
2988 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Loop-Free Backpressure Routing Using
Link-Reversal Algorithms

Anurag Rai, Chih-ping Li, Georgios Paschos, and Eytan Modiano, Fellow, IEEE

Abstract— The backpressure routing policy is known to be
a throughput optimal policy that supports any feasible traffic
demand, but may have poor delay performance when packets
traverse loops in the network. In this paper, we study loop-free
backpressure routing policies that forward packets along directed
acyclic graphs (DAGs) to avoid the looping problem. These
policies use link reversal algorithms to improve the DAGs in order
to support any achievable traffic demand. For a network with
a single commodity, we show that a DAG that supports a given
traffic demand can be found after a finite number of iterations
of the link-reversal process. We use this to develop a joint link-
reversal and backpressure routing policy, called the loop free
backpressure (LFBP) algorithm. This algorithm forwards packets
on the DAG, while the DAG is dynamically updated based on
the growth of the queue backlogs. We show by simulations that
such a DAG-based policy improves the delay over the classical
backpressure routing policy. We also propose a multicommodity
version of the LFBP algorithm and via simulation show that its
delay performance is better than that of backpressure.

Index Terms— Loop free, throughput optimal, backpressure,
link reversal.

I. INTRODUCTION

THROUGHPUT and delay are two common metrics used
to evaluate the performance of communication networks.

For networks that exhibit high variability, such as mobile
ad hoc networks, the dynamic backpressure routing policy [1]
is a highly desirable solution, known to maximize throughput
in a wide range of settings. However, the delay performance
of backpressure is poor [2]. The high delay is attributed to a
property of backpressure that allows the packets to loop within
the network instead of moving towards the destination. In this
paper we improve the delay performance of backpressure by
constraining the routing to loop free paths.

Manuscript received March 16, 2016; revised April 17, 2017; accepted
June 7, 2017; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor K. Psounis. Date of publication July 3, 2017; date of current
version October 13, 2017. This work was supported by the NSF under
Grant CNS-1524317 and Grant CNS-1116209, by the ONR under Grant
N00014-12-1-0064, and by DARPA I2O and Raytheon BBN Technologies
under Contract No. HROO l l-l 5-C-0097. The work of G. Paschos was
supported by the National and Community Funds (European Social Fund)
through the WiNC Project of the Action: Supporting Postdoctoral Researchers.
This paper is an extended version of [15], which appeared in the Proceedings
of ACM MobiHoc, 2015. (Corresponding author: Anurag Rai.)

A. Rai and E. Modiano are with the Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail: rai@mit.edu; modiano@mit.edu).

C.-P. Li was with the LIDS, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA. He is now with Qualcomm Research, San Diego,
CA 92121 USA (e-mail: cpli@qti.qualcomm.com).

G. Paschos was with the Massachusetts Institute of Technology, Cambridge,
MA 02139 USA, and also with CERTH-ITI, Thessaloniki 57001, Greece.
He is now with the Mathematical and Algorithmic Sciences Laboratory,
Huawei Technologies Co., Ltd., 92100 Boulogne–Billancourt, France (e-mail:
georgios.paschos@huawei.com).

Digital Object Identifier 10.1109/TNET.2017.2715807

To eliminate loops in the network, we assign directions to
the links such that the network becomes a directed acyclic
graph (DAG). Initially, we generate an arbitrary DAG and
use backpressure routing over it. If the initial DAG has max-
flow smaller than the traffic demand, parts of the network
become overloaded. By reversing the direction of the links that
point from non-overloaded to overloaded nodes a new DAG
with a lower overload is obtained. Iterating over this process,
our distributed algorithm gradually converges to a DAG that
supports any traffic demand feasible in the network. Hence the
loop-free property is achieved without the loss of throughput.

Prior work identifies looping as a main cause for high
delays in backpressure routing and proposes delay-aware back-
pressure techniques. Backpressure enhanced with hop count
bias is first proposed in [3] to drive packets through paths
with smallest hop counts when the load is low. An alter-
native backpressure modification that utilizes shortest path
information is proposed in [8]. A different line of works
proposes to learn the network topology using backpressure and
then use this information to enhance routing decisions. In [7]
backpressure is constrained to a subgraph which is discovered
by running unconstrained backpressure for a time period and
computing the average number of packets routed over each
link. Learning is effectively used in scheduling [9] and utility
optimization [13] for wireless networks. In our work we aim
to eliminate loops by restricting backpressure to a DAG, then
dynamically improving the DAG by reversing the links in a
distributed manner.

The link-reversal algorithms were introduced in [4] as a
means to maintain connectivity in networks with volatile links.
These distributed algorithms react to any topological changes
to obtain a DAG such that each node has a loop-free path to the
destination. In [5], one of the link-reversal algorithms was used
to design a routing protocol (called TORA) for multihop wire-
less networks. Although these algorithms provide loop free
paths and guarantee connectivity from the nodes to the destina-
tion, they do not maximize throughput. Thus, the main goal of
this paper is to create a new link-reversal algorithm and com-
bine it with the backpressure algorithm to construct a distrib-
uted throughput optimal algorithm with improved delay per-
formance. The main contributions of this paper are as follows:

• For a single commodity network, we study the lexi-
cographic optimization of the queue growth rate. We
develop a novel link-reversal algorithm that reverses link
direction based on the overload conditions to form a new
DAG with lexicographically smaller queue growth rates.

• We propose the loop free backpressure (LFBP) algo-
rithm, a distributed routing scheme that eliminates

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

RAI et al.: LOOP-FREE BACKPRESSURE ROUTING USING LINK-REVERSAL ALGORITHMS 2989

loops and retains the throughput optimality property. This
is achieved by exploiting the properties of backpres-
sure regarding the queue growth rates in an overloaded
network.

• Our simulation results of LFBP show a significant delay
improvement over backpressure in static and dynamic
networks.

• We extend the LFBP algorithm to networks with multiple
commodities, and provide a simulation result to show its
delay improvement over backpressure.

II. SYSTEM MODEL AND DEFINITIONS

A. Network Model

We consider the problem of routing single-commodity data
packets in a network. The network is represented by a graph
G = (N, E), where N is the set of nodes and E is the set of
undirected links {i, j} with capacity cij . Packets arrive at the
source node s at rate λ and are destined for a receiver node d.
Let fmax denote the maximum flow from node s to d in the
network G. The quantity fmax is the maximally achievable
throughput at the destination node d. In this paper, we do not
solve the link scheduling problem, i.e. we assume that all links
can be scheduled at the same time.

To avoid unnecessary routing loops, we restrict forward-
ing along a directed acyclic graph (DAG) embedded in the
graph G. An optimal DAG exists to support the max-flow fmax

and can be found by: (i) computing a feasible flow alloca-
tion (fij) that yields the max-flow fmax in G (e.g. using [11]);
(ii) trimming any positive flow on directed cycles; (iii) defining
an embedded DAG by assigning a direction for each link
{i, j} according to the direction of the flow fij on that link.
Since backpressure achieves the max-flow of a constrained
graph [14], performing backpressure routing over the optimal
DAG supports λ.

This centralized approach is unsuitable for communication
networks, especially when the link capacities are time-varying
or when the network undergoes frequent topology changes. In
such situations, the optimal embedded DAG also changes with
time, which requires constantly repeating the above offline
process. Instead, it is possible to use a distributed adaptive
mechanism that reverses the direction of links until a DAG
that supports the current traffic demand is found. In this paper
we propose an algorithm that reacts to the traffic conditions
and changes in network topology by switching the direction of
some links. To understand the properties of the link-reversing
operations, we first study the fluid level behavior of a network
under overload conditions.

B. Flow Equations

Consider an embedded DAG Dk = (Nk, Ek) in the network
graph G, where Nk = N is the set of network nodes and
Ek is the set of directed links.1 For each undirected link
{i, j} ∈ E, either (i, j) or (j, i) belongs to Ek (but not both).
Each directed link (i, j) has the capacity of the undirected

1The notation Dk of an embedded DAG is useful in the paper; it will denote
the DAG that is formed after the kth iteration of the link-reversal algorithm.

counterpart {i, j}, which is cij . Let fmax
k be the maximum

flow of the DAG Dk from the source node s to the destination
node d. Any embedded DAG has smaller or equal max-flow
with respect to G, fmax

k ≤ fmax.
For two disjoint subsets A and B of nodes in Dk, we define

capk(A, B) as the total capacity of the directed links going
from A to B, i.e.,

capk(A, B) =
∑

(i,j)∈Ek:i∈A, j∈B

cij . (1)

A cut is a partition of nodes (A, Ac) such that s ∈ A
and d ∈ Ac. A cut (Ak, Ac

k) is a min-cut if it minimizes
the expression capk(Ak, Ac

k) over all cuts. By the max-flow
min-cut theorem fmax

k = capk(Ak, Ac
k), where (Ak, Ac

k) is a
min-cut of the DAG Dk. We remark that a cut in Dk is also
a cut in G or another embedded DAG. However, the value
of capk(A, Ac) for partition (A, Ac) depends on the graph
considered (see summation in (1)), and thus the min-cuts may
differ substantially per DAG.

