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Enhancing Network Robustness via Shielding
Jianan Zhang, Student Member, IEEE, Eytan Modiano, Fellow, IEEE, and David Hay, Member, IEEE

Abstract— We consider shielding critical links to enhance the
robustness of a network, in which shielded links are resilient to
failures. We first study the problem of increasing network con-
nectivity by shielding links that belong to small cuts of a network,
which improves the network reliability under random link fail-
ures. We then focus on the problem of shielding links to guarantee
network connectivity under geographical and general failure
models. We develop a mixed integer linear program (MILP) to
obtain the minimum cost shielding to guarantee the connectivity
of a single source–destination pair under a general failure model,
and exploit geometric properties to decompose the shielding
problem under a geographical failure model. We extend our
MILP formulation to guarantee the connectivity of the entire
network, and use Benders decomposition to significantly reduce
the running time. We also apply simulated annealing to obtain
near-optimal solutions in much shorter time. Finally, we extend
the algorithms to guarantee partial network connectivity, and
observe significant reduction in the shielding cost, especially when
the geographical failure region is small.

Index Terms— Connectivity, network robustness, geographical
failure, shielding.

I. INTRODUCTION

COMMUNICATION networks are subject to natural
disasters and attacks, such as hurricanes, earthquakes,

and electromagnetic pulse attacks [1]. Network failures may
result in tremendous financial loss and hinder effective recov-
ery to the affected regions. Therefore, it is important to design
robust networks that can withstand disasters or attacks.

Several metrics measure the performance of a network.
The most basic metric is connectivity, without which it is
impossible to support any application that requires data com-
munication through the network. In case of network failures,
one cannot expect the network to support the same amount of
traffic as before the failure. Low priority applications can be
throttled to give higher priority to critical applications. Thus,
in this paper, we focus on guaranteeing network connectivity
after failures, and assume that the network is able to use
limited resources to support critical applications through
service differentiation.
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Previous research considers geographical failures [2]–[5]
and general failures [6]–[8], in addition to independent random
failures [9], [10], to assess the network robustness. Geograph-
ical failure models capture the effects of natural disasters and
physical attacks; e.g., all links in a geographical failure region
are destroyed. Under the general failure model, an arbitrary
set of links may fail; e.g., each failure may affect a specified
set of links, whose number and locations are determined by
the nature of the failure.

A common approach to design robust networks is through
redundancy and backup routes. (See [11], [12] for a sur-
vey of protection techniques for optical networks.) Graph
augmentation algorithms, which aim to increase the connec-
tivity of a graph by adding new edges, can be used for
adding redundancy. Exact polynomial-time algorithms have
been proposed to solve the augmentation problem if new
edges can be added between any pair of nodes and have the
same cost [13], [14]. Approximation algorithms have been
developed to solve the weighted version of the augmentation
problem [15], [16]. Mathematical programming techniques are
often used to develop stronger formulations by adding cutting
planes to solve the general augmentation problem [8].

An alternative approach to design robust networks, which
we consider in this paper, is through shielding critical links.
Shielded network infrastructure can survive disasters and
attacks. Previous research suggested strengthening cables to
resist physical attacks [12], and upgrading or covering vulner-
able components to resist electromagnetic pulse attacks [17].
More robust optical fibers and cables are being developed to
improve network reliability [18], [19], and recently, Google
plans to reinforce undersea cables to resist shark attacks [20].

A. Related Work

Due to the cost of shielding, it may not be economical
to shield the entire network. Instead, critical parts of the
network can be identified and shielded to enhance the network
robustness. The idea of shielding has been applied to
solve problems arising from various applications [21]–[27].
Liu et al. [21] studied a road network retrofit problem,
and used a two-stage stochastic programming approach to
decide which roads to retrofit to minimize the average per-
formance loss incurred by a disaster. Snyder et al. [22],
Church et al. [23], and Brown et al. [24] studied problems
of fortifying facilities to minimize the transportation cost
in supply chains and the failures of critical infrastructure.
Dziubiński and Goyal [25] designed optimal network topolo-
gies to maximize the utility less costs, given shielding cost,
link construction cost, and utility of network connectivity,
under the assumption of uniform costs for all links.
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Cunningham [26] studied the reinforcement problem in order
to maximize the cost of destroying a network by an adver-
sary. Alashaikh et al. [27] studied the problem of improving
network reliability by increasing the reliability of edges in a
spanning tree. A preliminary version of this paper appeared
in [28].

The shielding problem that we study is closely related to the
graph augmentation problem where the new edges to be added
must be parallel to the existing edges. Unlike the polynomially
solvable graph augmentation problem where edges can be
added between any pair of nodes, determining the minimum
number of parallel edges to be added to increase the edge-
connectivity of a graph is NP-hard [29]. Shielding an edge can
be viewed as adding a sufficiently large number of parallel
edges at a fixed cost, so that a shielded edge cannot be
contained in any cut of a moderate size. To this end, the
shielding problem shares similarities with the fixed-charge
problems [30], [31], where there is a fixed cost of using an
edge regardless of the amount of flow carried on the edge.

Our study is closely related to the work in [32], in
which the authors proved the NP-completeness, and developed
an exact algorithm to obtain the minimum cost reinforce-
ment (i.e., shielding) that guarantees one or multiple source-
destination (SD) pairs are connected after fewer than
k removals of unreinforced edges. Based on a directed
graph structure that represents all the minimum SD cuts, the
algorithm in [32] selects a set of edges such that every cut
whose size is smaller than k contains at least one selected
edge. The algorithm is doubly exponential in k. In contrast,
we consider the connection between cuts and network flows.
By interpreting “shielding” as increasing the edge capacity,
we formulate a mixed integer linear program (MILP) which is
simpler, contains a small number of variables and constraints,
and can be solved within a short time for realistic networks.
For the special case of increasing the edge-connectivity of an
SD pair by one, we develop a polynomial algorithm which
runs faster than the algorithm in [32]. Moreover, we consider
shielding links to resist geographical and general failures.

B. Our Contributions

Our objective is to design robust communication networks
by shielding critical links of the network. We develop
algorithms to obtain the optimal shielding to resist both inde-
pendent random failures and correlated failures. Throughout
this paper we consider link (edge) failures and assume that all
nodes are resilient to failures. Our main contributions include:

1) Optimal Shielding Under Independent Random Failures:
The robustness of a network under independent random edge
failures can be measured by its edge-connectivity, the mini-
mum number of edge removals that separate nodes into two
disjoint sets. By shielding critical edges and restricting the
removed edges to be from the unshielded set, the network can
resist more edge removals and has larger edge-connectivity.
In Section II, we study an equivalent minimum cost fixed-
charge network flow problem, where shielded edges have
larger capacities, and develop a MILP to obtain the optimal
shielding that increases the edge-connectivity of a pre-selected

SD pair. Then by a simple extension, we obtain the optimal
shielding to increase the edge-connectivity of a network.

2) Optimal Shielding Under Correlated Failures: While
increasing the edge-connectivity is the key to improving
network robustness under random failures, real world disasters
and attacks often result in correlated failures. We consider both
geographical failures and general failures.

In Section III, we aim to shield links using the minimum
cost to guarantee the connectivity of an SD pair and a network
after any single failure event. To guarantee the connectivity
of an SD pair, we develop a MILP for the general shielding
problem, and identify the property of the optimal shielding
in the case of geographical failures, which allows us to
decompose the shielding problem to multiple subproblems.
We then extend the MILP to obtain the optimal shielding that
guarantees network connectivity. By identifying the separable
structure of the MILP, we are able to apply the Benders
decomposition technique [33] to reduce the running time and
solve network shielding problems of realistic sizes. A heuristic
based on simulated annealing further reduces the running time
significantly while outputting a feasible solution with a slightly
higher shielding cost.

