
3088 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Throughput-Optimal Multi-Hop
Broadcast Algorithms

Abhishek Sinha, Georgios Paschos, and Eytan Modiano, Fellow, IEEE

Abstract— We design throughput-optimal dynamic broadcast
algorithms for multi-hop networks with arbitrary topologies.
Most of the previous broadcast algorithms route packets along
spanning trees. For large time-varying networks, computing and
maintaining a set of spanning trees is not efficient, as the network-
topology may change frequently. In this paper, we design a class
of dynamic algorithms, which make simple packet-by-packet
scheduling and routing decisions, and hence obviate the need for
maintaining any global topological structures, such as spanning
trees. Our algorithms may be conveniently understood as a non-
trivial generalization of the familiar back-pressure algorithm for
unicast traffic, which performs packet routing and scheduling
based on queue lengths. However, in the broadcast setting, due
to packet duplications, it is difficult to define appropriate queuing
structures. We design and prove the optimality of a virtual
queue-based algorithm, where virtual queues are defined for
subsets of nodes. We then propose a multi-class broadcast policy,
which combines the above scheduling algorithm with in-class-
in-order packet forwarding, resulting in significant reduction in
complexity. Finally, we evaluate the performance of the proposed
algorithms via extensive numerical simulations.

Index Terms— Broadcasting, network control, queueing theory.

I. INTRODUCTION

MULTIHOP broadcast routing is a fundamental network
functionality for efficiently disseminating packets from

a source node to all other nodes in a network. In this process,
a broadcast policy is used to decide how to duplicate packets,
and how to forward the duplicates over the network. The
efficiency of a broadcast policy is measured in terms of
its throughput, i.e., the maximum achievable common rate
of packet reception by all nodes in the network. Formally,
the broadcast problem refers to the problem of finding a
broadcast policy that maximizes broadcast throughput and
hence achieves the broadcast capacity in any network.

Manuscript received September 20, 2016; revised April 5, 2017; accepted
June 19, 2017; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor N. Hegde. Date of publication July 3, 2017; date of current
version October 13, 2017. This work was supported by NSF under
Grant CNS-1217048 and Grant CNS-1524317, by DARPA I2O, and by
Raytheon BBN Technologies under Contract HROO II-I 5-C-0097. The
work of G. Paschos was supported by the WiNC Project of the Action:
Supporting Postdoctoral Researchers, through the National and Community
Funds (European Social Fund). Part of the paper was presented at MobiHoc
2016, ACM [1]. (Corresponding author: Abhishek Sinha.)

A. Sinha and E. Modiano are with the Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: sinhaa@mit.edu; modiano@mit.edu).

G. Paschos was with Massachusetts Institute of Technology, Cambridge,
MA 02139 USA, and also with the Centre for Research and Technology
Hellas, 570 01 Thermi, Greece. He is now with the Mathematical
and Algorithmic Sciences Laboratory, France Research Center, Huawei
Technologies Co., Ltd., 92100 Boulogne-Billancourt, France (e-mail:
georgios.paschos@huawei.com).

Digital Object Identifier 10.1109/TNET.2017.2718534

Broadcasting is extensively used in a number of important
and diverse applications. Examples include military communi-
cations using ad-hoc networks [2], information dissemination
in vehicular networks [3], live media streaming [4] and file
searching [5], interactive video-on-demand service [6] and
communication among multiple processors [7].

Solving the broadcast problem is challenging, especially
for mobile wireless networks with time-varying connectivity.
In this paper, we focus on designing dynamic broadcast
algorithms. Such algorithms are robust with respect to the
change of network topology, packet arrival rate and link
quality. We derive a provably throughput-optimal dynamic
broadcast algorithm for networks with arbitrary topology.

A. Related Work

The concept of broadcasting appears in many contexts.
To avoid any confusion, it is important to distinguish at the
outset broadcast routing (considered in this paper) where
a stream of packets is delivered to all nodes in a network, from
broadcast transmissions of an omnidirectional antenna, where
packets are simultaneously transmitted to multiple wireless
receivers in a single hop. The opposite extreme of broadcast
routing is unicast, where a stream of packets is routed to a
single destination node. An intermediate case of the above
two scenarios is called multicast, where a stream of packets
is to be replicated in a subset of nodes.

Most of the known throughput-optimal broadcast policies
are static in nature and operate by forwarding copies of packets
along pre-computed spanning trees [8]. In a network with time-
varying topology, these static policies need to re-compute the
trees every time the network topology changes, which is quite
cumbersome and inefficient. Additionally, in most graphs,
the number of possible spanning trees grows exponentially
with the number of nodes in the graph. Our interest, therefore,
is to design broadcast policies that are adaptive and do not
require tree enumeration or mainteance.

A line of work from the domain of parallel comput-
ing has developed throughput optimal policies for complete
graphs (cliques) connecting several processors [7], [9]. Other
recent works [10]–[12] consider broadcasting on networks
whose topology is a directed acyclic graph (DAG). In these
works, broadcasting policies exploit the underlying network
structure (either clique or DAG). However, these policies do
not generalize to networks with arbitrary topologies.

Massoulie et al. [13] propose a randomized packet-
forwarding policy for wireline networks, which is shown
to be throughput-optimal under some assumptions. However,

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SINHA et al.: THROUGHPUT-OPTIMAL MULTI-HOP BROADCAST ALGORITHMS 3089

their policy potentially needs to use an unbounded amount
of memory and can not be used in wireless networks with
activation constraints. A straight-forward extension of their
policy, proposed in [14], uses an activation oracle, which is
not practically feasible.

B. Our Contribution

In this paper, we address the throughput optimal broad-
casting problem in arbitrary network topologies. Our main
technical contributions are as follows:
(1) We first identify a convenient state-space representa-

tion of the network dynamics, in which the broadcast
problem reduces to a “virtual-queue” stability problem,
with appropriately defined virtual queues. By utilizing
Stochastic Lyapunov-drift techniques, we derive a broad-
cast policy that provably achieves the broadcast capacity
in arbitrary networks.

(2) Next, we introduce a multi-class heuristic policy, by com-
bining the above policy with in-class in-order packet
delivery from [10] in a suitable way. In this scheme,
the number of classes is a tunable parameter, which offers
a trade-off between efficiency and complexity. Several
interesting properties of this heuristic scheme are also
derived.

(3) Finally, we validate the theoretical ideas through exten-
sive numerical simulations.

The rest of the paper is organized as follows. In Section II we
describe the operational network model and characterize its
broadcast capacity. In Section III we derive our throughput-
optimal broadcast policy. In Section IV we propose a multi-
class heuristic policy which uses the scheduling scheme
derived in Section III. Section V describes the extension of the
policy to wireless networks, while Section VI discusses dis-
tributed implementation of the proposed policy. In Section VII
we validate our theoretical results via numerical simulations.
Finally, in section VIII we conclude the paper with some
directions for future work.

II. SYSTEM MODEL

We begin our study with the consideration of broadcasting
in wired networks with edge capacity constraints. This model
is simple to describe and analytically tractable, yet it preserves
the essential ingredients of the problem. The extension of
the proposed broadcasting policy to wireless networks with
activation constraints will be considered in Section V.

A. Network Model

Consider a graph G(V, E), V being the set of vertices and
E being the set of directed edges, with |V | = n and |E| = m.
Time is slotted and the transmission capacity of each edge is
one packet per slot. External packets arrive at the source node
r ∈ V . The arrivals are i.i.d. at every slot with an expected
arrival of λ packets per slot.

To simplify the analysis, we perturb the slotted-time
assumption and adopt a slightly different but equivalent mini-
slot model. A slot consists of m consecutive mini-slots.
Our dynamic broadcast algorithms are conceptually easier
to derive, analyze and understand in the mini-slot model.

However, the resulting algorithms can be easily adapted to
the usual slotted model.

Mini-Slot Model: In this model, the basic unit of time is
called a mini-slot. At each mini-slot t, an edge e = (a, b) ∈
E is chosen for activation, independently and uniformly at
random from the set of all m edges. All other m − 1 edges
remain idle for that mini-slot. A packet can be transmitted over
an active edge only. A single packet transmission takes one
mini-slot for completion. This random edge-activity process
is represented by the i.i.d. sequence of random variables
{S(t)}∞t=1, such that, S(t) = e indicates that the edge e ∈ E
is activated at the mini-slot t. Thus,

P(S(t) = e) = 1/m, ∀e ∈ E, ∀t

External packets arrive at the source r with expected arrival
of λ/m packets per mini-slot.

The main analytical advantage of the mini-slot model is
that only a single packet transmission takes place at a mini-
slot, which makes it easier to express the system-dynamics.
Moreover, we will show in Theorem (3) that the broadcast
capacity is the same in the two models.

B. Broadcast-Capacity of a Network

Informally, a network supports a broadcast rate λ if there
exists a scheduling policy, under which all nodes in the
network receive packets at the rate of λ, for the same rate
of packet arrival at the source. The broadcast-capacity λ∗ is
the maximally achievable broadcast rate in the network.

In the minislot model, we consider a class Π of scheduling
policies, which observe the currently active edge e = (a, b) at
every mini-slot t and select at most one packet from node a
and transmit it to b over the active edge e. On the other
hand, in the slotted time model, admissible policies in Π may
transmit at most one packet per edge simultaneously across all
edges in the network at every slot. The policy-class Π includes
policies that have access to all past and future information and
may forward any packet present at node a at time t to node b.

