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Abstract—Time-varying graphs are a useful model for networks with dynamic connectivity such as vehicular networks, yet, despite their

greatmodeling power, many important features of time-varying graphs are still poorly understood. In this paper, we study the survivability

properties of time-varying networks against unpredictable interruptions. We first show that the traditional definition of survivability is not

effective in time-varying networks, and propose a new survivability framework. To evaluate the survivability of time-varying networks

under the new framework, we propose twometrics that are analogous to MaxFlow andMinCut in static networks.We show that some

fundamental survivability-related results such asMenger’s Theorem only conditionally hold in time-varying networks. Then, we analyze

the complexity of computing the proposedmetrics and develop approximation algorithms. Finally, we conduct trace-driven simulations to

demonstrate the application of our survivability framework in the robust design of a real-world bus communication network.

Index Terms—Network robustness, mobile networks, time-varying networks
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1 INTRODUCTION

TIME-VARYING graphs have emerged as a useful model
for networks with time-varying topology, especially in

the context of communication networks. Examples include
vehicular ad hoc networks [1], [2], space networks [3], [4],
mobile sensor networks [5], [6], whitespace networks [7], [8]
and millimeter-wave (mmWave) networks [9]. In Fig. 1, we
illustrate a simple time-varying graph and its snapshots
over 3 time slots.

In many applications of time-varying networks, trans-
mission reliability is of a great concern. For example, it is
critical to guarantee transmission reliability for vehicular
networks that are often used to exchange traffic and emer-
gency information. Unfortunately, time-varying networks
are particularly vulnerable due to their constantly changing
topology that results from different forms of interruptions.
One type of interruptions are called intrinsic interruptions
which originate from the inherent nature of the network,
such as node mobility in vehicular networks. For certain
types of networks, such intrinsic interruptions are often pre-
dictable. For example, it is easy to predict the temporal pat-
terns of topology for a time-varying network formed by
either public buses [1], [2] or satellites [3], [4] which have
fixed tours and schedules; in low-duty-cycle sensor net-
works [10], [11], the sleep/wake-up pattern is periodic and
can be predicted accurately; in whitespace networks [7], [8],
the states of secondary links in the next few hours can be
known a prior by using the whitespace database [12]; a
recent study [13] also shows that human mobility has 93
percent potential predictability. In contrast, the other type
of interruptions are extrinsic and unpredictable. For example,
the predictions about the evolution of network topology are
prone to errors and could be inaccurate due to various

unforeseen factors such as unexpected obstacles (e.g., shad-
owing caused by humans, particularly in mmWave net-
works [9]), hardware malfunctions and natural disasters
[23]. These unpredictable disruptions may greatly degrade
network performance and are referred to as failures. The
goal of this paper is to understand the robustness of time-
varying networks against unpredictable interruptions (fail-
ures) while treating the predictable interruptions as an
inherent feature of the network.

Due to the unpredictability of failures, it is desirable to
evaluate the worst-case survivability. In static networks, this
is usually defined to be the ability to survive a certain num-
ber of failures as measured by the mincut of the graph.
However, this definition is not effective in time-varying net-
works. By its very nature, a time-varying network may have
different topologies at different instants, so its connectivity
or survivability must be measured over a long time interval.
To be more specific, we would like to highlight two impor-
tant temporal features that are neglected by the traditional
notion of survivability.

First, failures have significantly different durations in a
time-varying network. For example, an unexpected obstacle
may only disable the link between two nodes for several
seconds, after which the link reappears. In contrast, the tra-
ditional definition of survivability is intended for a static
environment and fails to account for links reappearing. The
duration of failures has a crucial impact on the performance
of time-varying networks. For example, in the time-varying
network shown in Fig. 1, a one-slot failure of any link can-
not separate node A and node D while a two-slot failure
(i.e., a failure that spans two consecutive slots) can discon-
nect D from A by disabling link A! B in the first two slots.

Second, failures may occur at different instants. This fea-
ture is obscured in static networks but has a great influence
on time-varying networks due to their changing connectiv-
ity. For example, if a two-slot failure occurs to link A! B at
the beginning of slot 2, node D is still reachable from node A
within the three slots; however, if the two-slot failure hap-
pens at the beginning of slot 1, there is no way to travel
from A to Dwithin three slots.
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To handle the above non-trivial temporal factors, we pro-
pose a new survivability framework for time-varying net-
works. Our framework captures both the number and the
duration of failures. The contributions of this paper are as
follows:

� Model. We propose a new survivability frame-
work, i.e., ðn; dÞ-survivability, where the values of
n and d characterize the number and the duration
of failures the network can tolerate. Moreover, by
tuning the two parameters, our framework can
generalize many existing survivability models. We
further propose two metrics, namely MinCutd and
MaxFlowd, in order to assess robustness in time-
varying networks.