Finally, in Section IV, we relax the connectivity requirement
to allow for partial connectivity of a network. We observe
that the shielding cost can be significantly reduced if the
connectivity requirement is slightly relaxed.

II. INCREASING THE EDGE-CONNECTIVITY

A communication network can be represented by a graph,
where nodes represent routers and edges represent optical
fibers. In a communication network, a shielded fiber is resilient
to attacks. To model the resilience, in a graph, a “shielded”
edge cannot be removed. Shielding an edge in a graph can be
interpreted in different contexts. For example, for the purpose
of network connectivity, a shielded edge can be viewed as
having been contracted, so that the two end nodes of a
shielded edge are merged and are always connected. In this
section, a shielded edge is viewed as having a sufficiently
large capacity, so that small cuts do not contain shielded
edges.

If all the edges in a graph have unit capacity, the edge-
connectivity of the graph equals the value of the minimum
cut, which is the minimum total capacity of edges whose
removals separate nodes into two disjoint sets. If a shielded
edge has a sufficiently large capacity, all the minimum cuts in
a shielded graph only contain unshielded unit-capacity edges.
Thus, the value of the minimum cut in a shielded graph is
exactly the edge-connectivity of the shielded graph where
only unshielded edges can be removed. The following lemma
interprets shielding an edge as increasing the edge capacity,
and is the basis of the analysis in this section.

Lemma 1: Consider a set of shielded edges E∗ ⊆ E that
increase the edge-connectivity of an undirected graph G(V, E)
from k to k′. If instead of shielding, the capacity of each edge
in E∗ was increased from 1 to k′ − k + 1, and the capacity
of each edge in E \E∗ was 1, then the value of the minimum
cut of G(V, E) would be k′.
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Proof: Since shielding the edges E∗ yields an edge-
connectivity of k′, the minimum subset of E \E∗ that discon-
nects G has size k′ (comprising only of unshielded edges).

We next show that all the other cuts in G have value at
least k′. Consider any cut C in G and let i denote the number
of shielded edges in C. On the one hand, |C| is at least
k because this is the edge-connectivity of G considering all
edges. On the other hand, i is at least one because C must
have at least one shielded edge. Thus, the value of C is
(|C| − i) + i(k′ − k + 1) ≥ (k − i) + i(k′ − k + 1) =
k′ + (i− 1)(k′ − k) ≥ k′.

A. Increasing the Edge-Connectivity of an SD Pair

The edge-connectivity of a specific pair of nodes (namely,
an SD pair) in a shielded graph is the minimum number
of unshielded edge removals that disconnect the SD pair.
We formally state the optimal shielding problem that increases
the edge-connectivity of an SD pair as follows.

Minimum Cost Shielding to Increase the Edge-Connectivity
of an SD Pair: Given an undirected graph G(V, E), an SD
pair (s, d ∈ V ) with edge-connectivity k, a cost cij for each
edge (i, j), and an objective edge-connectivity k′ > k, we aim
to shield a set of edges with the minimum cost, such that the
SD pair is connected after removing any k′ − 1 unshielded
edges (i.e., the edge-connectivity of the SD pair is increased
to k′).

Based on the same proof as Lemma 1 and considering cuts
that separate an SD pair, it is easy to see that by increasing
the capacity of a shielded edge from 1 to k′ − k + 1, the
value of the minimum SD cut would be increased from k to
k′, as long as the shielding increases the edge-connectivity of
an SD pair from k to k′. On the other hand, if the shielding
merely increases the edge-connectivity of the SD pair to a
value smaller than k′, removing fewer than k′ unshielded edges
disconnects the SD pair, in which case there exists an SD cut
of value smaller than k′. Thus, the optimal shielding problem
is equivalent to the problem of increasing the value of the
minimum SD cut to k′, by increasing some edge capacities
(from 1 to k′−k+1) using the minimum cost. A classical way
to tackle such a cut problem is by working on its corresponding
network flow problem, which is, in our case, a (hard) variation
of minimum cost flow problem (also known as the fixed-charge
problem [30], [31]), defined as follows:

Minimum Cost Shielding Restated as a Flow Problem:
Given an undirected graph G(V, E), an SD pair (s, d ∈ V )
with edge-connectivity k, and an objective k′ > k, we aim to
find the minimum cost flow of value k′ between the SD pair,
where the cost for an edge (i, j) to carry up to one unit flow
is zero, and the cost for an edge (i, j) to carry more than one
unit flow, up to k′ − k + 1 units flow, is cij .

It is important to notice that any edge that carries more than
one unit of flow must be shielded, as originally the capacity
of an edge is 1. Intuitively, in order to save cost, the solution
will try to avoid using more than one unit of flow in any edge
and not incur its cost cij .

We note that our problem is significantly different from
the classical minimum cost flow problem, as the definition

of the cost (of an edge) is not linear in the flow that it carries
(we use a step function instead). Such problems are known
as fixed-charge problems, which are NP-hard in general [34].
Moreover, the NP-hardness of the minimum cost shielding
problem has also been proved in [32], by a reduction from
the Steiner tree problem.

We obtain the exact solution of the minimum cost shielding
problem using MILP. Let {(i, j)|hij = 1} be the set of
shielded edges. Let xij be the amount of flow carried on edge
(i, j), which is at most 1 on an unshielded edge and may
take a sufficiently large value up to M + 1 on a shielded
edge. We set M = k′ − k based on Lemma 1. Note that
larger M still gives a valid formulation. The importance of
Lemma 1 is on improving the strength of the formulation. The
formulation is stronger (i.e., the integrality gap is smaller) for
smaller M . Thus, using a small M reduces the solving time of
the MILP.

min
∑

(i,j)∈E

cijhij (1)

s.t.
∑

{j|(i,j)∈E}
xij−

∑

{j|(j,i)∈E}
xji =

⎧
⎪⎨

⎪⎩

k′, if i = s

−k′, if i = d

0, otherwise

(2)

xij ≤ 1 + Mhij ∀(i, j) ∈ E (3)

xij ≥ 0 ∀(i, j) ∈ E

hij = {0, 1} ∀(i, j) ∈ E

Flow conservation constraints (2) guarantee k′ units flow
from the source to the destination. Each edge (i, j) is undi-
rected and it is shielded if either hij = 1 or hji = 1. However,
constraints (3) only allow the edge to carry more than one
unit flow along i → j direction if hij = 1. This formulation
is valid, because hij and hji cannot both be equal to one
in the optimal solution. To see this, note that there exists an
optimal solution where either xij or xji is zero for all (i, j).
If both are nonzero in an optimal solution, the flow which has
smaller value can be set to zero and subtracted from the other
flow without violating any constraint, given that only a single
commodity of flow is routed. Therefore, either hij or hji is
nonzero to guarantee that the link (i, j) is shielded and may
carry up to M + 1 units flow. The optimal shielding cost is
given by

∑
(i,j)∈E cijhij .

The formulation contains only |V |+ |E| constraints in addi-
tion to the boundary constraints. The size of this formulation
is much smaller compared with the cut formulation (i.e., every
cut of size smaller than k′ must contain at least one shielded
edge) for solving the shielding problem, where there are an
exponential number of cut constraints.

It is interesting to note that MILP (1) is polynomially
solvable when M = 1. Thus, the minimum cost shielding
to increase the edge-connectivity of an SD pair by one can be
obtained in polynomial time.

Theorem 1: MILP (1) is polynomially solvable when
M = 1, and the optimal solution is given by its linear
programming relaxation.