Recall that, a slot corresponds to m consecutive mini-slots.
In either model, let Rπ(T) be the number of distinct packets
received in common by all nodes in the network, up to slot T ,
under a policy π ∈ Π. The time average limT→∞ Rπ(T)/T is
the rate at which packets are received uniformly at all nodes.

Definition 1: A policy π ∈ Π achieves a broadcast through-
put λ, if for a packet arrival rate of λ, we have

lim
T→∞

1
T

Rπ(T) = λ, in probability. (1)

Definition 2: The broadcast capacity λ∗ of a network is
the supremum of all arrival rates λ for which there exists a
broadcast policy π ∈ Π, achieving rate λ.

A policy, that achieves any rate λ < λ∗, is called
a throughput-optimal policy. In the slotted-time model,
the broadcast capacity λ∗ of a network G follows from the
Edmonds’ tree-packing theorem [15], and is given by the
following:

λ∗ = min
t∈V \{r}

Max-Flow(r→ t) per slot, (2)

3090 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

where Max-Flow(r → t) denotes the maximum value of
flow that can be feasibly sent from the node r to the
node t in the graph G(V, E) [16]. Edmonds’ tree-packing
theorem also implies that there exist λ∗ edge-disjoint arbores-
cences1 or directed spanning trees, rooted at r in the graph G.
By examining the flow from the source to every node and
using (2), it follows that by sending unit flow over each edge-
disjoint tree, we may achieve the capacity λ∗.

As an illustration, consider the graph shown in Figure 1.
It follows from Eqn. (2) that the broadcast capacity of the
graph is λ∗ = 2. Edges belonging to a set of two edge-disjoint
spanning trees T1 and T2 are shown in blue and red in the
figure.

The following theorem establishes the equivalence of the
mini-slot model and the slotted-time model in terms of
broadcast capacity.

Theorem 3 (Invariance of Capacity): The broadcast
capacity of the mini-slot model is the same as that of the
slotted-time model and is given by Eqn. (2).

Proof: See Appendix A.

III. A THROUGHPUT-OPTIMAL BROADCAST POLICY π∗

In this section, we design a throughput-optimal broadcast
policy π∗ ∈ Π, for networks with arbitrary topology. This
algorithm is of Max-weight type and is inspired by the
seminal back-pressure policy for the corresponding unicast
problem [17]. However, because of packet duplications,
the usual per-node queues cannot be defined here. We get
around this difficulty by defining certain virtual-queues, cor-
responding to subsets of nodes. We show that a scheduling
policy in Π, which stochastically stabilizes these virtual
queues for all arrival rates λ < λ∗, constitutes a throughput-
optimal broadcast policy. Based on this result, we derive a
Max-Weight policy π∗, by minimizing the drift of a quadratic
Lyapunov function of the virtual queues.

A. Definitions and Notations

To facilitate the description of our proposed algorithm,
we first introduce the notion of reachable sets and reachable
sequence of sets as follows:

Definition 4 (Reachable Set): A subset of vertices F ⊂ V
is said to be reachable if the induced graph 2 F (G) contains
a directed arborescence, rooted at source r, which spans the
node set F .

Equivalently, a subset of vertices F ⊂ V is reachable if
and only if there is a broadcast policy under which a packet p
can be duplicated exactly in the subset F , during its course
of broadcast. Note that, the set of all reachable sets is a

1An arborescence is a directed graph such that there is a unique directed path
from the root to all other vertices in it. Thus, an arborescence is a directed
spanning tree. From now onwards, the terms “arborescence” and “directed
spanning tree” will be used interchangeably.

2For a graph G(V, E) and any vertex set F ⊂ V , the induced graph F (G)
is defined as the sub-graph containing only the vertices F with the edges
whose both ends lie in the set F .

Fig. 1. The four-node diamond network D4.

strict subset of the set of all subsets of vertices. This is true
because any reachable set, by definition, must contain the
source node r.

We may completely specify the trajectory of a packet
during its course of broadcast, using the notion of Reachable
Sequences, defined as follows:

Definition 5 (Reachable Sequence): An ordered sequence
of n − 1 (reachable set, edge) tuples {(Fj , ej), j =
1, 2, . . . , n−1} is called a Reachable Sequence if the following
properties hold:

• F1 = {r} and for all j = 1, 2, . . . , n− 1:
• Fj ⊂ Fj+1

• |Fj+1| = |Fj |+ 1.
• ej = (a, b) ∈ E : a ∈ Fj , b ∈ Fj+1 \ Fj

F is defined to be the set of all reachable sequences.
A reachable sequence denotes a feasible sequence of trans-

missions for broadcasting a particular packet to all nodes,
where the jth transmission of a packet takes place across the
edge ej , j = 1, 2 . . . , n− 1. By definition, every reachable set
must belong to at least one reachable sequence. A trivial upper
bound on |F| is n2n. An example illustrating the notions of
reachable sets and reachable sequences for a simple graph is
provided next.

Example: Consider the graph shown in Figure 1.
A reachable sequence for this graph is given by S below:

S = {({r},rc), ({r,c},ca), ({r,a,c},rb)}

This reachable sequence is obtained by adding nodes
along the tree with red edges in Figure 1. Clearly,
an example of a reachable set F in this graph is

F = {r,a,c}

For a reachable set F , define its set of out-edges ∂+F and
in-edges ∂−F as follows:

∂+F ≡
{
(a, b) ∈ E : a ∈ F, b /∈ F

}
(3)

∂−F ≡
{
(a, b) ∈ E : a ∈ F, b ∈ F

}
(4)

SINHA et al.: THROUGHPUT-OPTIMAL MULTI-HOP BROADCAST ALGORITHMS 3091

For an edge e = (a, b) ∈ ∂+F , define

F + e ≡ F ∪ {b} (5)

Similarly, for an edge e = (a, b) ∈ ∂−F , define

F \ {e} ≡ F \ {b} (6)

Convergence of Random Variables: For a sequence of random
variables {Xn}∞n=1 and another random variable X , defined
on the same probability space, by the notation Xn

p
=⇒ X

we mean that the sequence of random variables {Xn}∞n=1

converges in probability to the random variable X [18].

B. System Dynamics

Consider any broadcast policy π ∈ Π in action. For
any reachable set F � V , denote the number of packets,
replicated exactly at the vertex-set F at mini-slot t, by QF (t).3

A packet p, which is replicated exactly at the set F by
time t, is called a class-F packet. Hence, at a given time t,
the reachable sets F ∈ F induce a disjoint partition of all the
packets present in the network.

In our mini-slot model, a class-F packet can make a
transition only to class F +e (where e ∈ ∂+F) during a mini-
slot, where e is the active edge. Let the rate allocated to the
edge e, for transmitting a class-F packet at time t, be denoted
by μe,F (t) (naturally, μe,F (t) ≡ 0, if F is not a reachable
set or e is inactive).4 Here μe,F (t) is a binary-valued control
variable, which assumes the value 1 if the active edge e is
allocated to transmit a class-F packet at the mini-slot t.

In the following we argue that, for any reachable set F ,
the variable QF (t) satisfies the following one-step queuing-
dynamics (Lindley recursion) [19]:

QF (t + 1) ≤
(

QF (t)−
∑

e∈∂+F

μe,F (t)
)+

+
∑

(e,G):e∈∂−F,G=F\{e}
μe,G(t), ∀F
= {r}

Q{r}(t + 1) ≤
(

Q{r}(t)−
∑

e∈∂+({r})
μe,{r}(t)

)+

+ A(t)

(7)

The dynamics in Eqn. (7) may be derived as follows: in
the mini-slot model, only one packet over the currently active
edge can be transmitted in the entire network at any mini-slot.
Hence, for any reachable set F , the value of the corresponding
state-variable QF (t) may go up or down by at most one in
a mini-slot. Now, QF (t) decreases by one when any of the
out-edges e ∈ ∂+F is activated at mini-slot t and it carries
a class-F packet, provided QF (t) > 0. This explains the
first term in Eqn. (7). Similarly, the variable QF (t) increases
by one when a packet in some set G = F \ {e} (or an
external packet, in case F = {r}), is transmitted to the set F
over the (active) edge e ∈ ∂−F . This explains the second

3In the rest of the paper, we define QV (t) = 0, ∀t.
4Note that μe,F (t) and consequently, QF (t) depend on the used policy π

and should be denoted by μπ
e,F (t) and Qπ

F (t). Here we drop the superscript π
to simplify notation.

term in Eqn. (7). In the following, we slightly abuse the
notation by setting

∑
(e,G):e∈∂−F,G=F\{e} μe,G(t) ≡ A(t),

when F = {r}. With this convention, the system dynamics
is completely specified by the first inequality in (7), which
constitutes a discrete time Lindley recursion [19].

C. Relationship Between Stability and Throughput Optimality

The following lemma shows that stability of the vir-
tual queues implies throughput-optimality for any admissible
policy.

Lemma 6 (Stability Implies Throughput-Optimality):
Consider a Markovian policy π, under which the induced
Markov Chain {Qπ(t)}∞0 is Positive Recurrent for all
arrival rate λ < λ∗. Then π is a throughput optimal
broadcast policy.