� Theory. We provide new graph-theoretic results that
highlight the difference between static and time-
varying graphs. For example, we show that some
fundamental survivability-related results such as
Menger’s Theorem1 only conditionally hold in time-
varying graphs.

� Computation. Due to the difference between static
and time-varying graphs, the evaluation of surviv-
ability becomes very challenging in time-varying
networks. We analyze the complexity of computing
the proposed survivability metrics and develop effi-
cient approximation algorithms.

� Application. We conduct trace-driven simulations to
demonstrate the application of our framework in a
real-world communication network used in a public
transportation system. It is shown that our surviv-
ability framework has strong modeling power and is
more suitable for time-varying networks than exist-
ing approaches.

The remainder of this paper is organized as follows. In
Section 2, we formalize the model of time-varying graphs.
In Section 3, the new survivability framework and its associ-
ated metrics are introduced. In Section 4, we investigate
computational issues in the proposed framework. In Sec-
tion 5, trace-driven simulations are conducted to demon-
strate the application of our framework in a bus
communication network. Finally, related work and conclu-
sions are given in Sections 6 and 7, respectively.

2 MODEL OF TIME-VARYING GRAPHS

In this section, we formalize the model of time-varying
graphs and introduce some important terminology and

assumptions that will be frequently used throughout the
paper. A useful tool for transforming time-varying graphs
is also introduced.

2.1 Definitions and Assumptions

Time-varying graphs are a high-level abstraction for net-
works with time-varying connectivity. The formal defini-
tion, first proposed in [16], is as follows.

Definition 1 (Time-Varying Graph). A time varying graph
G ¼ ðG; T ; r; zÞ has the following components:

(i) Underlying (static) digraph G ¼ ðV;EÞ;
(ii) Time span T � T, where T is the time domain;
(iii) Edge-presence function r : E � T 7!f0; 1g, indicating

whether a given edge is active at a given instant;
(iv) Edge-delay function z : E � T 7!T, indicating the time

spent on crossing a given edge at a given instant.

This model can be naturally extended by adding a node-
presence function and a node-delay function. However, it is
trivial to transform node-related functions to edge-related
functions by the technique called node splitting (see [19],
Chapter 7.2); thus, it suffices to consider the above edge-ver-
sion characterization.

In this paper, we consider a discrete and finite time span,
i.e., T ¼ f1; 2; . . . ; Tg, where T is a bounded integer indicat-
ing the time horizon of interests, measured in the number of
slots. In practice, T may have different physical meanings.
For instance, it may refer to the deadline of packets or delay
tolerance in delay-tolerant networks; it may also correspond
to the period of a network whose topology varies periodi-
cally (e.g., satellite networks with periodical orbits). The slot
length of a time-varying graph is arbitrary as long as it can
capture topology changes in sufficient granularity. Note
that although we adopt a discrete-time model, it can also be
used to represent most continuous-time systems by discreti-
zation. For example, if a link is active from time t ¼ 0 to
t ¼ 0:11s and then inactive from time t ¼ 0:11s to t ¼ 0:15s,
we can discretize the time with the slot length of 0:01s, with
the link being active for the first 11 slots and inactive for the
remaining four slots.

Under the discrete-time model, the edge-delay function z

can take values from N ¼ f0; 1; 2; . . .g. Note that zero delay
means that the time used for crossing an edge is negligible as
compared to the slot length. Throughout the rest of this
paper, we consider the case where edge delay is one slot, i.e.,
zðe; tÞ ¼ 1 for any e 2 E and t 2 T , however, it is trivial to
extend the analysis to arbitrary traversal time. For example,
we can replace a link with delay M > 0 slots by M links
(eachwith one-slot delay) that are concatenated in series.