We consider the network as a time-slotted system, where
slot t refers to the time interval [t, t+1), t ∈ {0, 1, 2, . . .}. Each
network node n maintains a queue Qn(t), where Qn(t) also
denotes the queue backlog at time t. We have Qd(t) = 0 for all
t since any packet reaching the destination is removed from the
network immediately. Let A(t) be the number of exogenous
packets arriving at the source node s in slot t. Under a routing
policy that forwards packets over the directed links defined
by the DAG Dk, let Fij(t) be the number of packets that are
transmitted over the directed link (i, j) ∈ Ek in slot t; the
link capacity constraint states that Fij(t) ≤ cij for all t. The
queues Qn(t), n �= d, are updated over slots according to

Qn(t) = Qn(t− 1) + 1[n=s]A(t)

+
∑

i:(i,n)∈Ek

Fin(t)−
∑

j:(n,j)∈Ek

Fnj(t), (2)

where 1[·] is an indicator function.
To study the overload behavior of the system we define the

queue overload (i.e., growth) rate at node n as

qn = lim
t→∞

Qn(t)
t

. (3)

Additionally, define the exogenous packet arrival rate λ and
the flow fij over a directed link (i, j) as

λ = lim
t→∞

1
t

t−1∑

τ=0

A(τ), fij = lim
t→∞

1
t

t−1∑

τ=0

Fij(τ),

where the above limits are assumed to exist almost
surely (see [6] for details). Using the recursion (2), taking time
averages and letting t→∞, we have the fluid-level equation:

qn = 1[n=s]λ +
∑

i:(i,n)∈Ek

fin −
∑

j:(n,j)∈Ek

fnj , ∀n ∈ N\{d}

(4)

0 ≤ fij ≤ cij , ∀(i, j) ∈ Ek. (5)

Equations (4) and (5) are the flow conservation and link
capacity constraints, respectively. A network node n is said
to be overloaded if its queue growth rate qn is positive, which

2990 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

implies that Qn(t) → ∞ as t → ∞ (see (3) and [10]).
Summing (4) over n ∈ N yields

∑

i:(i,d)∈Ek

fid = λ−
∑

n∈N

qn, (6)

where
∑

i:(i,d)∈Ek
fid denotes the throughput received at the

destination d. Therefore, equation (6) states that the received
throughput is equal to the exogenous arrival rate λ less the
sum of queue growth rates

∑
n∈N qn in the network.

C. Properties of Queue Overload Vector

If the traffic arrival rate λ is strictly larger than the maximum
flow fmax

k of the DAG Dk, then from (6),
∑

n∈N

qn = λ−
∑

i:(i,d)∈Ek

fid ≥ λ− fmax
k > 0, (7)

which implies that qn > 0 for some node n ∈ N . Let
q = (qn)n∈N be the queue overload vector. A queue overload
vector q is feasible in the DAG Dk if there exist overload
rates (qn)n∈N and flow variables (fij)(i,j)∈Ek

that satisfy (4)
and (5). Let Qk be the set of all feasible queue overload
vectors in Dk. We are interested in the lexicographically
smallest queue overload vector in set Qk. Formally, given a
vector u = (u1, . . . , uN), let ui be the ith maximal component
of u. We say that a vector u is lexicographically smaller than
a vector v, denoted by u <lex v, if u1 < v1 or ui = vi for
all i = 1, . . . , (j − 1) and uj < vj for some j = 2, . . . , N .
If ui = vi for all i, then the two vectors are lexicographically
equal, represented by u =lex v.2 The above-defined vector
comparison induces a total order on the set Qk, and hence
the existence of a lexicographically smallest vector is always
guaranteed [12].

Lemma 1 [6]: Let qmin
k be the lexicographically smallest

vector in the queue overload region Qk of the DAG Dk.
We have the following properties:

1) The vector qmin
k is unique in the set Qk.

2) The vector qmin
k minimizes the sum of queue overload

rates, i.e., it is a solution to the optimization problem:

minimize
∑

n∈N

qn, subject to q ∈ Qk

(direct consequence of Theorem 1 in [6]). Due to (6),
the corresponding throughput is maximized.

3) A feasible flow allocation vector (fij)(i,j)∈Ek
induces

qmin
k if and only if over each link (i, j) ∈ Ek the

following holds:

if qi < qj , then fij = 0, (8)

if qi > qj , then fij = cij . (9)

In general, there are many flow allocations that yield the
maximum throughput. Focusing on those that additionally
induce qmin

k has two advantages. First, these allocations lead
to link-reversal operations that improve the max-flow of the
DAG Dk. Second, the backpressure algorithm can be used to

2Lexicographic order is also known as dictionary order. Two vectors u =
(3, 2, 1, 2, 1) and v = (1, 2, 3, 2, 2) satisfy u <lex v because u1 = v1 = 3,
u2 = v2 = u3 = v3 = 2, and u4 = 1 < v4 = 2.

Fig. 1. Illustration of the Gafni-Bertsekas link reversal when the dashed link
in Figure 1(a) is lost. At every iteration, the algorithm reverses all the links
incident to the nodes with no outgoing link, here represented by the colored
nodes. (a) Original DAG. (b) First iteration. (c) Second iteration. (d) Third
iteration. (e) Fourth iteration.

Fig. 2. Iterative process to find the DAG Dk∗ that supports the throughput λ.

preform the same reversals and improve the max-flow. We will
use these observations to combine link-reversal algorithms
with backpressure routing.

III. LINK-REVERSAL ALGORITHMS

The link-reversal algorithms given in [4], henceforth called
the Gafni-Bertsekas link reversal, were designed to maintain
a path from each node in the network to the destination. One
algorithm relevant to this paper is the full reversal method.
This algorithm is triggered when some nodes n �= d lose all
of their outgoing links. At every iteration of the algorithm,
nodes n, that have no outgoing link, reverse the direction of
all their incoming links. This process is repeated until all the
nodes other than the destination have at least one outgoing
link. When the process stops these nodes are guaranteed to
have a path to the destination. The example in Figure 1, taken
from [4], illustrates this algorithm at work.

Although the full reversal algorithm guarantees connec-
tivity, the resulting throughput may be significantly lower
than the maximum possible. Hence, in this paper we shift
the focus from connectivity to maximum throughput. Specif-
ically, we propose a novel link-reversal algorithm that pro-
duces a DAG which supports the traffic demand λ, assuming
λ ≤ fmax.

We propose an iterative algorithm which begins with an
embedded DAG and at each iteration produces a new embed-
ded DAG that supports an improved lexicographically smallest
overload vector. Within each iteration, an implied routing pol-
icy operates on the current DAG yielding the lexicographically
optimal flow allocation. A sketch of this process is shown
in Figure 2.

A. Initial DAG D0

We assume that each node in the network has a unique ID.
We use these IDs as a topological ordering to the nodes. So the

RAI et al.: LOOP-FREE BACKPRESSURE ROUTING USING LINK-REVERSAL ALGORITHMS 2991

initial DAG can be created simply by directing each link to go
from the node with the lower ID to the node with the higher
ID. If the unique IDs are not available, the initial DAG can
be created by using a strategy such as the one given in [5].

B. Overload Detection

Given a DAG Dk, k = 0, 1, 2, . . ., we suppose that there is
a routing policy π that yields the lexicographically minimal
queue overload vector qmin

k . 3 Then we use the vector qmin
k

to detect node overload and decide whether a link should be
reversed.

If the data arrival rate λ is less than or equal to the maximum
flow fmax

k of the DAG Dk, then there exists a flow allocation
(fij) that supports the traffic demand and yields zero queue
overload rates qn = 0 at all nodes n ∈ N . By the second
property of Lemma 1 and nonnegativity of the overload vector,
the queue overload vector qmin

k is zero. Thus, the throughput
under policy π is λ according to (6), and the current DAG Dk

supports λ.
On the other hand, if the arrival rate λ is strictly larger than

the maximum flow fmax
k , by the second property in Lemma 1

the maximum throughput is fmax
k and the queue overload

vector qmin
k = (qmin

k,n)n∈N is nonzero because we have from (7)
that

∑

n∈N

qmin
k,n > λ− fmax

k > 0.

We may therefore detect the event “DAG Dk supports λ” by
testing whether the overload vector qmin

k is zero or non-zero.
The next lemma shows that if DAG Dk does not support

λ then it contains at least one under-utilized link (our link-
reversal algorithm will reverse the direction of such links to
improve network throughput).

Lemma 2: Suppose that the traffic demand λ satisfies

fmax
k < λ ≤ fmax.

where fmax
k is the max-flow of the DAG Dk and fmax is the

max-flow of the undirected network G. Then there exists a link
(i, j) ∈ Ek such that qmin

k,i = 0 and qmin
k,j > 0.

Proof of Lemma 2: Let Ak be the set of overloaded nodes
under a flow allocation that induces the lexicographically
minimal overload vector qmin

k in the DAG Dk; the set Ak is
nonempty due to λ > fmax

k and (7). It follows that the partition
(Ak, Ac

k) is a min-cut of Dk (see Lemma 7 in the Appendix).4

By the max-flow min-cut theorem, the capacity of the min-cut
(Ak, Ac

k) in Dk satisfies capk(Ak, Ac
k) = fmax

k < fmax.
The proof is by contradiction. Let us assume that there is

no directed link that goes from the set Ac
k to Ak in the DAG

Dk. It follows that capk(Ak, Ac
k) is the sum of capacities of

all undirected links between the sets Ak and Ac
k, i.e.,

capk(Ak, Ac
k) =

∑

i∈Ak, j /∈Ak

cij ,

3Such a policy π can simply solve an optimization problem offline to
compute the required flow allocation. In Section IV, we develop a distributed
algorithm using backpressure that does not require the computation of the
lexicographically optimal overload vector. We use this vector only to prove
the properties of our link-reversal algorithm.