Proof: Under the action of a Markovian Policy π, the total
number of packets Rπ(T) delivered to all nodes in the network
by the time T is given by

Rπ(T) =
T∑

t=1

A(t)−
∑

F

Qπ
F (T)

Hence, the rate of packet broadcast is given by

lim
T→∞

Rπ(T)
T

= lim
T→∞

(
1
T

T∑

t=1

A(t)−
∑

F

Qπ
F (T)
T

)

p
=⇒ λ−

∑

F

lim
T→∞

Qπ
F (T)
T

(8)

p
=⇒ λ (9)

Eqn. (8) follows from the Weak Law of Large Numbers for
the arrival process. To justify Eqn. (9), note that for any δ > 0
and any reachable set F , we have

lim
T→∞

P

(
Qπ

F (T)
T

> δ

)
= lim

T→∞
P

(
Qπ

F (T) > Tδ

)
= 0,

(10)

where the last equality follows from the assumption of pos-
itive recurrence of {Qπ(t)}. Thus Eqn. (10) implies that
Qπ

F (T)
T

p
=⇒ 0, ∀F . This justifies Eqn. (9) and proves the

lemma.
1) Stochastic Stability of the Process {Q(t)}t≥1: Equipped

with Lemma (6), we now focus on finding a Markovian
policy π∗, which stabilizes the chain {Qπ∗

(t)}t≥1.5 To accom-
plish this goal, we use the Lyapunov drift methodology [20],
and derive a dynamic policy π∗ which minimizes the one-
minislot drift of a certain Lyapunov function. We then show
that the proposed policy π∗ has negative drift outside a
bounded region in the state-space. Upon invoking the Foster-
Lyapunov criterion [21], this proves positive recurrence of the
chain {Q(t)}∞0 .

5The argument t denotes time in mini-slots.

3092 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

To apply the scheme outlined above, we start out by defining
the following Quadratic Lyapunov Function L(Q(t)):

L(Q(t)) =
∑

F

Q2
F (t), (11)

where the sum extends over all reachable sets. Recall that,
the r.v. S(t) denotes the currently active edge at the mini-
slot t. The one-minislot drift is defined as:

Δt(Q(t), S(t)) ≡ L(Q(t + 1))− L(Q(t)) (12)

From the dynamics (7), we have

Q2
F (t + 1) ≤ Q2

F (t) + μ2
max

− 2QF (t)
(∑

e∈∂+F

μe,F (t)−
∑

(e,G):e∈∂−F,G=F\{e}
μe,G(t)

)
,

where μmax = 1 is the maximum capacity of a link per
mini-slot. Thus, one mini-slot drift may be upper-bounded as
follows:

Δt(Q(t), S(t)) ≤ 2nμ2
max

− 2
∑

F�V

QF (t)
(∑

e∈∂+F

μe,F (t)

−
∑

(e,G):e∈∂−F,G=F\{e}
μe,G(t)

)
.

Interchanging the order of summation, we have

Δt(Q(t), S(t)) ≤ 2nμ2
max

−
∑

(e,F):e∈∂+F

μe,F (t)
(

QF (t)−QF+e(t)
)
.

Taking expectation of both sides of the above inequality with
respect to the edge-activation process S(t) and the arrival
process A(t), we obtain the following upper-bound on the
conditional Lyapunov drift Δt(Q(t)):

Δt(Q(t))
≡ ES(t)Δt(Q(t), S(t))

≤ 2nμ2
max

−
∑

(e,F):e∈∂+F

(
QF (t)−QF+e(t)

)
E
(
μe,F (t)|Q(t), S(t)

)
.

(13)

Due to the activity constraint, if S(t) = e, we must have
μl,G(t) = 0, ∀l
= e, for all reachable sets G. In other words,
a packet can only be transmitted along the active edge for the
mini-slot t.

For any reachable set F with an out-edge e ∈ ∂+F , define
the weight

wF,e(t) = QF (t)−QF+e(t). (14)

Consider the following Max-weight policy π∗, which trans-
mits a packet p∗ belonging to class-F from node i, where
the packet p∗ has the highest positive weight w∗

F,e(t) =
maxF wF,e(t), from the set of all packets contending for the
edge e at mini-slot t. The resulting policy is presented formally
in Algorithm 1.

Algorithm 1 The Dynamic Broadcast Policy π∗

1: Select an edge e for activation independently and uniformly
at random from the set of all edges E.

2: Compute all reachable sets F such that e ∈ ∂+F .
3: Transmit a class-F packet over the edge e, such that the

corresponding weight wF,e(t) = QF (t) − QF+e(t) is
positive and achieves the maximum over all such reachable
sets F , computed in step 1 above. (Recall, QV (t) = 0, ∀t).

4: Idle, if no such F exists.

We now state the main theorem of this paper.

Theorem 7 (Throughput-Optimality of π∗): The
dynamic policy π∗ is a throughput-optimal broadcast
policy for any network.

Proof: See Appendix B.
Discussion: A straightforward way to extend the resulting

policy to the slotted-time model (where all edges can simul-
taneously transmit packets at every slot) would be to transmit
a packet pe from the class F ∗

e = argmaxF :e∈∂+F wF,e(t)
over the edge e, ∀e ∈ E. Note that, the weights wF,e(t) are
computed based on the queue-lengths QF (t) at the beginning
of slot t.

Note that, the policy π∗ makes dynamic routing and
scheduling decision for each packet, based on the current
network state vector Q(t). However, to implement the pol-
icy π∗ exactly, the nodes need to keep track of global state
information, which appears to be prohibitive. In the next
section, we design a heuristic version of the policy π∗, which
is decentralized and is conjectured to be throughput-optimal
based on extensive simulation results.

IV. A MULTI-CLASS BROADCASTING HEURISTIC

A potential difficulty in implementing the policy π∗ is that
one needs to maintain a state-variable QF (t), corresponding
to each reachable set F , and keep track of the particular
reachable set Fp(t), to which packet p belongs. For large
networks, without any additional structure in the scheduling
policy, maintaining such a detailed state information is quite
cumbersome. To alleviate this problem, we next propose a
heuristic policy which combines π∗ with the idea of in-class
in-order delivery. The introduction of class-based in-order
delivery imposes additional structure in the packet scheduling,
which in turn, substantially reduces the complexity of the
state-space.

Motivation: To motivate the heuristic policy, we begin
with a simple policy space Πin−order, first introduced in [10]
for throughput-optimal broadcasting in wireless Directed
Acyclic Graphs (DAG). Policies in Πin−order deliver packets
to nodes according to their order of arrival at the source.
Unfortunately, as shown in [10], although Πin−order is suf-
ficient for achieving throughput-optimality in a DAG, it is
not necessarily throughput-optimal for arbitrary networks, con-
taining directed cycles. To tackle this problem, we generalize
the idea of in-order delivery by proposing a k-class policy
space Πin−order

k , k ≥ 1, which generalizes the space Πin−order.

SINHA et al.: THROUGHPUT-OPTIMAL MULTI-HOP BROADCAST ALGORITHMS 3093

In this policy-space, the policies divide the packets into
k distinct classes. The in-order delivery constraint is imposed
within each class but not across different classes. Thus,
in Πin−order

k , the scheduling constraint of Πin−order is relaxed
by requiring that packets belonging to each individual class
be delivered to nodes according to their order of arrival at
the source. However, the space Πin−order

k does not impose
any orderly requirement for deliveries of packets across dif-
ferent classes. Combining it with the max-weight scheduling
scheme, designed earlier for the throughput-optimal policy π∗,
we propose a multi-class heuristic policy πH

k ∈ Πin−order
k

which is conjectured to be throughput-optimal for large-
enough number of classes k. Extensive numerical simulations
have been carried out to support this conjecture.

The following section gives a detailed description of this
heuristic policy, outlined above.

A. The In-Order Policy Space Πin−order

Now we formally define the policy space Πin−order:
Definition 8 (Policy-Space Πin−order [10]): A broadcast

policy π belongs to the space Πin−order if all incoming packets
at the source r are serially indexed {1, 2, 3, . . .} according to
their order of arrivals, and a node i ∈ V is allowed to receive
a packet p at time t only if the node i has received the packets
{1, 2, . . . , p− 1} by time t.

As a result of the in-order delivery property of policies
in the space Πin−order, it follows that the state of received
packets in the network at time t may be completely represented
by the n-dimensional vector R(t), where Ri(t) denotes the
highest index of the packet received by node i ∈ V by time t.
We emphasize that this succinct representation of network
state is valid only under the action of the policies in the
space Πin−order, and is not necessarily true in the general
policy space Π.

Due to the highly-simplified state-space representation,
it is natural to try to find efficient broadcast-policies in the
space Πin−order for arbitrary network topologies. We showed
in our earlier work [10] that if the underlying topology of the
network is restricted to DAGs, the space Πin−order indeed con-
tains a throughput-optimal broadcast policy. However, we also
proved that the space Πin−order is not rich enough to achieve
broadcast capacity in networks with arbitrary topology. We re-
state the following proposition in this connection.

Proposition 9 (Throughput-Limitation of the Policy
Space Πin−order [10]): There exists a network G such that,
no broadcast-policy in the space Πin−order can achieve
the broadcast-capacity of G.

