its service, or (if the system is empty) the start of a new

timeslot. Note that
1
E {R} S pactual[E {TN} + (1 - paotual)g

where pactual represents the probability that the system is busy
with a packet already in service. From Little’s theorem, we have

2This is often called the “New Better than Used” property, see [20].
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that pactual = AE {X}, where E { X} represents the average
service time of a generic packet. Since E {X} < E{Tn}, it
follows that pactual < p. Clearly, E {T'xv} > 1/2, and hence
we can increase the upper bound on E { R} by replacing pactual
with p, yielding

E{R) < 0B {Tx} +(1—p)..

Taking expectations of (11) thus yields

E(V,) =Ex, |3 E(GIN,}| +E(®)

N‘Z
<En, |D_E{Tn}| +pE{In}+(1- p)%

=1

=E{Ng}E{Tn} + pE{TN} + (1 - p)

1
2
=AE{W I E{TN} + pE{IN}+ (1 -p)5 (12)

where (12) follows from Little’s theorem. We thus have

E{Ty} 1
PE{In} 1

E <

Noting that the total waiting time E {W} satisfies E {W} <
E{W,} + E{Tn} yields the result. O

Defining /i = 1/E {Tx'} and using (9) proves Theorem 6.

V. MULTIHOP SCHEDULING AND LOGARITHMIC DELAY

To further improve delay, we can remove the two-hop re-
striction and consider schemes which allow for multihop paths.
Here, a simple flooding protocol is developed and shown to
achieve O(log(NN)) delay at the expense of further reducing
throughput.

To achieve O(log(N)) delay, consider the situation in which a
single packet is delivered over an empty network. At first, only
the source user contains the packet. The packet is transmitted
and received by all other users in the same cell as the source. In
the next timeslot, the source as well as all of the new users con-
taining the packet transmit in their respective cells, and so on.
If all duplicate-carrying users enter distinct cells every timeslot,
and each of these users delivers the packet to exactly one new
user, then the number of users containing the packet grows ge-
ometrically according to the sequence {1,2,4,8,16,...}. The
actual growth pattern may deviate from this geometric sequence
somewhat, due to multiple users entering the same cell, or to
users entering cells that are devoid of other users. However, it
can be shown that the expected growth is geometric provided
that the number of packet-holding users is less than N/2.

Define the total time to reach all users as Ty = S7 + 5o,
where S; and S5, respectively, represent the time required to
send the packet to at least N/2 users, and the time required to
deliver the packet to the remaining users given that at least N /2
users initially hold the packet.

Lemma 3: Under the above algorithm of flooding
the network with a single packet, for any network size
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N > max{d,2}, the expected time E {T } for the packet to
reach every user satisfies

E{Tn} <E{Si} +E{S:}

where
log(N) (14 d/2)
E{S:} <
5 S fou(a)(1 = emir2)
2
E{S2} <1+ 3(1 + log(N/2)). (13)
Proof: The proof is given in Appendix G. O

A. Fair Packet Flooding Protocol

Thus, O(log(N)) delay is achievable when sending a single
packet over an empty network. To enable O(log(/N)) delay in
the general case where all sessions are active and share the net-
work resources, we construct a flooding protocol in which the
oldest packet that has not been delivered to all users is selected
to dominate network resources. We assume that packets are se-
quenced with SN numbers as before. Additionally, packets are
stamped with the timeslot ¢ in which they arrived.

Fair Packet Flooding Protocol: Every timeslot and in each
cell, users perform the following: Among all packets contained
in at least one user of the cell but which have never been received
by some other user in the same cell, choose the packet p which
arrived earliest (i.e., it has the smallest timestamp ¢,). If there
are ties, choose the packet from the session ¢ which maximizes
(tp + ) mod N. Transmit this packet to all other users in the
cell. If no such packet exists, remain idle.

The above protocol is “fair” in that in case of ties, session ¢
packets are given top priority every IV timeslots. Other schemes
for choosing which packet to dominate the network could also
be considered. Delay under the above protocol can be under-
stood by comparing the network to a single queue with N input
streams of rates A1, A2, . .., Ay which share a single server with
service times 7. Note that the 1y service time is also sub-
memoryless. Thus, from Lemma 2, we have the following.

Theorem 7: For Poisson inputs with rates \; for each source
1, the network under the fair flooding protocol is stable whenever
> A < 1/E{Tn}, with average end-to-end delay satisfying

1 E{Ty}
E(W} <3+ 1_];

where p £ S, ME{Tn}, and E {Tn} = E{S1} + E{S,}.
Note that O(log(N)) bounds on E {S;} and E {S>} are given
in Lemma 3. Thus, when all sources have identical input rates
A, stability and logarithmic delay is achieved when

Note that the flooding algorithm easily allows for multicast
sessions, where data of rate )\ is delivered from each source to all
other users. One might expect that delay can be improved if we
only design for unicast. However, it is shown in Appendix H that
logarithmic delay is the best possible for any strategy at any data
rate. Hence, communication for unicast or multicast is the same
in the logarithmic delay regime. In the next section, we address

(14)
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the following question: Is it possible to increase data rates via
some other protocol while maintaining the same average delay
guarantees?

VI. FUNDAMENTAL DELAY/RATE TRADEOFFS

Considering the capacity achieving two-hop relay algorithm,
the two-hop algorithm with /N redundancy, and the packet
flooding protocol, we have the following achievable delay/
capacity performance tradeoffs:

scheme throughput delay

no redundancy o(1) O(N)
redundancy two-hop O(1/V/N) O(VN)
redundancy multihop | O(xp5y) | O(log(N))

A simple observation reveals that delay/rate > O(N) for
each of these three protocols. In this section, we establish that
this is, in fact, a necessary condition. Thus, performance of each
given protocol falls on or near the boundary of a fundamental
rate—delay curve (see Fig. 1).

Consider a network with N users, and suppose all users re-
ceive packets at the same rate \. A control protocol which makes
decisions about scheduling, routing, and packet retransmissions
is used to stabilize the network and deliver all packets to their
destinations while maintaining an average end-to-end delay less
than some threshold W.

Theorem 8: A necessary condition for any conceivable
routing and scheduling protocol that stabilizes the network with
input rates A while maintaining bounded average end-to-end
delay W is given by

W _ N—-d

— > 1 —log(2

= > St log(2)
where log() denotes the natural logarithm, and d = N/C is the

user per cell density.
In particular, if d = O(1), then W /X > O(N).

15)

The preceding condition holds for all possible control strate-
gies, including those that use multiuser reception. We prove this
theorem with a novel technique for probabilistic conditioning.

Proof: Suppose the input rate of each of the N sessions is
A, and there exists some stabilizing scheduling strategy which
ensures an end-to-end delay of W. In general, the end-to-end
delay of packets from individual sessions could be different, and
we define W; as the resulting average delay of packets from
session 7. We thus have

_ 1 _
W:NZWi.

Let R; represent the average redundancy associated with
packets from session . That is, R; is the number of users who
receive a copy of an individual packet during the course of
the network control operation, averaged over all packets from
session ¢. Note that all packets are eventually received by the
destination, so that R; > 1. Additional redundancy could be
introduced by multihop routing, or by any packet replication

(16)
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effort that is used to achieve stability and/or improve delay. The
average number of successful packet receptions per timeslot
is thus given by the quantity A Zfil R;. Since each of the N
users can receive at most one packet per timeslot, we have

N
A R, <N
=1

Now consider a single packet p which enters the network from
session i. This packet has an average delay of 1/; and an average
redundancy of R;. Let random variables W, and R; represent
the actual delay and redundancy for this packet. We have

a7

+E {WL' | R; > QFL} Pr[R; > QE,L']
— 1
>E{W:| R <2Ri} 5 (19)

where (19) follows because Pr[R; < 2R;] > ; for any nonneg-
ative random variable R;.

Note that the smallest possible delay for packet p is the time
required for one of its carriers to enter the same cell as the des-
tination. Consider now a virtual system in which there are 2R;
users initially holding packet p, and let Z represent the time re-
quired for one of these users to enter the same cell as the desti-
nation. Every timeslot the “success probability” for this system
isp = 1—(1—2%)* sothat E {Z} = 1/¢. Although there are
more users holding packet p in this system, the expectation of Z
does not necessarily bound E {W; | R; < 2R; } because condi-
tioning on the event { R; < 2R;} might skew the probabilities
associated with the user mobility process. However, since the
event { R; < 2R;} occurs with probability at least 1/2, we ob-
tain the following bound.