4The set Ac
k contains the destination node d and is nonempty.

which is equal to the value of the cut (Ak, Ac
k) in graph G.

Since the value of any cut is larger or equal to the min-cut,
applying the max-flow min-cut theorem on G we have

fmax ≤
∑

i∈Ak, j /∈Ak

cij = capk(Ak, Ac
k) = fmax

k ,

which contradicts the assumption that fmax
k < λ ≤ fmax. �

C. Link Reversal

We consider the link-reversal algorithm (Algorithm 1) that
reverses all the links that go from an overloaded node to a non-
overloaded node. Lemma 2 shows that such links always exist
if the DAG Dk has insufficient capacity to support the traffic
demand λ ≤ fmax under the lexicographically minimum
overflow vector qmin

k . This reversal yields a new directed graph
Dk+1 = (N, Ek+1).

Algorithm 1 Link-Reversal Algorithm

1: for all (i, j) ∈ Ek do
2: if qmin

k,i = 0 and qmin
k,j > 0 then

3: (j, i) ∈ Ek+1

4: else
5: (i, j) ∈ Ek+1

6: end if
7: k← k + 1
8: end for

The rest of the section focuses on proving that this algorithm
obtains a DAG that supports the traffic demand λ within a
finite number of iterations. We begin by showing that every
intermediate graph produced by this algorithm is a DAG.

Lemma 3: The directed graph Dk+1 is acyclic.
Proof of Lemma 3: Recall that Ak is the set of overloaded

nodes in the DAG Dk under the lexicographically minimum
queue overload vector qmin

k . Let Lk ⊆ E be the set of
undirected links between Ak and Ac

k. Algorithm 1 changes the
link direction in a subset of Lk. More precisely, it enforces
the direction of all links in Lk to go from Ak to Ac

k.
We complete the proof by construction in two steps. First,

we remove all links in Lk from the DAG Dk, resulting in two
disconnected subgraphs that are DAGs themselves. Second,
consider that we add a link in Lk back to the network with
the direction going from Ak to Ac

k. This link addition does not
create a cycle because there is no path from Ac

k to Ak, and the
resulting graph remains to be a DAG. We can add the other
links in Lk one-by-one back to the graph with the direction
from Ak to Ac

k; similarly, these link additions do not create
cycles. The final directed graph is Dk+1, and it is a DAG. See
Fig. 3 for an illustration. �

The next lemma shows that the new DAG Dk+1 supports a
lexicographically smaller optimal overload vector (and there-
fore potentially better throughput) than the DAG Dk.

Lemma 4: Let Dk be a DAG with the maximum flow
fmax

k < λ ≤ fmax. The DAG Dk+1, obtained by performing
Algorithm 1 over Dk, has the lexicographically minimum
queue overload vector satisfying qmin

k+1 <lex qmin
k .

2992 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 3. Illustration for the proof of Lemma 3. (a) The DAG Dk with
Ak = {s, 2, 3, 5}. (b) Two disconnected DAGs formed by removing all links
between Ak and Ac

k . (c) The DAG Dk+1 formed by adding all links in Lk

back to the graph with the direction going from Ak to Ac
k .

Fig. 4. A link {a, b} in the network in Fig. 3 before and after link reversal.
Before the reversal, the flow fab is zero on (a, b). After the reversal, an ε flow
can be sent over (b, a) so that (�qa, �qb) <lex (qmin

k,a , qmin
k,b), while the rest of

the flow allocation remains the same. (a) Link (a, b) before the link reversal.
(b) Link (b, a) after the link reversal.

Proof of Lemma 4: Consider a link (a, b) ∈ Ek such that
qmin
k,a = 0 and qmin

k,b > 0; this link exists by Lemma 2. From the
property (8), any feasible flow allocation (fij) that yields the
lexicographically minimum overload vector qmin

k must have
fab = 0 over link (a, b). The link-reversal algorithm reverses
the link (a, b) so that (b, a) ∈ Ek+1 in the DAG Dk+1.
Consider the following feasible flow allocation (f ′

ij) on the
DAG Dk+1:

f ′
ij =

⎧
⎪⎨

⎪⎩

ε if (i, j) = (b, a)
0 = fji if (i, j) �= (b, a) but (j, i) is reversed

fij if (i, j) is not reversed

where ε < qmin
k,b is a sufficiently small value. In other words,

the flow allocation (f ′
ij) is formed by reversing links and

keeping the previous flow allocation (fij) except that we
forward an ε-amount of overload traffic from node b to a. Let
q̂ = (q̂n)n∈N be the resulting queue overload vector. We have

q̂b = qmin
k,b − ε < qmin

k,b , q̂a = ε > qmin
k,a = 0, and

q̂n = qmin
k,n, n /∈ {a, b}.

Therefore, q̂ <lex qmin
k (see Fig. 4 for an illustration). Let

qmin
k+1 be the lexicographically minimal overload vector in

Dk+1. It follows that qmin
k+1 ≤lex q̂ <lex qmin

k , completing the
proof. �

Theorem 1: Suppose the traffic demand is feasible in G,
i.e., λ ≤ fmax, and the routing policy induces the over-
load vector qmin

k at every iteration k. Then, the link-reversal

algorithm will find a DAG whose maximum flow supports λ
in a finite number of iterations.

Proof of Theorem 1: The link-reversal algorithm creates a
sequence of DAGs {D0, D1, D2, . . . , Dk∗}, where qmin

k∗ = 0.
From Lemma 4, we know that a strict improvement in the
lexicographically minimal overload vector is made after each
iteration, i.e.,

qmin
0 >lex qmin

1 >lex qmin
2 >lex · · · .

The lexicographically minimal overload vector is unique in a
DAG by Lemma 1, the DAGs {D0, D1, D2, . . . , Dk∗} must
all be distinct. Since there are a finite number of unique
embedded DAGs in a network, in a finite number of iterations
the link-reversal algorithm will find a DAG Dk∗ that has the
lexicographically minimal overload vector qmin

k∗ = 0 and
the maximum flow fmax

k∗ ≥ λ. Note that such a DAG Dk∗

exists because the undirected graph G has the maximum flow
fmax ≥ λ. �

Hence, when λ ≤ fmax, the process of obtaining the lexi-
cographically smallest overload vector and using Algorithm 1
to produce new DAGs eventually finds that DAG that supports
the arrival rate.

D. Arrivals Outside Stability Region

We show that even when λ > fmax, the link reversal
algorithm will stop reversing the links in a finite number
of iterations, and it will obtain the DAG that supports the
maximum throughput fmax. We begin by examining the
termination condition of our algorithm and show that if
the algorithm stops at iteration k, then the DAG Dk supports
the max-flow of the network.

Lemma 5: Consider the situation when λ > fmax
k . If there

is no link (i, j) such that qmin
k,i = 0 and qmin

k,j > 0, then fmax =
fmax

k and λ > fmax. That is, if there are no links to reverse
at iteration k, and qmin

k > 0, then the throughput of Dk is
equal to fmax.

Proof of Lemma 5: Let Ak be the set of overloaded nodes
under a flow allocation that induces the lexicographically
minimal overload vector qmin

k in the DAG Dk. We know that
(Ak, Ac

k) is a min-cut of the network from Lemma 7 (in the
appendix), so

capk(Ak, Ac
k) = fmax

k .

Suppose the link reversal algorithm stops after iteration k,
i.e. at iteration k there are no links to reverse. In this situation,
there is no link (i, j) such that qmin

k,i = 0 and qmin
k,j > 0, so by

property (9), all the links between Ak and Ac
k go from Ak to

Ac
k. The capacity of the cut (Ak, Ac

k) is given by

capk(Ak, Ac
k) =

∑

i∈Ak,j∈Ac
k

cij .

This is equal to the capacity of the cut (Ak, Ac
k) in the

undirected network G. So fmax ≤ capk(Ak, Ac
k) = fmax

k .
Because fk

max cannot be greater than fmax, fk
max = fmax.

By assumption λ > fmax
k , so λ > fmax. �

When λ > fmax, this lemma shows that the link reversal
algorithm stops only when the DAG achieves the maximum

RAI et al.: LOOP-FREE BACKPRESSURE ROUTING USING LINK-REVERSAL ALGORITHMS 2993

Fig. 5. Different min-cuts in a unit capacity line network. While every
min-cut creates a bottleneck for the network, the smallest min-cut is the first
bottleneck and has the smallest number of nodes in the source side of the cut.

throughput of the network. Hence, if the DAG doesn’t support
the maximum throughput, then there exists a link that can
be reversed. After each reversal, Lemma 3 holds, so the
directed graph obtained after the reversal is acyclic. We can
modify Lemma 4 to show that every reversal produces a DAG
that supports an improved lexicographically optimal overload
vector. We can combine these results to prove the following
theorem.

Theorem 2: Suppose the traffic demand is not feasible in G,
i.e., λ > fmax, and the routing policy induces the overload
vector qmin

k at every iteration k. Then, the link-reversal algo-
rithm will find a DAG whose maximum flow supports fmax in
a finite number of iterations.