The edge-presence function r indicates the predictable
topology changes in a time-varying network. Examples of
such predictable topology changes include those in a space
communication network with known orbits [3], [4], in a
mobile social network consisting of students who share
fixed class schedules [14], in a low-duty-cycle sensor net-
work with periodic sleep/wake-up patterns [10], [11], in a
whitespace network with planned channel reclamation [7],
[8], in a mmWave network with scheduled beam steering
[9], etc. In contrast, unpredictable topology changes (also
referred to as failures in this paper) include those caused by
unexpected shadowing, unscheduled channel reclamation,

Fig. 1. (a) Original time-varying graph, where the numbers next to each
edge indicate the slots when that edge is active. The traversal delay
over each edge is one slot. (b) Snapshots of the time-varying graph.

1. In graph theory, Menger’s Theorem is a special case of the max-
flow-mincut theorem, which states that the maximum number of edge-
or node-disjoint paths equals to the size of the minimum edge or node
cut, respectively.
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hardware malfunctions, etc. Note that this model does not
require perfect predictions of future topology changes since any
prediction errors can be treated as failures.

2.2 Terminology

Definition 2 (Contact). There exists a contact from node u to
node v in time slot t if e ¼ ðu; vÞ 2 E and rðe; tÞ ¼ 1. This con-
tact is denoted by ðe; tÞ or ðuv; tÞ.

Intuitively, a contact is a “temporal edge”, indicating the
activation of a certain edge in a certain time slot. In the
example shown in Fig. 1, there exists a contact ðAB; 1Þ,
showing that link A! B is active in slot 1.

Definition 3 (Journey [15]). In a time-varying graph, a jour-
ney from node s to node d is a sequence of contacts:
ðe1; t1Þ ! ðe2; t2Þ ! � � � ! ðen; tnÞ such that for any i < n

(i) startðe1Þ ¼ s, endðenÞ ¼ d;
(ii) endðeiÞ ¼ startðeiþ1Þ;
(iii) rðei; tiÞ ¼ 1;
(iv) tiþ1 > ti and tn � T .

Intuitively, a journey is just a “time-respecting” path.
Conditions (i)-(ii) mean that intermediate edges used by a
journey are spatially connected. Condition (iii) requires that
intermediate edges remain active when traversed. Condi-
tion (iv) indicates that the usage of intermediate edges must
respect time and the journey should be completed before
the time horizon T . For example, there exists a journey from
A to D in Fig. 1: ðAB; 1Þ ! ðBC; 2Þ ! ðCD; 3Þwhen T ¼ 3.

Definition 4 (Reachability). Node d is reachable from node s
if there is a journey from s to d.

Intuitively, reachability can be regarded as “temporal
connectivity” which indicates whether two nodes can com-
municate within T slots. For example, node D is reachable
from node A in Fig. 1, meaning that a message from A can
reach Dwithin T ¼ 3 slots.

2.3 A Useful Tool: Line Graph

A line graph is a useful tool which allows us to transform a
time-varying graph into a static graph that preserves the
original reachability information. Readers may temporarily
skip the details and revisit this section when necessary.

The transformation uses a similar idea to the classical
Line Graph [34] which illustrates the adjacency between
edges. Here, we adapt the idea of Line Graphs to a time-
varying setting by accounting for the temporal features of
time-varying graphs. Given a time-varying graph G with
source s and destination d, its Line Graph LðGÞ is con-
structed as follows.

� For each contact ðe; tÞ in the original time-varying
graph G, create a corresponding node in the Line
Graph; the new node is denoted by ve;t. In addition,
create a node for the source s and a node for the des-
tination d, respectively.

� Add a directed edge from node ve1;t1 to node ve2;t2 in
the Line Graph if ðe1; t1Þ ! ðe2; t2Þ is a feasible jour-
ney from startðe1Þ to endðe2Þ. Also, add an edge from
node s to node ve;t if startðeÞ ¼ s, and add an edge
from node ve;t to node d if endðeÞ ¼ d.

An example of the Line Graph is shown in Fig. 2. The
Line Graph is useful in the sense that it preserves the infor-
mation of every s-d journey in the original time-varying
graph. In Fig. 2, we can observe the correspondence
between journey ðAB; 1Þ ! ðBC; 2Þ ! ðCD; 3Þ and path
A! VAB;1 ! VBC;2 ! VCD;3 ! D. This is generalized in
Observation 1 whose correctness is easy to verify.

Observation 1. Every s-d journey in a time-varying graph has
an one-to-one correspondence to some s-d path in its Line Graph.

