138 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

Power Allocation and Routing in Multibeam Satellites
With Time-Varying Channels

Michael J. Neely, Eytan Modiano, and Charles E. RpBenior Member, IEEE

Abstract—We consider power and server allocation in a
multibeam satellite downlink which transmits data to IV different
ground locations over N time-varying channels. Packets destined
for each ground location are stored in separate queues and the
server rate for each queuei depends on the powep;(t) allocated
to that server and the channel statec;(¢) according to a concave
rate-power curve u;(p;, c;). We establish the capacity region of
all arrival rate vectors (Ay,...,An) Which admit a stabilizable
system. We then develop a power-allocation policy which stabilizes
the system whenever the rate vector lies within the capacity region.
Such stability is guaranteed even if the channel model and the
specific arrival rates are unknown. Furthermore, the algorithm
is shown to be robust to arbitrary variations in the input rates
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and a bound on average delay is established. As a special casefig. 1. Multibeam satellite withV time-varying downlink channels antf

this analysis verifies stability and provides a performance bound
for the Choose-theK-Largest-Connected-Queuegolicy when
channels can be in one of two statesof or oFfF) and K servers
are allocated at every timestep X < N). These results are
extended to treat a joint problem of routing and power allocation
in a system with multiple users and satellites and a throughput
maximizing algorithm for this joint problem is constructed.
Finally, we address the issue of interchannel interference and
develop a modified policy when power vectors are constrained to
feasible activation sets. Our analysis and problem formulation is
also applicable to power control for wireless systems.

Index Terms—Delay, dynamic power allocation, power control,
queueing analysis, satellite communication, stability, wireless
downlink.

. INTRODUCTION

I lite which transmits data tdv ground locations overv
different downlink channels. Each channel is assumed to

N THIS PAPER, we consider power allocation in a satef,

onboard output queues.

channel state and queue backlog information. The goal of
the controller is to stabilize the system and thereby achieve
maximum throughput and maintain acceptably low levels of
unfinished work in all of the queues.

We establish the capacity region of the system by de-
scribing the multidimensional region of all arrival rate vectors

,.-.,An) which admit a stabilizable system under some
power-allocation policy. Stability in this region holds for gen-
eral ergodic channel and packet arrival processes. It is shown
that if the channel model and arrival rates are known, any
power-allocation policy which stabilizes the system—paossibly
by making use of special knowledge of future events—can be
transformed into a stabilizing policy which considers only the
urrent channel state.
We next consider the case of a slotted time system when ar-
Rals and channel-state vectors are independent and identically

time varying (€.g., due to changing weather conditions) afkihyted (i.i.d.) from one timeslot to the next, but the channel
the overall channel state is described by the ergodic VecB?Bbabilities and the exact values of arrival ratas (.., Ax)

process’
location: arrive from an input streanX; and are placed in an

(t) = (e1(t), ..., cn(t)). Packets destined for ground

are unknown. A particular power-allocation policy is developed
which stabilizes the system whenever the ralgs.(. ., Ax) are

output queue to await processing (Fig. 1). The servers of eqghhin the capacity region. This policy is shown to maintain av-

of the NV output queues may be activated simultaneously at
time ¢ by assigning to each a power leyglt), subject to the
total power constraind_ p;(t) < Pt. The transmission rate
of each servef depends on the allocated powert) and on

aBY¥age queue occupancy within a fixed upper bound and is robust

to arbitrary changes in the input rates. These results are extended
to treat a joint routing and power-allocation problem with mul-
tiple users and multiple satellites and a simple policy is devel-

the current channel statg() according to a general concave, e which maximizes throughput and ensures stability when-

rate-power curveu;(p;,c;). A controller allocates power to

ever the system is stabilizable. Finally, we address the issue of

each of thelV queues at every instant of time in reaction tqyarchannel interference due to bandwidth limitations and de-
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1in [20], we show the same policy is stabilizing for Markov modulated input
and channel dynamics (see simulation results in Section VII).
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Previous work on queue control problems for satellite and
wireless applications is found in [1]-[8], [14], [15], [18], and
[20]. In[2], a parallel queue system with a single server is exam-
ined, where every timeslot the transmit channels of the queues
vary betweeroN andoFF states and the server selects a queue to
service from those that acen. The capacity region of the system
is developed when packet arrivals and channel states are i.i.d.
Bernoulli processes, and stochastic coupling is used to show power p
optimality of theServe-the-Longest-Connected-Qupakcy in
the symmetric situation that arrival and channel processes 5fe2- Setof concave power curves(p:, ¢;) for channel states; , ¢, ¢s.

rate /Hi(P, c3)

4 improving
| | channel

| | conditions
I

N pi(p, ¢2)

Nui(p, cj)

identical for all queues (i.ed; = --- = Ay, p§" = - - = pP).
Such a server-allocation problem can be viewed as a speégresent the channel process by the channel vector
case of our power-allocation formulation, and in Section IV, we'(t) = (ci(t),...,cn(t)), whereC(t) € Sy x -+ x Sy.

verify stability of the Serve-thek -Longest-Queuepolicy for Channels hold their state for timeslots of lendth with
symmetric and asymmetric systems with multiple servers. transitions occurring on slot boundaries- k7. It is assumed

In [3], a wireless network of queues is analyzed when inpthat channel states are known at the beginning of each timeslot.
packets arrive according to memoryless processes and haveSich information can be obtained either through direct channel
ponentially distributed length. A Lyapunov function is used toneasurement (where timeslots are assumed to be long in
establish a stabilizing routing and scheduling policy under netemparison to the required measurement time) or through a
work connectivity constraints. In [4], similar analysis is used toombination of measurement and channel predictidhe
treat server allocation in a network with time-varying conne@hannel process is assumed to be ergodic and yields time-av-
tivity. Such a technique for proving stability has also been usegiage probabilities for each state”. At every timeslot, the
in the switching literature [9]-{12]. In [10], aV x N packet server transmission rates can be controlled by adjusting the
switch with blocking is treated and input/output matching stratgower-allocation vectoﬁ(t) = (p1(t),...,pn(t)) subject to
gies are developed to ensure 100% throughput whenever arriy@ total power constraint p;(t) < Piot.
rates are within the capacity region. In [12] and [13], the method gqy any given state; of downlink channeli, there is a
of Lyapunov stability ana!y_sis is used to prove that queues &8rresponding rate—power curug(p;, ¢;) which is increasing,
not only stable but have finite backlog moments. concave, and continuous in the power parameter (Fig. 2). This

The main contribution in this paper is the formulation of 8.,ver curve could represent the logarithmic Shannon capacity

general power-control problem for multibeam satellites and th§ e of 4 Gaussian channel, or could represent a rate curve
development of throughput maximizing power- and server-al-

locati lqorith for th ¢ Th thod extend 36or a specific set of coding schemes designed to achieve a
ocation argoriinms Tor the system. 1he method extends %?lfﬁciently low probability of error in the given channel state.
other wireless networking problems where power allocatign . ,

. : o X general, any practical set of power curves will have the con-
and energy efficiency is a major issue. Recent work in [lfi‘

AR vity property, reflecting diminishing returns in transmission
treats a problem of minimizing the total energy expended Ote with each incremental increase in sianal bower
transmit blocks of data arriving to a single queue, and it 5 o : signatp ' .
The continuity property is less practical. A real system will

shown that power control can be effectively used to extend i :
longevity of network elements. In [15], power allocatior/€!Y on a finite databank of coding schemes and, hence, actual

for wireless networks is addressed. The authors consid8f€—POWEr curves restrict operation to a finite set of points.
ON/OFFtype power-allocation policies and observe that fdrOf SUCh a system, we can create a newal power curve
random networks, capacity regions are not extended much/yPi»¢i) by a piecewise linear interpolation of the operating
including more power quantization levels. Our capacity resulp®ints [see Fig. 3(a)]. Such virtual curves have the desired conti-
in Sections 11l and VIl illustrate that the capacity region is ofteAuity and concavity properties and are used as the true curves in

considerably extended if multiple power levels are utilized fdur power-allocation algorithms. Clearly, a virtual system which
the satellite downlink problem. allocates power according to the virtual curves has a capacity re-

In the next section, we introduce the power- and server-glion which contains that of a system restricted to allocate power
location problems. In Section IlI, we develop several stabilitgn the vertex points. However, when vertex points are equally
results for single-queue systems with ergodic and nonergodjgaced along the power axis and integrally divide the total power
processing rateg(t) and establish the capacity region of the’,., the capacity regions are, in fact, the same, as any pointon a
satellite downlink with power control. In Section IV, a stabivirtual curve can effectively be achieved by time-averaging two
lizing power-allocation policy is developed for systems witlor more feasible rate—power points over many timeslots. Indeed,
i.i.d. inputs and channel states. In Section V, a joint routing amg Section 1V, we design a stabilizing policy for any set of con-
power-allocation policy is treated using similar analysis, and #ave power curves which naturally selects vertex points at every
Section VI, we extend the problem to treat channel interferenggesiot if power curves are piecewise linear.
issues. Numerical results are presented in Section VII. This power-allocation formulation generalizes a simpler

problem of server allocation. Assume that there Ereervers
Il. POWER AND SERVER ALLOCATION 2In [23] and [24], it is shown that satellite channel states can be accurately
I id heV f Fio. 1. Each ti . gEredicted up to one second into the future, where attenuation levels in the Ka
onsider t queue system of Fig. 1. Each time-varyin and are estimated to withih1 db of accuracy in both clear and rainy weather

channeli can be in one of a finite set of stateés. We conditions.