Claim 1:

E{W: | ki <2R:} > infE {7 | 0} (20)

where the conditional expectation is minimized over all con-
ceivable events © which occur with probability greater than or
equal to 1/2.

A proof of Claim 1 is given at the end of this subsection.
Intuitively, it holds because minimizing over all such events ©
includes events that could yield mobility patterns of the type
encountered when {R; < 2R;}.

We now stochastically couple Z to an independent exponen-
tial variable Z with rate v = log(1/(1 — ¢)). The variable Z
is stochastically less than Z because Pr[Z > w] < Pr[Z > u]
for all w. Indeed, because 7 is exponential with rate -y, we have
Pr[Z >w]=e 7% =(1—¢)* for any w >0, while Z is geometric
with success probability ¢, so that

Pr[Z > w] = (1 =) > (1 = ¢)* = Pr[Z > w)].

The fact that Z is stochastically less than Z leads to the fol-
lowing claim. R
Claim 2: For variables Z and 7, we have

1 —log(2)
Y

infE {7 | ©) Zirél)f[E{Z|®} - @1

where the first infimum is taken over all events © that occur
with probability greater than or equal to 1/2 on the probability
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space for 7, and the second infimum is taken over all events 6}
that occur with probability greater than or equal to 1/2 on the
probability space for Z.

Claim 2 is proven at the end of this subsection. Using (21)
and (20) in (19) yields

W, > 1- 10g(2).
2oy

From the definitions of «y and ¢, we have

=log ( / <1 — l>m> =2R;log (1 + ﬁ)

Since log(1 + x) < = for any =, we have v < 2R;/(C — 1).
We thus have

W. > 1 —log(2)

i Z

(€= 11— log)
2y - 4R;

Summing this inequality over all 7, we have

S C —1) (1 - log(2)
W_Ng Z 4
5 (€= 1)1 —log(2)
- 4%21{\;1?1'

where (22) follows from Jensen’s inequality, noting that the
function f(R) = 1/R is convex, and hence,

N
¥ Z F(R) > f ( 2_) )
Combining (22) and (17), we have

(C—1)(1—log(2)) A _ (N —d)(1—-1og(2)) A
4 4d ’

1 N
@f

(22)

w>

Hence, the delay/rate characteristics necessarily satisfy the in-
equality V[T > O(N), proving the theorem. O

We complete the analysis by proving Claims 1 and 2.

Proof of Claim 2: We first compute infg, E{Z | ©}. Note
that 7 is a continuous variable, and so the minimizing event ©
is clearly the event {Z < w}, where w is the smallest value such
that Pr[Z < w] > 1 (see Appendix I). Since Z is exponential
with rate y = log(1/(1 — ¢)), we have Pr[Z > w] = ™7 =
1/2, and hence, w = log( ) . Conditioning on this event, we have

ing{Z|®} -

Now note that Z is stochastically less than Z, so that there
must exist a coupling variable Z' such that variables Z and
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7' have the same distribution, and 7’ lies on the same prob-
ability space as Z and satisfies Z/ < Z for all instances of
7' and Z (see [20] for a discussion of stochastic coupling).
Since Z’ is also an exponential with rate -y, it follows that
info E{Z" | ©} = (1 —log(2))/~. However, because Z' < Z
always, it follows that

. ’ <
nel)f[E{Z |®}_Helf[E{Z|®}

proving Claim 2. O
To prove Claim 1, we present a preliminary lemma.

Lemma 4: For any random variables X,Y such that X is
stochastically greater than Y, and for any event ® such that
Pr[®] > 1/2 (where ® occurs on the same probability space
as X)), we have

E{X|®}> inf E{Y |6}
{e| Prle]> 3}
where events © occur on the same probability space as Y.
Proof of Lemma 4: Since X is stochastically greater than
Y, there must exist a variable X defined on the same probability
space as X, such that X > X always, and where X and Y have
the same distribution [20]. Thus,

[E{X|<1>}Z[E{f(|q>}

> inf [E{X|\IJ} (23)
(w|Pr[¥]2 1)
= inf E{Y|O} (24)
{olPre]>1)

where (23) follows because ® is a particular element of the col-
lection of sets W that occur on the same probability space as
X and satisfy Pr[¥] > 1, and (24) follows because X and Y’
have the same distribution, and the value of any such infimum
depands only on the distribution (see Appendix I). O

Proof of Claim 1: Recall that WW; represents the delay of
packet p under a general scheduling strategy, and R; repre-
sents the redundancy associated with scheduling this packet. Let
Wrest represent the corresponding delay under the restricted
scheduling policy that schedules packets as before until either
the packet is successfully delivered, or the redundancy increases
to 2R; (at which point no more redundant transmissions are
allowed). Since this modified policy restricts redundancy to at
most 21;, the delay W7t is stochastically greater than the vari-
able 7, representing the delay in a virtual system with only one
packet that is initially held by 2R; users. By Lemma 4, we thus
have that

E{W'|R, <2R;} > inf E{Z]|6}.

{e[pre]>5}

However, note that the restricted policy is identical to the orig-
inal policy whenever R; < 2R;, and hence

E{W: | R < 2R} = E {Wr | R; < 2R}

proving Claim 1. O



1928

A. Discussion

The fact that delay/rate > O(N) establishes a fundamental
performance tradeoff, illustrating that no scheduling and
routing algorithm can simultaneously yield low delay and high
throughput. The O(N) and O(v/N) scheduling algorithms pro-
vided here meet this bound with equality, and the O(log(V))
algorithm lies above the bound by a factor of O(log?(N)) (see
the table earlier in this section).

We note that alternate approaches to the capacity/delay
tradeoff problem were recently developed in [17]-[19] for
networks with different physical characteristics. Specifically,
the work in [18] develops a similar W /A > O(N) curve by
assuming the user transmission radius can be increased to
include O(N®) other users, where « is between 0 and 1 and
affects the delay tradeoff. This analysis does not consider the
use of redundant packet transfers or multiuser reception. A
similar approach by Toumpis and Goldsmith in [17] shows that
an improved tradeoff W /A2 = O(N log®(N)) can be achieved
when multiuser reception is used together with transmission
radius scaling, but there was no proof of optimality.

In the context of a cell partitioned network as we have defined,
an increased transmission radius would correspond to a user per
cell density that is a function of NV, thatis, d = O(N®). While
our work was developed independently and intended only for
the case d = O(1) (independent of N), the necessary condi-
tion in Theorem 8 was proven for arbitrary values of the user
per cell density d, and hence, it can be used to evaluate the
performance of the Toumpis—Goldsmith algorithm applied to a
cell-partitioned network. Indeed, first note that the additional in-
equality N\ < C must hold for any policy on a cell-partitioned
network (as the rate of new packets transmitted by their sources
is less than or equal to C, the maximum number of transmissions
possible during a slot). Thus, A < 1/d is necessary for any pro-
tocol, and directly plugging this inequality into (15) yields

(N = d)(1 ~log(2))

2
W >

Hence, the Toumpis—Goldsmith algorithm is near optimal
over the class of all algorithms that can be implemented on a
cell-partitioned network that does not impose the constraint
d = O(1). We note that a recent preliminary result in [19]
suggests that an improved tradeoff W /\®> > O(N) is possible
if the network has different physical properties that allow for
multihop transmission during a single slot (so that a bit can be
transfered from node 1 to node 2, .. ., to node K, all during a
single slot). Of course, it is not possible to implement such an
algorithm on the cell-partitioned network that we have defined,
because transmission on each successive hop would require a
new timeslot.