Finally, we estimate the computational complexity for
constructing the Line Graph. Denote by jCj the number of
contacts in the time-varying graph. We first need to create a
node in the Line Graph for each contact, which takes OðjCjÞ
computation. Next, we need to construct directed edges for
the Line Graph. Since it only takes Oð1Þ time to determine
whether there should be directed edges between a pair of
nodes in the Line Graph, the edge construction procedure

takes OðjCj2Þ computation. As a result, the overall computa-

tional complexity for constructing the Line Graph is OðjCj2Þ.

3 SURVIVABILITY MODEL AND METRIC

In this section, we begin to investigate the survivability
properties of time-varying networks. Specifically, we are
interested in their resilience against unpredictable interrup-
tions (i.e., failures) such as unexpected shadowing, hard-
ware malfunctions, etc.

We first develop a new survivability model for time-
varying networks. Next, several metrics are introduced to
evaluate survivability under the new model. Finally, we
present some graph-theoretic results regarding these met-
rics, which highlights the key difference between time-vary-
ing and static networks. In particular, we will show that
some fundamental survivability-related results in static net-
works, such as Menger’s Theorem, only conditionally hold
in time-varying networks. Such a difference makes it chal-
lenging to evaluate survivability in a time-varying network.

3.1 ðn; dÞ-Survivability
In static networks, the worst-case survivability is usually
defined to be the ability to survive a certain number of fail-
ures wherever these failures occur. This definition is still
feasible but very ineffective in time-varying networks
because it fails to capture many temporal features of failures
(e.g., duration and instant of occurrence). As discussed in
the introduction, these temporal features have significant
impacts on time-varying networks. Hence, we extend the
survivability model in order to account for these temporal
effects and propose the concept of ðn; dÞ-Survivability. We
first define ðn; dÞ-survivability for a given source-destination
pair, i.e., pairwise ðn; dÞ-survivability.

Fig. 2. Illustration of Line Graph (src: A, dst: D).

2670 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 9, SEPTEMBER 2017



Definition 5 (Pairwise ðn; dÞ Survivability). In a time-
varying graph G, a source-destination pair ðs; dÞ is ðn; dÞ-sur-
vivable if d is still reachable from s after the occurrence of any n
failures, with each failure lasting for at most d consecutive slots.

Note that the above definition assumes that each failure is
consecutive in time and also has a finite duration (as opposed
to permanent failures in the traditional model). Thus, there
could be multiple failures occurring to the same link, where
each failure happens at a distinct instant. For example, if a
link fails in slots t ¼ 1; 2; 4; 5 and d ¼ 2 slots, then there are
two 2-slot failures that happen in slot 1 and 4, respectively.
We can further define global ðn; dÞ-survivability.
Definition 6 (Global ðn; dÞ-Survivability). A time-varying

network is ðn; dÞ-survivable if all pairs of nodes are
ðn; dÞ-survivable.
Since it only takes OðjV j2Þ to check all pairs of nodes,

global ðn; dÞ-survivability can be easily derived from pair-
wise ðn; dÞ-survivability. Therefore, we will focus on pair-
wise ðn; dÞ-survivability for a given pair of nodes ðs; dÞ
throughout the rest of this paper.

Discussion: The above definitions do not impose any
assumption about when and where the n failures occur and
thus imply the worst-case survivability. In other words,
ðn; dÞ-survivability means the network can survive n failures
that last for d slots wherever and whenever these failures
occur. The parameter n reflects “spatial survivability”, indi-
cating how many failures the network can survive, and the
parameter d reflects “temporal survivability”, indicating
how long these failures can last.

Note also that ðn; dÞ-survivability is a generalized defini-
tion. For example, if d = T (note that T is the time horizon),
then ðn; dÞ-survivability reflects the number of permanent
failures the network can tolerate, which becomes the conven-
tional notion of survivability used in static networks.

Finally, it should be mentioned that failures can be either
link failures or node failures. Since node failures can be con-
verted to link failures by node splitting (see [19], Chapter 7.2),
wewill consider link failures unless otherwise stated.

3.2 Survivability Metrics

In static networks, two commonly-used survivability met-
rics are: MinCut, i.e., the minimum number of edges whose
deletion can separate the source and the destination, and
MaxFlow, i.e., the maximum number of edge-disjoint paths
from the source to the destination. If MinCut (or MaxFlow)
equals n, the destination is still connected to the source after
any n� 1 link failures. However, by its very nature, a time-
varying network has different topologies at different
instants, so its connectivity or survivability must be mea-
sured over a long time interval and these static metrics
cannot be directly applied to time-varying networks. In
this section, we introduce two new metrics for ðn; dÞ-surviv-
ability. The fundamental relationship between the two met-
rics will be further discussed in Section 3.3.