The above proposition is proved in [10], by showing
that no broadcast policy in the space Πin−order can achieve
the broadcast-capacity in the diamond-network D4, depicted
in Figure 1.

B. The Multi-Class Policy-Space Πin−order
k

To overcome the throughput-limitation of the
space Πin−order, we propose the following generalized

policy space Πin−order
k , k ≥ 1, which retains the efficient

representation property of the space Πin−order.
Definition 10 (Policy-Space Πin−order

k): A broadcast pol-
icy π belongs to the space Πin−order

k if the following conditions
hold:

• There are k distinct “classes”.
• A packet, upon arrival at the source, is labelled with any

one of the k classes, uniformly at random. The label of a
packet remains fixed throughout its course of broadcast.

• Packets belonging to each individual class j ∈ [1, . . . , k],
are serially indexed {1, 2, 3, . . .} according to their order
of arrival.

• A node i ∈ V in the network is allowed to receive a
packet p from class j at time t, only if the node i has
received the packets {1, 2, . . . , p−1} from the class j by
time t .

In other words, in the policy space Πin−order
k , packets

belonging to each individual class j ∈ [1, . . . , k] are delivered
to nodes in-order. It is also clear from the definition that

Πin−order
1 = Πin−order

Thus, the collection of policy-spaces {Πin−order
k , k ≥ 1}

generalizes the policy space Πin−order.
State-Space Representation Under Πin−order

k : Since each
class in the policy space Πin−order

k obeys the in-order deliv-
ery property, it follows that the network state at time t is
completely described by the k-tuple of vectors {Rc(t), 1 ≤
c ≤ k}, where Rc

i (t) denotes the highest index of the packet
received by node i ∈ V from class c by time t. Thus the state-
space complexity grows linearly with the number of classes
used.

Following our development so far, it is natural to seek a
throughput-optimal broadcast policy in the space Πin−order

k

with a small class-size k. In contrast to Proposition (9), the fol-
lowing proposition gives a positive result in this direction.

Proposition 11 (Throughput-Optimality of the
Space Πin−order

k , k ≥ n/2): For every network G,
there exists a throughput-optimal broadcast policy in the
policy space Πin−order

k , for all k ≥ n/2.

The proof of this proposition uses a static policy, which
routes the incoming packets along a set of λ∗ edge-disjoint
spanning trees. For a network with broadcast-capacity λ∗,
the existence of these trees are guaranteed by Edmonds’ tree
packing theorem [15]. Then we show that for any network
with unit-capacity edges, its broadcast-capacity λ∗ is upper-
bounded by n/2, which completes the proof. The details of
this proof are outlined in Appendix E.

C. General Properties of the Multi-Class Policy-Space

In this subsection we show how the intra-class in-order
delivery property of the multi-class policy space constrains
the delivery of packets per class. In particular, we show that
at any time the number of distinct subsets of nodes, where
packets from any class belong to, is at most n+1. This should

3094 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

be contrasted with the unrestricted policy space π, where the
packets at any time may be present in all subsets of nodes,
which is exponential in the size of the network.

To formally state the property, define F
(j)
p (t) ⊆ V to be the

subset of nodes where the pth packet from class j belongs to
at time t. We claim that,

Proposition 12: For any 1 ≤ p1 < p2 and for any time
t, we have

F (j)
p2

(t) ⊆ F (j)
p1

(t) (15)

Proof: If F
(j)
p2 (t) = φ, the inclusion holds trivially.

Otherwise, consider a node v ∈ F
(j)
p2 (t). This implies that

the node v containts the pth
2 packet from class k at time t.

Since all classes in the policy space Πin−order
k satisfies the in-

order delivery property, it follows that the node v must contain
the pth

1 packet from class k at time t, where p1 < p2. Thus
v ∈ F

(j)
p1 (t). This implies that F

(j)
p2 (t) ⊆ F

(j)
p1 (t), which proves

the proposition.
The above proposition immediately implies the following

interesting result. Let F (j)(t) denote the family of distinct
subsets of nodes where packets from class k are present at
time t, i.e.,

F (j)(t) = {F (j)
p (t)|p ≥ 1} (16)

Proposition 13: For all classes 1 ≤ j ≤ k and all time
t ≥ 1, we have

|F (j)(t)| ≤ n + 1 (17)

Proof: Using Proposition (12), we have the following
chain of set inclusions

V ⊇ F
(j)
1 (t) ⊇ F

(j)
2 (t) ⊇ . . . ⊇ F (j)

p (t) ⊇ . . .

Since |V | = n and the sequence of sets of vertices
{F (j)

i (t)}i≥1 are decreasing, there could be at most n + 1
distinct sets in the family F (j)(t).

Discussions: Proposition 13 suggests that each indi-
vidual class is structurally constrained in disseminating
packets. Without the in-order restriction, we trivially have
|F (j)(t)| = O(2n). On the other hand, under the action of any
broadcast policy which routes packet along a fixed spanning
tree, it is easy to see that the statement of Eqn. (17) holds.
The surprising conclusion of Proposition 13 is that it shows
that the statement of Eqn. (17) holds good even when we do
not restrict the individual classes to follow a fixed spanning
tree, but require them to respect a much weaker assumption
of in-order delivery only. As a consequence, it is natural to
search for an efficient broadcast policy with multiple classes,
so that, the packet-delivery restriction of each individual class
may be overcome collectively.

D. A Multi-Class Heuristic Policy πH
k ∈ Πin−order

k

Since any policy in the class Πin−order
k delivers packets

from the same class in-order, the intra-class packet scheduling

is fixed for the entire policy-class Πin−order
k . Thus, we only

need to specify an inter-class scheduling policy to resolve
contentions among multiple packets from different classes to
access an active edge for transmission. In this sub-section,
we propose a dynamic policy πH

k ∈ Πin−order
k , which uses the

same Max-Weight packet scheduling rule, as the throughput-
optimal policy π∗, for inter-class packet scheduling. As we
will see, the computation of weights and packet scheduling
in this case may be efficiently carried out by exploiting the
special structure of the space Πin−order

k .
Motivation: We observe that, when the number of classes

k = ∞, so that every incoming packet to the source
r joins a new class, the in-order restriction of the space
Πin−order

k is essentially no longer in effect. In particular,
the throughput-optimal policy π∗ of Section III belongs to the
space Πin−order

∞ . This motivates us to consider the following
multi-class scheduling policy πH

k :
Intra-class packet scheduling: Recall that, under a policy

π ∈ Πin−order
k , a packet arriving at the source r, joins one

of the k classes uniformly at random. Packets belonging to
any class c = 1, 2, . . . , k are delivered to all nodes in-order
(i.e. the order they arrived at the source r). Let the state-
variable Rc

i (t) denote the number of packets belonging to the
class c received by node i up to the mini-slot t, i = 1, 2, . . . , n,
c = 1, 2, . . . , k. As discussed earlier, given the intra-class
in-order delivery restriction, the state of the network at the
mini-slot t is completely specified by the vector

{
Rc(t), c =

1, 2, . . . , k
}

.
Due to the in-order packet-delivery constraint, when an edge

e = (i, j) is active at the mini-slot t, not all packets that are
present at node i and not-present at node j are eligible for
transmission. Under the policy πH

k ∈ Πin−order
k , only the next

Head-of-the-Line (HOL) packet from each class, i.e., packet
with index Rc

j(t) + 1 from the class c, c = 1, 2, . . . , k are
eligible to be transmitted to the node j, provided that the
corresponding packet is also present at node i by mini-slot t.
Hence, at a given mini-slot t, there are at most k contending
packets for an active edge. This should be compared with the
policy π∗, in which there could be Θ(2n) contending packets
for an active edge at a mini-slot.

Inter-class packet scheduling: Given the above intra-
class packet-scheduling rule, which follows directly from the
definition of the policy space Πin−order

k , we now propose
an inter-class packet scheduling, for resolving the contention
among multiple contending classes for an active edge e
at a mini-slot t. For this purpose, we utilize the same
Max-Weight scheduling rule, derived for the policy π∗ (step 2
of Algorithm 1).

The main computational advantage of the multiclass pol-
icy πH

k over the throughput-optimal policy π∗ is that, instead
of computing the weights wF,e(t) in (14) for all reachable
sets F , we only need to compute the weights of the sets Fc

corresponding to the HOL packets (if any) belonging to the
class c. By exploiting the structure of the space Πin−order

k ,
this requires quadratic number of computations in the class-
size k (see Algorithm 2) per mini-slot. Finally, we schedule the
HOL packet from the class c∗ having the maximum (positive)
weight.

SINHA et al.: THROUGHPUT-OPTIMAL MULTI-HOP BROADCAST ALGORITHMS 3095

Algorithm 2 The Multi-Class Scheduling Policy πH
k

At each mini-slot t, the network-controller observes the
state-variables {Rc

l (t), l ∈ V, c = 1, 2, . . . , k}, the currently
active edge S(t) = e = (i, j) and executes the following steps
at node i:
1: for all classes c = 1 : k do
2: /* Determine the index of the next expected in-order

(HOL) packet pc from the class c for node j */
3: pc ← Rc

j(t) + 1.
4: /* Check whether node i has more packets than node

j belonging to class c */
5: if Rc

i (t) < pc then
6: wc ← 0
7: continue;
8: end if
9: /* Find the subset Fc ⊂ V where the packet pc is

currently present */
10: Fc ← φ
11: for all node l = 1 : n do
12: if Rc

l (t) ≥ pc then
13: Fc ← Fc ∪ {l}
14: end if
15: end for
16: Fc+e = Fc ∪ {j}
17: /* Find QFc(t) and QFc+e(t) */
18: for G = Fc and Fc+e do

19: QG(t)←
∑k

c=1

(
mini∈G Rc

i (t)−maxi∈V \G Rc
i (t)

)+

20: end for
21: QV (t)← 0
22: /* Compute the weight wc for packet pc */
23: wc ←

(
QFc(t)−QFc+e(t)

)

24: end for
25: Schedule the packet p∗ ∈ argmaxc wc, when

maxc wc > 0, else idle.