140 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

rate i(p) eral processeg(t) which may or may not have well-defined
time averages. We make the following definitions.
z 4---- X (t) total amount of bits that arrived duriri@, ¢];
U(t) unprocessed bits in the queue at titne
/ w(t) instantaneous bit processing rate in the server.

(“\
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Fig. 3. Virtual power curves for systems with a finite set of operating points. L . . .
where liminf of a function f(¢) is defined as

] liminf; o f(t) = limi_oo[inf,>¢ f(7)]. The limsup is
and every timeslot the servers are scheduled to skreéthe jofined similarly. -

N queues [ < N). A given queus transmits data at a fixed g |imjts in (2) exist with probability 1. We assume the pro-

rateu; whenever a server is allocated to it and transmits nomi'&@ssing rate is always bounded above by some maximum value
when no server is allocated. This problem can be transformﬁgﬂ <u for all ) and, hence) < u < p As a mea-
d = max» H = = max-

into a power-allocation problem by defining the virtual poweg,re of the fraction of time that the unfinished work in a queue

constrainty S pi(t) < K and the virtual power curves is above a certain valug/, we define the “overflow” function
M
‘ wi, p>1. 1t
) _ _ _ } g(M) = limsup — / Ly (r)>andr 3)
Such a virtual curve contains the feasible poimpts=0, j1; = t—oo 1 Jo

O?I andt(]:j: l’ﬂit :”’”)’ tcc:jrr:aspondmg tqu s%r\éer b:mg €ithel\nere the indicator functio used above takes the value 1
f"tl ocf? € ?r nota OC,[?].ef 0 gtjeu{asgti Igt.' E )] %V\;eve{'tr\{vhenever evenk is satisfied and 0 otherwise.
't sutlices to remove this feasibie point restriction and reéat € by ogiion: A single-server queueing system ssable if

system as if it operates according to the continuous virtual pow 9\4) . 0asM — oo

curve (1). This Preserves _the same Capad_ty region, and _Iat Notice that if sample paths of unfinished work in the queue
is shown that any stablllzmg_ algorithm w h.'Ch uses.the thg Ire ergodic and a steady state exists, the overflow fungtidh)
curves can be transformed into a stabilizing algorithm Wh'cf simply the steady-state probability that the unfinished work in

colr_zuformslto ;he feasgltl)le th Int Esw.::r']c:r% iaht ¢ the queue exceeds the value Stability in this case is identical
xample Server-Allocation Algor Ne€ MIght SUSPECT 14 the ysual notion of stability defined in terms of a vanishing

the policy of serving thé& fastest nonempty queues would maxéomplementary occupancy distribution [3], [10], [13], [17].

:cn”::ze Qata OUtF;Ut and ac|h|evE_sthap“|I|tyt. Htowei\r:e;, ;’r\]/e F?rOV'dtetrt]heLemma 1 (Queue Stability)For a single-queue system with
oflowing counterexample which ustrates that this IS no eneral input and server rate procesdegg) and u(t), a nec-
case. Consider a three-queue two-server system with cons

. { —(11.1/2). All arrivi ket ary condition for stability is < . If the arrival process
processing rateus, fi2, i) = (1,1,1/2). All arriving packets X (t) and the rate procesgt) evolve according to an ergodic
have lengthl. = 1 and arrive according to i.i.d. Bernoulli pro-

? . -y finite-state Markov chain, then a sufficient condition for sta-
cesses with packet arrival probabilitigs , p2, p3) = (p,p, (1—

N 5 bility is A < .
p°)/2 +¢), wherep < 1/2 and0 < e < p*/2. Proof: The sufficient condition for Markovian arrivals and
Note that the policy of serving the two fastest nonempWnespeeds is well known (see large deviations results in [16]).
queues Temoves a server from queue 3 whgnever there necessary condition is proven in the Appendix by showing
S|multa_n_eous arrivals at queues 1 and 2. This happens V%Wéh if \ > u, there exist arbitrarily large times such that the
probability p?> and, hence, the time-average processing rate af

3] thafl 2)/9 (where the factor 1/2 i age fraction of time that the unfinished work is abdve
queue 3 is no more thafl — p )./ (w ere the factor IS during [0, ¢;] is greater than a fixed constant for any value of
due to the rate of server 3). This effective service rate can

ts#.pport the |Ir|1putt'rate a?d, hf'nce, quetuhe 3 |stunst§1blel unde\;\/e use this single-queue result to establish the capacity
IS server-alocation policy. HOWever, Iné system IS ¢ eart gion of the power-constrained multichannel system of Fig. 1.
stabilizable: The policy of always allocating a server to queu

. . ) e define the capacity region as the compact set of points
and using fche remaining server to process packets in queusy % [0, 00)" such that all queues of the system can be stabi-
and 2 stabilizes all queues. lized (with some power-allocation policy) whenever the vector
of input bit rates\ = (A1, ..., Ay) is strictly in the interior of
Q2 and, conversely, no stabilizing policy exists wheneX/¢ Q.

To understand the capacity region of the downlink systerfifhe system may or may not be stablé ifies on the boundary
we first develop a simple criterion for stability of a single queuef the capacity region.)
with an input streamX (¢) and a time-varying processing rate Assume arrivals and channel states are modulated by an
u(t). We assume the input stream is ergodic with patelow- ergodic finite-state Markov chain and transitions occur on
ever, because an arbitrary power-control scheme could potimeslots of durationT'. Let 7 represent the steady-state
tially yield a nonergodic processing rate, we must consider ggrobability that the channel vector is in stafe= (¢1y...,CN)-

I1l. STABILITY AND THE DOWNLINK CAPACITY REGION
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Theorem 1 (Downlink Capacity)The capacity region of where (8) follows from concavity of the; (p, ¢;) functions with
the downlink channel of Fig. 1 with power constraiit; and respect to the power variabfeand (9) follows from (5). We
rate—power curveg;(p;, c;) is the set of all input rate vectors define for all state€’ and queues
such that there exist _power Ievejg satisfying}"; p¢ < Prot & 1

for all channel state€' and such that Py ||T pi(T)dT + €. (10)

|| Jrers
Hence, from (9) and (10)

No< S man (pcc) ie{l,...,N}. (& 3 )
c /\z S Z’”éﬂz (Nic7ci> +e (]. + ‘C’ Nmax) (11)
Proof: Using the stationary policy of allocating a powekyhere i, is deflned as the maximum processing rate of a

vector P = (p,...,p§) whenever the system is in channefueue (maximized over all queues and channel states) when it
stateC creates a Markov modulated processing ratg) for s allocated the full poweP,.
all queues;, with an average rate given by the right-hand side Because the original power function satisfies the power con-
ofinequality (4). Thus, Lemma 1 ensures stability whenever tbﬁ‘ajnthl( ) < P for all timest, from (10) it is clear
vector) satisfies (4) with strict inequality in all entries. We nowthat thep$ values satisfy the constrailt; 55 < P for all
show that restricting power control to such stationary policighannel state€’. Thus, (11) indicates that the arrival vector is
(which use only the current channel stafét) when making arbitrarily close to a point in the region specified by (4). Be-
power-allocation decisions) does not restrict the capacity regigiyse the region (4) is closed, it must contaiand, hence, (4)
and, hence, the region in (4) captures all input rates which yiglehresents the capacity region of the system.
stable systems. In the case when the channel does not vary but stays fixed, we

Suppose all queues of the downlink channel can be stabilizege one power curve; (p) for each queuéand the expression
with some power-control functioff(t) which meets the power for the downlink capacity region in Theorem 1 can be greatly
constraints—perhaps a function derived from a policy whickimplified, as follows.
knows future events. From the necessary condition of Lemma 1Corollary 1.1 (Static Channel Capacity)The capacity re-
we know that thdim inf of the resulting rate process satisfiegjion for static channels is the set of alvectors such that
Ai < p, forall queues € {1,...,N}.