Proof: It suffices to show that the linear program-
ming (LP) relaxation of MILP (1) has an integral optimal
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solution when M = 1. A sufficient condition is that the
constraint coefficient matrix is totally unimodular (TU), such
that the feasible region polyhedron of the LP relaxation has
integral extreme points. A matrix A ∈ Z

m×n is TU if and only
if ∀I ⊆ {1, 2, . . . , m}, ∃I1, I2 ⊆ I, I1 ∪ I2 = I, I1 ∩ I2 = ∅,
such that

|
∑

i∈I1

Aij −
∑

i∈I2

Aij | ≤ 1, ∀j ∈ {1, 2, . . . , n}. (4)

Each variable xij appears in two constraints in (2) with
coefficients 1 and −1. Let A1 denote the coefficient matrix of
constraints (2). For any subset Ia of rows ofA1, I1 =Ia, I2 =∅
clearly satisfies condition (4). Among the constraints (3),
each variable xij and hij only appear in one constraint. Let
A2 denote the coefficient matrix of constraints (3) and let Ib

denote any subset of the rows of A2. Suppose I = Ia ∪ Ib

contains a row u ∈ Ia and a row v ∈ Ib that have nonzero
coefficient of xij ; then v ∈ I2 if xij has the same coefficient
as in u ∈ Ia, while v ∈ I1 if xij has the opposite coefficient as
in u ∈ Ia. The sums of coefficients of xij in I1 and I2 differ
by at most 1. If two rows in Ia have nonzero coefficients
of xij , these two rows are both in I1 and the sum of the
coefficients of xij is 0, and the row in Ib that has nonzero
coefficient of xij can be either in I1 or I2, without violating
the constraint that the sums of coefficients of xij in I1 and I2

differ by at most 1. Since hij only appears in one constraint,
the sums of the coefficients of hij differ by at most 1 for all
I1, I2. To conclude, condition (4) is satisfied and the constraint
coefficient matrix is TU.

Indeed, there is an efficient combinatorial algorithm to com-
pute the optimal shielding to increase the edge-connectivity
of an SD pair in graph G by one. Recall the minimum cost
flow interpretation for the shielding problem. To obtain the
minimum cost fixed-charge flow on G, we construct another
graph G′ as follows. Graph G′ has the same nodes as G,
and has an edge (i, j)o if and only if there is an edge (i, j)
between the same pair of nodes in G. Edges (i, j)o in G′ have
unit capacity and zero cost. In addition, a parallel edge (i, j)p

is added adjacent to each zero-cost edge (i, j)o in G′, and has
unit capacity and cost cij per unit flow.

We prove that the optimal shielding can be obtained by
applying a classical minimum cost k′-flow algorithm to G′.

Theorem 2: The minimum cost shielding to increase the
edge-connectivity of an SD pair from k to k′ = k + 1 can
be computed in O(k′|E|+ |V | log |V |) time, where |E| is the
number of edges and |V | is the number of nodes in the graph.

Proof: Consider an integer-valued (classical) minimum
cost k′-flow in G′ from the source to the destination, where
each edge carries either zero or one unit flow. An integer-
valued minimum cost k′-flow exists, given that k′ is an integer
and all the edges have integer capacities [33].

An integer-valued minimum cost k′-flow in G′ corresponds
to a k′-flow in G with the same cost and along the same route.
In G′, the total cost of the flow equals the cost of using the
parallel edges (i, j)p, given that (i, j)o are free. If an edge
(i, j)p carries unit flow, then (i, j)o must also carry unit flow,
because otherwise re-routing the flow from (i, j)p to (i, j)o

yields a flow that has smaller cost. Therefore, each parallel

Fig. 1. Optimal shielding to increase the edge-connectivity of an SD pair
Seattle-Miami from 2 to 3.

edge (i, j)p that carries unit flow in G′ corresponds to an
edge (i, j) in G that carries two units flow, and incurs a cost
cij equal to the cost of (i, j) that carries two units flow in G
(i.e., the shielding cost of (i, j)).

Moreover, it is clear that any flow in G maps to a flow
in G′ with no larger cost along the same route. In G, any edge
(i, j) that carries more than one and up to two units flow incurs
cost cij . In G′, the cost for (i, j)o to carry unit flow is zero, and
the cost for (i, j)p to carry up to one unit flow is at most cij .

Thus, the minimum cost fixed-charge k′-flow in G has
the same cost and route as the integer-valued minimum cost
k′-flow in G′. The classical minimum cost k′-flow algorithm
on G′ solves the minimum cost fixed-charge k′-flow problem
in G, which yields the optimal shielding that increase the edge-
connectivity of the SD pair by one.

The minimum cost k′-flow on G′ can be computed by
finding k′ shortest augmenting paths, where the length of
an edge equals its cost, given that each edge in G′ has unit
capacity [35]. Moreover, there exists k units flow of zero cost
in G′, because the max-flow between the SD pair is k by
only using zero-cost edges (i, j)o. The k zero-length paths can
be computed by k augmenting path algorithms in O(k|E|)
time. The computation of the last shortest augmenting path
takes O(|E| + |V | log |V |) time by Dijkstra’s algorithm [36].
Therefore, the total running time is O(k′|E|+ |V | log |V |).

This algorithm improves upon the algorithm in [32] which
runs in O(k′3|E| + |V | log |V |) (or O(k′3|E|)+ shortest
path) time to increase the SD edge-connectivity by one. The
improvement is significant when the edge-connectivity is large.

To demonstrate the application of our approach, we solve
the MILP to obtain the optimal shielding to increase the edge-
connectivity of an SD pair Seattle-Miami in the XO commu-
nication backbone network which consists of 60 nodes and
71 edges [37]. The cost of shielding each edge is represented
by the length of the edge (in longitude/latitude degree unit
labeled on the axes). The edge-connectivity of the SD pair is
k = 2 before shielding. To increase the edge-connectivity by
one (k′ = 3), both MILP (1) and the algorithm of Theorem 2
output a solution of cost 35.2, depicted in Fig. 1. The shielding
cost increases as k′ increases: 47.8 for k′ = 4 and 51.5 for
k′ = 5. The shielded edges are depicted in Figs. 2 and 3,
respectively. Interestingly, for k′ = 5, the shielded edges form
the shortest path between the SD pair. Thus, it guarantees
that removing any number of unshielded edges would not
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Fig. 2. Optimal shielding to increase the edge-connectivity of an SD pair
Seattle-Miami from 2 to 4.

Fig. 3. Optimal shielding to increase the edge-connectivity of an SD pair
Seattle-Miami from 2 to 5.

disconnect the SD pair. The running times to solve MILP (1)
are less than 1 second to obtain the above results (executed
on a desktop PC with Intel® Xeon® 2.67 GHz CPU and
4 GB RAM). The solutions take a short time because only a
single commodity flow needs to be carried through the network
between a single SD pair, and the number of constraints is
small.

B. Increasing the Edge-Connectivity of a Network

We consider the optimal shielding to increase the
edge-connectivity of a network, formally stated as follows.

Minimum Cost Shielding to Increase the Edge-Connectivity
of a Network: Given an undirected graph G(V, E) with
edge-connectivity k, a cost cij for each edge (i, j), and an
objective edge-connectivity k′ > k, we aim to shield a
set of edges with the minimum cost, such that G(V, E) is
connected after removing any k′−1 unshielded edges (i.e., the
edge-connectivity of G(V, E) is increased to k′).