Keeping in mind our earlier discussion about similarity of
packet forwarding capabilities of the classes and trees, we put
forward the following conjecture regarding the performance
of the proposed heuristic:

Conjecture 14: The multiclass policy πH
k is

throughput-optimal for k = Θ(λ∗), where λ∗ is the
broadcast capacity of the network.

Extensive numerical simulation results supporting the con-
jecture will be presented in Section VII-C.

Pseudo code: The full pseudo code of the policy πH
k

is provided in Algorithm 2. In lines 4 . . . 10, we have used
the in-order delivery property of the policy πH

k to compute
the sets Fc, to which the next HOL packet from the class c
belongs. This property is also used in computing the number
of packets in the set G = Fc, Fc+e in line 14 as follows:
recall that, the variable QG(t) counts the number of packets
that the reachable set G contains exclusively at mini-slot t.
These packets can be counted by counting such packets from

each individual classes and then summing them up. Again
utilizing the in-class in-order delivery property, we conclude
that the number of packets N c

G(t) from class c, that belongs
exclusively to the set G at time t is given by

N c
G(t) =

(
min
i∈G

Rc
i (t)− max

i∈V \G
Rc

i (t)
)+

.

Hence,

QG(t) =
k∑

c=1

N c
G(t),

which explains the assignment in line 19. In line 23,
the weights corresponding to the HOL packets of each class
are computed according to Eqn. (14). Finally, in line 25,
the HOL packet with the highest positive weight is transmitted
across the active edge e. The per mini-slot complexity of the
policy πH

k is O(nk).

V. BROADCASTING IN WIRELESS NETWORKS

A wireless network is modeled by a graph G(V, E), along
with a set of edge-subsets M (represented by a set of binary
characteristic vectors of dimension |E| = m). The set M is
called the set of all feasible activations [17]. The structure of
the set M depends on the underlying interference constraint,
e.g., under the primary interference constraint, the set M
consists of all matchings of the graph G [22]. Any subset
of edges s ∈ M can be activated simultaneously at a given
slot. For broadcasting in wireless networks, we first activate
a feasible subset of edges from M and then forward packets
on the activated edges.

Since the proposed broadcast algorithms in
sections III and IV are Max-Weight by nature, they
extend straight-forwardly to wireless networks with activation
constraints [20]. In particular, from Eqn. (14), at each
slot t, we first compute the weight of each edge, defined as
we(t) = maxF :e∈∂+F we,F (t). Next, we activate the subset of
edges s∗(t) from the activation set M, having the maximum
weight, i.e.,

s∗(t) = arg max
s∈M

∑

e∈E

we(t)se

Packet forwarding over the activated edges remains the same
as before. The above activation procedure carries over to the
multi-class heuristic πH

k in wireless networks.

VI. DISTRIBUTED IMPLEMENTATION

From the description of Algorithm 2, we note that the
weight for a class c at a node i is computed based on the
knowledge of the current HOL packet indices {Rc

j(t)} of
all nodes in the network. Gathering this global state infor-
mation in a centralized fashion consumes precious network
resources. To overcome this issue, we propose the following
local message-passing algorithm for exchanging pairwise state
information.

Each node maintains an n × k state table consisting of
the last known HOL packet indices R̂(t) = {R̂(c)

i (t)}, along
with the timestamps tj(t) of when the corresponding entry

3096 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 2. Packet Arrival and Broadcast Rate in the Diamond Network
in Figure 1, under the action of the throughput-optimal policy π∗.

was generated. Observe that, the entry Rc
i (t) corresponding

to node i is locally known to node i, and is always fresh.
However, entries corresponding to other nodes {R̂j(t), j
= i}
may be outdated. The timestamp information is used to keep
the locally known state-information at each node as fresh
as possible. If an edge (i, j) is activated during a minislot,
the nodes i and j exchange their state table w.p. q, where
0 < q ≤ 1 is a tunable parameter. The entry Rk(t) corre-
sponding to each node k is updated at nodes i and j with the
new information available following the exchange (if any).

Let the random variable Dij(t) denote the delay at which
the state information of node j is available to node i at
time t. The following proposition gives an upper bound on
the expectation of the maximum age of any entry across the
network:

Proposition 15: Under the action of the above policy,
for any connected network graph G, we have:

E(max
i,j

Dij(t)) ≤
mn

q
, ∀t (18)

The above proposition shows that the expected worst
case age of state information may be reduced by increas-
ing the parameter q, which, in turn, controls the rate of
control information exchange. It is also well-known that the
Max-Weight algorithms are robust with respect to delayed
queue-length information [20]. Proof of the above proposition
is given in Appendix F.

VII. NUMERICAL SIMULATIONS

A. Simulating the Throughput-Optimal Broadcast Policy π∗

We simulate the policy π∗ on the network D4, shown in
Figure 1. The broadcast-capacity of the network is 2 packets
per slot. External packets arrive at the source node r according
to a Poisson process of a slightly lower rate of λ = 1.95 pack-
ets per slot. A packet is said to be broadcast when it reaches
all the nodes in the network. The rate of packet arrival and
packet broadcast by policy π∗, is shown in Figure 2. This plot
exemplifies the throughput-optimality of the policy π∗ in the
network D4.

Fig. 3. A network G with N = 20 nodes. The colors of the edges indicate
their directions (e.g., blue edge =⇒ i → j : i > j and vice versa). The
broadcast capacity λ∗ of the network is computed to be 6, with node 1 being
the source node.

Fig. 4. Achievable broadcast-rate with the multi-class heuristic broadcast-
policies πH

k , for k = 1, 3, 5, 7. The underlying network-topology is given
in Figure 3 with broadcast capacity λ∗ = 6.

B. Simulating the Multi-Class Heuristic Policy πH
k

The multi-class heuristic policy πH
k has been numerically

simulated in 400 instances of Erdős-Rényi random network
with sizes varying from n = 20 to n = 40 nodes and edge-
connectivity probability p = 0.8. We have obtained similar
qualitative results for all such instances. One representative
sample is discussed here.

Consider running the broadcast-policy πH
k on the network

shown in Figure 3, containing n = 20 nodes and m =
176 edges. The directions of the edges in this network is
chosen arbitrarily. With node 1 as the source node, we first
compute the broadcast-capacity λ∗ of this network using
Eqn. (2) and obtain λ∗ = 6. External packets are injected
at the source node according to a Poisson process, with a
slightly smaller rate of λ = 0.95λ∗ ≈ 5.7 packets per
slot. The rate of broadcast under the multi-class policy πH

k

for different values of k is shown in Figure 4. As evident
from the plot, the achievable broadcast rate, obtained by the
policy πH

k , is non-decreasing in the number of classes k.
Also, the policy πH

k broadcasts 95% of the input traffic for a
relatively small value of k = 7.

C. Minimum Number of Classes for Achieving the Capacity

In this experiment, we simulate the heuristic multiclass
policy πH

k on two different classes of random graphs -
Erdős-Rényi and Random Geometric Graphs. We randomly

SINHA et al.: THROUGHPUT-OPTIMAL MULTI-HOP BROADCAST ALGORITHMS 3097

Fig. 5. Number of classes required for achieving 95% of the broadcast
capacity in Erdős-Rényi and Random Geometric Graphs.

generate 400 instances of Erdős-Rényi graphs from the previ-
ous subsection, along with 400 instances of two-dimensional
Random Geometric Graphs with n = 25 nodes with varying
connectivity radii [23]. For each generated graph, we first
compute its broadcast capacity λ∗ using Theorem 3. Packets
arrive at a randomly selected node according to a Poisson
process of rate 95% of the computed broadcast capacity of
the graph. The empirical average of the minimum number of
classes k∗ required so that 95% of the incoming packets get
broadcasted within T = 2000 slots is plotted in Figure 5,
along with its coefficient of variation (shown by the little
vertical bars). The plot is in excellent agreement with our
Conjecture 14, suggesting that for a network with broadcast
capacity λ∗, about λ∗ classes suffice for achieving near-
broadcast-capacity, irrespective of the size and type of the
network. Figure 5 also suggests that the performance of a
fixed number of classes depends on the broadcast capacity of
the underlying network.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the problem of efficient, dynamic
packet broadcasting in data networks with arbitrary underlying
topology. We derived a throughput-optimal Max-weight broad-
cast policy that achieves the capacity, albeit at the expense of
using exponentially many state-variables. To get around this
problem, we then proposed a multi-class heuristic policy which
combines the idea of in-order packet delivery with a Max-
weight scheduling, resulting in drastic reduction in complexity.
The proposed heuristic with a small number of classes is
conjectured to be throughput-optimal. An immediate next step
along this line of work would be to formally prove this
conjecture. Another problem of practical interest is to find the
minimum number of classes k∗(ε) required to achieve (1− ε)
fraction of the capacity.