We upper-boung, as follows. Letl»(t) represent the subin- Z T ) < Prot
tervals of[0, #] during which the channel is in stat and let
|7#(t)|| denote the total length of these subintervals.&Fix 0 here
and Iet|C| represent the total number of channel states of the
system. Because the channel process is ergodic and because #; F) = {
there are a finite number of queues and channel states, there ex-
ists a timet such that the time-average fraction of time in each o

channel state and the time-average processing rate of all queud8 Fig- 4(2), we illustrate a general capacity region/ior= 2
are simultaneously withia of their limiting values: channels with fixed channel states and concave power curves

w1(p) + p2(p). In this case of fixed channel states, one might
||T” @H B ;uspect the optimal solution to be the one whigh maximizes the
= /it m& +e, forall channel state§’ (5) instantaneous output rate at every instant of time: Allocate full
t power to one queue whenever the other is empty and allocate
1 ‘ ' . power to maximize the sum output ratg(p;) + p2(p2) sub-
B < {/ wi (pi(7),cilr)) dr +e, foralli €{l,..., N}. jecttop; +p2 < P, Whenever both queues are full. Doing this
(6) restricts the capacity region to linear combinations of the three
operating points, as illustrated in Fig. 4(a). The shaded regions
in the figure represent the capacity gains obtained by power al-
location using the full set of power levels. Note that the region
. is restricted further if onlypn/OFF allocations are considered.
N <p < Z HT6-(t>|| 1 _ i (pi(7), ¢;) dr+e Corollary 1.2_ (Server-Allocation Capacity)For thg
ST | Te®]] Jrers@ K-server-allocation problem where the channel rate of queue
@ is u; when it is allocated a server (and 0, otherwise), the
capacity region is the polytope set of alivectors such that

The smallesp such tha;(p) = \;
00, if no suchp exists

IN

1t

Thus, under power decisiod¥t), we have, for alk

|Te(®] L /
< = [l = pi(T)dr, c; | +e Ai
; t | Te @] Jreram DK (12)
®) A€o, ], i€ {1...,NY. (13)
1
gz (7r5 +e) ( T / pi(T)dT, ci> +e Proof: Using the virtual power curves and constraints
é ITe@| Jrers given in Section II, we find by Corollary 1.1 that the polytope

(9) region described by (12) and (13) contains the true capacity



142 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

LetT (t) = (Uy(t), ..., Un(t)) represent the vector of unfin-
A3 ished work in each queue at tim¢wheret = k7). We assume

M channel- and queue-state vect6&) and U (¢) are known at
‘l the beginning of each timeslot and seek a control policy which
" ‘ A, allocates power based on this information. Assuming this power

allocationP(t) is held constant during the full timeslat f+177,

M ®) the unfinished work dynamics proceed according to the one-step
equation
Fig. 4. Capacity regions for static channels. (a) Two-queue system with power
allocation. (b)K -server-allocation problem with’ = 2, N = 3. Ui(t+T) = max [U(t) — p; (pi(t), ci(t)) T,0] + a;(t). (14)

region. However, theK-server problem is constrained to Notice thatfor a given stationary power-allocation policy, the
allocate rates only on the vertex points of the polytope [se@finished work vector at timestgpt 7' is independent of the

Fig. 4(b)]. Timesharing among vertex points, however, achieveast, given the current value of unfinished work. Hence, the
any desired point within the polytope. ] System can be viewed as evolving according to a Markov chain

on anN-dimensional uncountably infinite state spafée

IV. STABILIZING POWER-ALLOCATION ALGORITHM .
A. Lyapunov Stability

Theorem 1 implies that stability of the downlink channel can
be achieved by a stationary power-allocation policy which all(i-(

cates power levels;” whenever the channel is in state Such make use of a well-developed theory of stability in Markov

pgwer :evgls lcartl, ;n préncr:ple, ble tcatlculatsdb\./}/.;t.h 1Eu:llkno‘""’chains using negative Lyapunov drift [3], [10], [12], [13],
edge otarrivalrates; and channel-state probabilities.. How- n%7]. Below, we state a sufficient condition for the system to

ever, such computation is impractical if the number of chan stable and have a well-defined steady-state distribution of

states is large and cannot be done if the arrival and channel—sm{ﬁmshed worki?. The proof is a straightforward extension to

pro_bablllt!es are annown. Here, we develop a power-allocaﬂmose given for countably infinite state spaces in [13] and [17]
policy which stabilizes the system at every point of the capaci d is omitted for brevity

region (4) without using the arrival and channel-state probabl_-.l.heorern 2 (Lyapunov Drift)For the given Lyapunov func-

ities. In essence, the policy learns the system parameterst”?h L(Ij) if there exists a compact regioh of ® and a
directly by basing power-allocation decisions both on Channr?umbera ’> 0 such that

For stability analysis, we define the Lyapunov function
U) = > 6,U? (for arbitrary positive weightgé;}) and

state and queue backlog information. Furthermore, because th - - _ N
policy is not bound to a particular set of system parameters, it is%) BIL(U(+ T)|U(t)] < oo, forallU e RY
2) E[L(T(t+T))~L(T (#))[T ()] < —a, whenevefi(t) ¢

shown to be robust to arbitrary changes in the input rates
We assume that channel-state vectd?svary i.i.d. from = . .

timeslot to timeslot with probability distribution. Likewise, 3) vxheneveU(t) € A, there IS a honzero probabﬂﬁythat

assume that packets bring a new batch of unfinished work Ut +mT) =0 .for.son.]e finite mtege_m, .

i.i.d. from timeslot to timeslot in the form of an arrival vectortNen & steady-state distribution on the vecioexists (clearly,

A = (a1,...,ax), with distribution f(as,...,ax) and with the property thaPr[_UZ- > u] — 0 asu — oo, for all )

expectationZ[A] = AT. Note that entries of the channel-stat@nd. hence, the system is stable. o O

vector and the arrival vector may be correlated within the same! N first two conditions of Theorem 2 are similar to the con-

timeslot. New arrivals are assumed to have bounded secdliiPns for Lyapunov stability in Markov chains with countably

moments:E[a?] < oo. infinite state spaces. They.ensure thatz be_ca_u;e of the r)egative
The i.i.d. assumption on channel-state variation facilitat€¥ift: the mean recurrence time to theegion is finite. The third

system analysis and enables a simple bound on packet grndition is a necessary modlflcat|(_)n tq address systems W|t_h

cupancy and delay to be calculated. However, note that tHigcounta_ny |_nf|n|te state spaces. Itimplies that the zero state is

assumption does not necessarily accurately model satelfg@ched infinitely often with finite mean recurrence times and

downlinks. Channel modeling experiments show that chantfISures that the Markov chaln reduces to a single ergodic class.

states could be modeled as i.i.d. during clear weather conditidfing renewal theory [21], it can be shown that the steady-state

(due to the observed rapid fluctuation of signal attenuatic?rﬂsmbu“o” is equal to the time-average integral of an indicator

from scintillations in the Ka band [23]—[27]). However, in rainyfunction over a sample path

weather, future channel states are highly dependent on the . 1 [t

current state. In [23] and [24], it is shown that the channel-state Pr [U < ﬁ} = lim n Lo my<amdr

variations can be modeled as a Markov process. In [20], we ’ $ 0

show that the control schemes developed here (derived usivigere the limit exists with probability 1.

i.i.d. assumptions) offer the same stability properties underThe first and third conditions of Theorem 2 are rather mild.