Unlike the polynomially solvable optimal shielding problem
that increases the edge-connectivity of an SD pair by one, the
optimal shielding problem that increases the edge-connectivity
of a graph by one is NP-hard. Consider the connection between
the shielding problem and the graph augmentation problem.
If the objective of shielding is to increase the edge-connectivity
from k to k+1, shielding an edge can be viewed as augmenting
one parallel edge (or increasing the edge capacity by one in
the network flow problem). The problem of determining the
minimum number of parallel edges to be added to a graph
in order to increase the edge-connectivity of a graph by one

has been shown to be NP-hard [29]. Therefore, the minimum
cost shielding problem that increases the edge-connectivity of
a graph by one is NP-hard.

1) Upper Bound on the Optimal Shielding Cost: We provide
an upper bound on the optimal shielding cost, by developing a
shielding algorithm that achieves the desired edge-connectivity
using a potentially larger shielding cost. We first prove that
shielding some part of a spanning tree of the original graph is
sufficient to increase its edge-connectivity.

Theorem 3: Given any spanning tree T (V, ET ⊆ E),
shielding the edges in ET that belong to cuts of G(V, E)
that have size smaller than k′ is sufficient to increase the
edge-connectivity of G(V, E) to k′.

Proof: To prove that G is connected after removing fewer
than k′ unshielded edges, it is equivalent to prove that each
cut of size smaller than k′ contains at least one shielded
edge.

Let EC denote the union of edges in cuts of size smaller
than k′. Let ENC = E \ EC denote the other edges. Let ET

denote the edges in a spanning tree T . Let ES = ET ∩ EC

denote the shielded edges. ET = ET ∩ E = ET ∩ (EC ∪
ENC) = (ET ∩EC) ∪ (ET ∩ENC) ⊆ (ET ∩EC) ∪ENC =
ES ∪ENC . Namely, the union of ES and ENC is a superset
of ET , and G(V, ES ∪ENC) is connected.

Suppose that there exists a cut C0 that contains fewer than
k′ unshielded edges and no shielded edge. By definition, C0 ⊆
EC , and G(V, E\C0) is disconnected. Since C0 do not contain
any shielded edges, ES ⊆ EC \ C0. Thus, ES ∪ ENC ⊆
(EC \C0)∪ENC = E \C0. The fact that G(V, ES ∪ENC) is
connected contradicts with that G(V, E \C0) is disconnected.

To conclude, shielding ES guarantees that G is connected
after removing fewer than k′ unshielded edges, and increases
the edge-connectivity of G to k′.

The following algorithm computes a tree T in which the
total shielding costs of the edges that belong to cuts of size
smaller than k′ is minimized. The algorithm increases the
edge-connectivity of a graph to at least k′. We call the obtained
shielding cost the spanning tree upper bound.

Algorithm 1 Spanning Tree Shielding Algorithm

1) Identify edges EC(k′) that belong to cuts of G(V, E)
that have size smaller than k′.

2) Assign each edge in EC(k′) a cost equal to its shielding
cost. Assign all the other edges zero cost.

3) Compute the minimum cost spanning tree, and shield its
edges that have positive costs.

Step 1 can be implemented efficiently if β = k′/k is
not very large, where k is the edge-connectivity of G(V, E).
With high probability, all the minimum cuts can be iden-
tified in O(|V |2 log3 |V |) time, and all the cuts that have
value smaller than k′ can be identified in O(|V |2β log2 |V |)
time [38]. The minimum spanning tree can be computed in
O(|E|+ |V | log |V |) time (e.g., Prim’s algorithm).

Remark: The spanning tree upper bound is tight if the edge-
connectivity of G is increased from 1 to 2 (k = 1, k′ = 2).
In the Spanning Tree Shielding Algorithm, when costs are
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Fig. 4. Shielding the two diagonals increases the network edge-connectivity
by one.

assigned to edges, an edge has positive cost if its removal
disconnects G (i.e., if it is a cut edge), and has zero cost
otherwise. All the spanning trees in G each include all the
cut edges while only differ in the zero-cost edges, and they
have the same cost. Shielding all the positive-cost edges in any
spanning tree is optimal, because the failure to shield any cut
edge would not increase the edge-connectivity of G by one.

However, the spanning tree upper bound is not necessarily
tight in general, as shown by the following example. Consider
a clique of four nodes as in Fig. 4. The edge-connectivity is
three, and all the edges belong to minimum cuts of size three.
Instead of shielding a spanning tree, only two diagonal edges
(or any maximum matching) need to be shielded in order to
increase the graph edge-connectivity by one. For the special
case of increasing the edge-connectivity by one, algorithms
in [15] and [16] can be used to compute a feasible shielding
with at most twice the optimal cost.

2) Exact Solution of the Minimum Cost Shielding Problem
Using MILP: The minimum cost shielding problem of increas-
ing the edge-connectivity of a network can be equivalently
stated as a flow problem, analogous to the minimum cost
shielding problem of increasing the edge-connectivity of an SD
pair. We extend MILP (1) to formulate the optimal shielding
problem that increases the edge-connectivity of a network. One
difference from MILP (1) is that the flows between all pairs of
nodes should each be at least k′, guaranteed by constraints (6).
In fact, it suffices to check the connectivity between one
fixed node and every other node, a total of |V | − 1 pairs.
Another difference is that xsd

ij and xs′d′
ji on two directions of

an edge may be both greater than one for different SD pairs.
Constraints (7) enforce that hij = hji = 1 for any shielded
edge (i, j), and the double counting is fixed by reducing the
objective value by half.

min
∑

(i,j)∈E

cijhij/2 (5)

s.t.
∑

{j|(i,j)∈E}
xsd

ij −
∑

{j|(j,i)∈E}
xsd

ji

=

⎧
⎪⎨

⎪⎩

k′, if i = s

−k′, if i = d

0, otherwise

∀s, d (6)

xsd
ij ≤ 1 + Mhij ∀(i, j) ∈ E, s, d

hij − hji = 0 ∀(i, j) ∈ E (7)

xsd
ij ≥ 0 ∀(i, j) ∈ E, s, d

hij = {0, 1} ∀(i, j) ∈ E

We obtain the optimal shielding to increase the edge-
connectivity of the XO network by solving MILP (5). Table I
shows that the running time increases significantly as the
objective edge-connectivity increases. This is consistent with

TABLE I

INCREASING THE EDGE-CONNECTIVITY OF THE XO NETWORK

Fig. 5. Optimal shielding to increase the edge-connectivity of the XO network
from 1 to 3.

Fig. 6. Optimal shielding to increase the edge-connectivity of the XO network
from 1 to 4.

Fig. 7. Optimal shielding to increase the edge-connectivity of the XO network
from 1 to 5.

the fact that the formulation is stronger for smaller values of
M = k′ − k, where k′ is the objective edge-connectivity and
k is the original edge-connectivity (k = 1 in this example).
The optimal shielding for k′ = 3 is depicted in Fig. 5.
From the figure, we observe that many edges need to be
shielded if the original edge-connectivity between most adja-
cent SD pairs are smaller than the objective edge-connectivity.
The optimal shielding for k′ = 4 and 5 are depicted
in Figs. 6 and 7, respectively. In this example, most shielded
edges for a smaller edge-connectivity (in Fig. 5) are still
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shielded in order to achieve a larger edge-connectivity
(in Figs. 6 and 7).