3.2.1 Survivability Metric:MinCutd

Before we proceed to the first survivability metric, it is nec-
essary to introduce the notions of d-removal and d-cut.

Definition 7 (d-removal). A d-removal is the deletion of a link
for d consecutive time slots.

Intuitively, a d-removal just corresponds to a link failure
that lasts for d consecutive time slots.

Definition 8 (d-cut). A d-cut is a set of d-removals that can ren-
der the destination unreachable from the source.

The above definition is similar to the traditional notion of
graph cuts except that d-cuts also account for the duration
of removals.

Now we are ready to introduce the first metric for
ðn; dÞ-survivability, namelyMinCutd. This metric directly fol-
lows from the definition of ðn; dÞ-survivability and is analo-
gous to MinCut in static networks.

Definition 9 (MinCutd).MinCutd is the cardinality of the small-
est d-cut, i.e., the minimum number of d-removals needed to
render the destination unreachable from the source.

Discussion. First, MinCutd gives the minimum number of
d-removals required to disconnect the time-varying network.
In particular, when MinCutd ¼ n, the source-destination pair
can safely survive any n� 1 failures that last for d slots and is
thus ðn� 1; dÞ-survivable. Second, MinCutd generalizes Min-
Cut in static networks since we can simply set d = T such that
a d-removal becomes a permanent link removal.

Fig. 3 gives an illustration of MinCutd and ðn; dÞ-surviv-
ability. By computing the value ofMinCutd, we can conclude
that the network is ð3; 1Þ-survivable and ð1; 2Þ-survivable,
meaning that it can tolerate any 3 failures lasting for one slot
or any single failure lasting for two slots. By comparison, the
traditional notions of graph cut and survivability presume
permanent failures and fail to account for the influence of
failure duration. Thus, ðn; dÞ-survivability is a much finer-
grained characterization of network survivability and is
particularly suitable for time-varying networks.

Formulation. MinCutd corresponds to the following Inte-
ger Linear Programming (ILP) problem:

min
X
ðe;tÞ2C

ye;t

s.t.
X

ðe;tÞ2Rðd;JÞ
ye;t � 1; 8J 2 J sd;

ye;t 2 f0; 1g; 8ðe; tÞ 2 C:

Fig. 3. Illustration of MinCutd and ðn; dÞ-survivability. The source-destina-
tion pair is ðA;CÞ. (a) When d ¼ 1, each failure lasts for one slot and it
requires at least four one-slot failures to disconnect A and C, i.e.,
MinCut1 ¼ 4. (b) When d ¼ 2, each failure lasts for two slots and it requires
only two 2-slot failures to disconnect the network, i.e., MinCut2 ¼ 2. As a
result, the network is ð3; 1Þ-survivable and ð1; 2Þ-survivable, meaning that it
can tolerate any three failures lasting for one slot or any single failure lasting
for two slots.
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Here, ye;t is a binary variable indicating whether a
d-removal occurs to edge e in slot t, and C is the set of con-
tacts in the time-varying graph. J sd is the set of feasible
journeys from s to d. For any J 2 J sd, we define Rðd; JÞ as
the set of contacts fðe; tÞg such that if ye;t ¼ 1 then journey J

will be disrupted, i.e., Rðd; JÞ ¼ fðe; tÞj 9ðe; t0Þ 2 CJ s.t. 0 �
t0 � t < dg, where CJ is the set of contacts used by journey
J . Thus, the first constraint in the above ILP forces every
journey from s to d to be disrupted by at least one of the
selected d-removals, such that d is not reachable from s.

The above formulation is concise but has an exponential
number of constraints because the number of possible jour-
neys is exponential in the number of contacts. There also exists
a compact ILP formulation which is less intuitive and omitted
here for brevity. The complexity and the algorithm for solving
the above ILPwill be further discussed in Section 4.2.

3.2.2 Survivability Metric:MaxFlowd

The second survivability metric, namelyMaxFlowd, is analo-
gous to MaxFlow in static networks. Before the detailed def-
inition of this metric, we first introduce the notion of
d-disjoint journeys.

Definition 10 (d-disjoint Journey). A set of journeys from
the source to the destination are d-disjoint if any two of these
journeys do not use the same edge within d time slots.