IV. DISTRIBUTED DYNAMIC ALGORITHM

In the previous sections we developed a link reversal algo-
rithm based on the assumption that we have a routing policy
that lexicographically minimized the overload vector qmin

k .
The algorithm used qmin

k to identify the cut (Ak, Ac
k), then

reversed all the links that went from the nodes in Ac
k to the

nodes in Ak . We then used the properties of lexicographical
minimization to show that repeating this process for some iter-
ations results in a DAG that supports the arrival rate λ. We note
that any algorithm that can identify this cut (Ak, Ac

k) can be
used to perform the reversals, regardless of whether or not it
minimizes the overload vector, because it would perform the
exact same reversals as the one in Algorithm 1.

In this section, we develop a new method for identifying
the cut (Ak, Ac

k) using the backpressure routing algorithm and
perform the link-reversals with it. Then we use the results from
the previous section to claim that this process also obtains the
optimal DAG.

We begin by showing that the cut (Ak, Ac
k) is a unique

min-cut of the DAG defined below as the smallest min-cut.
An example to illustrate this concept is given in Figure 5.
We will then develop a threshold based algorithm that uses
the queue backlog information of backpressure to identify this
min-cut. This will enable us to perform the same reversal that
we performed in the previous section without computing the
lexicographically minimal overload vector.

Definition 1: We define the smallest min-cut (X∗, X∗c) in
the DAG Dk as the min-cut with the smallest number of nodes
in the source side of the cut, i.e., (X∗, X∗c) solves

minimize: |X |
subject to: (X, Xc) is a min-cut of Dk.

The algorithm starts by creating an initial DAG D0 using
the method presented in Section III-A. Then, we use the

backpressure algorithm to route the packets from the source
to the destination over D0. Let Qn(t) be the queue length at
node n in slot t. The backpressure algorithm can be written
as in Algorithm 2. It simply sends packets on a link (i, j) if
node i has more packets than j.

Algorithm 2 Backpressure Algorithm (BP)

1: for all (i, j) ∈ Ek do
2: if Qi(t) ≥ Qj(t) then
3: Transmit min{cij , Qi(t)} packets from i to j
4: end if
5: Update Qi(t)
6: end for
7: Update Qj(t)

Since backpressure is throughput optimal [1], if the arrival
rate is less than fmax

0 , then all queues are stable. If the arrival
rate is larger than fmax

0 , the system is unstable and the queue
length grows at some nodes. In this case, the next lemma
shows that if we were using a routing policy that produced
the optimal overload vector qmin

k , the set of all the overloaded
nodes Ak and the non-overloaded nodes Ac

k form the smallest
min-cut of the DAG Dk.

Lemma 6: Let Ak be the set of overloaded nodes under
a flow allocation (fij) that induces the lexicographically
minimum overload vector in the DAG Dk. If |Ak| > 0, then
(Ak, Ac

k) is the unique smallest min-cut in Dk.
Proof of Lemma 6: The proof is in Appendix B. �
Essentially, at every iteration, the link reversal algorithm

of Section III discovers the smallest min-cut (Ak, Ac
k) of the

DAG Dk and reverses the links that go from Ac
k to Ak. Now

the following theorem shows that the backpressure algorithm
can be augmented with some thresholds to identify the smallest
min-cut.

Theorem 3: Assume that (Ak, Ac
k) is the smallest min-cut

for DAG Dk with a cut capacity of fmax
k = cap (Ak, Ac

k) < λ.
If packets are routed using the backpressure routing algorithm,
then there exist finite constants T and R such that the
following happens:

1) For some t < T , Qn(t) > R for all n ∈ Ak, and
2) For all t, Qn(t) < R for n ∈ Ac

k.
Proof of Theorem 3: We will prove the two claims sep-

arately. The proof will use the fact that the smallest min-cut
forms the first bottleneck for the DAG Dk which will overload
Ak and prevent backlog to build in Ac

k. The detailed proofs
for both claims are given in the Appendix C. �

Each node n has a threshold-based smallest min-cut detec-
tion mechanism. When we start using a particular DAG Dk,
in each time-slot, we check whether the queue crosses a
prespecified threshold Rk. Any queue that crosses the thresh-
old gets marked as overloaded. After using the DAG Dk

for Tk timeslots, all the nodes that have their queue marked
overloaded form the set Ak. When the time Tk and threshold
Rk are large enough, the cut (Ak, Ac

k) is the smallest min-
cut as proven in Theorem 3. After determining the smallest
min-cut, an individual node can perform a link reversal by
comparing its queue’s overload status with its neighbor’s.

2994 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

All the links that go from a non-overloaded node to an
overloaded node are reversed to obtain Dk+1. The complete
LFBP algorithm is given in Algorithm 3.

Algorithm 3 LFBP (Executed by Node n)

1: Input: sequences {Tk}, {Rk}, unique ID n
2: Generate initial DAG D0 by directing each link {n, j} to

(n, j) if n < j, to (j, n) if j > n.
3: Mark the queue Qn as not overloaded
4: Initialize t← 0, k← 0
5: while true do
6: Use BP to send/recive packets on all links of node n
7: if (Qn(t) > Rk) then
8: Mark Qn as overloaded.
9: end if

10: t← t + 1
11:

12: Tk ← Tk − 1
13: if Tk = 0 then
14: Reverse all links (j, n) such that Qj is not overloaded

and Qn is overloaded.
15: k ← k + 1
16: Mark Qn as not overloaded
17: end if
18: end while

This algorithm simply adds link reversal to BP, hence the
complexity of LFBP is just the sum of the BP and link-reversal
algorithm. At each time-slot the link reversal algorithm checks
whether a node is overloaded, so the computation required
is O(|N |). BP requires O(|E|) computation at each time-
slot because the algorithm computes the differential backlog
for each link. Hence, the total computation required by the
network for one time-slot of LFBP is O(|N |+ |E|).

Finally we give the following corollary that shows that the
LFBP algorithm finds the optimal DAG.

Corollary 1: Suppose the traffic demand is feasible in G,
i.e., λ ≤ fmax. Then, the LFBP algorithm (Algorithm 3)
will find a DAG, whose maximum flow supports λ, in a finite
number of iterations.

Proof of Corollary 1: Theorem 3 shows that LFBP identifies
the smallest min-cut (A, Ac) for the DAG Dk. Lemma 6 shows
that A is the set of overloaded nodes, and Ac is the set
of non-overloaded nodes in a flow allocation that induces
the lexicographically minimal overload vector. LFBP reverses
the links going from Ac to A, which is also the reversals
performed by the link reversal algorithm (Algorithm 1). Hence,
by Theorem 1, LFBP obtains the DAG that supports λ. �

Good choices for the thresholds Tk and Rk are topology
dependent. When the value of Rk is too small, nodes that are
not overloaded might cross the threshold producing a false pos-
itive. If the value of Rk is large but Tk is small, the overloaded
nodes might not have enough time to develop the backlog
to cross Rk which produces false negatives. Hence, a good
strategy is to choose a large Rk so that the non-overloaded
nodes don’t (or rarely) cross this threshold, then chose a large
Tk such that the overloaded nodes have enough time to build

the backlog to cross Rk. Optimizing these thresholds requires
further research. Note that our algorithm performance degrades
graciously with false positives/negatives. Even when it detects
the smallest min-cut incorrectly, the actions of the algorithm
preserve the acyclic structure. Thus, in the subsequent itera-
tions the algorithm can improve the DAG again.

A. Multi-Source Single Destination Networks

There are many scenarios, e.g. sensor networks, when
several nodes in the networks need to send data to a cen-
tral destination. The Gafni-Bertsekas link-reversal algorithm
in [4] was also designed for this situation. In such networks,
Algorithm 3 obtains a DAG that supports the given arrivals,
provided that the arrivals are supportable by the undirected
network. We can see this by transforming the multi source
network into an equivalent single source network.

Let us consider a network with arrival of rate λn ≥ 0 at
node n; λd = 0. We can do the following transformation to
convert this network into a single-source single-destination
network where the result of Corollary 1 holds. We create
a fictitious source s′ with an arrival rate of λs′ =

∑
n λn

then add fictitious links (s′, n) with capacity λn for al n.
We know that Algorithm 3, finds a DAG that supports the
arrival rate λs′ in this modified network. The only way to
stabilize this network is to have an arrival of rate λn on each
node n. Hence, this DAG must also stabilize the multi-source
network.

B. Preventing Dead Ends

There can be several DAGs that support a given arrival
rate in a particular undirected network. Some of these DAGs
can include dead-ends, i.e. a node that has no path to the
destination. When a packet reaches such a node, it gets stuck
withing the network forever. Moreover, having dead ends
cannot improve the throughput of a network. If we perform
a flow allocation, for the optimal throughput, none of the
flows can pass through a dead end node. In Algorithm 3,
the dead end nodes either never receive any packets because
they are unreachable from the source, or they receive minimal
packets after some time because they build a high backlog.
In either case, this algorithm achieves the required throughput
in the long run. Nevertheless having dead ends is an undesired
phenomenon, and we would like to avoid it.

To remove dead-ends, we propose to use the Gafni-
Bertsekas link reversal once the network is stable. When the
source node detects that it is no longer overloaded, it can
broadcasts a message to all the nodes informing them to
perform such a reversal. We know that the Gafni-Bertsekas
link-reversal obtains a DAG where all the nodes have a path
to the destination, hence, it results in a dead-end free DAG.
Also, from [4, Proposition 2], we also know that any node that
has a path to the destination does not perform a reversal at any
point of the algorithm. That is, all the existing paths from a
node to the destination stay intact during the iterations. This
says that the algorithm does not decrease the throughput of
the network from the source to the destination. Hence, it will
produce a dead end free DAG that also supports the arrivals.