general Markov modulated arrival and channel dynamicghe firstis satisfied inthe Markov chain for the downlink system

although the analysis and corresponding performance boub@sause of the assumptidiija?] < oo, for all i. The third

are slightly more complex and are omitted from this paper f@g satisfied as long as there is a probability of drifting nega-

brevity. tively in one timestep for anff € A, such as when there is

A;
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a nonzero probability that no arrivals occur to any queue duringFrom (17), itis clear that Property 1 of Theorem 2 holds. Now
a timeslot. We assume throughout that these properties haldfine the following constants:
The second condition for negative drift is, thus, the most im-

portant for proving stability. In [12] and [13], it is shown that B = _ _max [Z 0; 1% (pi, ci)} (18)
if a stronger drift condition is satisfied (such that the negative €2 pi=Pot

drift gets larger in magnitude ¢§’| increases), the moments of B=p+ Z 0 [(%)2} (19)
unfinished work are finite and can be bounded. Using a proof - ¢ T ’

technique similar to that of [12], we have the following corol- . " . ) .
lary to Theorem 2 for Lyapunov drift. Taking conditional expectations of (17), scaling by weights
Corollary 2.1 (Performance Bound)Assuming condition 3 ¢ @nd summing over all, we have

of Theorem 2 holds, if there exist positive valuBsand {«; } o - -

<uch that E[L(T+1)) -1 (00)I100)]

<1°B-21'Y 6.0 (E [uw(t)] - /\i) (20)
EL(Ut+T)) - LUW)U®] < B=Y_ a;lUi(t) (15)

i where the i.i.d. nature of the packet arrivals has been used in
the identity E[a;/T|U(t)] = Ai. Now, notice that the term
then there exists a steady-state distribution with bounded fifstg, i/, [,;|U (¢)] maximizes the value of 6;U;~; over all
momentsU;, such thab_ a;U; < B. _ . vectorsy = (71, ..., ~x) in the capacity region (4). To see this,

Proof: The proof relies on a telescoping series argumeRbie that for any’ in the capacity region, there is a set{q»f?}

similar to the proof given in [12]. A full proof is provided in \,5,es satisfying the power constraint such that
Theorem 4 (Section IV-D), where a more general time-varying

Markov chain is considered. O > 6, < Z 0,U; Z i (pié? Ci) 1)
% % I}
B. Power-Allocation Policy ~
. : : : = 71y O:lip (Pic7 Cv‘,) (22)
Consider now the following power-allocation policy for e Z

the downlink system. At the beginning of each timeslot,

observe U(t) and C(t) and allocate a power vector < Zﬂé max Z&'Uiui (pi,ci)| (23)
P(t) = (pi(t),...,pn(¢)) (satisfying the power constraint) B B >opi<Po: |

to maximize the quantity}_ 6;U;u:(p:,c;), where {6;} is Ry

any set of positive weights. (If the weights are chosen to be = Z”é Z 0:Uip; (U./ C) (24)
different, the more heavily weighted queues can be given better ¢ ‘

delay guarantees, as described subsequently). Notice that the == ) .
policy acts only through the current value B{) and C'(t) where we defineu: (U, C') as the rate of queueresulting from

without specific knowledge of the arrival rate vectoror the the given power-allocation policy (16) when the queue- and

channel-state probabilities. Intuitively, we desire a policy th cpannel-state vectors atéandC’, respectively. We thus have

gives more power to queues with currently high processm%r all 7 in the capacity region

rates (to achieve maximum throughput) as well as giving more U < . P
power to queues with large backlog (to ensure that these queues Z 6l < Z OiUE [MU(U} ) (25)
are stabilized). The above policy does both by considering as a ' '

metric the product of backlog and data rate for each queue.  Now, because the arrival rate vectaris assumed to be
~ Theorem 3 (Dynamic Power Allocation)the power-alloca- strictly in the interior of the capacity region, we can add a
tion policy of choosing the power vector positive VectoE = (e, .. ., ¢) to produce another vectak §- &),

which is in the capacity region. Hence, from (25) we have
P(t) = arg __max > 0:Ui ()i (pi ci(t)) ey 2 0:UE[u|U(t)] > > 0:;Ui(A; + ) and, thus

Zpéﬂot
3 6. (E [,L,i|ﬁ] - )\i) >3 0.0 (26)

stabilizes the system whenever the arrival rate vektsrinte- ) . )
Using (26) in (20), we find that

rior to the capacity region given by Theorem 1.
Proof: Consider the one-step drift in the Lyapunov func-

_. Ji Ji Ji 2 T7.
tion L(U) = > 6,U? from Theorem 2. For ease of notation,E [L (U(t + T)) -L (U(t)) |U(t)] =T B_ZT‘EZ 0:U;.

letU; = Ui(t), a; = ai(t) and Ietui = /Li(pi(t), Ci(t)). From . ) (27)
(14), we have Choose any number > 0 and define the compact region
_ T?’B + «
— Ny U,
Uf(t-i—T) S(Ui—uin—I—a?+2aimax(Ui—ui70) A= {UE§R |UL ZO7ZHZUL S <27T€>}
<(U; - /LI',T)2 +a? + 2a;U;

) a; . ) We figd from (27) that the Lyapunov drift is less thawa when-
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Using the bounded first-moment result from Corollary 2.lcated). Defining the virtual rate—power curveg-) as in Sec-
we find that the strong negative drift condition in (27) impliesion Il, we have the following corollary:
that the steady-state queue occupancies have bounded first m@orollary 3.2 (Dynamic Server Allocation)For the
ments. K-server-allocation problem witloN/OFF channel states, the
Corollary 3.1 (Downlink Delay Bound)for the downlink policy of allocating theK servers to the( longestoN queues
system under the dynamic power-allocation algorithm atabilizes the system whenever the system is stabilizable.
Theorem 3, the steady-state unfinished work has a finite mean Proof: Assume the system operates according to virtual
U; for all queues and satisfies power curves as in Section Il (1) and define the Lyapunov func-
tion L(T) = Y (U2)/ui (using weights{;} = {1/1;}). With
this Lyapunov function, we know that allocating power to max-
imize > (U;(t)/ i) fvi (pi, c;) (Wheree; € {ON, OFF}) stabi-
- lizes the system. Clearly, the optimization does not need to place
Thus, by Little’s Theorem, the average bit deldy satisfies any power on queues in theer state, so the summation can be
2 0i\D; < TB/(2). O  restricted to queues that ape!
Thel/e behavior that this bound exhibits is worth noting. Re-
callthate can be viewed as the minimum distance fromthe input fi (piy ci) _
rate vecton: to the boundary of the capacity region (in the senseMaXimize > Ui(t)T’ subjectto) _p; < K.
thatis chosen as the largest value such that remains in the iles=ON
capacity region). Thus, the bound grows asymptoticallylike (29)
as the rate vector is pushed toward the boundary. Such behavior
is characteristic of queueing systems, as illustrated by the stanFlowever, notice that the above maximization effectively
dardP — K formula for average occupancy in &f/G//1 queue chooses a rate vectgr within the polytope capacity region
[21]. specified in (12) and (13). The optimal solution for maximizing
In [20], we show the same policy guarantees stability aralinear function over a polytope will always be a vertex point.
provides a bound on average delay when the input and chanreftunately, such a vertex point corresponds to the feasible
processes are Markov modulated, provided that the steady-sadlecation of K servers (with full powep; = 1) to K queues.
input-rate vectorx = (A1,...,Ay) is within a distances of ~Considering (29), the optimal way to do this is to choosethe
the boundary of the capacity region (so that £ € ). This queues with the largest value Bf(t). O
holds because we can analyze the Lyapunov drift of the systendJsing the same reasoning as in the proof above, it follows
everyK timeslots, rather than every timeslot, whéfés chosen that the power-allocation policy (16) naturally chooses a vertex
such that time-average channel probabilities and data rates dv@int when power curves are piecewise linear, such as the virtual
K slots are withiry of their steady-state values (for some smafturves described in Section 1. It follows that optimization can
values > 0), regardless of the initial state of the Markov chairbe restricted to searches over the vertex points without loss of
Hence, the effects of the initial conditions and the depende®ptimality.
cies introduced by the Markovian dynamics are negligible if the
system is analyzed evefy timesteps. Intuitively, such & slot C. Real-Time Implementation

interval can be viewed as a “super-timeslot,” and the resultingTne dynamic power-allocation policy of the previous sec-
occupancy bound has a form similar to (28), exhibitihg  tion requires solving a nonlinear optimization problem every
behavior as well as a linear dependence on the super-timegiglesiot (16). However, because the rate CUINgS) are con-
lengthK'T". The exact bound is computed in [20]. Similar techeaye in the power parameter for every fixed channel state, the so-
niques for stability analysis of Markovian systems are demoptjon can be computed efficiently. Indeed, for positive weights
strated in [4] and for fluid limits in [13]. _ {6;} and known unfinished work and channel-state vedtt(s