Mathematically, suppose J is a set of d-disjoint journeys.
For any two journeys J1; J2 2 J , if edge e is used by J1 in
slot t, then J2 cannot use the same edge e from slot t� dþ 1
to slot tþ d� 1. In other words, sliding a window of d slots
over time, we can observe at most one active journey over
each edge within the window. Fig. 4 gives an example of
d-disjoint journeys for the cases where d ¼ 1 and d ¼ 2.

It is easy to see that each one of the d-disjoint journeys
keeps a “temporal distance” of d slots from others. Due to
the temporal distance, any failure that lasts for d slots can
influence at most one of these d-disjoint journeys. Conse-
quently, the maximum number of d-disjoint journeys in a
time-varying network is a good indicator of its survivabil-
ity. The more d-disjoint journeys there exist, the more fail-
ures (lasting for d slots) the network can survive. Now it
is natural to introduce the second survivability metric
MaxFlowd.

Definition 11 (MaxFlowd). MaxFlowd is the maximum num-
ber of d-disjoint journeys from the source to the destination.

Discussion. First, we would like to compare MaxFlow (for
static networks) and MaxFlowd (for time-varying networks).
MaxFlow considers disjoint paths which require spatial dis-
jointness, i.e., any two disjoint paths never use the same link.
This requirement is too demanding for time-varying net-
works because such networks often have sparse spatial con-
nectivity. In the example of bus communication networks
(see Section 5), we will see that a time-varying network may
not have any spatially-disjoint paths. Thus, MaxFlow is not
an appropriate metric for time-varying networks. By com-
parison, MaxFlowd considers d-disjoint journeys, which
allows for temporal disjointness. Moreover, MaxFlowd gener-
alizes MaxFlow since we can simply set d = T so that d-dis-
joint journeys become spatially disjoint.

Second, MaxFlowd not only gives us a measure of net-
work survivability but also tells us how to achieve such
survivability. The idea is similar to Disjoint-Path Protec-
tion in static networks [26], [27], where disjoint paths are
used as backup routes. In time-varying networks, we can
send packets along different d-disjoint journeys to
increase transmission reliability. If we use n d-disjoint
journeys (i.e., MaxFlowd � n), the transmission can sur-
vive any n� 1 failures that last for d slots and is thus
ðn� 1; dÞ-survivable.

Formulation.MaxFlowd corresponds to the following ILP:

max
X
J2J sd

xJ

s.t.
X

J :ðe;tÞ2Rðd;JÞ
xJ � 1; 8ðe; tÞ 2 C

xJ 2 f0; 1g; 8J 2 J sd:

Here, xJ is a binary variable indicating whether journey
J should be added to the set of d-disjoint journeys. All the
other notations have the same meanings as in the formula-
tion of MinCutd. The first constraint checks every edge and
forces this edge to be used by at most one of the d-disjoint
journeys in any time window of d slots. The above formula-
tion also has an exponential number of constraints. A com-
pact formulation also exists but is omitted for brevity. The
complexity and the algorithms for solving the above ILP
will be further investigated in Section 4.1.

3.3 Analysis of Metrics

Recall that in static networks, the well-known Menger’s
Theorem shows that Mincut equals MaxFlow; due to this
equivalence, we can compute MaxFlow and MinCut effi-
ciently (e.g., the Ford-Fulkerson algorithm). Hence, it is nec-
essary to study the fundamental relationship between
MinCutd and MaxFlowd, in order to gain insights into their

computation. Let MinCutRd and MaxFlowR
d be the LP relaxa-

tion for the ILP formulation of MinCutd and MaxFlowd,

respectively. It is easy to show that MinCutRd is the dual prob-

lem of MaxFlowR
d . By strong duality and the properties of LP

relaxation, we make the following observation:

MaxFlowd � MaxFlowR
d ¼ MinCutRd � MinCutd:

Fig. 4. Illustration of d-disjoint journeys. The source-destination pair is
ðA;CÞ. (a) When d ¼ 1, any two different d-disjoint journeys cannot use
the same link within the same slot, and there are four d-disjoint journeys.
(b) When d ¼ 2, only two d-disjoint journeys exist since any link cannot
be used by two d-disjoint journeys within two slots. For example, link
A! B has been used by Journey 2 in slot 1, so any other d-disjoint jour-
ney cannot use this link in slot 1 or 2.
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As a result, as long as Menger’s Theorem holds in time-
varying networks (i.e., MaxFlowd ¼ MinCutd), all of the four
quantities will be equivalent, and we can simply compute
MaxFlowd andMinCutd by solving their LP relaxations. Inter-
estingly, the following theorem shows that Menger’s Theo-
rem only “conditionally” holds in time-varying networks.