APPENDIX

A. Proof of Lemma (3)

Proof: We prove this lemma in two parts. First, we upper-
bound the achievable broadcast rate of the network under any
policy in the mini-slot model by the broadcast capacity λ∗(G)
of the network in the usual slotted model, which is given
by Eqn. (2). Next, in our main result in section (VIII-B),

we constructively show that this rate is achievable, thus
proving the lemma.

Let C � V be a non-empty subset of the nodes in the
graph G such that r ∈ C. Since C is a strict subset of V ,
there exists a node i ∈ V such that i ∈ Cc. Let the set E(C)
denote the set of all directed edges e = (a, b) such that a ∈ C
and b /∈ C. Denote |E(C)| by Cut(C). Using the MAX-FLOW-
MIN-CUT theorem [16], the broadcast-capacity in the slotted
model, given by Eqn. (2), may be alternatively represented as

λ∗ = min
C�V, r∈C

Cut(C) (19)

Now let us proceed with the mini-slot model. Since all packets
arrived at source r that are received by the node i must cross
some edge in the cut E(C), it follows that, under any policy
π ∈ Π, the total number of packets Ri(t) that are received by
node i up to mini-slot t is upper-bounded by

Ri(t) ≤
t∑

τ=1

∑

e∈E(C)

�(S(τ) = e) =
∑

e∈E(C)

t∑

τ=1

�(S(τ) = e)

(20)

Thus the broadcast-rate λπ
mini-slot achievable in the mini-slot

model is upper-bounded by

λπ
mini-slot

(a)

≤ lim inf
t→∞

Ri(t)
t

(b)

≤ lim inf
t→∞

1
t

∑

e∈E(C)

t∑

τ=1

�(S(τ) = e) (21)

=
∑

e∈E(C)

lim
t→∞

1
t

t∑

τ=1

�(S(τ) = e) (22)

(c)
=

1
m

Cut(C), w.p.1 (23)

Where the inequality (a) follows from the definition of
broadcast-rate (1), inequality (b) follows from Eqn. (20) and
finally, the equality (c) follows from the Strong Law of
Large Numbers [18]. Since the inequality (21) holds for any
cut C � C containing the source r and any policy π, from
Eqn. (19) we have

λ∗
mini-slot ≤ λπ

mini-slot ≤
1
m

Cut(C) ≤ 1
m

λ∗ per mini-slot (24)

Since according to the hypothesis of the lemma, a slot is
identified with m mini-slots, the above result shows that

λ∗
mini-slot ≤ λ∗ per slot (25)

This proves that the capacity in the mini-slot model (per slot)
is at most the capacity of the slotted-time model (given by
Eqn. (2)). In section (III), we show that there exists a broadcast
policy π∗ ∈ Π which achieves a broadcast-rate of λ∗ packets
per-slot in the mini-slot model. This concludes the proof of
the lemma.

B. Proof of Throughput Optimality of π∗

In this subsection, we show that the induced Markov-Chain
Qπ∗

(t), generated by the policy π∗ is positive recurrent, for
all arrival rates λ < λ∗ packets per slot. This is proved by

3098 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

showing that the expected one-minislot drift of the Lyapunov
function L(Q(t)) is negative outside a bounded region in
the non-negative orthant Z

M
+ , where M is the dimension

of the state-space Q(t). To establish the required drift-
condition, we first construct an auxiliary stationary randomized
policy πRAND, which is easier to analyze. Then we bound the
one-minislot expected drift of the policy π∗ by comparing it
with the policy πRAND.

We emphasize that the construction of the randomized
policy πRAND is highly non-trivial, because, under the action
of the policy π∗, a packet may travel along an arbitrary tree
and as a result, any reachable set F ∈ F may potentially
contain a non-zero number of packets.

For ease of exposition, the proof of throughput-optimality
of the policy π∗ is divided into several parts.

1) Part I: Consequence of Edmonds’ Tree-Packing
Theorem: From Edmond’s tree-packing theorem [15],
it follows that the graph G contains λ∗ edge-disjoint
directed spanning trees,6 {T i}λ∗

1 . From Proposition (3) and
Lemma (6), it follows that, to prove the throughput-optimality
of the policy π∗, it is sufficient to show stochastic-stability of
the process {Q(t)}∞0 for an arrival rate of λ/m per minislot,
where λ < λ∗.

Fix an arbitrarily small ε > 0 such that,

λ ≤ λ∗ − ε

Now we construct a stationary randomized policy πRAND,
which utilizes the edge-disjoint trees {T i}λ∗

i=1 in a critical
fashion.

2) Part II: Construction of a Stationary Randomized Policy
πRAND :: The stationary randomized policy πRAND allocates
rates μe,F (t) randomly to different ordered pairs (e, F), for
transmitting packets belonging to reachable sets F , across an
edge e ∈ ∂+F .7 Recall that μe,F (t)’s are binary variables.
Hence, conditioned on the edge-activity process S(t) = e,
the allocated rates are fully specified by the set of probabilities
that a packet from the reachable set F is transmitted across
the active edge e ∈ ∂+F . Equivalently, we may specify the
allocated rates in terms of their expectation w.r.t. the edge-
activation process (obtained by multiplying the corresponding
probabilities by 1/m).

Informally, the policy πRAND allocates most of the rates
along the reachable sequences corresponding to the edge-
disjont spanning trees {T i}λ∗

1 , obtained in Part I. However,
since the dynamic policy π∗ is not restricted to route packets
along the spanning trees {T i}λ∗

1 only, for technical reasons
which will be evident later, πRAND is designed to allocate
small amount of rates along other reachable sequences. This
is an essential and non-trivial part of the proof methodology.
An illustrative example of the rate allocation strategy by the
policy πRAND will be described subsequently for the diamond
graph D4 of Figure 1.

Formally, the rate-allocation by the randomized policy
πRAND is given as follows:

6Note that, since the edges are assumed to be of unit capacity, λ∗ is an
integer. This result follows by combining Eqn. (2) with the Max-Flow-Min-
Cut theorem [16].

7If e /∈ ∂+F , naturally μe,F (t) = 0,∀t.

• We index the set of all reachable sequences in a specific
order.

– The first λ∗ reachable sequences {ζi}λ∗
i=1 are defined

as follows: for each edge-disjoint tree T i, i =
1, 2, . . . , λ∗ obtained from Part-I, recursively con-
struct a reachable sequence ζi = {(F i

j , ei
j)}n−1

j=1 ,
such that the induced sub-graphs T i(F i

j) are con-
nected for all j = 1, 2, . . . , n− 1.
In other words, for all 1 ≤ i ≤ λ∗ define F i

1 = {r}
and for all 1 ≤ j ≤ n−2, the set F i

j+1 is recursively
constructed from the set F i

j by adding a node to the
set F i

j while traversing along an edge of the tree
T i. Let the corresponding edge in T i connecting
the j + 1 th vertex F i

j+1 \ F i
j , to the set F i

j , be ei
j .

Since the trees {T i}λ∗
i=1 are edge disjoint, the edges

ei
j’s are distinct for all i = 1, 2, . . . , λ∗ and j =

1, 2, . . . , n − 1. The above construction defines the
first λ∗ reachable sequences ζi = {F i

j , e
i
j}n−1

j=1 , 1 ≤
i ≤ λ∗.

– In addition to the above, let {ζi = (F i
j , ei

j)}n−1
j=1 , λ∗+

1 ≤ i ≤ B be the set of all other reachable sequence
in the graph G, different from the previously con-
structed λ∗ reachable sequences. Recall that, B is the
cardinality of the set of all reachable sequences in
the graph G. Thus the set of all reachable sequences
in the graph G is given by

⋃B
i=1 ζi.

• To define the expected allocated rates Eμe,F (t), it is
useful to first define some auxiliary variables, called rate-
components Eμi

e,F (t), i = 1, 2, . . . , B, corresponding to
each reachable sequence. The rate Eμe,F (t) is is simply
the sum of the rate-components, as given in Eqn. (28).
At each slot t and 1 ≤ i ≤ λ∗, the randomized
policy allocates ith rate-component corresponding to the
reachable sequence ζi = {ei

j, F
i
j }n−1

j=1 according to the
following scheme:

E
(
μi

ei
j ,F i

j
(t)

)
= 1/m− ε(n− j)/n,

∀ 1 ≤ j ≤ n− 1
= 0, o.w. (26)

• In addition to the rate-allocation (26), the randomized
policy πRAND also allocates small amount of rates
corresponding to other reachable sequences {ζi}Bλ∗+1

according to the following scheme: For λ∗ + 1 ≤ i ≤ B,
the randomized policy allocates ith rate-component to the
ordered pairs (e, F) as follows:

E
(
μi

ei
j ,F i

j
(t)

)
=

ε

2nB
− ε

2nB

n− j

n
,

∀ 1 ≤ j ≤ n− 1,

= 0, o.w. (27)

The overall rate allocated to the pair (e, F) is simply the
sum of the component-rates, as given below:

Eμe,F (t) =
B∑

i=1

Eμi
e,F (t) (28)

In the following, we show that the above rate-allocation
is feasible with respect to the edge capacity constraint.