RAI et al.: LOOP-FREE BACKPRESSURE ROUTING USING LINK-REVERSAL ALGORITHMS 2995

C. Algorithm Modification for Topology Changes

In this section we consider networks with time-varying
topologies, where several links of graph G may appear or dis-
appear over time. Although the DAG that supports λ depends
on the topology of G, our proposed policy LFBP can adapt to
the topology changes and efficiently track the optimal solution.
Additionally, the loop free structure of a DAG is preserved
under link removals.

To handle the appearance of new links in the network
smoothly, we will slightly extend LFBP to guarantee the loop
free structure. For a DAG Dk, every node n stores a unique
state xn(k) representing its position in the topological ordering
of the DAG Dk. The states are maintained such that they are
unique and all the links go from a node with the lower state to
a node with the higher state. When a new link {i, j} appears
we can set its direction to go from i to j if xi(k) < xj(k)
and from j to i otherwise. Since this assignment of direction
to the new link is in alignment with the existing links in the
DAG, the loop-free property is preserved.

The state for each node n can be initialized using the unique
node ID during the initial DAG creation, i.e. xn(0) = n. Then
whenever a reversal is performed the state of node n can be
updated as follows:

xn(k) =

{
xn(k − 1)− 2kΔ, if n is overloaded,

xn(k − 1), otherwise.

Here, Δ is some constant chosen such that Δ >
maxi,j∈N xi(0) − xj(0). Note that this assignment of state
is consistent with the way the link directions are assigned by
the link reversal algorithm. The states for the non-overloaded
nodes are unchanged, so the links between these nodes are
unaffected. Also, the states for all the overloaded nodes are
decreased by the same amount 2kΔ, so the direction of the
links between the overloaded nodes is also preserved. Fur-
thermore, the quantity −2kΔ is less than the lowest possible
state before the kth iteration, so the overloaded nodes have a
lower state than the non-overloaded nodes. Hence, the links
between the overloaded and non-overloaded nodes go from
the overloaded nodes to the non-overloaded nodes.

In this scheme, the states xn decrease unboundedly as more
reversals are preformed. In order to prevent this, after a certain
number of reversals, we can rescale the states by dividing them
by a large positive number. This decreases the value of the
state while maintaining the topological ordering of the DAG.
The number of reversals k can be reset to 0, and a new Δ can
be chosen such that it is greater than the largest difference
between the rescaled states.

V. COMPLEXITY ANALYSIS

To understand the number of iteration the link-reversal
algorithm takes to obtain the optimal DAG, we analyze the
time complexity of the algorithm.

Theorem 4: Let C be a vector of the capacities of all the
links in E, and let I be the set of indices 1, 2, . . . , |E|. Define
δ > 0 to be the smallest positive difference between the
capacity of any two cuts. Specifically, δ is the solution of the

following optimization problem

min
A,B⊆I

∑

a∈A

ca −
∑

b∈B

cb

subject to:
∑

a∈A

ca >
∑

b∈B

cb.

The number of iterations taken by the link reversal algorithm
before it stops is upper bounded by �|N | fmax

δ � , where fmax

is the max-flow of the undirected network.
Proof of Theorem 4: After each iteration of the link-reversal

algorithm, either the max-flow of the DAG increases, or the
max-flow stays the same and the number of nodes in the
source side of the smallest min-cut increases (see Lemma 8
in the Appendix). We can bound the number of consecutive
iterations such that there is no improvement in the max-flow.
In particular, every such iteration will add at least one node to
the source set. So, it is impossible to have more than |N | − 2
such iteration. Hence, every |N | iterations we are guaranteed
to have at least one increase in the max-flow.

Max-flow is equal to the min-cut capacity, and min-cut
capacity is defined as the sum of link capacities. Say, the max-
flow of DAG Dk+1 is greater than that of Dk. Let A be the
set of indices (in the capacity vector C) of the links in the
min-cut of Dk+1 , and B be the set of indices of the links in
the min-cut of Dk. This choice of A and B forms a feasible
solution to the optimization problem given in the theorem
statement. Since the optimal solution δ lower bounds all the
feasible solutions in the minimization problem, the increase in
the max-flow must be greater than or equal to δ.

Every |N | iteration the max-flow increases at least by δ.
Hence, the DAG supporting the max-flow fmax is formed
within �|N |fmax/δ� iterations. �

Corollary 2: In a network where all the link capacities
are rational with the least common denominator D ∈ N,
the number of iterations is upper bounded by (|N |Dfmax).

Proof of Corollary 2: Since the capacities are rational we
can write the capacity of the ith link as ci = Ni

D , where Ni is a
natural number. From the definition of δ in Theorem 4, we get
δ to be the value of the following optimization problem:

min
A,B⊆I

1
D

(
∑

a∈A

Na −
∑

b∈B

Nb

)

subject to:
∑

a∈A

Na >
∑

b∈B

Nb.

All the N(.) are integers, so to satisfy the constraint we must
have the difference

∑
a∈ANa−

∑
b∈B Nb ≥ 1. Hence δ ≥ 1

D .
Using this value of δ in Theorem 4, we can see that the number
of iterations is upper bounded by (|N |Dfmax). �

Corollary 3: In a network with unit capacity links, the num-
ber of iterations the link-reversal algorithm takes to obtain the
optimal DAG is upper bounded by |N ||E|.

Proof of Corollary 3: The max-flow fmax ≤ |E|. So,
by Corollary 2, the number of iterations is upper bounded
by |N ||E|. �

We conjecture that these upper bounds are not tight,
and finding a tighter bound will be pursued in the future
research. We simulated the link reversal algorithm in

2996 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 6. CDF of the number of iterations taken by the link reversal algorithm
to obtain the optimal DAG for Erdős-Rényi networks with |N | nodes.

Erdős-Rényi networks (p = 0.5) with |N | = 10, 20, . . . , 50.
For each |N | we generated 106 different graphs and randomly
assigned capacities to the links. The link reversal algorithm
started with a random initial DAG. We found that it took less
than 2 iterations on average to find the optimal DAG. A plot
of the emperical CDF is given in Figure 6. We also performed
similar simulations with completely connected graphs with
random link capacities. This experiment produced similar
results. It took less than 2 iterations on average and a maxi-
mum of 5 iterations to find the optimal DAG.

A worst case lower bound for the number of iteration is |N |.
This lower bound can be achieved in a line network where the
initial DAG has all of its links in the wrong direction.

VI. SIMULATION RESULTS

We compare the delay performance of the LFBP algorithm
and the BP algorithm via simulations. We will see that the
network with the LFBP routing has a smaller backlog on
average under the same load. This shows that the LFBP
algorithm has a better delay performance. We consider two
types of networks for the simulations: a simple network with
fixed topology, and a network with grid topology where the
links appear and disappear randomly.

A. Fixed Topology

We consider a network with the topology shown
in Figure 7(a). The edge labels represent the link capacities.
The undirected network has the maximum throughput
of 15 packets per time slot. Figure 7(b) shows the initial
DAG D0. Instead of running the initial DAG algorithm of
Section III-A, here we choose a zero throughput DAG to
test the worst-case performance of LFBP. The arrivals to the
network are Poisson with rate λ = 15ρ , where we vary
ρ = .5, .55, . . . , .95. For the LFBP algorithm, we set the
overload detection threshold to Rk = 60 for all n, k. To choose
this parameter, we observed that the backlog buildup in normal
operation rarely raises above 60 at any non-overloaded node.
We also choose the detection period T1 = 150 and Tk = 50
for all k > 1. This provides enough time for buildup, which
improve the accuracy of the overload detection mechanism.

We simulate both algorithms for one million slots, using
the same arrival process sample path. Figures 7(c) - 7(e) show

Fig. 7. Figure (a) depicts the original network. Figures (b)-(e) are the various
stages of the DAG. The red nodes represent the overloaded nodes, and the
dashed line shows the boundary of the overloaded and the non-overloaded
nodes.

Fig. 8. Average backlog in the network (Fig. 7(a)) with fixed topology for
the Loop Free Backpressure (LFBP) and the Backpressure (BP) algorithms.

the various DAGs that are formed by the LFBP algorithm
at iterations k = 1, 2, 3. We can see that the nodes in
the smallest min-cut get overloaded and the link reversals
gradually improve the DAG until the throughput optimal DAG
is reached.

Figure 8 compares the total average backlog in the network
for BP and LFBP, which is indicative of the average delay.
A significant delay improvement is achieved by LFBP, for
example at load 0.5 the average delay is reduced by 66%
We observe that the gain in the delay performance is more
pronounced when the load is low. In low load situations,
the network doesn’t have enough “pressure” to drive the
packets to the destination and so under BP the packets go
in loops. Figure 9 shows the evolution of the average backlog
over time for a specific load of 0.5. We can see that the backlog
grows until t = T1 = 150 because the initial DAG has zero
throughput. After the reversals start the backlog decreases and
converges around the average backlog of 30.

RAI et al.: LOOP-FREE BACKPRESSURE ROUTING USING LINK-REVERSAL ALGORITHMS 2997

Fig. 9. Evolution of total backlog in the network over time for ρ = 0.5.
The backlog grows at the rate of λ = 7.5 until the first reversal at t = 150
because the initial DAG was chosen to have zero throughput.