Note that the positive weight§; } in the dynamic power- and (), the problem (16) becomes a standard concave max-
allocation algorithm (16) can be chosen arbitrarily. Largemization problem: MaximizeS 6;U; (¢)u;(pi, ci(t)), subject
weights can be given to specific queues to improve their relatiyg the simplex constrainf  p; < Pi.. Using standard La-
performance according to the downlink performance béungrange multiplier techniques [22], it can be shown that a solu-
in Corollary 3.1. Choosing weights = 1, for all i, yields a tjon is optimal if and only if power is allocated according to the
policy which chooses a power vector that maximi2€s/;i.;  constraints so that scaled derivatives’; (¢)(d/dp;) i(pi, ci(t))
at every timestep. The following corollary makes use of ge equalized to some valyé for all queues which receive
different set of weights. nonzero power, while all queues which receive zero power have

Consider again th& -server-allocation problem where eachkycaled derivatives less than A fast bisection-type algorithm
queue has only two channel states, or OFF, and these states can be constructed to find such a solution, where a bracketing in-
vary i.i.d. over each timeslot as ah-dimensional vector. When gy 4] [y1, 72] is found which contains* and the interval size is
a server is allocated to queuevhile it is in theoN state, the decreased iteratively by testing the midpojnalue to see if the
server transmits data from the queue at a jatthe transmis- ¢orresponding powers sum to more or less than the power con-
sion rate is zero when in th@FF state or when no server is allo-straint P, . Such an algorithm yields power allocations whose

3Note that in Corollary 3.1, the constaBt is proportional to3 6,, as ex- proxir_nity to the optimal solution converges geometrically with
pressed in (19). Hence, scaling all weights equally does not change the bougach iteration.

> 6,0 < B (28)
2e
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An important set of rate—power curves to consider are tlienestepk can be expressed as in (20), where the first and

standard curves for Shannon capacity second moment of arrivals is taken over ftth arrival distri-
bution f,(@). Because second moments are uniformly bounded
pi (pi, i) = log (1 + aip;) for all £ and because each rate veciqris bounded by an

distance away from the boundary of the capacity region, we
wherea; represents the attenuation-to-noise level for downlink; e tor each timestelp

channeli during a particular timeslot. With these curves, the

solution to (16) is found by the following computation: E [L (ﬁ(k n 1)T) I ([j( )) |U(kT)}
A =Setof downlinks € {1,..., N}, such thal/;(¢) > <T*C+pB) - QTEZQ Ui(kT)
0:Us(t) | Peot + Y. = . . . .
jea ) where the constant is defined in (18). In Theorem 4, given
pi = S 6,U;(t) T ifieA below, a simple telescoping series argument is used to show that
JEA Y the above inequality implies
p; =0, ifid¢A. (30)

< (et

The above equations produce the optimal power allocations hﬁlsuf’ M Z lz 0:E [U:(kT)]
whenever the resulting; values are nonnegative. If any t

values are negative, these are set to zero, the corresponding limsup is needed for the above limit because the arrival
i indices are removed from the sAt and the calculation is distributions (@) may not be ergodic itr. Thus, the expres-

repeated—a process ending in at mist- 1 iterations. sion above indicates that, for arbitrary input rate changes, the
power-allocation algorithm (16) stabilizes the system in that
D. Robustness to Input Rate Changes it maintains bounded time averages of unfinished work. This

The dynamic power-allocation algorithm of Theorem Besult follows as an immediate consequence of the following
uses i.i.d. assumptions on packet arrivals and channel statbgorem 4, which uses a telescoping series argument similar to
to establish the negative Lyapunov drift condition. In [20]a technique in [12].
we show that the same dynamic policy stabilizes the systemTheorem 4 (Time-Varying Drift)If a t|me -varying Markov
when inputs and channel states are Markov modulated (sbein{U(kT)} has a Lyapunov functiofi(/) that satisfies
simulations in Section VII). Here, we demonstrate that the . . .
policy is robust to arbitrary changes in the input rateas F [L (U((k + 1)T)> —L (U(kT)) |U(kT)]
long as) remains within the capacity region at each timestep.

Specifically, suppose that the input rate to the downlink system =B- Z il
is X; for a certain duration time, then changeste—perhaps

due to changing user demands. This change will be reflectied positive constant®, {«;}, then

in the backlog that builds up in the queues of the system.

Because the power-allocation algorithm bases decisions on

the size of the queues, it reacts smoothly to such changes lg}f‘;p— Z ZO‘ EU
in the input statistics. Formally, this situation is modeled by ¢
defining an input distributionf, (@) on the arrival vectord, Furthermore, if the chain is time invariant and condition 3 of
at each timestep. The f;(d@) distributions are arbitrary and Theorem 2 holds, then a stationary distributionffoexists with
unknown to the controller although we assume they yield inptite property thad~ o, U; < B.

rates X, = E[A}/T], all of which are within the capacity Proof: Taking expectations of (31) over the distribution of

region. The dynamics of the system, thus, proceeg accordngT) and summing ovek from 0 to M — 1 yields
to a time-varying Markov chainl/(0),0(T),...,U(kT).

Although there is no notion of a steady-state distribution for g | I, [ (ﬁ(MT))} - E [L ((7(0))}
time-varying chairt,we show that time averages are still well

Ui(KT) (31)

M-1
<B. (32

M-1

behaved
Assume that all arrival distribution functions have uniformly s BM kz_: [22: B [Ui(kT
bounded second moments, so that a valueexists where
>, 0:E[a?] < C for all distributions f;,(&). Further suppose Hence
that there is some distaneesuch that all instantaneous arrival Mt
rate vectors); are at least a distance from the capacity
region boundary, i.ede + €is in the capacity region for all M Z [Z @il
k. For this system, we can again define a Lyapunov function ‘
L(U) = >, 6;U2. Note that the one-step drift equation for Taking thelimsup of the above inequality yields (32). In
. . the case when the chain is time invariant, inequality (32) im-
Recall that thef, (&) distributions can vary arbitrarily. Thus, notions of

steady state do not exist unless the dynamics are further described by some ﬂ?&ﬂ?s that the first two conditions of the Lyapunov drift theorem
abilistic model. (Theorem 2) hold. If the third condition also holds, a steady-

o < 212001
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X, P, {it), ci(1) timeslot, routing decisions are made and a power veB{a}
___.iz. :I———h&' (1), i) is allocated according to the system cgnstraints.ﬂ In general,
—— kP the full queue- and channel-state vectéré) and C'(t) are

important in both the routing and power-allocation decisions.
For example, more power should be allocated to queues which
are expected to grow large—which is dependent on the state of
unfinished work in other satellites as well as on future routing
decisions. Likewise, a router should place packets in faster
. gueues (especially if these rates are likely to be high for one or
(A1), A1) more timeslots) and should avoid queues likely to be congested
because of high contention with other input sessions.
Fig. 5. Multiuser multisatellite system with joint routing and power control, However, here we show that the routing and power-allocation
UserX; can route to queues within sg;. Satellites allocates power subject decisions can bdeCOUplednto two policies: a routing policy
0 s Pi(t) < P which considers onIyJ() and a power-allocation policy which
considers botl/ (¢) andC/(¢). Furthermore, a router for stream
needs only to consider the entries of the unfinished work vector
aﬁ?f within the set@; of queues to which it can route. Like-
wise, the power-allocation decisions use information local to
each satellite: Power is allocated in satelktdased only on
the unfinished work and channel-state information for queues
in Sat(s). The resulting strategy stabilizes the system whenever
We consider now a collection &f multibeam satellites and the system is stabilizable.
develop a method for jointly routing packets and allocating Theorem 5 (Joint Routing and Power Allocatiorijhe
power over the downlinks. Each satellite has multiple outpaaipacity regionQ2 for the multisatellite system with joint
queues (corresponding to multiple downlink channels) amduting and power allocation is the set of all arrival vectors

Y

state distribution exists. For this steady state, by (32), we h
Z O(,L'Ui S B.