VII. NON-1.I.D. MOBILITY MODELS

The analysis developed here for the i.i.d. mobility model can
be used to bound the performance of a system with a Markovian
mobility model. Instead of performing control actions on the
network every slot, we decompose the network into a set of K
parallel subnetworks. Packets are considered to be of “type-k” if
they arrive during a timeslot ¢ such that ¢ mod K = k. On such
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timeslots, only control actions on type-k packets take place. The
value of K is chosen suitably large to ensure that the user lo-
cation distribution after K slots is within a constant factor of
its steady-state value. Specifically, if K is chosen such that, re-
gardless of the initial configuration of users, the probability that
two given users are in the same cell after K slots is at least
5, then delay under the three schemes is bounded by O(K N),
O(K+/N),and O(K log(N)), respectively. The O(K N) result
for the two-hop relay algorithm (with no redundancy) follows
by using the K'-slot Lyapunov drift arguments developed in [1],
[5]. The O(K+/N) and O(K log(N)) bounds follow by liter-
ally repeating the same arguments used for the v/ N redundancy
algorithm and the fair-flooding algorithm on a K -slot basis.

While this analysis offers a simple upper bound on average
delay, we note that for many network models the value of K
may depend on N, making these bounds larger than the O(N)
and O(V/N) results for i.i.d. mobility. For example, the value
of K for a Markovian random walk might be on the order of
V/N, representing the time required for a node to move from
one side of the network to the other. However, it is possible
that alternative scheduling schemes could yield lower delay. In-
deed, in the next section it is shown through simulation that
applying the two-hop relay algorithm and the /N redundancy
algorithm exactly as before (without the K -subchannel decom-
position) yields similar performance for both i.i.d. and non-i.i.d.
mobility. It may be possible to analytically establish this result
by proving that the average revisitation time between any two
nodes remains O(N) under Markovian random walks, and that
the average time required to send out /N duplicates of a single
packet to different nodes and the time required for the destina-
tion to encounter one of these duplicate-carrying users remains
O(V/'N). We leave such questions for future work.

VIII. SIMULATION RESULTS

Here we compare the average delay obtained through both
analysis and simulation as the network is scaled. We consider a
network with cells given by an M x M grid as shown in Fig. 1.
The number of cells C is equal to M? (where M is varied be-
tween 3 and 15 for simulations), and the number of users NN is
chosen as the even integer for which N/C most accurately ap-
proximates the optimal user per cell density value d* = 1.7933.

In Fig. 5, plots of average end-to-end delay versus the number
of users IV are provided for the two-hop relay algorithm and the
O(V/'N) redundancy algorithm for both an i.i.d. and a non-i.i.d.
mobility model. In the i.i.d. mobility model, users choose new
cells uniformly over all cells in the network. In the non-i.i.d.
model, each user chooses a new cell every timeslot according to
the following Markovian dynamics: With probability a < 1, the
user stays in the same cell, otherwise it moves to an adjacent cell
to the North, South, East, or West, with each direction equally
likely. In the case where a user is on the edge of the network
and is selected to move in an infeasible direction, it stays in its
place. Using standard random-walk theory it is easy to verify
that, in steady state, such a Markov model leaves users indepen-
dently and uniformly distributed over all cells, as the stationary
equation for the Markov chain is satisfied when all cell locations
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Fig. 5. Average delay versus the number of users IV for the two-hop relay algorithm and the vV redundancy algorithm.

have equal probability [21]-[23]. In particular, if 7; represents
the steady-state probability of a particular cell 7, we have
(1-a) (1-a)

T, = T+ T, 1 + 1 + e

(1-a) (1-a)
1 tmg

where 7, my, e, Tq represent steady-state probabilities for
other cells, possibly including cell :. In the case when cell ¢ is
an interior cell, it has four distinct neighbors a, b, ¢, d. In the
case when it is an edge cell with three neighbors a, b, ¢, we set
d = 1 (so that cell ¢ is its own neighbor). In the case when cell
1 is a corner cell with two neighbors a and b, we set ¢ = d = 1.
Clearly, these steady-state equations are satisfied when the ;
probabilities are set to 1/C for all .3 Therefore, the network
capacity p is the same for both the i.i.d. mobility model and the
non-i.i.d. mobility model, and is given by i1 = 1% as described
in Theorem 1. In the simulation results, we set the o parameter
of the non-i.i.d. model to « = 1/2.

For the capacity-achieving two-hop relay algorithm, the data
rate ) into each user is fixed at 80% of the network capacity p
(given in Theorem 1), so that p = A/ = 0.8. The top three
curves for average delay in Fig. 5, respectively, represent the
exact analytical delay for i.i.d. mobility, the simulated perfor-
mance of the i.i.d. mobility model, and the simulated perfor-
mance of the Markovian mobility model. Note that the simula-
tion curve for the i.i.d. mobility model is almost indistinguish-

3Similar results hold when the random walk has a different behavior at the
edges. In particular, if the direction is chosen uniformly over all feasible direc-
tions, then the interior cells will have equal probability but the edge cells will
have a different probability.

able from the analytical curve E {W} = % The curves
are plotted on a loglog scale and have a slope of 1, indicating
O(N) delay. The delay curve for Markovian mobility is situ-
ated slightly above the curve for i.i.d. mobility, and also has a
slope of 1. This suggests that for Markovian mobility, delay is
increased by a constant multiplicative factor but remains O(N).
Results for the v/N redundancy protocol are also shown in
the figure. Data rates A are set to the value A = 0.8/, where
[ is given in (8). Note that, unlike the network capacity (i, the
throughput /i decreases as O(1/v/N ). The analytical upper and
lower bounds on delay for i.i.d. mobility are shown in the figure,
each having a slope of 1/2 indicating O(v/N) growth (note that
the lower bound represents the delay of sending just a single
packet). The simulation performance for i.i.d. mobility is shown
in the figure and is situated between the upper and lower bounds.
The upper bound is larger than the simulated curve by approxi-
mately a factor of 10, suggesting that tighter bounds could be
obtained through a more detailed analysis. The slope of the
simulation curve varies between 5/8 and 1/2. However, due to
the O(\/N ) upper and lower bounds, the average slope would
converge to 1/2 if the graph were extended. Simulation of the
Markovian mobility model is also provided, and the curve again
lies slightly above the i.i.d. mobility curve. This suggests that
delay under the Markovian model is close to O(v/'N).
Experiments to simulate the performance of the O(log(N))
scheme were not performed. However, for this case, we would
expect a discrepancy between the i.i.d. mobility model and the
non-i.i.d. mobility model. Indeed, although the i.i.d. mobility
model yields logarithmic delay, the delay under a Markovian
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mobility model would likely be closer to O(v/N) due to the
time required for a user to travel from one side of the network
to the other.

IX. CONCLUSION

This work for the first time presents a multihop, mul-
tiuser system for which a relatively complete network theory
can be developed. Exact expressions for network capacity
were derived, and a fundamental rate—delay curve was estab-
lished, representing performance bounds on throughput and
end-to-end network delay for any conceivable routing and
scheduling policy.

Delay analysis for the network was facilitated using a simple
i.i.d. user mobility model. Under this model, an exact expression
for end-to-end delay which includes the full effects of queueing
was established for the capacity achieving two-hop relay algo-
rithm. Two other protocols which (necessarily) use redundant
packet transfers were provided and shown to improve delay
at the expense of reducing throughput. The rate—delay perfor-
mance of these schemes was shown to lie on the boundary of the
fundamental performance curve delay/rate > O(N). Analysis
of general mobility models can be understood in terms of this
i.i.d. analysis, where delay bounds can be scaled by the factor
K, representing the number of slots required between sampling
points for samples of user locations to look nearly i.i.d. Fur-
thermore, simulation results suggest that O(\/N ) delay can be
achieved for networks with Markovian mobility, as the delay for
such systems closely follows the delay curve for a system with
1.i.d. mobility.

This inspires a rich set of questions concerning the funda-
mental limits of data networks. We believe that the condition
delay/rate > O(N) is necessary for general classes of mobile
wireless networks, and that the

(rate, delay) = (O(l/\/ﬁ), O(\/N))

operating point is always achievable. Such conjectures can per-
haps be established using analytical techniques similar to those
created here.

APPENDIX A
THE NETWORK CAPACITY THEOREM

Here we prove Theorem 1:
The capacity of a cell partitioned network is

_ptyg
2d
where p represents the probability of finding at least two users
in a particular cell, and g represents the probability of finding a
source—destination pair within a cell.

An algorithm for stabilizing the network whenever A < p is
given in Section II-D. Here we prove A < p is necessary for
stability.