Fig. 10. Initial DAG for the LFBP algorithm chosen so that the LFBP needs
several iterations to reach the optimal DAG. All the links have capacity six.

B. Randomly Changing Topology

To understand the delay performance of the LFBP algorithm
on networks with randomly changing topology, we consider
a network where 16 nodes are arranged in a 4 × 4 grid.
All the links are taken to be of capacity six. For the LFBP
algorithm, we choose a random initial DAG with zero through-
put shown in Figure 10. The source is on the upper left
corner (node 1) and the destination is on the bottom right
(node 16).

In the beginning of the simulations all 24 network links
are activated. At each time slot an active link fails with
a probability 10−4 and an inactive link is activated with a
probability 10−3. The maximum throughput of the undirected
network without any link failures is 12. Clearly on average,
each link is “on” a fraction 10

11 of the time, and thus the
average maximum throughput of the undirected network with
these link failure rates is 10

11 × 2 × 6 = 10.9. The arrivals
to the networks are Poisson with rate λ = 10.9ρ, where
ρ = .1, .2, . . . , .6. For the LFBP algorithm, the detection
threshold is set to Rk = 100 and the detection period is
Tk = 30 for all n, k. These parameters were chosen so that
there are several reversals before a topology change occurs in
the undirected network. The simulation was carried out for a
million slots.

Figure 11 compares the average backlog of LFBP and BP.
In the low load scenarios LFBP reduces delay significantly (by
85% for load = 0.1) even though the topology changes chal-
lenge the convergence of the link-reversal algorithm. As the
load increases, both the algorithms begin to obtain a similar
delay performance.

Fig. 11. Average backlog in the network with random link failures (Fig. 10)
for the Loop Free Backpressure algorithm and the Backpressure algorithm.

Fig. 12. Ring network topology. All links are bidirectional with unit capacity.
Traffic goes from node 1 to node 10.

VII. COMPARISON WITH ENHANCED BACKPRESSURE

We compare the performance of LFBP against the Enhanced
Backpressure (EBP) algorithm from [3]. EBP aims to reduce
the delay by sending more traffic on the shorter paths. This
is accomplished by including pre-computed lengths of the
shortest path in the weight calculation. EBP is very similar
to the algorithm in [8].

To compare the performance of LFBP and EBP, we sim-
ulate these algorithms in a network with a bidirectional ring
topology as shown in Figure 12. The network has only one
commodity going from node 1 to node 10. To reach the
destination, the packets can either traverse the nodes 1, 2, …,
10, or they can use the direct link (1,10).

The results of the experiment is given in Figure 13. We can
see that LFBP performs better than EBP for higher loads.
In order to support a high load in this topology, the longer
path (1,2,…,10) must be used. LFBP uses both long and the
short path equally, however EBP tries to send most of its traffic
through the link (1,10). Note that under EBP, even a packet that
has reached node 3, 4 or 5 prefers to use the path through the
link (1,10) as this is the shorter path to node 10. EBP performs
better for low loads because these loads can be supported by
using just the shortest path which requires only one hop.

It is easy to see that LFBP doesn’t always perform better
than EBP, even under high load. LFBP spreads the traffic
throughout the network whereas EBP concentrates it on the
shorter paths. Therefore, if a network can be stabilized without
using the longer paths, EBP would perform better. We will
see this situation in the next section where we simulate these
algorithms on a grid network.

2998 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 13. Average backlog and delay in a ring network where the source and
the destination nodes are neighbors. (a) Average backlog for different loads.
(b) Average delay for different loads.

VIII. MULTICOMMODITY SIMULATION

We extend of the link reversal algorithm to the networks
with multiple commodities. The multi-commodity algorithm
is identical to the single commodity algorithm, with the
exception that we now use the multicommodity backpressure
of [1]. Each node n maintains a queue Qy

n(t) for each
commodity y. Each commodity is assigned its own initial
DAG. A pseudocode for the multicommodity LFBP that we
used is given in Algorithm 4. An important direction for
future research is to determine whether the claims proven
for a single commodity in the previous sections extend to the
multicommodity case.

The link-reversal algorithm checks for the overload for each
commodity on each node, so the computation required for the
link-reversal in a Y -commodity network at each time-slot is
O(Y |N |). Also, multi-commodity BP requires O(Y |E|) com-
putation at each time-slot because it computes the differential
backlog for each link for each commodity. So, the computation
required by the network for one time-slot of Multicommodity
LFBP is O(Y (|N |+ |E|)).

For the simulation, we consider a network arranged in a
4 × 4 grid as shown in Figure 10. Each link has a capacity
of 6 packets per time-slot. There are three commodities in the
network defined by the source destination pairs (1,16), (4,13)
and (5,8). For the LFBP algorithm, each commodity starts with
the same initial DAG given in Figure 10.

We use the arrival rate vector λmax = [7.18, 6.96, 9.86],
which is a max-flow vector for this network computed by
solving a linear program. We scale this vector by various
load factors ρ ranging from 0.1 to 0.9. The arrivals for each
commodity i is Poisson with rate ρλmax

i . In the beginning of
the LFBP simulation,
500/ρ� dummy packets are added to

Algorithm 4 Multicommodity LFBP (Executed by n)

1: Input: sequences {Tk}, {Rk}, unique ID n
2: For each commodity y, generate initial DAG Dy

0 by direct-
ing {n, j} to (n, j) if n < j, to (j, n) if j > n.

3: Mark all queues Qy
n as not overloaded

4: Initialize t← 0, k ← 0
5: while true do
6: Use Multicommodity BP to send/recive packets on all

links of node n
7: for all y do
8: if (Qy

n(t) > Rk) then
9: Mark this Qy

n as overloaded.
10: end if
11: end for
12: t← t + 1
13:

14: Tk ← Tk − 1
15: if Tk = 0 then
16: for all y do
17: Reverse links (j, n) in Dy

k if Qy
j is not overloaded

and Qy
n is overloaded.

18: end for
19: k ← k + 1
20: Mark all queues as not overloaded
21: end if
22: end while

the source of each commodity. This is helpful in low load
cases because it forces the algorithm to find a DAG with high
throughput, and avoids stopping at a DAG that only supports
the given (low) load. Rk was chosen to be 50 and Tk = 50 for
all k > 0. For the EBP simulation, the length of the shortest
paths were scaled by the maximum link capacity, 6, in order
to improve its performance as suggested in [3].

Figure 14 shows the average backlog and delay in the
network for different loads under backpressure, enhanced
backpressure and multicommodity LFBP. We can see that both
LFBP and EBP have significantly improved delay performance
compared to backpressure. We can also see that EBP outper-
forms LFBP. In a grid topology, most of the throughput can be
obtained by using short paths. EBP keeps the traffic focused
in these paths, whereas LFBP spreads the traffic throughout
the network equally which causes higher delay.

IX. CONCLUSION

Backpressure routing and link reversal algorithms have
been separately proposed for time-varying communication
networks. In this paper we show that these two distrib-
uted schemes can be successfully combined to yield good
throughput and delay performance.We develop the Loop-Free
Backpressure Algorithm which jointly routes packets in a
constrained DAG and reverses the links of the DAG to improve
its throughput. We show that the algorithm ultimately results
in a DAG that yields the maximum throughput. Additionally,
by restricting the routing to this DAG we eliminate loops,
thus reducing the average delay. Future investigations involve

RAI et al.: LOOP-FREE BACKPRESSURE ROUTING USING LINK-REVERSAL ALGORITHMS 2999

Fig. 14. Average backlog and in a multicommodity network with fixed
topology for BP, EBP and LFBP algorithms. Both EBP and LFBP performs
significantly better than BP. In this topology, EBP performs better than LFBP
because most of the throughput can be obtained by using the short paths.
(a) Average backlog for different loads. (b) Average delay for different loads.

optimization of the overload detection parameters and studying
the performance of the scheme on the networks with multiple
commodities.

APPENDIX A
LEMMA 7

Lemma 7: Consider a DAG Dk with source node s, des-
tination node d, and arrival rate λ. Let Ak be the set of
overloaded nodes under the flow allocation (fij) that yields
the lexicographically minimum overload vector. If |Ak| > 0,
then (Ak, Ac

k) is a min-cut of the DAG Dk.
Proof of Lemma 7: First we show that (Ak, Ac

k) is a cut,
i.e., the source node s ∈ Ak and the destination node d ∈ Ac

k.
The destination node d has zero queue overload rate qd = 0
because it does not buffer packets; hence d ∈ Ac

k. We show
s ∈ Ak by contradiction. Assume s /∈ Ak. The property (8)
shows that there is no flow going from Ac

k to Ak, i.e.,
∑

(i,j)∈Ek: i∈Ac
k, j∈Ak

fij = 0.

The flow conservation equation applied to the collection Ak

of nodes yields
∑

n∈Ak

qn =
∑

(i,n)∈Ek: i∈Ac
k, n∈Ak

fin −
∑

(n,j)∈Ek: n∈Ak, j∈Ac
k

fnj

= −
∑

(n,j)∈Ek: n∈Ak,j∈Ac
k

fnj ≤ 0,

which contradicts the assumption that the network is over-
loaded (i.e., |Ak| > 0). Note that in the above equation λ
does not appear because of the premise s /∈ Ak.

Fig. 15. A partition of the node set N where Ak = C∪D and B = C∪E.