SINHA et al.: THROUGHPUT-OPTIMAL MULTI-HOP BROADCAST ALGORITHMS 3099

Lemma 16 (Feasibility of Rate Allocation): The rate allo-
cation (28) by the randomized policy πRAND is feasible.

The reader is referred to Appendix C for the proof the
lemma. An illustrative example for the above randomized rate-
allocation scheme is given in Appendix D.

3) Part III: Comparison of Drifts Under Action of Poli-
cies π∗ and πRAND : Recall that, from Eqn. (13) we have
the following upper-bound on the one-minislot drift of the
Lyapunov function L(Q(t), achieved by the policy π∗:

(Δπ∗
(Q(t)|S(t)) ≤ 2nμ2

max

−
∑

(e,F):e∈∂+F

(
QF (t)−QF+e(t)

)
E
(
μπ∗

e,F (t)|Q(t), S(t)
)

Since the policy π∗, by definition, transmits packets to max-
imize the weight wF,e(t) = QF (t) − QF+e(t) point wise,
the following inequality holds

∑

(e,F):e∈∂+F

(
QF (t)−QF+e(t)

)
E
(
μπ∗

e,F (t)|Q(t), S(t)
)

≥
∑

(e,F):e∈∂+F

(
QF (t)−QF+e(t)

)
E
(
μπRAND

e,F (t)|Q(t), S(t)
)
,

where the randomized rate-allocation µπRAND
is given by

Eqn. (28). Noting that πRAND operates independently of the
“queue-states” Q(t) and dropping the super-script πRAND from
the control variables µ(t) on the right hand side, we can bound
the one-slot expected drift of the policy π∗ as follows:

(Δπ∗
(Q(t))|S(t))

≤ 2nμ2
max −

∑

(e,F):e∈∂+F

×
(

QF (t)−QF+e(t)
)

E
(
μe,F (t)|S(t)

)

= 2nμ2
max −

∑

F

QF (t)
(∑

e∈∂+F

E(μe,F (t)|S(t))

−
∑

(e,G):e∈∂−F,G=F\{e}
E(μe,G(t)|S(t))

)

(a)
= 2nμ2

max −
∑

F

QF (t)
(∑

e∈∂+F

(B∑

i=1

E(μi
e,F (t)|S(t))

)

−
∑

(e,G):e∈∂−F,G=F\{e}

(B∑

i=1

E(μi
e,G(t)|S(t))

)
)

,

where in (a) we have used Eqn. (28).
Taking expectation of both sides of the above inequality w.r.t

the random edge-activation process S(t) and interchanging the
order of summation, we have

Δπ∗
(Q(t)) ≤ 2nμ2

max −
∑

F

QF (t)
B∑

i=1

(∑

e∈∂+F

E(μi
e,F (t))

−
∑

(e,G):e∈∂−F,G=F\{e}
E(μi

e,G(t))
)

, (29)

where the rate-components µi of the randomized policy
πRAND are defined in Eqns (26) and (27).

Fix a reachable set F , appearing in the outer-most sum-
mation of the above upper-bound (29). Now focus on the
ith reachable sequence ζi ≡ {F i

j , e
i
j}n−1

1 . We have two cases:
Case I: F /∈ ζi

Here, according to the allocations in (26) and (27), we have

∑

e∈∂+F

E(μi
e,F (t))

(a)
= 0,

∑

(e,G):e∈∂−F,G=F\{e}
E(μi

e,G(t))
(b)
= 0

Where the equality (a) follows from the assumption that
F /∈ ζi and equality (b) follows from the fact that positive
rates are allocated only along the tree corresponding to the
reachable sequence ζi. Hence, if no rate is allocated to drain
packets outside the set F , πRAND does not allocate any rate
to route packets to the set F .

Case II: F ∈ ζi

In this case, from Eqns. (26) and (27), it follows that
(∑

e∈∂+F

E(μi
e,F (t)) −

∑

(e,G):e∈∂−F,G=F\{e}
E(μi

e,G(t))
)

=

⎧
⎨

⎩

ε

n
, 1 ≤ i ≤ λ∗

ε

2n2B
, λ∗ + 1 ≤ i ≤ B

(30)

By definition, each reachable set is visited by at least
one reachable sequence. In other words, there exists at least
one i, 1 ≤ i ≤ B, such that F ∈ ζi. Combining the above two
cases, from the upper-bound (29) we conclude that

Δπ∗
(Q(t)) ≤ 2nμ2

max −
ε

2n2B

∑

F

QF (t), (31)

where, the sum extends over all reachable sets. The drift is
negative, i.e., Δπ∗

(Q(t)) < −ε, when QF ∈ Bc, where

B =
{

(QF ≥ 0) :
∑

F

QF ≥
2n2B

ε
(ε + 2nμ2

max)
}

Invoking the Foster-Lyapunov criterion [21], we conclude
that the Markov-Chain {Qπ∗

(t)}∞0 is positive recurrent.
Finally, throughput-optimality of the policy π∗ follows from
lemma 6. �

C. Proof of Lemma (16)

Proof: The rate allocation (28) will be feasible if the
sum of the allocated probabilities that an active edge e carries
a class-F packet, for all reachable sets F , is at most unity.
Since an edge can carry at most one packet per mini-slot,
this feasibility condition is equivalent to the requirement that
the total expected rate, i.e., Eμe(t) =

∑
F Eμe,F (t), allocated

to an edge e ∈ E by the randomized policy πRAND does
not exceed 1

m (the expected capacity of the edge per mini-
slot). Since an edge e may appear at most once in any
reachable sequence, the total rate allocated to an edge e by
the randomized-policy πRAND is upper-bounded by 1

m −
ε
n +

(B−λ∗) ε
2nB ≤

1
m −

ε
2n < 1/m. Hence the rate allocation by

the randomized policy πRAND is feasible.

3100 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

D. An Example of Rate Allocation by the
Stationary Policy πRAND

As an explicit example of the above stationary policy, con-
sider the case of the Diamond network D4, shown in Figure 1.
The edges of the trees {T i, i = 1, 2} are shown in blue and red
colors in the figure. Then the randomized policy allocates the
following rate-components to the edges, where the expectation
is taken w.r.t. random edge-activations per mini-slot.

First we construct a reachable sequence ζ1 consistent with
the tree T 1 as follows:

ζ1 = {({r},ra), ({r,a},ab), ({r,a,b},bc)}
Next we allocate the following rate-components as prescribed
by πRAND:

Eμ1
ra,{r}(t) = 1/6− 3ε/4

Eμ1
ab,{r,a}(t) = 1/6− 2ε/4

Eμ1
bc,{r,a,b}(t) = 1/6− ε/4

Eμ1
e,F (t) = 0, o.w.

Similarly for the tree T 2, we first construct a reachable
sequence ζ2 as follows:

ζ2 = {({r},rb), ({r,b},rc), ({r,b,c},ca)}
Then we allocate the following component-rates to the
(edge, set) pairs as follows:

Eμ2
rb,{r}(t) = 1/6− 3ε/4

Eμ2
rc,{r,b}(t) = 1/6− 2ε/4

Eμ2
ca,{r,b,c}(t) = 1/6− ε/4

Eμ2
e,F (t) = 0, o.w.

In this example λ∗ = 2, thus these two reachable sequence
accounts for a major portion of the rates allocated to the edges.
The randomized policy πRAND, however, allocates small rates
to other reachable sequences too. As an example, consider the
following reachable sequence ζ3, given by

ζ3 = {({r},ra), ({r,a},rb), ({r,a,b},rc}
Then, as prescribed above, the randomized policy allocates the
following rate-components

Eμ3
ra,{r}(t) =

ε

8B
− 3ε

32B

Eμ3
rb,{r,a}(t) =

ε

8B
− 2ε

32B

Eμ3
rc,{r,a,b}(t) =

ε

8B
− ε

32B

Eμ3
e,F (t) = 0, o.w.

Here B is the number of all distinct reachable sequences,
which is upper-bounded by 48. The rate-components cor-
responding to other reachable sequences may be computed
as above. Finally, the actual expected rate-allocation to the
pair (e, F) is given by

Eμe,F (t) =
B∑

i=1

Eμi
e,F (t)

E. Proof of Proposition (11)

The proof of this proposition is conceptually simplest in the
slotted-time model. The argument also applies directly to the
mini-slot model.

Consider a network G with broadcast-capacity λ∗. Assume a
slotted-time model. By Edmonds’ tree-packing Theorem [15],
we know that there exists λ∗ number of edge-disjoint directed
spanning trees (arborescences) {Ti}λ

∗
1 in G, rooted at the

source node r. Now consider a policy π ∈ Πin−order
k with

k ≥ λ∗ which operates as follows:

• An incoming packet is placed in any of the classes
[1, 2, 3, . . . , λ∗], uniformly at random.

• Packets in a class i are routed to all nodes in the network
in-order along the directed tree Ti, where the packets are
replicated in all non-leaf nodes of the tree Ti, 1 ≤ i ≤ λ∗.