Proof

(Necessity) Consider any stabilizing scheduling strategy, per-
haps one that uses full knowledge of future events. Let X} (T")
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represent the total number of packets transferred over the net-
work from sources to destinations in h hops during the interval
[0, T. Fix € > 0. For network stability, there must be arbitrarily
large values 1" such that the sum output rate is within e of the
total input rate

DKl

(25)

If this were not the case, the total number of packets in the
network would grow to infinity and hence the network would
be unstable. The total number of packet transmissions in the
network during the first 7" slots is at least Y, ; h X (7). This
value must be less than or equal to the total number of transmis-
sion opportunities Y (7T'), and hence,

oo

hXn(T) < Y (T) (26)

where Y (T') represents the total number of cells containing at
least two users in a particular timeslot, summed over all times-
lots 1,2,...,T. By the law of large numbers, it is clear that
LY (T) — CpasT — oo, where p is the steady-state proba-
bility that there are two or more users within a particular cell,

and is given by (2).
From (25) and (26), it follows that

1 1 2 —
TY(T) > TXl(T) t7 ZX}L(T)
h=2
1 1
> TXl(T) +2 <(N)\ —€) — TXl(T)>
and hence,
iy(T LX(T)+2
A< T ()+T 1(T) + 6. 27)

2N

It follows that maximizing A subject to (27) involves placing
as much rate as possible on the single-hop paths. However, the
time average rate %X 1(T) of one-hop communication between
source—destination pairs is bounded. Indeed, the probability ¢
that a particular cell contains a source—destination pair during
a timeslot can be written as 1 minus the probability that no
such pair is present. For the source—destination matching 1 «
2,3 « 4, .., this probability is given as the value g specified
in (3). Let Z(T) represent the total number of cells containing
source—destination pairs, summed over all timeslots 1,2, ..., T.
Again by the law of large numbers, it follows that +Z(T") —
Cq. Furthermore, it is clear that the number of packets deliv-
ered on one hop paths is less than or equal to the number of
such opportunities

%Xl(T) < %Z(T).

Combining constraints (27) and (28) and taking limits as 7' —
00, we have:

(28)

< Cp+C’q+2e.

A
2N

(29)

The necessary condition follows by using the user per cell
density definition d = N/C, and noting that e can be chosen to
be arbitrarily small. O
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APPENDIX B
EXACT DELAY ANALYSIS OF THE TWO-HOP RELAY ALGORITHM

Proof of Delay Bound in Theorem 3

A decoupled view of the network as perceived by a single
user ¢ is illustrated in Fig. 3. Due to the i.i.d. mobility, the source
user can be represented as a Bernoulli/Bernoulli queue, where
in every timeslot a new packet arrives with probability A, and
a service opportunity arises with some fixed probability 1. We
first show that p = % The Bernoulli nature of the server
process implies that the transmission probability 4 is equal to
the time average rate of transmission opportunities of source z.4
Hence, we have © = r; + ro, where r; represents the rate at
which the source is scheduled to transmit directly to the des-
tination, and 79 represents the rate at which it is scheduled to
transmit to one of its relay users. The cell partitioned relay al-
gorithm schedules transmissions into and out of the relay nodes
with equal probability, and hence 75 is also equal to the rate at
which the relay nodes are scheduled to transmit to the destina-
tion. The total rate of transmission opportunities over the net-
work is thus N (71 + 2r3). A transmission opportunity occurs in
any given cell with probability p, and hence,

Cp = N(ry + 2r2). (30)

Recall that ¢ is the probability that a given cell contains

a source—destination pair. Since the cell partitioned relay

algorithm schedules the single-hop “source-to-destination”

transmissions whenever possible, the rate r; satisfies

Cq= Nr;. 3D

It follows from (31) that r; = ¢/d, and hence by (30) we infer

that ro = %. The total rate of transmissions out of the source
node is thus given by p = r1 + 79 = p2_-|;q'

The source is thus a Bernoulli/Bernoulli queue with input
rate A and server probability y, having an expected number of
packets given by Lgource = 2 (11__;), where p 2 A/ [24]. This
queue is reversible ([23], [24]), and so the output process is also
a Bernoulli stream of rate .

A given packet from this output process is transmitted to the
first relay node with probability ﬁ (because with proba-
bility 7o/ the packet is intended for a relay node, and each
of the N — 2 relay nodes are equally likely). Hence, every
timeslot, this relay independently receives a packet with prob-
ability A= % The relay node is scheduled for a po-
tential packet transmission to the destination with probability
o= (NT—iz (because a “relay-to-destination” opportunity arises
in the relay node with probability 75, and arises for each of
the V — 2 destination nodes with equal probability). However,
packet arrivals and transmission opportunities are mutually ex-
clusive events in the relay node. It follows that the discrete time
Markov chain for queue occupancy in the relay node can be
written as a simple birth—death chain which is identical to the
chain of a continuous time M /M /1 queue with input rate X and

4A transmission opportunity arises when a user is selected to transmit to an-
other user, and corresponds to a service opportunity in the Bernoulli/Bernoulli
queue. Such opportunities arise with probability j every timeslot, independent
of whether or not there is a packet waiting in the queue.
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service rate [i (Where A /v = p). This holds for each relay node,
and the resulting occupancy at any relay is thus L,.cjqy = ﬁ.
From Little’s theorem, the total network delay is

Wi = [Zsource + (N - 2)frelay] /)‘
and hence,
N-—-1-X
1= A

proving the theorem. O

E{W:} =

APPENDIX C
HETEROGENEOUS DATA RATES

Proof of Theorem 2

Here we prove that for heterogeneous data rates (\;;) such
that there are at most K nonzero \;; entries in each row ¢, the
symmetric capacity region satisfies

—d

(1—e*—
%:A“ - 2d

1—e4—ded .
Z/\ijﬁ( ¥ )+O(K/N) V.

) | o/N) Vi

Before proving the theorem, we first note that whenever N >

d, we have
N
—d2 d
v d< (1= <e™@
e e _< N) <e

which can be proven by taking the logarithm of the above in-
equality and using the fact that log(1 + ) < z whenever
x > —1.5 The difference between the upper and lower bounds
is thus e~4(1 — ev ). Using the Taylor expansion

2

N-—-d
reveals that this difference is O(1/N), and hence,

(1 —~ %)N =e "+ O(1/N).

—d2
eN—d =1+

+ O(1/N?)

Proof

(Necessity) The proof that the above inequalities are neces-
sary conditions for stability is similar to the proof of Theorem 1,
where (25) is replaced by

%ZX}’(T) Z ZZ)\U — €.
h=1 % 7

Repeating the same argument as in Theorem 1, it follows that
[compare with (29)]

1 Cp+ Cq+ 2¢ P
ﬁ;;Aus—m =57
where p is the probability that at least two users are within a
cell (given in (2)), and ¢ is the probability that there exists a
source—destination pair within the cell. Note that ¢ may be dif-
ferent from the value of ¢ given in (3) because of the different
sets of source—destination pairs. However, since each user ¢ has

q €
2 TN

SNote that —% < —log (1 + N‘id) =log(1- %) < F-
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at most K destination nodes to consider, the union bound im-
plies that the probability of any particular user entering a given
cell along with at least one of its destinations is less than or equal
1K s« NK
The probability p that at least two users are within a cell sat-

isfies
NN d\N!
=1-(1=-= —dl1=-=
po1-(1-x) (%)
=1—e?—de” +O(1/N).

Hence,
1 1—e4—ded
N 22 M S~ +OK/N).
i

This together with the fact that no user sends or receives more
than any other proves the result. O

For sufficiency, we consider a two-hop routing scheme,
where data is routed uniformly over all relay nodes on the
first hop regardless of its destination. We note that such a
traffic uniformization scheme is conceptually similar to the
two-stage switch scheduling algorithm developed for N x N
packet switches in [24], where packets are randomly assigned
to output ports at the first stage so that traffic is uniform at the
second stage.

Proof

(Sufficiency) From the Network Capacity theorem developed
in [1], [5], we know that it is sufficient to describe a transmission
strategy yielding long term node-to-node packet exchange rates
1ti; together with a set of multi-commodity flows which route all
data to their destinations without exceeding these rates on any
link (4, 7). Consider the strategy of choosing a transmitter and
receiver in each cell completely randomly over all user pairs.
As the expected number of packet transfer opportunities over
the network is C'p opportunities per slot, the total rate of oppor-
tunities between any two links is ji;; = N(]C\;—p_l.