Moreover, we compare the optimal cost with the spanning
tree upper bound obtained by Algorithm 1. To increase the
edge-connectivity of the XO network by one, only one edge
needs to be shielded at cost 4.9, which is identical to the
optimal shielding obtained by the MILP. To increase the edge-
connectivity by two, we enumerate all minimal cuts of size one
and two and shield the cut edges that belong to a minimum
spanning tree where the cost of an edge not in these cuts is
zero. The shielding cost is 153.7, which is 15% higher than
the optimal cost obtained by the MILP. To increase the edge-
connectivity by three, Algorithm 1 shields the entire minimum
spanning tree, which has cost 173.4 and is 17% higher than
the optimal cost. To further increase the edge-connectivity,
the upper bound stays fixed while the optimal shielding cost
keeps increasing until reaching the bound. From the results
we observe that the bound is tighter if there are not many
edges in the small cuts when the objective edge-connectivity
k′ is small, or if k′ is large and almost an entire spanning tree
needs to be shielded. Indeed, if k′ is larger than the size of
the maximum cut of the graph, the spanning tree upper bound
is the same as the optimal solution.

III. GUARANTEEING THE CONNECTIVITY UNDER

CORRELATED FAILURES

In the previous section, we considered the minimum cost
shielding to increase the edge-connectivity, which makes the
network more robust under independent random link failures.
In the rest of this paper, we consider the minimum cost
shielding to resist a single geographical or general failure that
can represent a real-world disaster or attack.

A geographical failure is characterized by a disk region with
a given radius, and may occur anywhere in the network. All
the unshielded links that are intersected or covered by the
disk region are removed. A general failure is characterized by
a set of links that the failure affects. The possible failures
are described explicitly. We study the optimal shielding to
guarantee that an SD pair and a network are connected after
any single geographical and general failure.

A. Guaranteeing the Connectivity of an SD Pair

It suffices to shield links to guarantee that a path between an
SD pair will exist after any failure event. Clearly, if one link
can fail at a time, a link needs to be shielded if and only if its
removal disconnects the SD pair. In contrast, if multiple links
fail at the same time and their failures disconnect the SD pair,
not all the failed links need to be shielded. We aim to compute
the minimum cost shielding to guarantee the connectivity of
an SD pair after any failure event under the general and
geographical failure models in this section.

1) Shielding Under the General Failure Model: Under the
general failure model, a failure event is specified by a set
of affected links. In G(V, E), each failure event z ∈ Z
affects links E(z), where Z is a set of possible failure
events. The objective is to shield a set of links E∗ using
the minimum shielding cost, to guarantee that an SD pair

Fig. 8. Optimal shielding for an SD pair under the failure model where all
the links adjacent to any two nodes are affected by a failure.

(s, d) are connected through G(V, E′(z)) for all z, where
E′(z) = (E \ E(z)) ∪E∗.

The optimal shielding problem under the general failure
model can be formulated by a MILP. Let t

(z)
ij indicate whether

link (i, j) is affected by failure z. The set of links affected by
failure z is E(z) = {(i, j)|t(z)

ij = 1}. The decision variables

are x
(z)
ij and hij , which represent the amount of flow carried

by link (i, j) after failure z and whether link (i, j) is shielded,
respectively. The set of shielded links is E∗ = {(i, j)|hij =1}.
The minimum shielding cost to resist any possible failure
z ∈ Z is given by the following MILP.

min
∑

(i,j)∈E

cijhij (8)

s.t.
∑

{j|(i,j)∈E}
x

(z)
ij −

∑

{j|(j,i)∈E}
x

(z)
ji

=

⎧
⎪⎨

⎪⎩

1, if i = s

−1, if i = d

0, otherwise

∀z ∈ Z (9)

x
(z)
ij − hij ≤ 1− t

(z)
ij ∀(i, j) ∈ E, z ∈ Z (10)

x
(z)
ij ≥ 0 ∀(i, j) ∈ E, z ∈ Z

hij = {0, 1} ∀(i, j) ∈ E

Since we consider a connectivity problem, only one unit
flow need to be carried from s to d after a failure, which is
guaranteed by the flow constraints (9). Constraints (10) guar-
antee that if failure z occurs and affects link (i, j) (t(z)

ij =1),
one unit flow can be carried on link (i, j) only if it is shielded
(hij = 1). If link (i, j) is not affected by failure z (t(z)

ij = 0),
it can carry one unit flow if failure z occurs, regardless of
whether it is shielded.

As an example, we consider a failure model where links
adjacent to any pair of nodes are affected by a failure event,
and study the optimal shielding to guarantee the connectivity
of Seattle-Miami in the XO network. The number of failures
is

(
60
2

)
(i.e., this model allows for link failures adjacent to

2 nodes, and the total number of nodes is 60). The optimal
shielding is represented by the thick links with total cost 46.0
in Fig. 8.
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Fig. 9. A single bottleneck.

2) Shielding Under the Geographical Failure Model: We
aim to shield a set of links such that an SD pair (s, d)
are connected after any disk failure of a given radius. It is
necessary to identify the set of geographical failure regions
where a disk failure disconnects the SD pair. We call such
regions bottleneck regions. Although the number of possible
failure regions is large, multiple failures can be represented
by one failure that dominates them, where a failure dominates
another if it affects all the links that are affected by the
other failure. The number of dominating failures is polynomial
in the number of links and can be efficiently obtained by
computational geometry techniques [2]–[4]. In the following,
we exploit properties of bottleneck regions to decompose the
shielding problem into several subproblems, each of which
consists of one or more bottleneck regions and can be solved
independently.

First, consider a single bottleneck region. We use
Algorithm 2 to compute a shielded path that guarantees the
connectivity of an SD pair after a failure occurs at the
bottleneck region, and illustrate the algorithm by the example
in Fig. 9. In Step 1 of the algorithm, the end nodes that are
merged to a dummy source can be found by first removing
the links intersected or covered by the bottleneck region and
then performing a depth-first-search from the source. Thus,
Step 1 takes O(|E|) time, where |E| is the number of links
in the network. Step 2 of the algorithm also takes O(|E|)
time, by performing a depth-first-search from the destination.
The running time of Step 3 depends on the objective path.
For example, the shortest path can be computed in O(|E| +
|V | log |V |) time, where |V | is the number of nodes.

Algorithm 2 Bottleneck Shielding Algorithm
Let EB denote the links intersected or covered by the bottle-
neck region. Let VB denote the end nodes of EB .

1) Find the end nodes in VB that are connected to the
source without going through any link in EB (end nodes
of links a, b in Fig. 9). Merge the end nodes to form a
dummy source.

2) Find the end nodes in VB that are connected to the
destination without going through any link in EB (end
nodes of links c, d in Fig. 9). Merge the end nodes to
form a dummy destination.

3) Compute a path P between the dummy SD pair. Shield
the links in P ∩ EB .

The following fact proves the correctness of Algorithm 2.

Fig. 10. Non-overlapping bottlenecks.

Fig. 11. Overlapping bottlenecks.

Proposition 1: A shielded path between the dummy SD
pair (defined in Algorithm 2) is necessary and sufficient to
guarantee that the original SD pair is connected after a
geographical failure that occurs at the bottleneck region.

Proof: Sufficiency: Consider a geographical failure that
occurs at the bottleneck region and affects links EB . Let P
be a path between the dummy SD pair. Shielding links in
P ∩ EB guarantees that P survives. Moreover, the dummy
source (destination) is connected to the original source
(destination) without using EB . Therefore, the original SD
pair is connected.

Necessity: Consider an SD path P0 that survives a failure
at the bottleneck region. Clearly P0 ∩ EB are shielded. Let
{l1, . . . , lp} be an ordered sequence of links in P0. Let li be
the first link in P0 that belongs to EB . One end node v of li is
connected to the source without going through EB . Therefore,
v is merged to the dummy source. Let lj be the last link in
P0 that belongs to EB . One end node of lj is merged to the
dummy destination. The sub-path P = {li, . . . , lj} connects
the dummy SD pair, and P ∩EB ⊆ P0 ∩EB are shielded.