By the max-flow min-cut theorem, it remains to show that
the capacity of the cut (Ak, Ac

k) is equal to the maximum
flow fmax

k of the DAG Dk. Under the flow allocation (fij)
that induces the lexicographically minimal overload vector,
the throughput of the destination node d is the maximum flow
fmax

k (see Lemma 1). It follows that

fmax
k = λ−

∑

i∈N

qi = λ−
∑

i∈Ak

qi (10)

=
∑

(i,j)∈Ek: i∈Ak, j∈Ac
k

fij (11)

=
∑

(i,j)∈Ek: i∈Ak,j∈Ac
k

cij = capk(Ak, Ac
k). (12)

where (10) uses (7) and qi = 0 for all nodes i /∈ Ak, (11)
follows the flow conservation law over the node set Ak,
and (12) uses the property (9) in Lemma 1. �

APPENDIX B
PROOF OF LEMMA 6

Proof of Lemma 6: Lemma 7 shows that (Ak, Ac
k) is a min

cut of the DAG Dk. It suffices to prove that if there exists
another min-cut (B, Bc), i.e., Ak �= B and capk(Ak, Ac

k) =
capk(B, Bc), then Ak ⊂ B. The proof is by contradiction.
Let us assume that there exists another min-cut (B, Bc) such
that Ak �⊂ B. We have the source node s ∈ Ak ∩ B and
the destination node d ∈ Ac

k ∩ Bc. Consider the partition
{C, D, E, F} of the network nodes such that C = Ak ∩ B,
D = Ak\B, E = B\Ak and F = N\ (Ak ∪ B) (see
Fig. 15). Since Ak �⊂ B and Ak �= B, we have |D| > 0. Also,
we have s ∈ C and d ∈ F . Let (fij) be a flow allocation that
yields the lexicographically minimum overload vector in Dk.
Properties (8) and (9) show that

fij = cij , ∀ i ∈ Ak, j ∈ Ac
k, (13)

fij = 0, ∀ i ∈ Ac
k, j ∈ Ak. (14)

The capacity of the cut (B, Bc) in the DAG Dk, defined in (1),
satisfies

capk(B, Bc) = capk(B, D) + capk(B, F), (15)

where Bc = D ∪F . Under the flow allocation (fij), we have

capk(B, D) =
∑

(i,j)∈Ek:i∈B,j∈D

cij ≥
∑

(i,j)∈Ek:i∈B,j∈D

fij .

(16)

3000 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Applying the flow conservation equation to the collection of
nodes in D yields

∑

(i,j)∈Ek:i∈B,j∈D

fij ≥
∑

i∈D

qi +
∑

(i,j)∈Ek:i∈D,j∈F

fij . (17)

In (17), the first term is the sum of incoming flows into the
set D; notice that there is no incoming flow from F to D
because of the flow property (14). The second term is the sum
of queue overload rates in D. The last term is a partial sum of
outgoing flows leaving the set D, not counting flows from D
to B; hence the inequality (17). From the flow property (13),
the outgoing flows from the set D to F satisfy

∑

(i,j)∈Ek:i∈D,j∈F

fij =
∑

(i,j)∈Ek:i∈D,j∈F

cij . (18)

Combining (15)-(18) yields

capk(B, Bc) = capk(B, D) + capk(B, F)

≥
∑

i∈D

qi +
∑

(i,j)∈Ek:i∈D,j∈F

cij + capk(B, F)

>
∑

(i,j)∈Ek:i∈D,j∈F

cij + capk(B, F)

= capk(Ak ∪B, F), (19)

where the second inequality follows that all nodes in D are
overloaded and qn > 0 for all n ∈ D. Inequality (19) shows
that there exists a cut (Ak ∪B, F) that has a smaller capacity,
contradicting that (B, Bc) is a min-cut in the DAG Dk.
Finally, we note that the partition (Ak, Ac

k) is unique because
the lexicographically minimal overload vector is unique by
Lemma 1. �

APPENDIX C
PROOF OF THEOREM 3

Proof of the First Claim: First we will show that the queue at
the source Qs(t) crosses any arbitrary threshold R1. We know
that for some node n ∈ Ak, Qn(t) → ∞ as t → ∞ because
the external arrival rate to the source s ∈ Ak is larger than
the rate of departure from set Ak, i.e. λ > cap(Ak, Ac

k). The
backpressure algorithm sends packets on a link (i,j) only if
Qi(t) > Qj(t). Hence, at any time-slot if a node b �= s has
a large backlog, then one of its parents p must also have a
large backlog. Qp can be slightly smaller than Qb because Qb

might also receive packets from other nodes at the same time-
slot. Specifically, Qp(t) > Qb(t+1)−∑i cib. Performing the
induction on the parent of p we can see that the source node
must have a high backlog when any node in Ak develops a
high backlog. Note that the network is a DAG and the node
n received packets form the source to develop its backlog,
so the induction much reach the source node. Hence, when
Qb(T1)� R1, Qs(t) > R1 for some t < T1.

Now we will show that every node in Ak crosses the
threshold R. Let B1 ⊆ Ak be the set of nodes such that
Qn(t) > R1 for some time t < T1. We showed that s ∈ B1.
We will show that when B1 �= Ak, there exists some set B2,
such that (i) B1 ⊂ B2, and (ii) for every node n ∈ B2,
Qn(t) > R2 for some t < T2. Here, R2 and T2 are large
thresholds.

Fig. 16. Let (Ak , Ac
k) be the smallest min-cut. We showed that s ∈ B1.

Say, cC1Ac ≥ cB1C1 then the cut (B1, Bc
1) has the capacity of cB1Ac +

cB1C1 ≤ cap(Ak, Ac
k). This contradicts the assumption that (Ak , Ac

k) is
the smallest min-cut. So, cC1Ac

k
< cB1C1 .

Assume B1 �= Ak. Let C1 = Ak\B1, i.e all nodes in C1

haven’t crossed the threshold R1 until time T1. Let cB1C1

be the total capacity of the links going from B1 to C1,
and cC1Ac

k
be the total capacity of the links going from

C1 to Ac
k. We have cB1C1 > cC1Ac

k
because (Ak, Ac

k) is
the smallest min-cut (see Figure 16). When the backlogs
of the nodes of B1 are much larger than the nodes of C1,
the nodes in C1 receive packets from B1 at the rate of cB1C1

packets per time-slot, and no packets are sent in the reversed
direction. The rate of packets leaving the nodes in C is
upper bounded by cB1Ac

k
which is smaller than the incoming

rate. Hence, at least one node n′ ∈ C must collect a large
backlog, say larger than R2 < R1. So, each node in the set
B2 = B1 ∪ {n′} have a backlog larger than R2 at some finite
time T2.

Now using induction we can see that for Bm where m <
|Ak|, Bm = Ak and all the nodes in Bm cross a threshold
R = min{R1, . . . , Rm} by time T = max{T1, . . . , Tm}. �

Of the Second Claim: We will use the following fact to
prove this claim: for any subset of nodes S, if the number of
packets entering S is lower than or equal to the number of
packets leaving S on every time-slot, then the total backlog in
S doesn’t grow. So, the backlog in each node of S is bounded.

Assume a node b develops a backlog Qb(t) > R1. Here R1

is a chosen such that

R1 = |Ac
k|
∑

i,j∈Ac
k

cij + max
n∈Ac

k

Qn(0).

Consider a subset B of Ac
k such that for every node i ∈ B

and j ∈ C = Ac
k\B, (Qi(t)−Qj(t)) > cij . The sets B and C

must be nonempty because Qb(t) is large and Qd(t) is zero,
that is b ∈ B and d ∈ C. Note that backpressure doesn’t send
any data from C to B.

Let cAB be the capacity of the links going from A to B,
and let cBC be the capacity of the links going from B to C.
So, the number of packets entering B at timeslot t is upper
bounded by cAB . The number of packets leaving B is equal
to cBC . Since (A, Ac) is the smallest min-cut, cAB ≤ cBC

(see Figure 17). Hence, the number of packets entering B
is less than or equal to the number of packets leaving it at
time t.

Therefore as soon as one of the nodes crosses threshold R1,
the sum backlog becomes bounded. We can choose a threshold
R� R1 such that this threshold is never crossed by any nodes
in Ac

k . �

RAI et al.: LOOP-FREE BACKPRESSURE ROUTING USING LINK-REVERSAL ALGORITHMS 3001

Fig. 17. Let (Ak , Ac
k) be the smallest min-cut. We showed that d ∈ C.

Say, cAB > cBC then the cut (B ∪ Ak, (B ∪ Ak)c) has the capacity
of cBC + cAkC < cAB + cAkC = cap(Ak, Ac

k). This contradicts the
assumption that (Ak, Ac

k) is the smallest min-cut. So, cAB < cBC .

Fig. 18. Here li represents the sum of the capacities of the links going
from one partition to the next in the DAG Dk , and l′i represents the sum of
the link capacities in the DAG Dk+1. For example, l9 and l9′ represent the
links that go from (Ak ∪Ak+1)

c to (Ak ∩Ak+1) in DAGs Dk and Dk+1

respectively.