Suppose now the rate of exogenous data arriving to any node
1 is identically A (for some data rate \), as is the sum rate of data
entering the network destined for any node j, so that

Z/\“ = Z)‘” = )\., for all I,7_j
j

(Any smaller rate matrix which does not sum to X in every row
and column can be increased to a matrix which does have this
property). Consider the two-hop routing scheme were exoge-
nous packets at a source are routed randomly and uniformly to
any available relay node, and these packets are then transferred
from relay to destination. Since on the first hop the algorithm
routes data independently of its destination, the incoming traffic
to the relay nodes is uniformly distributed, so that each relay re-
ceives data destined for node j at a rate /(N — 1) for all des-
tinations j.

The total rate of traffic flowing over any link from ¢ to j is thus
2A/(N —1) (where a stream of total rate A\/(N — 1) flows from
1 to j due to packets from source ¢ being relayed to j, and data

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

of rate A\/(N — 1) flows from ¢ to j due to traffic being relayed

from ¢ to destination 7). This traffic satisfies the link constraint

provided that

Cp

N(N-1)

or equivalently that A < . Thus, any rate matrices (\;;) sat-

isfying ), Aij < 45 for all j and Zj Aij < &5 for all i are

within the capacity region, where
P 1—e?—de
2d 2d

2M/(N = 1) < pij =

+O(1/N). O

APPENDIX D
MINIMUM DELAY FOR TWO-HOP ROUTING

Here we derive a recursive formula for the minimum average
delay for sending a single packet from source to destination in
the case when routing is restricted to two-hop paths. We assume
that multiuser reception is not available, so that at most one user
per cell can receive a packet during a single timeslot.

The minimum delay algorithm transfers the packet to its des-
tination whenever the source or a duplicate-carrying relay is in
the same cell as the destination, and otherwise schedules the
source to deliver a duplicate version of the packet to a new user
whenever possible. Let E {Ty } represent the expected time for
the packet to reach the destination. The value of E {T'x } can be
computed recursively by defining variables X1, X, ..., Xn_1,
where X, represents the expected time for the packet to reach
its destination given that k users are carrying duplicates of the
packet. The probability that a particular user does not move to
the same cell as the destination during a timeslot is (1 — 1/C').
Therefore, the probability that at least one user among a group
of k users does reach the destination is 1 — (1—1/C)*. Note that
because all paths are restricted to two hops, the number of users
holding a duplicate version of the packet increases by at most
one every slot. This number stays the same if the source user
does not visit anyone new, and if (independently) all k£ — 1 other
users holding the packet do not visit the destination. Consid-
ering the Markov nature of the problem, we have the following
transition probabilities for each state k € {1,..., N —2}:

1\F
Pr[k — end] =1 — (1—6>

rn=(me) (e)
_ (1_ é>N—1

Pr[k — k+ 1] =1 — Pr[k — end] — Pr[k — k]
Instate kK = N — 1, the remaining time to finish is a geometric

variable with probability 1— (1 — &) M= The values of X; can
thus be computed recursively as follows:

1
1—(1-1/0)N-1
Xr=1+X(1-1/C)N 14
X1 [ —1/0) = (1 —1/C)N 7]
and E{Tn} = X;.

Xy =
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APPENDIX E
MULTIUSER RECEPTION

Here we show that multiuser reception cannot overcome the
V/N lower bound on delay for two-hop routing. Specifically, we
show that the delay E {Tv} for any algorithm which restricts
packets to two-hop paths satisfies

E >
fim EUND S -
N—oco /N

Proof

Consider sending a single packet to its destination over an
empty network. Let K, represent the total number of users who
have the packet at the beginning of slot ¢ (not including the des-
tination). Since scheduling restricts transfers to two-hop paths,
the number of users holding the packet increases every timeslot
by at most the number of users in the same cell as the source
(which is d — 2/C on average). Hence, we have for all ¢ > 1

E{K,)} <td. (32)

Note that during slots {1, 2, ... ¢} there are at most K users
holding the packet, and hence, during each of these slots, the
probability that no packet-holding user enters the cell of the des-
tination is at least (1 — &)**. Thus,

1 tK,
(1‘6)

PI‘[TN >t | Kt] >

= (1 — %)mt . (33)
We thus have
E{Tn} >tPr[Ty > t]
=tEg, {Pr[Tn >t | K]}
2\ P
> Ek, {(1 - N) } (34
g\ EED

>t <1 — N) (35
275(1—%)“1 (36)

where inequality (34) follows from (33), inequality (35) holds
by Jensen’s inequality (noticing that the function 3% is convex
in z for any § > 0), and (36) follows from (32). This holds for
all integers ¢. Choosing t = /N yields

[E{TN}Z\/N<1—%)N(1—>6’12\/N. O

APPENDIX F
DELAY OF v N REDUNDANCY ALGORITHM

Here we prove (9), establishing an O(\/N ) bound on the ser-
vice time E {T'y} for the partial feedback scheme with /N re-
dundancy. The proof requires the following preliminary lemma.

Lemma 5: Consider N users which independently choose to
enter one of C cells, and recall that d = N/C represents the
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expected number of users per cell. Let J represent the number
of users contained in a given cell. We have®

E{J|J>1}<1+d.

Proof: Let I; represent an indicator variable taking the
value 1 if the 7th user of the subset is in the cell, and 0 otherwise.
Define K as the lowest indexed user within the cell, where we
let K = N + 1if no users are present. Thus, J = Zf\;K I;. We

have
N
> L|J> 1}

E{J|J> 1}:1+|E{

i=K+1
N
=1+[EK|J>1{ > E{L|K,J>1} JZl}
i=K+1
Mo
:1+[EK|J21{ > & le} (37)
i=K+1
N
1 N
31+EK,J21{Z— JZl}:H——
< C C

where (37) follows because the condition .JJ > 1 can be inferred
by knowledge of K, and E {I; | K} = £ foralli > K. Indeed,
the event K = k is equivalent to the event that user k is in the
cell but users 1,...,k — 1 are not in the cell, and this event is
independent of the location of users ¢ € {k+1,...,N}. O

To prove the v/N bound on E {Tn}, recall that Ty = Sy +
So, where S represents the time required for the source to send
out /N replicas of the packet (while competing with other ses-
sions for network resources), and S5 represents the time re-
quired to reach the destination given that v/N users have the
packet.

Lemma 6:

44 2d

E{S},E{S,} < m\/ﬁ
where vy is a sequence that converges to 1 as N — oo.

Proof: The E {S1} Bound: Let Sy represent the time re-
quired for the source to deliver a duplicate packet to v/ N distinct
users. For the duration of Sy, there are at least N — V/'N users
who do not have the packet, and hence, every timeslot the prob-
ability that at least one of these users visits the cell of the source
is atleast 1 — (1 — £)N=V~_ Given this event, the probability
that the source is chosen by the partial feedback algorithm to
transmit is expressed by the product o g, representing proba-
bilities for the following conditionally independent events: «; is
the probability that the source is selected from all other users in
the cell to be the transmitting user, and o represents the prob-
ability that this source is chosen to operate in “source-to-relay”
mode. Let random variable .J represent the number of additional
users in the cell of the source (excluding the source user it-
self). The value of « is thus oy = E{1/(J+1)|J > 1}.By
Jensen’s inequality, we have

a; >1/E{1+J|J > 1}
>1/(2+d)

6An exact value of E{J | J > 1} = E{J}/Pr[J > 1] can easily be
computed and leads to tighter but more complicated delay bounds.
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where the last inequality follows because E {J | J > 1} < 1+d
(as proven in Lemma 5).

The probability «o that the source operates in “source-to-
relay” mode is 1/2. Thus, every timeslot during the interval Sq,
the source delivers a replica packet to a new user with proba-
bility of at least ¢, where

1 _JN 1
02 (1-0-5"") 550

1— e—d
- —.