If there is only one bottleneck between an SD pair, the
optimal shielding is to shield the shortest path between the
dummy SD pair, where the length of each link equals its
shielding cost. In general, there may be multiple bottlenecks.
In order to guarantee the connectivity of the SD pair after any
disk failure, one needs to shield a path across every bottleneck.
If the bottlenecks are disjoint and do not share common links
(Fig. 10), shielding the shortest path between each dummy SD
pair is optimal.

However, different bottlenecks may overlap and intersect
common links (Fig. 11). Shielding links for one bottleneck
may affect the shielding for another bottleneck. For example,
shielding link c benefits connecting both (s′, d′) and (s′′, d′′).
Thus, overlapping bottlenecks should be considered jointly.

Nevertheless, if a set of overlapping bottlenecks do not share
common links with another set of overlapping bottlenecks,
these two sets can be considered separately, because the
shielding decision for one set does not affect the shielding
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Fig. 12. Bottlenecks and shielded links given disk failure radius 2◦.

decision for another in order to shield a path across each
bottleneck. The optimal shielding for a set of overlapping
bottlenecks is given by MILP (8) which includes constraints
only associated with the failures in this set Z ′ ⊆ Z . In short,
under the geographical failure model, instead of considering
all the failures at once, the problem can be decomposed to
multiple smaller MILPs (one per overlapping bottlenecks set)
that can be solved more efficiently.

We illustrate the algorithm using the same network
in Fig. 12, where now a failure is any disk with radius
2◦ longitude/latitude (about 120 miles). Given the SD pair
Seattle-Miami, there are four bottleneck regions bounded by
dashed circles. The red links inside or intersected by the
dashed circles are candidate links to shield. In each of the two
disjoint bottlenecks, the shortest path is shielded, illustrated
by the thick links with costs 5.9 and 5.1, respectively, while
the overlapping bottleneck has shielding cost 10.0, leading to
a total shielding cost 21.0. The bottleneck regions and the
optimal shielding can both be computed within 1 second.

B. Guaranteeing the Connectivity of a Network

1) Shielding Under the Geographical Failure Model - the
Cases of Huge and Tiny Failures: We start by considering two
special cases of geographical failures.

In the first case, the failure region is huge and contains all
the links in the network. Unshielded links are removed by a
failure event. In order to keep all the nodes connected, one
must shield at least a minimum spanning tree.

In the second case, the failure region is tiny and intersects
either a single link or all links adjacent to a node. In a graph,
a bridge is an edge whose removal disconnects the graph.
Clearly, every bridge has to be shielded. A cut node is a node
whose removal disconnects the graph. A graph is biconnected
if there is no cut node. In a biconnected graph, after removing
all the edges adjacent to one node, the other |V |−1 nodes are
still connected. Therefore, it suffices to guarantee that each
node is adjacent to at least one shielded edge, which connects
this node with the other nodes after any failure. The optimal
set of edges to shield is the minimum edge cover, which is a
set of edges with the minimum cost such that every node in
the graph is adjacent to at least one edge in the set.

A graph may have both bridges and biconnected compo-
nents (i.e., a subgraph that has no cut node). Since different

biconnected components do not share edges, shielding edges
in one biconnected component does not benefit another bicon-
nected component. Thus, each biconnected component can be
shielded independently by its minimum edge cover. Based on
the above development, we have the following algorithm.

Algorithm 3 Optimal Shielding Under the Tiny Disk Failure
Model

1) Compute the bridges and biconnected components in a
graph.

2) Shield all the bridges. For each biconnected component,
shield the edges in its minimum edge cover, where the
cost of each edge equals its shielding cost.

Computing bridges and biconnected components takes
O(|E|) time [39]. The computation of the minimum edge
cover can be reduced to the computation of the maximum
matching in a transformed graph in O(|V |2) time [40],
and the computation of the maximum matching takes
O(|V ||E| log |V |) time [41]. Thus, the total running time of
Algorithm 3 is O(|V ||E| log |V |).

2) Shielding Under the General Failure Model: Now we
consider the optimal shielding to guarantee that the network
G(V, E) is connected under the general failure model. Each
failure z ∈ Z affects a set of links E(z). Note that it
reduces to the geographical failure model if E(z) is a set
of links in a geographical region. Our objective is to shield
a set of links E∗ using the minimum shielding cost, to
guarantee that G(V, E′(z)) is connected for all z ∈ Z , where
E′(z) = (E \ E(z)) ∪ E∗. The variables and parameters have
the same representations as those in MILP (8).

min
∑

(i,j)∈E

cijhij/2 (11)

s.t.
∑

{j|(i,j)∈E}
x

(z)sd
ij −

∑

{j|(j,i)∈E}
x

(z)sd
ji

=

⎧
⎪⎨

⎪⎩

1, if i = s

−1, if i = d

0, otherwise

∀z ∈ Z, s, d

x
(z)sd
ij − hij ≤ 1− t

(z)
ij ∀(i, j) ∈ E, z ∈ Z, s, d (12)

hij − hji = 0 ∀(i, j) ∈ E

x
(z)sd
ij ≥ 0 ∀(i, j) ∈ E, z ∈ Z, s, d

hij = {0, 1} ∀(i, j) ∈ E

In MILP (11), for each SD pair and failure scenario, there
is a flow variable for each link. The number of variables
is large because there are many possible failure scenarios.
It is difficult to directly solve MILP (11) for large problem
instances. However, the flow variables after one failure couple
with the flow variables after another failure only through the
decision variables h in (12). Given h, it is easy to determine
whether there exist feasible flows between all the SD pairs
after each failure, by only considering the flow variables and
constraints associated with the failure. Benders decomposition
can be applied to problems with such separable structure.
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Benders decomposition: Benders decomposition acceler-
ates the computation of an optimization problem with sep-
arable structure, and has been applied to robust network
design [31], [33]. Instead of considering all the constraints
at once, it first solves a relaxed problem with a subset of
constraints, and then checks whether there are any violated
constraints. If there are none, the solution is optimal. Other-
wise, a violated constraint is added to the relaxed problem and
the problem is solved again. The relaxed problem is called the
master problem, and the violated constraints are identified by
solving subproblems.

The MILP (11) can be reformulated as follows. It starts with
a master problem with constraints only on h.

min
∑

(i,j)∈E

cijhij/2

s.t. hij − hji = 0 ∀(i, j) ∈ E

hij = {0, 1} ∀(i, j) ∈ E

After obtaining h, check whether there are violated con-
straints by solving subproblems, each corresponding to check-
ing whether the network is connected after a failure. If the
linear program (LP) (13) is feasible and has optimal value 0,
the network is connected after failure z. If it is infeasible, the
associated constraint has been violated.

min 0 (13)

s.t.
∑

{j|(i,j)∈E}
x

(z)sd
ij −

∑

{j|(j,i)∈E}
x

(z)sd
ji

=

⎧
⎪⎨

⎪⎩

1, if i = s

−1, if i = d

0, otherwise

∀s, d (14)

x
(z)sd
ij − hij ≤ 1− t

(z)
ij ∀(i, j) ∈ E, s, d (15)

x
(z)sd
ij ≥ 0 ∀(i, j) ∈ E, s, d

It is more efficient to add the violated constraint by
considering the dual of LP (13). The dual is represented
by LP (16), where dual variables p and r correspond
to primal constraints (14) and (15), respectively. If LP
(16) is unbounded, the constraint