APPENDIX D
LEMMA 8

Lemma 8: Consider the case when λ > fmax
k . The

link reversal algorithm is applied on DAG Dk to obtain
Dk+1. Let (Ak, Ac

k) and (Ak+1, A
c
k+1) be the small-

est min-cuts of Dk and Dk+1 respectively. Then, either
capk(Ak, Ac

k) > capk+1(Ak+1, A
c
k+1), or capk(Ak, Ac

k) =
capk+1(Ak+1, A

c
k+1) and |Ak+1| > |Ak|

Proof: Consider the partitioning of the nodes as shown
in Figure 18. For i = 1, . . . , 12, li represents the sum of the
capacities of the links going from one partition to the next in
the DAG Dk, and l′i represents the sum of the link capacities in
the DAG Dk+1. The capacities of the smallest min-cut, before
and after the reversal are given by

capk(Ak, Ac
k) = l2 + l5 + l10 + l12 and

capk+1(Ak+1, A
c
k+1) = l′4 + l′7 + l′10 + l′11

respectively. Note that only the links that are coming into Ak

are different in Dk and Dk+1. So

li = l′i for i = 3, 4, 7, 8. (20)

Because of the reversal there are no links coming into Ak in
the DAG Dk+1:

l′1, l
′
6, l

′
9, l

′
11 = 0. (21)

After the reversal, the incoming links to Ak become outgoing
from Ak ,

l′10 = l10 + l9. (22)

(Corresponding equations for l′2, l
′
5 and l′12 are omitted because

they are not necessary for the proof). Since (Ak, Ac
k) is a min-

cut,
l5 ≤ l7. (23)

This is true because otherwise the cut (Ak ∪ Ak+1, (Ak ∪
Ak+1)c) in the DAG Dk has a smaller capacity then the min
cut (Ak, Ak)c. Specifically, let us assume l5 > l7. Then, we get
the contradiction:

capk(Ak ∪Ak+1, (Ak ∪Ak+1)c) = l2 + l7 + l10

< l2 + l5 + l10 + l12

= capk(Ak, Ak)c

First we will show that if Ak\Ak+1 �= φ, then the capacity
of the DAG must have increased. The proof is by contradiction.

Let us assume that the throughput didn’t increase. So,

capk(Ak, Ac
k) ≥ capk+1(Ak+1, A

c
k+1)

= l′4 + l′7 + l′10 + l′11
= l4 + l7 + l10 + 0 (24)

≥ l4 + l5 + l10 (25)

= capk(Ak ∩Ak+1, (Ak ∩Ak+1)c). (26)

(24) is follows from (20) and (21), and (25) follows from (23).
Since Ak\Ak+1 �= φ by assumption, |Ak| > |Ak ∩ Ak+1|.
This leads to a contradiction, because in DAG Dk the cut
(Ak ∩Ak+1, (Ak ∩Ak+1)c) is smaller than the smallest min-
cut (Ak, Ac

k). Hence, capk(Ak, Ac
k) < capk+1(Ak+1, A

c
k+1).

Next, we will consider the case Ak\Ak+1 = φ. Using (23),

capk(Ak, Ac
k) = l5 + l10 ≤ l7 + l10.

In this situation, we again have two cases. First, if Ak = Ak+1

we know that l′10 > l10 and l7 = 0. Hence, capk(Ak, Ac
k) <

l′10 = capk+1(Ak+1, A
c
k+1).

Second, if Ak ⊂ Ak+1, then |Ak| > |Ak+1| and

l′10 ≥ l10. (27)

Using (20) and (27) capk(Ak, Ac
k) ≤ capk+1(Ak+1, A

c
k+1).

�

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1949, Dec. 1992.

[2] L. X. Bui, R. Srikant, and A. Stolyar, “A novel architecture for reduc-
tion of delay and queueing structure complexity in the back-pressure
algorithm,” IEEE/ACM Trans. Netw., vol. 19, no. 6, pp. 1597–1609,
Dec. 2011.

[3] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[4] E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-
free routes in networks with frequently changing topology,” IEEE Trans.
Commun., vol. 29, no. 1, pp. 11–18, Jan. 1981.

[5] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” in Proc. INFOCOM, Apr. 1997,
pp. 1405–1413.

[6] L. Georgiadis and L. Tassiulas, “Optimal overload response in sensor
networks,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2684–2696,
Jun. 2006.

3002 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

[7] H. Xiong, R. Li, A. Eryilmaz, and E. Ekici, “Delay-aware cross-layer
design for network utility maximization in multi-hop networks,” IEEE
J. Sel. Areas Commun., vol. 29, no. 5, pp. 951–959, May 2011.

[8] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining shortest-
path and back-pressure routing over multihop wireless networks,”
IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 841–854, Jun. 2011.

[9] P.-K. Huang, X. Lin, and C.-C. Wang, “A low-complexity congestion
control and scheduling algorithm for multihop wireless networks with
order-optimal per-flow delay,” IEEE/ACM Trans. Netw., vol. 21, no. 2,
pp. 495–508, Apr. 2013.

[10] M. J. Neely, Stochastic Network Optimization With Application
to Communication and Queueing Systems. San Rafael, CA, USA:
Morgan & Claypool, 2010.

[11] L. R. Ford, Jr., and D. R. Fulkerson, “Maximal flow through a network,”
Can. J. Math., vol. 8, pp. 399–404, Feb. 1956.

[12] L. Georgiadis, P. Georgatsos, K. Floros, and S. Sartzetakis, “Lexi-
cographically optimal balanced networks,” IEEE/ACM Trans. Netw.,
vol. 10, no. 6, pp. 818–829, Dec. 2002.

[13] L. Huang and M. J. Neely, “Delay reduction via Lagrange multipliers in
stochastic network optimization,” IEEE Trans. Autom. Control, vol. 56,
no. 4, pp. 842–857, Apr. 2011.

[14] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” in Foundations and Trends in
Networking. Breda, The Netherlands: Now, 2006.

[15] A. Rai, C. P. Li, G. Paschos, and E. Modiano, “Loop-free backpres-
sure routing using link-reversal algorithms,” in Proc. ACM MobiHoc,
Jun. 2015, pp. 87–96.

Anurag Rai received the B.S. and M.S. degrees in
computer science from Brigham Young University
in 2010 and 2012, respectively. He is currently pur-
suing the Ph.D. degree in electrical engineering and
computer science with MIT. His research interests
include control of communication networks, distrib-
uted algorithms, and inference in communication
networks.

Chih-ping Li received the B.S. degree from
National Taiwan University in 2001, and the M.S.
and Ph.D. degrees from the University of South-
ern California in 2005 and 2011, respectively, all
in electrical engineering. He was a Post-Doctoral
Associate with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Tech-
nology, between 2011 and 2014. Since 2014, he has
been with the Corporate Research and Development
Department, Qualcomm, where he has been involved
in 5G wireless system design and analysis. His

research interests include stochastic control, resource allocation, QoS in
communication networks, wireless networks, and queueing systems.

Georgios Paschos received the Diploma degree in
electrical and computer engineering from the Aristo-
tle University of Thessaloniki, Greece, in 2002, and
the Ph.D. degree in wireless networks from the ECE
Department, University of Patras, under the supervi-
sion of Prof. S. Kotsopoulos, in 2006. From 2007 to
2008, he was an ERCIM Post-Doctoral Fellow with
the Team of Prof. Norros, VTT, Finland. From
2008 to 2014, he was with the Center of Research
and Technology Hellas, Informatics and Telematics
Institute, Greece, working with Prof. L. Tassiulas.

He also taught with the Department of Electrical and Computer Engineering,
University of Thessaly, as an Adjunct Lecturer, from 2009 to 2011. He
spent two years with the Team of Prof. E. Modiano, MIT. He has been
a Principal Researcher with Huawei Technologies Co., Ltd., Paris, France,
leading the Network Control and Resource Allocation Team, since 2014. He
serves as a TPC Member of INFOCOM, WiOPT, and Netsoft. Two of his
papers received the best paper award in GLOBECOM ’07 and IFIP Wireless
Days ’09, respectively. He serves as an Associate Editor of the IEEE/ACM
TRANSACTIONS ON NETWORKING.

Eytan Modiano (S’90–M’93–SM’00–F’12)
received the B.S. degree in electrical engineering
and computer science from the University of
Connecticut, Storrs, CT, USA, in 1986, and the
M.S. and Ph.D. degrees in electrical engineering
from The University of Maryland, College Park,
MD, USA, in 1989 and 1992, respectively. He
was a Naval Research Laboratory Fellow between
1987 and 1992 and a National Research Council
Post-Doctoral Fellow during 1992–1993. Between
1993 and 1999, he was with the MIT Lincoln

Laboratory. Since 1999, he has been with the Faculty of MIT, where he is
currently a Professor with the Department of Aeronautics and Astronautics,
Laboratory for Information and Decision Systems. His research is on
communication networks and protocols with emphasis on satellite, wireless,
and optical networks. He is an Associate Fellow of the AIAA. He was a
co-recipient of the MobiHoc 2016 best paper award, the WiOpt 2013 best
paper award, and the SIGMETRICS 2006 best paper award. He was the
Technical Program Co-Chair of the IEEE WiOpt 2006, the IEEE Infocom
2007, the ACM MobiHoc 2007, and the DRCN 2015. He is the Editor-
in-Chief of the IEEE/ACM TRANSACTIONS ON NETWORKING. He served
as an Associate Editor of the IEEE TRANSACTIONS ON INFORMATION

THEORY and the IEEE/ACM TRANSACTIONS ON NETWORKING. He served
on the IEEE Fellows Committee.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