V. JOINT ROUTING AND POWER ALLOCATION

operates according to individual power constraif® S, X = (A1,..., A ) such that there exist splitting rates and
(Fig. 5). Every timeslot, packets enter the system menput power Ievel39JC such that

streams according to input processes;)|}; with arrival 1)y ri; = A, foralli e {1,..., M},

rates Q1,...,\ys). Each input streami can route incoming J1EQi Y ’

< P ), for all s and all channel states;
packets 0 a subset of the output queues, where the subsets ma)) 2 jesai(s) pJ tot y

overlap with each other and may contain queues from different3) 22, 1ij < D@ mak; (P »CJ)
satellites. The problem is to jointly route packets and allocate|ntuitively, the above theorem says that the system is stabiliz-
power to each of the downlinks in order to stabilize the systeable if the input rates can be split amongst the various queues
and ensure maximum throughput. (in accordance with the routing restrictions) so that the aggre-

Such a scenario arises, for example, when several satellgege input rates allow each satellite to be stabilized individually.
have a connection to the same ground unit, and, hence, packets Proof thatX € 2 is necessary for stability:Suppose a sta-
destined for this unit have several routing options. Alternativelgilizing algorithm exists for some set of routing decisions and
the routing options may represent a cluster of ground locatiopswer controls(t). Define X;;(t) to be the total amount of
connected together by a reliable ground network. In this cagkta the algorithm routes from inpito queuej during the time
packets arrive to the cluster from the downlinks and are routgderval [0,]. For simplicity, we assume the routing process is
to their final destinations using the wire lines on the groun@rgodic so thatim;_... X;;(t)/t is well defined for all: and
We note that the formulation of this joint routing and power;. (The general nonergodic case can be handled similarly, ac-
allocation problem also applies to wireless systems, where baseding to our treatment in Theorem 1). Lgt;;} represent
stations communicate with users over a wireless network. these limiting values Théh input stream¥X; (¢) can be written

As before, we consider slotted time and assumeltheput X, (1) = >°,., X;;(¢). Dividing both sides by and taking
streams produce an arrival vectdi.i.d. every timeslot, where limits, it follows thatz i, Tij = \; for all 4, and, hence, con-
E[A/T] (A1,...,An). Let J represent the total number ofdition 1) holds. Note that the aggregate data rate entering any
output queues (summed over all satellites), and let each outpueuej € {1,...,J}is ), r;;. Because the system is stable,
queue be indexed with a single integet {1,...,.J}. Foreach the stability condltlons of Theorem 1 must be satisfied for each
satellites, let Sat(s) represent the set of output queues which gatellite, and, hence, the remaining conditions 2) and 3) must
contains (hence§at(s) C {1,...,J} forall s € {1,...,5}). also hold. O
Likewise, for each input streamleth represent the set of all We prove the sufficiency part of Theorem 5 by considering
output queues that inpdtcan route packets to (wherg; C the following decoupled power-allocation and routing policies.
{1,...,J}). Note that the&); subsets are arbitrary and need nothe policies use only local information about queue and channel
be disjoint. states, and do not require knowledge of the input rates
_Channel states vary according to an ii.d. state vectttre channel-state probabilities;. We assume that enough is
Ct) = (¢(t)|)=;. Let Ut) = (U;(t))|j=, represent the known about the channel to identify and remove from the set
vector state of unflnlshed work in all queues at timdevery  of routing options any queues which produce zero output rate
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for all channel states and power allocations. Hence, in the al-The E[/l,j|(7(t)] andE[aij/T|(7(t)] values in the above in-
gorithms and analysis below, we assume that all quglnese equality are influenced by the power control and routing algo-
some nonzero probability of being in a functional channel statéthm, respectively, and will determine the performance of the
Joint Routing and Power-Allocation Algorithm: system. To examine the impact of routing, we switch the sum
Power allocation: At each timestep, each satelldello- above to express the routing term as
cates power as before, using tié) andC/(¢) vectors to max-

imize 27> Y UE [aT—J U(t)]
) i JEQ;
Z( )UJ'“J' (pj(t), (1)) . subjectto Z( )pﬂ ) < Pt Notice that the given routing strategy of placing all bits from
jESat(s jESat(s

stream in the queug € @; with the smallest value of unfin-
ished work minimizes the above term over all possible routing

strategies, including the strategy of routing according to flow
Proof of stability wheneverX is strictly interior to

ratesr;; of condition (1) in Theorem 5, and, hence
Q. Suppose the: vector is strictly interior td2 so that condi- aij
tions 1)-3) of Theorem 5 are satisfied even with an additional Z Z Uik [ ] Z Z Uirij- (37)
input stream of rate applied to each queug € {1,...,J} e ¢ode
i.e., there exist;; andij values such that conditions 1) and 2) To examine the power-allocation term in (36), we rewrite the
hold, and such that single summation as a double summation over all satellites:

Routing: All packets from streamare routed to the queue
j € Q; with the smallest amount of unfinished work.

) {1,...,8}
i +e< < (pS,e;), forallj.  (33)
Z,-,:” € %:wcu(p] cJ) J QTZUE[MU ] 53 UE[MU )]
J s je€Sat(s)

(38)
By an argument similar to (21)—(25), it can be shown that the
packets arriving from stream in timeslot [£,¢ + 7], and given power-allocation policy maximizes (38) over all alloca-
let (a1 (1),...,as;(f)) represent the bit length of packets'o(? policies, |nclud|ng the policy of allocating a power vector
from streami routed to queues € {1,...,.J} (where ! (t) = (#f,-..,p§) whenever the channel is in stafé
Ai(t) = 32, aij(t),(anc(i])E[Ai(] )): AT). Let u; represent the Hence
transmission rate:;(p;(¢), c;(t)) of queuej during timeslot U,E 0t U, 39
[t,t+T] under the specified power-allocation policy. Likewise, Z [“J| } Z ZWCM (pJ ' ) (39)
let ", a;; represent the total arrivals to quejién a timeslot.
As in the stability proof for the dynamic power-allocation Using (37), (39), and (33) in (36), we find
policy of Theorem 3, we have for all queugffrom (17)]

1
U2 (t+T)<U? =2TU; | pj — = § aij
! ! T\ T p ! Defining anya > 0 and choosing the compact seto be

2
B ) T°D
wir(Te) e as{rewluzng s (F5))

Again, define the quadratic Lyapunov functidn(ﬁ) =
Y U;7. Let A(t) represent the total amount of bits from

E [L (ﬁ(t + T)) - L (U’(t)) ‘ﬁ(t)] <T°D-21e Y U;.

i

Define the constant insures the negative drift condition of Theorem 2 whené’\gﬁ,\r
A 2 B Corollary 5.1 (Performance Bound of the Joint Routing and
D=FE (Z #) S ma Y oul (pfcj) (35) Power-Allocation Strategy) Steady-state values of unfinished
i 7 j work are bounded and satisjy U; < T'D/(2¢). O

An important special case of the above theorem is when in-
where thepC values are chosen to maximize the second terptts can route to the full set of available queues, t&.,=

in (35) subiect to the power constrai < p® {1,...,J} for all inputs:. The goal is to simply transmit all
(35) ) b @JGS“(S) Pj = Trot ihe data to the ground as soon as possible. Such a situation

for all satellitess and channel states. Summing (34) over all 5iiseq when the ground units are connected together via a re-
j € {1,...,J} and taking conditional expectations, it can bgapie ground network, and the wireless paths from satellite to
shown that ground form the rate bottleneck (see Fig. 6). In this case, it is
~ 2p shown in [18] that the capacity region of the Joint Routing and
E [L (U(t +T) ) (U ) [U( ] <T°D =27 Power-Allocation Theorem 5 simplifies to the simplex set of all

input ratesk = (Ay, ..., \y) such that
STU | E |00 E %97 () ) (36)
S (s to] - S e 0]

7

/\1 + -+ /\]\/I S /jfout (40)
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implicitly assumed that there is no interchannel interference.
Such an assumption is valid when there is sufficient bandwidth
to ensure potentially interfering channels can transmit using
different frequency bands. However, in bandwidth-limited sce-
narios, power-allocation vectord(¢) may be additionally re-
stricted to channeilctivation setsfinite setspPy, . .., Pr, where
each sef, is a convex set of pointy{,...,pN) representlng
power vectors which, when allocated, ensure that interchannel

Connected interference is at an acceptable level. This use of activation sets
Ground Network is similar to the treatment in [3], where activation link sets for
schedulingoN/oFF links in a wireless network are considered.