Since the trees are edge-disjoint, the classes do not conflict;
i.e., routing in each class can be carried out independently.
Also by the property of Ti, there is a unique directed path from
the source node r to any other node in the network along the
edges of the tree Ti, 1 ≤ i ≤ λ∗. Thus packets in every class
can be delivered to all nodes in the network in-order in a pipe-
lined fashion with the long-term delivery-rate of 1 packet per
class. Since there are λ∗ packet-carrying classes, it follows that
the policy π ∈ Πin−order

k is throughput-optimal for k ≥ λ∗.
Next we show that, λ∗ ≤ n/2 for a simple network. Since

there exist λ∗ number of edge-disjoint directed spanning trees
in the network, and since each spanning-tree contains n − 1
edges, we have

λ∗(n− 1) ≤ m (32)

Where m is the number of edges in the network. But we have
m ≤ n(n − 1)/2 for a simple graph. Thus, from the above
equation, we conclude that

λ∗ ≤ n/2. (33)

This completes the proof of the Proposition.

F. Proof of Proposition (15)

Proof: Consider a spanning tree T in the network (it
exists, as the network is assumed to be connected). One of
the many possible ways to send its state information from any
node j to a node i would be to send this information following
the unique path Pij induced by the tree T . Thus,

Dij(t) ≤
∑

e∈Pij

Xe, (34)

where Xe is the (stationary) random variable denoting the
number of required minislots until a state exchange takes place
along the edge e. Hence, it follows that

max
i,j

Dij(t) ≤ max
i,j

∑

e∈Pij

Xe

(a)

≤
∑

e∈T
Xe, (35)

where the inequality (a) follows from the fact that the r.v.s Xe’s
are non-negative. Since Xe’s are geometrically distributed with

SINHA et al.: THROUGHPUT-OPTIMAL MULTI-HOP BROADCAST ALGORITHMS 3101

parameter q
m , we have EXe = m

q . Taking expectation of both
sides of (35), we have

E
(
max

i,j
Dij(t)

) (a)

≤
∑

e∈T
EXe≤

mn

q
,

where the inequality (a) follows from the fact that there are
exactly n− 1 edges in the spanning tree T .

REFERENCES

[1] A. Sinha, G. Paschos, and E. Modiano, “Throughput-optimal multi-hop
broadcast algorithms,” in Proc. 17th ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., New York, NY, USA, 2016, pp. 51–60. [Online].
Available: http://doi.acm.org/10.1145/2942358.2942390

[2] J. P. Macker, J. E. Klinker, and M. S. Corson, “Reliable multicast
data delivery for military networking,” in Proc. IEEE Conf. Military
Commun. Conf. (MILCOM), vol. 2. Oct. 1996, pp. 399–403.

[3] R. Chen, W.-L. Jin, and A. Regan, “Broadcasting safety information in
vehicular networks: Issues and approaches,” IEEE Netw., vol. 24, no. 1,
pp. 20–25, Jan./Feb. 2010.

[4] X. Zhang, J. Liu, B. Li, and Y.-S. P. Yum, “CoolStreaming/DONet:
A data-driven overlay network for peer-to-peer live media streaming,”
in Proc. IEEE 24th Annu. Joint Conf. IEEE Comput. Commun. Soc.,
vol. 3. Mar. 2005, pp. 2102–2111.

[5] S. Jiang, L. Guo, and X. Zhang, “Lightflood: An efficient flooding
scheme for file search in unstructured peer-to-peer systems,” in Proc.
Int. Conf. Parallel Process., Oct. 2003, pp. 627–635.

[6] K. C. Almeroth and M. H. Ammar, “The use of multicast delivery
to provide a scalable and interactive video-on-demand service,” IEEE
J. Sel. Areas Commun., vol. 14, no. 6, pp. 1110–1122, Aug. 1996.

[7] A. Bar-Noy, S. Kipnis, and B. Schieber, “Optimal multiple mes-
sage broadcasting in telephone-like communication systems,” Discrete
Appl. Math., vol. 100, nos. 1–2, pp. 1–15, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X99001559

[8] S. Sarkar and L. Tassiulas, “A framework for routing and congestion
control for multicast information flows,” IEEE Trans. Inf. Theory,
vol. 48, no. 10, pp. 2690–2708, Oct. 2002.

[9] J. L. Träff and A. Ripke, “Optimal broadcast for fully connected
networks,” in Proc. Int. Conf. High Perform. Comput. Commun. (HPCC),
Sorrento, Italy, Sep. 2005, pp. 45–56.

[10] A. Sinha, G. Paschos, C.-P. Li, and E. Modiano, “Throughput-optimal
multihop broadcast on directed acyclic wireless networks,” IEEE/ACM
Trans. Netw., vol. 25, no. 1, pp. 377–391, Feb. 2017.

[11] A. Sinha, L. Tassiulas, and E. Modiano, “Throughput-optimal broad-
cast in wireless networks with dynamic topology,” in Proc. 17th
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., New York, NY,
USA, 2016, pp. 21–30. [Online]. Available: http://doi.acm.org/10.1145/
2942358.2942389

[12] S. Zhang, M. Chen, Z. Li, and L. Huang, “Optimal distributed broad-
casting with per-neighbor queues in acyclic overlay networks with
arbitrary underlay capacity constraints,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2013, pp. 814–818.

[13] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in Proc. 26th IEEE Int. Conf.
Comput. Commun. (INFOCOM), May 2007, pp. 1073–1081.

[14] D. Towsley and A. Twigg, “Rate-optimal decentralized broadcasting:
The wireless case,” in Proc. ACITA, 2008, pp. 323–333.

[15] R. Rustin, Combinatorial Algorithms. New York, NY, USA: Algorith-
mics Press, 1973.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[17] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[18] R. Durrett, Probability: Theory and Examples. Cambridge, U.K.:
Cambridge Univ. Press, 2010.

[19] D. V. Lindley, “The theory of queues with a single server,” in Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 48.
Cambridge, U.K.: Cambridge Univ. Press, 1952, pp. 277–289.

[20] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synth. Lect. Commun. Netw.,
vol. 3, no. 1, pp. 1–211, 2010.

[21] E. Wong and B. Hajek, Stochastic Processes in Engineering Systems.
New York, NY, USA: Springer, 2012.

[22] D. B. West et al., Introduction to Graph Theory, vol. 2.
Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[23] M. Penrose, Random Geometric Graphs, no. 5. London, U.K.:
Oxford Univ. Press, 2003.

Abhishek Sinha received the B.E. degree in elec-
tronics and telecommunication engineering from
Jadavpur University, Kolkata, in 2010, and the
M.E. degree in electronics and telecommunication
engineering from the Indian Institute of Science,
Bangalore, in 2012. He is currently pursuing the
Ph.D. degree with the Laboratory for Information
and Decision Systems, Massachusetts Institute of
Technology. . He was a recipient of several academic
awards, including the Best Paper Award in the con-
ference ACM MobiHoc 2016, Jagadis Bose National

Science Talent Search scholarship (2007), and Prof. Jnansaran Chatterjee
Memorial Gold Medal from Jadavpur University (2010). His research interests
include optimization, information theory, and network control.

Georgios Paschos received the Diploma degree
in electrical and computer engineering from the
Aristotle University of Thessaloniki, Greece,
in 2002, and the Ph.D. degree in wireless
networks from ECE Department, University of
Patras, Greece, in 2006, under the supervision of
Prof. S. Kotsopoulos. Since 2014, he has been a
Principal Researcher with Huawei Technologies,
Paris, France, leading the Network Control and
Resource Allocation Team. Previously, he spent two
years at MIT in the team of Prof. Eytan Modiano.

From 2008 to 2014, he was with the Center of Research and Technology
Hellas, Informatics and Telematics Institute, Greece, with Prof. L. Tassiulas.
He also with the University of Thessaly, Department of Electrical and
Computer Engineering as an Adjunct Lecturer from 2009 to 2011. From
2007 to 2008, he was an ERCIM Post-Doctoral Fellow with VTT, Finland,
with the team of Prof. Norros. Two of his papers won the best paper award,
in GLOBECOM 07 and IFIP Wireless Days 09, respectively. He serves as
an Associate Editor for the IEEE/ACM TRANSACTIONS ON NETWORKING,
and as a TPC Member of the IEEE INFOCOM.

Eytan Modiano (F’12) received the B.S. degree
in electrical engineering and computer science from
the University of Connecticut at Storrs in 1986 and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Maryland at College Park,
College Park, MD, in 1989 and 1992, respectively.
He was a Naval Research Laboratory Fellow from
1987 to 1992 and a National Research Council
Post-Doctoral Fellow from 1992 to 1993. From
1993 to 1999, he was with the MIT Lincoln Lab-
oratory. Since 1999, he has been on the Faculty of

Massachusetts Institute of Technology, where he is currently a Professor with
the Department of Aeronautics and Astronautics and the Laboratory for Infor-
mation and Decision Systems. His research was on communication networks
and protocols with emphasis on satellite, wireless, and optical networks. He is
a fellow of the IEEE and an Associate Fellow of the AIAA. He served on the
IEEE Fellows Committee. He was a co-recipient of the Sigmetrics 2006 Best
paper Award and the WiOpt 2013 Best Paper Award. He is an Editor-at-
Large of the IEEE/ACM TRANSACTIONS ON NETWORKING. He served as
an Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY

and the IEEE/ACM TRANSACTIONS ON NETWORKING. He was a Technical
Program Co-Chair of the IEEE Wiopt 2006, the IEEE Infocom 2007, the ACM
MobiHoc 2007, and the DRCN 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