44+2d
The average time until a replica is transmitted to a new user
is thus a geometric variable with mean less than or equal to 1/¢.
It is possible that two or more replicas are delivered in a single
timeslot. However, in the worst case, vV N of these times are
required, so that the average time E {5} is upper-bounded by

VN /. O

Proof: The E {S3} Bound: To prove the bound on E {S>},
note that every timeslot in which there are at least \/N users
with replicas of the packet, the probability that one of these users
transmits the packet to the destination is given by the chain of
probabilities §y0160263. The 6; values represent probabilities for
the following conditionally independent events: 6y represents
the probability that there is at least one other user in the same cell
as the destination (and is given by fp = 1 — (1 — 1/C)N~1 —
1 — e~ %), A represents the probability that the destination is
selected as the receiver (where, similar to the oy computation,
we have 6; > 1/(2 + d)), 6 represents the probability that
the sender operates in “relay-to-destination” mode (where 65 =
1/2), and 63 represents the probability that the sender is one of
the v/N users who have a replica of the packet intended for the
destination (where 63 = v/N /(N — 1) > 1/+/N). Thus, every
timeslot, the probability that the Sy time comes to completion

is at least (4(1__2—2)_2\_,. The value of E {S5} is thus less than or
equal to the inverse of this quantity. O

APPENDIX G
LOGARITHMIC DELAY FOR FLOODING PROTOCOL

Here we prove Lemma 3: Under the algorithm of flooding
the network with a single packet, for any network size N >
max{d, 2}, the expected time E {T} for the packet to reach
every user satisfies E {Ty} < E{S1} + E {S>}, where

log(N) (14 d/2)
log(@)(1 — /%)

E(S2) <1+ (1 +log(N/2)).

E{S} <

Proof

(The E {S2} Bound): Let M represent the number of users
who do not initially have the packet (so that M < N/2), and
label these M users {uy,us,...,up}. Let X; represent the
number of timeslots it takes for the non-packet-holding user
u; to reach a cell containing a user who possesses a packet.
Due to the multiuser reception feature, user u; must receive the
packet at this time. The random variable X; is geometric, in
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that a “success” happens on any given timeslot with probability
P >1—(1— %)N/2 Thus, we have for all N

—d/2

p>1—c (38)

All times X are i.i.d., and hence the random variable S is
equal to the maximum value of at most M = | N/2] i.i.d. vari-
ables. Hence, E {S2} < E {max{Xy, Xo,...,Xn}}. To ob-
tain a simple bound on this time, we consider new random vari-
ables {Y1,Y5, ..., Yy} which are i.i.d. and exponentially dis-
tributed with rate A = log(1/(1 — 1)). Notice that the random
variable 1 + Y; is stochastically greater than X;, because the
complementary distribution functions satisfy Pr[1 +Y; > ¢] >
Pr[X; > t] for all real numbers ¢ (see [20] for a treatment of
stochastic dominance for random variables). It follows that

E {SQ} S E {max{Xl,X27 e 7X1u}}
<1+ E{max{Y1,Ys,...,Ya}}.

The expected maximum of M i.i.d. exponential variables of
rate A is equal to the expectation of the sum of intervals I; +
Iy +- - -+ Iy, where I; represents the duration of time between
the (7 — 1)the and 7th completion time. The interval I; is the
first completion time of M independently racing exponential
variables, and hence I is exponentially distributed with rate
M \. Furthermore, I, is the first completion time of M —1 racing
exponential variables, I3 is the first completion time of M — 2
racing exponentials, and so on. It follows that

M
1 1
E{Il+12+"'+I]\/I}:X E:E
Hence E{S2} <1+ + Zm | =, which is upper-bounded by
14 (1 +log(M)). Hence
1+ log(M) 1+ log(N/2)
E{S:} <1 O
S <1 ot o) < ' log(ei)
Proof

(The E {S1} Bound): We compute a bound on E {S;} by
noting that E {S1} <E {Sl}, where 5’1 is the time to reach at

least N/2 users when the multiuser reception feature is turned
off, and any transmitted packet is received by at most one other
user within a cell. It turns out that the variable 5’1 is easier to
work with, as the number of users holding the packet can at most
double every timeslot. Let K; represent the number of users con-
taining a duplicate version of the packet at timeslot¢ € 1,2,...
(suppose only the source user has the packet at time 0, so that
Ko =1).Letus,us,...,uk, represent the users containing the
packet at time ¢. Each of these users u; delivers the packet to a;
new users on the next timeslot, where a; is a binary random vari-
able taking a value of either 0 or 1. Whenever there are at least
N/2 users which do not currently hold the packet, we have that
E{a;} > 6105, where §; =1 — (1 — %)N/Q represents a lower
bound on the probability that at least one of the new users enters
the cell of user u;, and 5 represents a lower bound on the prob-
ability that user ¢ is selected to transmit its replica among all
other packet-holding users within the cell. Define .J as the total
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number of other packet-holding users in the cell (not including
user z). It follows that

1
1
STYE(] @
1
= d/2 “h

where (40) follows by Jensen’s inequality and convexity of the
function 1/(1 + z), and (41) follows because there are no more

than N/2 packet-holding users, and hence, E {J} < £& = d/2.
Thus,
1— (1= L)N/?
E{a;} >—— ¢~
laid 2—77375
1— e—d/2
> 4
= 1+d/2 (42)

where (42) follows because (1— %)V < e~4forall N > d > 0.

Let Z;, = K;/K;_1 be a random variable representing the
multiplicative factor by which the number of packet-holding
users grows after one timeslot. (Note that 1 < Z; < 2.) It clearly
holds that

Ki4+ar+ar+---

+ ag,
K; '

L1 =

The a,; random variables are not independent, although they are
identical. Thus, for any timeslot ¢ in which fewer than N /2 users
have packets

Kt + KtlE {al}
K
=14+E {0,1}
1 1— e /2
> _
=T

E{Ziy1 | Ki} =

(43)

Now consider the stopping time Sy where att = Sy — 1 there
are fewer than IN/2 users with packets, but at time ¢ = §1 the
N /2 threshold is either met or crossed. Note that Sy is similar
to a stopping time variable, treated in [23], [20], although the
event {31 > t} is not independent of Z;. The number of users
K containing the packet at time ¢ = S, satisfies

NZKS~1 :Z1Z2-~-ZS~1
and hence,
N) > log(Z1) + log(Z2) + - --

log( +log(Zg, ).

Define the indicator random variable I; to be 1 if 51 >t,and 0
otherwise. Taking expectations of the above inequality, we find

N)>E i log(Z:)

t=1

=E {i log(Zt)It}

log(
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t=1

=E {ZIt[E{log(Zt) | Kt—l}}

t=1

—E {i E {log(Z)1; | Kt—l}}

where the last equality follows because the variable K;_; com-
pletely determines the binary value of /;. Recall that 1 < 7, <2,
and hence, log(Z;) > log(2)(Z;—1) (as the lower bound values
are points along the chord of the concave function log(Z) over
the interval 1 < Z < 2). We thus have

log (V) SE {i LE{(Z;— 1) |K¢4 }}

log(2) —

(11_+e;;;2 > {i It}

1— e /2 5
= (71“[/2 >[E{Sl} (44)
where (44) follows from (43). Thus,
log(N)(1+d/2)
E{si} <E {Sl} = log(2)(1 — e~4/2)" =

APPENDIX H
MINIMUM DELAY FOR MULTIHOP ROUTING IS LOGARITHMIC

Lemma 7: Starting with a single packet contained in one user
in an empty network of size IV, the flooding algorithm of deliv-
ering the packet to its destination by having every duplicate-car-
rying user transmit to other users whenever possible has an av-
erage delay E {Tv} which is logarithmic. In particular

E{In}, 1
N Tog(N) = Tog(1+ d)

This bound holds even if multiuser reception is available.