Here, the definition has been extended from sets of links to sets

of power vectors to treat power control.
Fig. 6. Joint routing/power-allocation problem where the goal is to transmit AS an example of an activation set, consider the single-satel-
the data to any node of the reliable ground netwapk & {1 ..... J} for all lite System of Flg 1 withiv Output queues, and suppose that
input streams). . . .

downlink channels 1, 2, and 3 can be activated simultaneously
if all other transmitters are silent. Such an activation set can be

.m(;z( 1), ¢yt
Ua(pa(t), Cz(t)'}\

iApA1), (1)),

{Xi(1)}

A
M a > 2 Ay + A, <H represented by
< Ml Pal1)clt) /
3
A Q Pr =1 (p1.p2.93.0,....0) € RY|p; >0, p; < P,
= b T 1,P2,P3,Y, ) p; 2 Y, Pj = Lot
Up(Pp(t)scp(t) j=1

A

Fa 7. C ity region | ) . th routi g Another type of system constraint is when power allocation
ig. 7. Capacity region for a two-queue system with routing and pow . . )

control. The region(2 corresponds to the routing constraints shown in thié further restricted so that no more thAntransmitters are ac

figure, and is dominated by the simplex region for unconstrained routing.  tive at any given time. Such a constraint corresponds

convex activation sets. Multisatellite systems can also be treated

where using this activation set model. Indeed, tNeoutput queues of
S Fig. 1 may be physically located in several different satellites. In
Fout :Z W*Z max Z pj(pj,c;)| the following, we assume that each a}c)nvatlon set incorporates
s=1 {Ejesm( N <P503} jeSat(s) the power constrainty_ s, Pj < Pl

Consider the downlink system of Fig. 1. Packets arrive ac-

that is,fiou: iS the average output rate of the system when powe@rding to a random arrival vector (i.i. d on each timeslot) with
is allocated to maximize the instantaneous processing ratg@es (1. ..., Ax), and channel stateS(t) vary ii.d. every
every instant of time. timeslot W|th steady-state probabilities-. Each timeslot, a
In Fig. 7, we illustrate the capacity region for a two-queupower-allocation vectoP( ) is chosen such that it lies within
system with and without routing constraints. As expected, egne of the activation sel®8 = {Py, ..., Pr}.
ploiting the full set of routing options considerably expands Theorem 6 (Power Allocation With Connectivity Con-
the capacity region of the system. Indeed, the simplex registraints): For the multiqueue system of Fig. 1 with power
(40) always contains the capacity region specified in TheorenténstraintsP € P:
for joint routing and power allocation. This capacity gain is 1) The capacity region of the system is the@eff all arrival
achieved by utilizing the extra resources offered by the ground  rate vectors\ such that
network.
We note that this joint routing and power-allocation problerj ¢ () 2 Z 7 Convex Hull
has been formulated for the case when data already contained
within a single satellite or within a constellation of satellites is to oL . R
be routed through a choice of downlinks. Hence, it is reasonable ({ﬁ (P, C) ‘(P € 7’7-)} _1> (41)
to assume the unfinished work valugg(t) are known to the =

controllers when making routing decisions. However, it can be  \yhere addition and scalar multiplication of sets has been

c

shown that one can apply the same strategy wheneastisnates used above.
of the true unfinished work values are known, and the system |52) The policy of allocating a power vectol® =
still stable for all arrival rates within the stability region. (p1s. .., ,py) at each timestep to maximize the
quantity 3" U;(t); (p;, ¢;(t)) (subject toP € P =
VI. CONNECTIVITY CONSTRAINTS {P1....,Pr}) stabilizes the system whenever the

It has been assumed throughout that all transmit channels Vector is in the interior of the capacity region.
can be activated S|multaneously subject only to the total POWEEL | cets4, B and scalarsy, 3, the seta A + 3B is defined as {| =
constrainty ;g (s) Pi(t) < PL) for all time ¢. Hence, it iS aa + 3b for somea € A.b € B}
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We note that the allocation policy specified in part 2) of the Log-normal distribution of a; for each
theorem involves the nonconvex constraihe P. Optimizing of the three channe! conditions:
the given metric over individual activation s&® is a convex mean variance
optimization problem, although a complete implementation of Good | 15db -264 db-squared
the given policy is nontrivial if the number of activation sets is Medium{ 10 db .868 db-squared
large. Bad 0db .145 db-squared
However, the proof of parts 1) and 2) are simple extensions -1 1
of the analysis presented in Sections Il and IV. @.@ ad
Proof of 1): To establish thah € 2 is a necessary con- 5 .

dition for stability, suppose the system is stable using some

Power'allocat'on functiod(¢) which satisfies”(¢) € P for all Fig. 8. Three-state Markov Chain representing Good, Medium, and Bad

time. Thus, we know thaX; < y. for all + (Lemma 1 for queue conditions for a single downlink from satellite to ground. In each state, an

stability), and the proof proce_éds as the proof of the downlirfitenuation leveky; is chosen according to a log-normal distribution with
2N . means and variances as shown.

capacity theorem (Theorem 1), where for any fixedt 0 we

can find a large time such that the following entrywise vector

inequality is satisfied (wher&= (e, ..., ¢)) mizes)  U;~; over all vectorsy within the region(2 specified
in (41). To see this, note that afyin 2 can be written as
. 1t
<p<=| i 5 5 — (P gl
Vi< [ n(Fe.om) e 7= Y me Yo (P )
a P

The main difference from Theorem 1 is that the above in- .
tegral is broken into a double summation over intervals whé@r some vector$: ., € P, and some scalar valueg; , > 0
the channel is in stat€’ and when the power vector is in setsuch thaty = 1 for all channel state€’. The result

" . *e,p,
P.. LetTx(t) represent the intervals of time during [Qwhen  follows by an argument similar to (21)—(25). O
the channel is in stat€, and let7 (t) represent the subin-
tervals of 7+ () when the power functioi () is in activation VIl. NUMERICAL RESULTS

setP,.. Similar to our treatment in (7)—(9), the concavity of the ere, we present numerical and simulation results illustrating
rate—powgr curve allows the integration to be pushed inside {pg capacity and delay performance provided by the dynamic
fi(, ) function, and we have power-allocation policy of Section IV (16) for a simple satel-
lite downlink consisting of two channels and two queues. We
. H 5 (1) . . assume the corresponding input streams consist of unit length
A< Z & Z i ( G p 70) +0(e) packets arriving as Poisson processes with ratgs\g). How-
& P. HTé(t)H o ever, rather than simulating i.i.d. channel-state vectors every
timeslot, we consider a Markov modulated channel state that is
where typical of a satellite downlink [24] and demonstrate the ability of
the dynamic power-allocation policy (16) to perform well under
general time-varying channel conditions.

Specifically, consider a Markov chain with three states
corresponding to Good, Medium, and Bad channel conditions,
with transition probabilities shown in Fig. 8. Such a three-state

Note that any poinf/ in the convex hull of a collection of gystem has been considered in [24] and extends the well-known
convex sets can be written as a linear combination of poif{§g-state Gilbert—Elliott model [28], [29] for satellite and
Yi,---,Yr inthe setsy = ax 1 + - - + arFr Wherea, 20 wireless channels. In each state, we assume signal attenuation
and) a, = 1. Lettinga, = ||:fa,7>r(t)||/||Té(t)||v we see the js |og-normally distributed with a given mean and variance.
inequality above indicates thatis arbitrarily close to a pointin Such a distribution is consistent with the Karasawa model [27]
the closed regiof defined in (41) and, henca, € Q. based on short-term fading measurements in the Ka band.

The sufficiency condition is implied by part 2). O Total transmit power at the satellite is assumed to be 100 W.