∑
sd[p

∗(z)sd
d − p

∗(z)sd
s −∑

(i,j)∈E(1 − t
(z)
ij + hij)r

∗(z)sd
ij ] ≤ 0 is added to the master

problem, where (p∗(z)sd
d , p

∗(z)sd
s , r

∗(z)sd
ij ) is an extreme ray of

LP (16) which led to its unboundedness. The added constraints
avoid unbounded costs along the extreme rays, to guarantee
that LP (16) is bounded and that LP (13) is feasible.

max
∑

sd

[p(z)sd
d − p(z)sd

s −
∑

(i,j)∈E

(1− t
(z)
ij + hij)r

(z)sd
ij ] (16)

s.t. p
(z)sd
j − p

(z)sd
i − r

(z)sd
ij ≤ 0 ∀(i, j) ∈ E, s, d

r
(z)sd
ij ≥ 0 ∀(i, j) ∈ E, s, d

While for the original problem, the MILP has a large num-
ber of variables and constraints, with Benders decomposition
it is possible to solve each subproblem using an LP, and the
size of each subproblem is small. In Benders decomposition,
checking whether a subproblem is bounded corresponds to
checking whether the network is connected after one failure in

the shielding problem. We make the following modification to
Benders decomposition. Instead of checking only one failure
after obtaining a new shielding decision in each iteration,
multiple failures are checked. This is particularly helpful in
our problem, because two failures may affect two disjoint
sets of links, and the shielding decisions can be made in the
same step to reduce the number of iterations. The number
of violated constraints added before re-solving the master
problem provides a tradeoff between the number of iterations
and the running time of each iteration. In our numerical
evaluations, the number of constraints that we added was equal
to the number of nodes in the network, and we observed
more than 50% reduction in running time compared with the
standard Benders decomposition.

Simulated annealing: Finally, we developed a heuris-
tic based on simulated annealing [42], [43], outlined in
Algorithm 4. Simulated annealing is a method to search
for globally optimal solutions for nonconvex optimization
problems. The search process avoids being stuck in a local
minimum without continuing further searches, since a neigh-
bor state with a higher cost can replace the current state with
a positive probability.

Algorithm 4 Simulated Annealing for Low-Cost Shielding
Initialization:

Start from an initial state s = s0 where all links are shielded.
Let c(s) denote the shielding cost of s.

Main loop:
for t = 1 through tmax do

Compute a feasible neighbor state s′ using Algorithm 5.
Compute the cost difference: δ = c(s′)− c(s).
if δ < 0 then

s← s′

else
s← s′ with probability p = exp(−δ/T ),
where T = d/ log(t + 1) and d > 0.

end if
end for

During the first fewer iterations, the temperature T is large
so that it is easy to enter a state that has a larger shielding cost
to explore more possible states. As the number of iterations
increases, T decreases and makes it less likely to enter a
state with a larger shielding cost. If the number of iterations
is large, T approaches 0 and the algorithm terminates at a
state which has the smallest shielding cost compared with all
its neighbors. As suggested by [43], T is set according to
T (t) = d/ log (t + 1), where t is the number of the
current iteration and d is a positive constant. After tuning the
parameters, we set d = 10 and tmax = 200 in our algorithm
to compute the shielding in the XO network.

The neighbor states in the iterations of simulated annealing
are computed by Algorithm 5. The probability of removing a
link from the shielded set is proportional to the shielding cost
of the link. Thus, links with larger shielding costs are more
likely to be removed. The probability of adding a link to the
shielded set is proportional to the multiplicative inverse of its
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Fig. 13. Running time comparisons of solving Benders decomposition,
directly solving MILP and its LP relaxation.

shielding cost, so that links with smaller shielding costs are
more likely to be added.

Algorithm 5 Computing a Feasible Neighbor State
Let S be the set of shielded links and Sc be the set of
unshielded links in the current state. Perform one of the
following operations.

1) Randomly move a link from S to Sc.
2) Randomly move a link l from S to Sc, and randomly

move a link (except l) from Sc to S.
3) Randomly move a link from Sc to S.

Since the objective is to find a neighbor state with a smaller
shielding cost, the operations are done sequentially during
the first few iterations. For example, after one shielded link
becomes unshielded (operation 1), if the current shielding is
feasible, a neighbor state with a smaller shielding cost is
identified. If any removal of shielded link from the shielded
set leads to an infeasible shielding, one more shielded link is
added after the removal (operation 2) in search of a feasible
shielding state. If neither works, one more shielded link is
added without removing any shielded link (operation 3), in
order to obtain a new feasible shielding state.

If the three operations are always performed sequentially,
the algorithm may end up in cycles. For example, it is
possible that both operations 1 and 2 cannot find a feasible
shielding state, and a possible neighbor state is to shield an
extra link. Starting from the neighbor state, the only link that
can be removed without causing infeasible shielding is the
link that was just added. Thus, after some iterations when
many redundant links are removed from the shielded set, the
operations are done randomly to avoid such cycles.

3) Numerical Results: We first compare the running time
of solving the MILP that computes the optimal shielding to
guarantee network connectivity using Benders decomposition,
solving the MILP directly, and solving its LP relaxation.
Fig. 13 illustrates the growth of the running time of these
solutions as network size increases. The results are averaged
over 10 instances of connected random graphs, where an edge
exists with a given probability between all pairs of nodes.
The number of nodes of the graph is varied from 10 to 30,

TABLE II

RUNNING TIME COMPARISONS OF SA, BD AND THE MODIFIED BD
FOR RANDOM GRAPHS

TABLE III

SHIELDING COST COMPARISONS OF SA RESULTS AND EXACT SOLUTIONS

FOR RANDOM GRAPHS

TABLE IV

COMPARISON OF SA AND THE MODIFIED BD ALGORITHMS

FOR THE XO NETWORK

with average degree 5. We consider failures of unshielded
links adjacent to any pair of nodes. Note that solving the
MILP directly and solving the MILP using Benders decom-
position both give the optimal solutions, while solving the
LP relaxation only gives lower bounds on the shielding
costs. Solving the MILP using Benders decomposition is
faster than directly solving the LP relaxation for larger
networks.

Moreover, the modified Benders decomposition (adding
multiple violated constraints in each iteration) reduces the
running time further by more than 50% in most cases as shown
in the last column of Table II.

Next we compare the performance of simulated annealing
with the modified Benders decomposition. The cost of shield-
ing an edge equals the sum of the indices (from 1 to |V |) of
its end nodes in the randomly generated graphs. We observe in
Tables II and III that the running time for simulated annealing
is about 1/10 of that of modified Benders decomposition in
larger network cases, while the relative error is only 3% ∼ 6%.

Finally we apply our algorithms to obtain the optimal
shielding for the XO network. Fig. 14 illustrates the optimal
shielding to guarantee the connectivity of the entire XO
backbone network after any disk failure with radius 1◦.

Simulated annealing also has good performance in solving
the shielding problem for the XO network. The results are
shown in Table IV. Thus, simulated annealing can be used
to solve larger size problems when the computation time to
obtain the exact solutions is too long.
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Fig. 14. Optimal shielding in the XO network to guarantee network
connectivity after any disk failure with radius 1◦.

IV. GUARANTEEING PARTIAL CONNECTIVITY

OF A NETWORK

In most networks, a large number of links need to be
shielded to guarantee the full connectivity of the network.
In fact, even in the tiny disk failure case where the network is
biconnected, all the links in the minimum edge cover need to
be shielded. The number of shielded links is at least half the
number of nodes. For larger failures, or if the network has a
tree structure, even more links need to be shielded.