Proof: As in the proof of Lemma 3, define K; as the
number of users holding the packet at time ¢ (where Ky = 1),
and let Z; = K;/K;_; represent the growth factor after one
timeslot. We have

Ki+ai+ax+---
Ky

+ ag,

Lyp1 =

where a; represents the number of new users to which the <th
packet-holding user transmits during a timeslot. We clearly have
E {a;} < d during any timeslot, and hence,

E{Ziy1| Ki} =

K, K, E
—t+Kt {o1} <14+d.

t

Because Ky = Z1Zs - - - Z, it follows by recursion that

E{K:} < (1+4d)". (45)

Note that during slots {1, 2, ..., ¢} there are at most K users
holding the packet, so the probability that none of these users
enters the cell of the destlnatlon on such a timeslot is greater than
or equal to (1 — —) . Hence, the proof given in Appendix D
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for the v/N bound for two-hop routing can be followed exactly
up to (35). In particular, we have [compare with (33)—(35)]

E{Tx} >t Pr[Tx > 1]
:tEKt{PI'[TN >t | Kt]}

PNGY
> tEg, {(1 - N) }
O\ KD
> 11— — .
>1(1-5)

Using (45) in the above inequality, we have

d t(1+d)"

The above inequality holds for all integers ¢ > 0. For con-
venience, we choose ¢ to represent a base-(1 + d) logarithm:
t £ logy, 4(aN”), where /3 is any number less than 1, and «
is chosen within the bounds 1 < a < (d + 1) so that ¢ is an
integer. Using this value of ¢ in (46), we have

(46)

aNBlog(aNP)

N Nlog(1+d)
[<1 B i> ]
N

— e % as N — oo, and its exponent

(log(x) + Blog(IV))

E{Tn} 2> log(1 + d)

Note that (1 — %)N
aN? log(aN?)

NTog(ifa)~ converges to 0 whenever 3 < 1. It follows that

aNPlog(aNP)

N N log(1+d)
[(1 — %) ] —1

. E{T~n} I6]
>
]\/11—1;%o log(N) ~ log(1+d)

and hence,

for any 8 < 1. The bound can be optimized by taking a limit as
B — 1, yielding the result. O

APPENDIX [
TAKING INFIMUMS OVER SETS

Here we compute infg E { X | ©} for a nonnegative random
variable X, where the infimum is taken over all events © such
that Pr[©] > L. Let P(z) = Pr[X < z] represent the cumula-
tive distribution function for X . Let w be the unique real number
such that Pr[X < w] < 1 and Pr[X < w] > 1. Note that if
P(z) is continuous, then Pr[X < w] = Pr[X < w] = 1. In
general, a noncontinuous distribution may have a point mass at
T = w.

Lemma 8: For any nonnegative random variable X, we have

inf E{X|O0}=E{X|X <w}2Pr[X <uw]
{e|Pr[©]>1}

+w(l-2Pr[X <w]).

Note that the infimum depends only on the cumulative distri-
bution function P(z). In the special case when P(z) is contin-
uous at ¥ = w, then Pr[X < w] = Pr[X < w] = 3, and hence,
the lemma implies that the infimum is equal to E {X | X < w}.
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Proof: To prove the lemma, let p(z) = ‘“;iw) represent

the generalized density function of X (which may contain im-
pulses if P(z) is not continuous). Consider any event © such
that Pr[©] > 1. Define the conditional probability distribution
f(z) = pxje(z | ©). Note that

p(z) = pxje(r | ©)Pr[O] + pxje-(z | ©°) Pr[O9]

(where ©¢ represents the complement of the event ©). Hence,
pxje(z | ©) < p(z)/ Pr[O] < p(x)/3. That is,

f(@) < 2p(x),

Note also that f(x) is a probability distribution for a nonnega-
tive variable, so that [~ f(z)dz = 1. We have

for all z. a7

E{X|O}= /OW_ wf(w)d + /:o o f (w)da

- /0 B w2p(x)dx + /0 . z[f(z) — 2p(x)]dz
+ /:_0 xf(z)dz

> [7 wwde o [ 1@ - 2p(@lin

0
+ w/ f(x)dz (48)

where (48) follows because (47) implies the integrand of the
second integral is nonpositive for all z (so that [° z[f(z) —

2p(z)ldz > w [y [f(x) — 2p(x)]dz). Noting that

/ f(z)dz +/ f(z)dz =1
0 w™
inequality (48) implies

E{X|O}>E{X|X <w}2Pr[X <w]+w

- w/ow 2p(x)dx
=E{X | X <w}2Pr[X < ]

+ w(l—-2Pr[X <w]). 49)

The lower bound (49) holds for all events ® such that
Pr[©] > 1/2, and hence,
inf E{X |0} >E{X| X <w}2Pr[X <]
{e|pr[0]>1}

+w(l-2Pr[X <w]).

We now show that the reverse inequality is also true. Let A
be the outcome of a biased coin flip that is independent of X .
Specifically, let Pr[A = 1] = ¢, Pr[A = 0] = 1 — ¢, where ¢
is the value such that ¢ Pr[X = w] = (3 — Pr[X < w]). Note
that 0 < g < 1 because Pr[X = w] + Pr[X < w] > 1 but
PrlX < w] < 1.

Consider the particular event ©* defined as follows:

"2 ({X<w} U {{X=win{Ad=1}}}. (50
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That is, ©* represents the event that either X < w, or both
X =wand A = 1. Note that Pr[©*] = 1/2, because Pr[0*] =
Pr[X < w]+ ¢Pr[X = w]. We then have

Pr[X < w]
Pr[©*]
=E{X | X < w}2Pr[X < ]
+ w(l-2Pr[X <w]).

qPr[X = u]
Pr[©*]

E{X|0") =E{X|X <w)}

Thus, the particular event ©* allows the conditional expecta-
tion to meet the lower bound of (49). Thus, ©* is the mini-
mizing event, and its resulting expectation is equal to the in-
fimum, proving the lemma. O

REFERENCES

[1] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels,” Ph.D. dissertation, MIT,
Lab. Inf. Decision Syst. (LIDS), Cambridge, MA, 2003.

[2] M. J. Neely and E. Modiano, “Capacity and delay tradeoffs for ad-hoc
mobile networks,” in Proc. IEEE Broadnets, San Jose, CA, Oct. 2004.

[3] ——, “Improving delay in ad-hoc mobile networks via redundant packet
transfers,” in Proc. Conf. Information Sciences and Systems, Baltimore,
MD, Mar. 2003.

[4] R. L. Cruz and A. V. Santhanam, “Hierarchical link scheduling and
power control in multihop wireless networks,” in Proc. 40th Annu.
Allerton Conf. Communication, Control, and Computing, Monticello,
IL, Oct. 2002.

[5S] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power alloca-

tion and routing for time varying wireless networks,” IEEE J. Sel. Areas

Commun., vol. 23, no. 1, pp. 89-103, Jan. 2005.

M. Grossglauser and D. N. C. Tse, “Mobility increases the capacity of

ad-hoc wireless networks,” in Proc. IEEE INFOCOM, Anchorage, AK,

Apr. 2001, pp. 1360-1369.

P. Gupta and P. R. Kumar, “Critical power for asymptotic connectivity

in wireless networks,” in Proc. IEEE Conf. Decision and Control, 1998.

[6

—_

[7

—

(8]
(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

1937

—, “The capacity of wireless networks,” IEEE Trans. Inf. Theory, vol.
46, no. 2, pp. 388—404, Mar. 2000.

N. Bansal and Z. Liu, “Capacity, delay and mobility in wireless ad-hoc
networks,” in Proc. IEEE INFOCOM, San Francisco, CA, Apr. 2003.
M. Grossglauser and M. Vetterli, “Locating nodes with ease: Last en-
counter routing in ad hoc networks through mobility diffusion,” in Proc.
IEEE INFOCOM, San Francisco, CA, Apr. 2003.

E. Perevalov and R. Blum, “Delay limited capacity of ad hoc networks:
Asymptotically optimal transmission and relaying strategy,” in Proc.
IEEE INFOCOM, San Francisco, CA, Apr. 2003.

A. Tsirigos and Z. J. Haas, “Multipath routing in the presence of fre-
quent topological changes,” IEEE Commun. Mag., vol. 39, no. 11, pp.
132-138, Nov. 2001.

E. Cohen and S. Shenker, “Replication strategies in unstructured peer-to-
peer networks,” in Proc. ACM SIGCOMM, Aug. 2002.

W. H. Yuen, R. D. Yates, and S.-C. Mau, “Exploiting data diversity and
multiuser diversity in noncooperative mobile infostation networks,” in
Proc. IEEE INFOCOM, San Francisco, CA, Apr. 2003.

L. Kleinrock and J. A. Silvester, “Optimum transmission radii in packet
radio networks or why six is a magic number,” in Proc. Nat. Telecom-
munications Conf., Dec. 1978.