Proof of 2): Define the Lyapunov functiodh/ = Y~ U2.  Factoring together the antenna gains, signal attenuation, and re-
The proof of Theorem 3 can literally be repeated up to (27) ceiver noise, the average signal-to-noise-ratio when full power
is allocated to a single channel is assumed to be 15, 10, and 0 db,
E [L (ﬁ(t n T)) - (ﬁ(t)) ‘ﬁ(t)} for Gooq, Medi_um, and Bad conditions, respectively. The cor-
responding variances are .264, .868, and .145 dispectively.
ﬁ(t)} — )\j) _ These values are based on measurement data for Ka-band satel-
lite channels given in [24]. We consider the Shannon capacity
curves for data rate as a function of a normalized signal power

From this point, negative drift of the Lyapunov fgnction can be
established by again noting that the valuettfi; |U (¢)] maxi- wi (piy ;) =log (1 + a;pi)

L. / ,
S P(r)dr.
C, P, ~ -
|75, Jirere. )

<T°B-21S U;(1) (E [uj
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Foll Capaty Region are shown in Fig. 9(a). In Fig. 9(b), we plot the empirical av-

-

£_static Allocation | 5 erage occupandy[U; +Us] for the two-queue system when the
By 3 multibeam dynamic power-allocation algorithm is used, where
g = g power is allocated according to (30) (with weights= 1, for all
3 S 7). The plot illustrates that the dynamic power-allocation policy
= % achieves stability throughout the entire capacity region, with an
= average delay growing asymptotically as the input data rates ap-
) L2, Meaim ||, | proach the boundary point (2.05, 3.79).
inputrate A, fraction ffrom cap. region boundary We compare the dynamic power-allocation algorithm to
@ () the two other strategies, whose simulated performance is also

i . ) ) : __shown in Fig. 9(b). From the figure, it is clear that the average
Fig. 9. Stability regions for the three power-allocation algorithms in the d h del f th ltib
two-queue downlink system. The isolated points represent (a) rate poiﬂtgcupancy (and, en_ce' aver_age_ e_aY)_ _0 € mulubeam
(A1, X2) used in the simulations, and (b) the corresponding average unfinishdgnamic power-allocation algorithm is significantly lower than
work E[U, + U] obtained from simulations. the corresponding averages for the other algorithms at all data

rates (note that the asymptotes for instability occur earlier
whereS p; < 1 and«; represents the fading Coefﬁcients;for the other two algorithms). For the rate regime tested, the
chosen according to the specified log-normal distributions wi{ability region for the constant power-allocation algorithm is
mean and variance determined by the channel stat&or slightly larger than the single-transmitter dynamic algorithm,
the simulation, we discretize the log-normal distribution wit@"d, hence, the corresponding average occupancies are lower.
eleven quantization levels. The two channels from satellite f#PWever, the static policy cannot adjust to asymmetries in data
ground are assumed to vary independently, each accordin(f%ESa and, thus, the single-transmitter algorithm will perform
the described Markov modulated process. etter in the regime where one input rate is much larger than the
In Fig. 9(a), we plot the downlink capacity region given b ther [see the capacity plot in Fig. 9(a)]. The figures illustrate

Theorem 1 (4). Notice the nonlinear “bulge” curvature, repr hat to enable high data rates and low delay in a satellite

senting capacity gains due to dynamic power allocation. Tl,ﬁigwnllnk, it is essential to dynamically allocate power to the

full region is achievable using the dynamic power-allocation arlr)ultlple beams.

gorithm of Theorem 3 (16), (30). We compare the capacity re-
gion offered by this algorithm to the corresponding stability re- VIIl. CONCLUSION
gions when power is allocated according to the following alter-

native strategies. We have treated data transmission over multiple time-varying

) ) channels in a satellite downlink using power control. Processing
1) on/orFFpower allocation: Only one transmitter can be agytes for each channélvere assumed to be determined by con-

tivated at any time. . cave rate—power curves(p;, ¢;), and the capacity region of all
2) Static power allocation: Constant powk./2 is allo- - stabjlizable arrival rate vectorswas established. This capacity
cated to each channel for all time. region is valid for general Markovian input streams, and inputs

The oN/oFF strategy allocates full power to the channel withwith arrival ratesX in the interior of the capacity region can be
the largest rate-backlog indéX; (t).;(P;ot, ci(t)), which, by  stabilized with a power-allocation policy which only considers
Theorem 6, achieves full capacity among all policies restricteide current channel staf&(t). In the case when arrival rates and
to using a single transmitter. Notice that the stability regioghannel probabilitied andr are unknown, but packet arrivals
is slightly nonlinear, because of the capacity boost due to thAd channel-state transitions are i.i.d. every timeslot, a stabi-
diversity offered by the independently time-varying channelizing policy which considers both current channel state and cur-
The stability region for the static power-allocation algorithnient queue backlog was developed. Intuitively, the policy favors
has a rectangular shape, as shown in Fig. 9(a). The capagifitues with large backlogs and better channels by allocating
for this static algorithm is expanded beyond the stability regiqsbwer to maximizey_ U;u; at every timeslot. The policy re-
for the single-transmitter algorithm when the input ratg@ind  acts smoothly to channel-state changes and arbitrary variations
A2 are roughly within a factor of two of each other, althougih the input rates. A real-time implementation of the algorithm
the single-transmitter algorithm is better for highly asymmetrigas described, and an analytical bound on average bit delay was
data rates. Both policies are stable on a significantly reducestablished. This power-control formulation was shown to con-
subset of the capacity region offered by the dynamic power-gkin the special case of a server-allocation problem, and anal-
location policy. Note that even in the completely symmetric cagsis verified stability and provided a performance bound for the
A1 = Az, the stability point of the static power-allocation policyServe-theX -Largest-Connected-Quepelicy.
is slightly below the stability point of the dynamic power-allo- A joint routing and power-allocation scenario was also con-
cation policy, because the static policy cannot take advantagefered for a system with multiple users and multiple satellites,
the time-varying channel conditions. and a throughput maximizing algorithm and a corresponding

In addition, we simulate system dynamics for two milliorperformance bound was developed. The structure of this algo-
iterations using the three power-allocation policies and a wathm allows for decoupled routing and power-allocation deci-
riety of data rates which linearly approach a boundary rate posibns to be made by each user and each satellite based on local
(A1, A2) = (2.05,3.79) of the capacity region. The rates testedhannel state and queue backlog information.
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In the case of interchannel interference, modified power-al-[2]
location policies were developed when power vectors are con-
strained to a finite collection of activation sets. The policies offer [3;
100% throughput, although they are difficult to implement if the
number of activation sets is large. 4]

Stability properties of these systems were established by
demonstrating negative drift of a Lyapunov function defined
over the current state of unfinished work in the queues.
Robustness to arbitrary input rate changes was demonstrated kyg]
establishing an upper bound on time-average queue occupancy
in the case when the arrival rate veclgris inside the capacity 7
region for all timesteps:. We show in [20] that the given
control strategies provide similar performance guarantees for[8]
general Markovian arrival and channel processes whenever
the steady-state arrival rate vectoiis in the capacity region.
Thus, they offer desirable performance under a variety of input[9]
processes and time-varying channel conditions.

Our focus was power control for a satellite downlink, al- [10]
though the results extend to other wireless communication sce-
narios where power allocation and energy efficiency is a majop1]
issue. The use of dynamic power allocation can considerably
extend the throughput and performance properties of such syg;
tems.

[13]
APPENDIX

Lemma 1b: If an input streamX () to a single-queue system [14]
is rate-ergodic of input rat®, a necessary condition for queue
stability isA < pu.

Proof: Suppose\ > 1 and choose > 0 such that\ —
p—2¢ > 0. The limits in (2) ensure that, with probability 1, we
can find a set of time$t; } (i € {1,2,...}) wheret; — oo with
increasing and such that, for ali;

[15]

[16]

(17]

[18]
) t;
Xt(ft) >\ —-«, tl / II,(T)dT S<pte (42)
7 1 J0 [19]
However, it is clear that
[20]
t;
Uz X (6) - [ n(rin (43)
0 [21]
[22]

From (42) and (43), it follows that (¢;) > (A — p — 2¢)t;,
for all ¢;. Definea = A — 1 — 2¢, and letT; represent the extra (22!
time it takes the unfinished work in the queue to empty below
a threshold valud/, starting at valué/(¢;) at timet,. Clearly,  [24]
T, > (at; — M)/umax @nd, hence, at any timg + 7; the
empirical fraction of time that the unfinished work in the queue[zs;
exceeded the valu®/ is greater than or equal @ /(t; + T;),
which is greater than or equaltat; — M) / (pmaxti +ati— M).

[26]

Taking limits ast; — oo reveals thay(M) > a/(a + pimax)
for all M and, hence, the system is unstable. 271
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