If the connectivity constraint is relaxed and some number
of nodes are allowed to be separated from the others, the
shielding cost may be significantly reduced. The reduction in
the shielding cost depends on the failure model and network
topology. For example, if nodes form a cycle and one node
is allowed to be disconnected from the rest, no link needs
to be shielded in the tiny disk failure case, because only one
node within the failure region is disconnected from the others.
If nodes form a tree, links adjacent to leaf nodes do not need
to be shielded, because the failure of a link adjacent to a leaf
node only separates the leaf node from the others.

We compute the minimum cost shielding to guarantee
partial network connectivity under the general failure model,
using average two terminal reliability (ATTR) as a measure
of the connectivity level. ATTR is calculated by dividing the
number of connected SD pairs after a failure by the total
number of SD pairs in the original network, and represents
the fraction of connected SD pairs after a failure. Compared
with MILP (11), the flow constraints are not imposed to every
SD pair, but a fraction of SD pairs. In constraints (18), I(z)sd

can be either 0 or 1, where I(z)sd = 1 if (s, d) are connected
under failure z. The total number of connected SD pairs
should be at least a fraction α of all the N(N − 1)/2 SD
pairs, guaranteed by constraints (19), where α is the ATTR
requirement and N = |V | is the total number of nodes.

min
∑

(i,j)∈E

cijhij/2 (17)

s.t.
∑

{j|(i,j)∈E}
x

(z)sd
ij −

∑

{j|(j,i)∈E}
x

(z)sd
ji

=

⎧
⎪⎨

⎪⎩

I(z)sd, if i = s

−I(z)sd, if i = d

0, otherwise
∀z ∈ Z, s, d (18)

x
(z)sd
ij − hij ≤ 1− t

(z)
ij ∀(i, j) ∈ E, z ∈ Z, s, d

∑

sd

I(z)sd ≥ αN(N − 1)/2 ∀z ∈ Z (19)

hij − hji = 0 ∀(i, j) ∈ E

x
(z)sd
ij ≥ 0 ∀(i, j) ∈ E, z ∈ Z, s, d

hij = {0, 1} ∀(i, j) ∈ E

I(z)sd = {0, 1} ∀z ∈ Z, s, d

The above MILP (17) for partial connectivity has more
variables and constraints than MILP (11) for full connectivity.
First, there are the additional variables I(z)sd. Moreover, in
MILP (11), checking the connectivity between node 1 and
nodes 2, 3, . . . , N is enough to check the connectivity of the
entire network. In contrast, in MILP (17), N(N − 1)/2 SD
pairs need to be checked. Thus, the running time of MILP
(17) is larger than the running time of MILP (11). Even when
α = 1 and the two MILPs have the same optimal solution, the
running time of MILP (17) can be 20 times longer than the
running time of MILP (11) for a network that has 10 nodes.

Moreover, the running time of MILP (17) depends on α.
Smaller α leads to a larger feasibility region, which makes it
harder to check the optimality of the solution and requires a
longer running time (unless α is very small so that no or few
links need to be shielded). For example, for a network that
has 10 nodes, if one node is disconnected from the others, the
ATTR is (9 × 8)/(10 × 9) = 0.8. Thus, the MILPs in which
α = 0.9 and α = 1 have the same optimal solution (i.e., the
optimal shielding that guarantees network full connectivity).
The running time of the MILP in which α = 1 is 4 minutes
while the running time of the MILP in which α = 0.9 is more
than one hour.

In contrast with the full connectivity case, Benders decom-
position for MILP (17) does not significantly reduce its run-
ning time. In Benders decomposition, the constraints added to
the master problem progressively cut the feasibility region of
the relaxed master problem to approach the feasibility region
of the original problem. In the partial connectivity case, a
fraction of SD pairs are allowed to be disconnected. The added
constraints to the master problem do not reduce the feasibility
region of the relaxed problem as effective as the added
constraints in the full connectivity case. Thus, the Benders
decomposition for partial connectivity is not as effective in
reducing the running time, and is omitted.

On the other hand, the simulated annealing in the previous
section can be used for partial network connectivity with
a small modification. The only difference is in determining
whether the shielding is feasible when computing a neighbor
state. In the simulated annealing for partial connectivity, as
long as the ATTR is above α, the shielding is feasible and is
a candidate for the next state. Checking whether a graph is
connected and checking whether the ATTR is above a given
value can both be done in O(|E|) time using a depth-first-
search and computing the sizes of the connected components.
Since a feasible shielding for partial connectivity may not be
feasible for full connectivity, fewer trials and less computa-
tion are needed to find a feasible neighbor state for partial
connectivity. To conclude, the running time per iteration in the
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TABLE V

COST REDUCTION FOR PARTIAL CONNECTIVITY OF THE XO NETWORK

Fig. 15. A feasible shielding for the XO network to guarantee that α = 96%
after any disk failure with radius 1◦.

simulated annealing for partial network connectivity is slightly
smaller compared with that for full network connectivity.

In our numerical tests, we were able to solve the partial
connectivity problem using MILP on small networks which
have no more than 15 nodes. In contrast, simulated annealing
that solves the partial connectivity problem has shorter running
time compared with the full connectivity case. (The reduction
in running time is larger for smaller α, and varies from 10%
to 50% in our tests.) Moreover, the shielding costs obtained
by the simulated annealing are nearly identical with the exact
solutions for different levels of ATTR requirement in our
tests.

The numerical results suggest that the shielding cost is
significantly reduced by relaxing the connectivity constraint
to allow for values of α less than one. If one node is allowed
to be disconnected in the XO network, α = (59 × 58)/
(60×59) > 0.96, and a feasible shielding is depicted in Fig. 15
if the disk failure has radius 1◦. Much fewer links are shielded
compared with Fig. 14 that guarantees the full connectivity.
Table V suggests that the cost reduction is larger for smaller
failure. Under disk failure of radius 1◦, the shielding cost
is reduced by at least 73% if one node is allowed to be
disconnected, and is reduced by 95% if two nodes are allowed
to be disconnected, in which case α = (58×57)/(60×59) >
93%. Under disk failure of radius 2◦, the shielding costs are
reduced by at least 33% and 59%, if one or two nodes are
allowed to be disconnected, respectively.

V. CONCLUSION

In this paper, we developed theory and algorithms for
network shielding to improve network robustness. We exploit
the connections between the shielding problem and graph aug-
mentation problems as well as the fixed-charge problems, and
developed algorithms and MILPs to obtain the minimum cost
shielding to increase the edge-connectivity. The solutions can

be used to improve the network reliability under independent
random link failures.

We developed MILP formulations for the optimal shielding
to guarantee the connectivity of a single SD pair and the net-
work under a general failure model. To guarantee the connec-
tivity of a single SD pair under a geographical failure model,
we decompose the problem to multiple subproblems, each of
which computes the optimal shielding for links in a geograph-
ical region. The MILP that guarantees network connectivity
has separable structure, for which Benders decomposition can
be applied to reduce the running time by over two orders of
magnitude. A slightly modified Benders decomposition further
reduces the running time by more than 50%. In addition, we
used simulated annealing to obtain near-optimal solutions in
much shorter running time.

Much less shielding cost is required to guarantee partial
connectivity of a network, even in the case where at most
one node is allowed to be disconnected. We observe larger
reduction in the shielding cost if the size of a geographical
failure region is small. The algorithms can be easily modified
to solve the problem that guarantees the connectivity of a
selected set of SD pairs. For example, in the MILP, the flow
constraints can be imposed only for the selected SD pairs.
In the simulated annealing, the connectivity of the selected SD
pairs can be checked to determine the feasibility of shielding,
while the remaining algorithm is unchanged.

In summary, the methods in this paper can be used to con-
struct new networks and upgrade existing networks to increase
network reliability under random failures, and to improve
network robustness under geographical and general failures.
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