S. Toumpis and A. J. Goldsmith, “Large wireless networks under fading,
mobility, and delay constraints,” in Proc. IEEE INFOCOM, Hong Kong,
Mar. 2004.

A. El Gammal, J. Mammen, B. Prabhakar, and D. Shah, “Throughput-
delay trade-off in wireless networks,” in Proc. IEEE INFOCOM, Hong
Kong, Mar. 2004.

X. Lin and N. B. Shroff, “The fundamental capacity-delay tradeoff in
large mobile ad hoc networks,” Purdue Univ., W. Lafayette, IN, Tech.
Rep., 2004.

S. Ross, Stochastic Processes.
F. P. Kelly, Reversibility and Stochastic Networks.
Wiley, 1984.

S. Ross, Introduction to Probability Models, 8th ed. San Diego, CA:
Academic, 2002.

R. Gallager, Discrete Stochastic Processes.
demic, 1996.

H. Daduna, Queueing Networks with Discrete Time Scale.
Springer-Verlag, 2001.

C. E. Koksal, “Providing quality of service over electronic and optical
switches,” Ph.D. dissertation, MIT, Lab. Inf. Decision Syst. (LIDS),
2002.

New York: Wiley, 1996.
Chichester, U.K.:

Boston, MA: Kluwer Aca-

New York:



	toc
	Capacity and Delay Tradeoffs for Ad Hoc Mobile Networks
	Michael J. Neely, Member, IEEE, and Eytan Modiano, Senior Member
	I. I NTRODUCTION

	Fig. 1. A cell-partitioned ad hoc wireless network with $C$ cell
	A. Concerning the Cell-Partitioned Network Assumptions
	B. Paper Outline
	II. C APACITY, D ELAY, AND THE T WO -H OP R ELAY A LGORITHM
	Theorem 1: The capacity of the network is $$\mu = {{ p + q}\over


	Fig. 2. A plot of the limiting capacity $(1 - e^{-d} - de^{-d})/
	A. Feedback Does Not Increase Capacity
	Corollary 1: The use of redundant packet transfers, multiuser re
	Proof: The capacity region given in Theorem 1 considers all poss


	B. Heterogeneous Demands
	Theorem 2: The symmetric capacity region of the network has the 
	Proof: This proof is similar to the proof of Theorem 1, and the 


	C. Delay Analysis and the Two-Hop Relay Algorithm
	Cell Partitioned Relay Algorithm: Every timeslot and for each ce


	Fig. 3. A decoupled diagram of the network as seen by the packet
	Theorem 3: Consider a cell-partitioned network (with $N$ users a
	Proof: The proof uses reversibility of the first stage queue, an

	III. S ENDING A S INGLE P ACKET
	A. Scheduling Without Redundancy
	Theorem 4: Algorithms which do not use redundancy cannot achieve
	Proof: The minimum delay of any packet is computed by considerin


	B. Scheduling With Redundancy
	Theorem 5: No algorithm (with or without redundancy) which restr
	Lemma 1: $$e^{-d} \leq \lim _{N\rightarrow \infty } {{ \BBE \lef
	Proof:




	Fig. 4. The exact minimum delay of a two-hop scheduling scheme v
	C. Multiuser Reception
	IV. S CHEDULING FOR D ELAY I MPROVEMENT
	In-Cell Feedback Scheme With $\underline{\sqrt {N}}$ Redundancy:
	Theorem 6: The In-Cell Feedback Scheme achieves the $O(\sqrt {N}
	Lemma 2: Suppose inputs to a single server queue are Poisson wit
	Proof: Consider a single packet arriving from a Poisson stream, 


	V. M ULTIHOP S CHEDULING AND L OGARITHMIC D ELAY
	Lemma 3: Under the above algorithm of flooding the network with 
	Proof: The proof is given in Appendix€G . $\hfill \square $

	A. Fair Packet Flooding Protocol
	Fair Packet Flooding Protocol: Every timeslot and in each cell, 
	Theorem 7: For Poisson inputs with rates $\lambda _{i}$ for each


	VI. F UNDAMENTAL D ELAY /R ATE T RADEOFFS
	Theorem 8: A necessary condition for any conceivable routing and
	Proof: Suppose the input rate of each of the $N$ sessions is $\l

	Claim 1: $$\BBE \left \{ W_{i} \mid R_{i}\leq 2\overline {R}_{i}
	Claim 2: For variables $Z$ and $ {\mathtilde {Z}}$, we have $$\i
	Proof of Claim 2: We first compute $\inf _{\mathtilde {\Theta }}

	Lemma 4: For any random variables $X, Y$ such that $X$ is stocha
	Proof of Lemma 4: Since $X$ is stochastically greater than $Y$, 
	Proof of Claim 1: Recall that $W_{i}$ represents the delay of pa

	A. Discussion

	VII. N ON - I . I . D . M OBILITY M ODELS
	VIII. S IMULATION R ESULTS

	Fig. 5. Average delay versus the number of users $N$ for the two
	IX. C ONCLUSION
	T HE N ETWORK C APACITY T HEOREM
	Proof

	E XACT D ELAY A NALYSIS OF THE T WO -H OP R ELAY A LGORITHM
	Proof of Delay Bound in Theorem 3

	H ETEROGENEOUS D ATA R ATES
	Proof of Theorem 2
	Proof
	Proof

	M INIMUM D ELAY FOR T WO -H OP R OUTING
	M ULTIUSER R ECEPTION
	Proof

	D ELAY OF $\sqrt {N}$ R EDUNDANCY A LGORITHM
	Lemma 5: Consider $N$ users which independently choose to enter 
	Proof: Let $I_{i}$ represent an indicator variable taking the va

	Lemma 6: $$\BBE \left \{ S_{1}\right \} , \BBE \left \{ S_{2}\ri
	Proof: The $ \BBE \left \{ S_{1}\right \}$ Bound: Let $S_{1}$ re
	Proof: The $ \BBE \left \{ S_{2}\right \}$ Bound: To prove the b


	L OGARITHMIC D ELAY FOR F LOODING P ROTOCOL
	Proof
	Proof

	M INIMUM D ELAY FOR M ULTIHOP R OUTING I S L OGARITHMIC
	Lemma 7: Starting with a single packet contained in one user in 
	Proof: As in the proof of Lemma 3, define $K_{t}$ as the number 


	T AKING I NFIMUMS O VER S ETS
	Lemma 8: For any nonnegative random variable $X$, we have $$\dis
	Proof: To prove the lemma, let $p(x) \triangleq {{ d P(x)}\over 


	M. J. Neely, Dynamic power allocation and routing for satellite 
	M. J. Neely and E. Modiano, Capacity and delay tradeoffs for ad-
	R. L. Cruz and A. V. Santhanam, Hierarchical link scheduling and
	M. J. Neely, E. Modiano, and C. E. Rohrs, Dynamic power allocati
	M. Grossglauser and D. N. C. Tse, Mobility increases the capacit
	P. Gupta and P. R. Kumar, Critical power for asymptotic connecti
	N. Bansal and Z. Liu, Capacity, delay and mobility in wireless a
	M. Grossglauser and M. Vetterli, Locating nodes with ease: Last 
	E. Perevalov and R. Blum, Delay limited capacity of ad hoc netwo
	A. Tsirigos and Z. J. Haas, Multipath routing in the presence of
	E. Cohen and S. Shenker, Replication strategies in unstructured 
	W. H. Yuen, R. D. Yates, and S.-C. Mau, Exploiting data diversit
	L. Kleinrock and J. A. Silvester, Optimum transmission radii in 
	S. Toumpis and A. J. Goldsmith, Large wireless networks under fa
	A. El Gammal, J. Mammen, B. Prabhakar, and D. Shah, Throughput-d
	X. Lin and N. B. Shroff, The fundamental capacity-delay tradeoff
	S. Ross, Stochastic Processes . New York: Wiley, 1996.
	F. P. Kelly, Reversibility and Stochastic Networks . Chichester,
	S. Ross, Introduction to Probability Models, 8th ed. San Diego, 
	R. Gallager, Discrete Stochastic Processes . Boston, MA: Kluwer 
	H. Daduna, Queueing Networks with Discrete Time Scale . New York
	C. E. Koksal, Providing quality of service over electronic and o