Theorem 1. Time-varying graphs have the following survivabil-
ity properties:

(I) If d ¼ 1, then Menger’s Theorem holds for any time-
varying graph, i.e.,MaxFlow1 ¼ MinCut1.

(II) For any d � 2, there exist instances of time-varying
graphs such that MaxFlowd < MinCutd. Moreover,

the gap ratio MinCutd
MaxFlowd

can grow without bound.

Proof.We prove the two properties separately.

� Proof of Property (I).
Consider a time-varying graph G with the source s

and the destination d. Let MaxFlow be the maximum
number of node-disjoint paths from s to d in the Line
Graph of G and MinCut be the cardinality of the smallest
node cut that separates s and d in the Line Graph. It is not
hard to verify the following lemma. tu

Lemma 1. MaxFlow1 ¼ MaxFlow andMinCut1 ¼ MinCut.

Remark 1. Lemma 1 does not holds for d � 2. For example,
if d ¼ 2, there is only one d-disjoint journey in Fig. 2a but
there are two node-disjoint paths in its Line Graph.

Now we can apply the node-version Menger’s Theorem
to the Line Graph and obtain MaxFlow ¼ MinCut. By
Lemma 1, we can conclude that

MaxFlow1 ¼ MaxFlow ¼ MinCut ¼ MinCut1:

� Proof of Property (II).
The non-trivial part is to show that the gap ratio can be

arbitrarily large. We construct a family of time-varying
graphs fGkgk�1 such that MinCutd

MaxFlowd
¼ k for any d � 2 in the kth

graph. The constructions for k ¼ 1; 2; 3 are shown in Fig. 5.
We can observe that G1 is a single-level graph; G2 is built
upon G1, where the first level is exactly G1; similarly, G3 is
built upon G2, where the first two levels are exactly G2.

We use inductions to prove that MaxFlowd ¼ 1 while
MinCutd ¼ k for any d � 2 in the kth graph Gk.
� In G1, the source-destination pair is ðs; d1Þ. It is obvi-

ous thatMaxFlowd ¼ MinCutd ¼ 1 for any d � 2.
� In G2, the source-destination pair is ðs; d2Þ. We want

to show that MaxFlowd ¼ 1 but MinCutd ¼ 2 for any
d � 2. To see MaxFlowd ¼ 1, we notice that there are
two possible choices for traveling from s to d2. One is
via node d1 and the other is to directly descend to
level 2. The former choice yields only one d-disjoint
journey from s to d2 since we know from G1 that
there is only one d-disjoint journey from s to d1. For
the latter choice, the only possibility is
s! v2;1 ! v2;2 ! v2;3 ! d2 but this journey cannot
be d-disjoint of any journey in the first choice (i.e.,
via node d1) for any d � 2. Hence, there is only one
d-disjoint journey from s to d2, i.e., MaxFlowd ¼ 1 for
any d � 2. Now it remains to show MinCutd ¼ 2 and
we prove this by showing that any single d-removal
cannot disconnect d2 from s. If the d-removal takes
place in level 1, there exists a feasible journey from s
to d2 via s! v2;1 ! v2;2 ! v2;3 ! d2 in slots 4, 5, 6, 7.
If the d-removal occurs to some contact outside level
1, the journey from s to d1 is still available. Moreover,
there exists at least one journey from d1 to d2 since
there are two spatially disjoint journeys from d1 to d2
(one journey is via d1 ! v2;1 ! v2;2 ! d2 in slots 3, 4,
5, and the other journey is via d1 ! v2;3 ! d2 in slots
3, 7). As a result, d2 is still reachable from s via
s! d1 ! d2. Now it is safe to conclude that any sin-
gle d-removal cannot disconnect d2 from s, which
implies MinCutd � 2. Note that d2 can be easily made
unreachable from s with 2 d-removals (e.g., disable
the two contacts from s). Therefore,MinCutd ¼ 2

Note that the key part in G2 is the “shortcut edge”
v2;2 ! d2 which can only be used by journeys that travel
through d1.

Now we generalize the above idea to arbitrary k. In gen-
eral, graph Gk has k levels. Different levels share the same
source s and have their own “virtual destinations”
d1; . . . ; dk. Note that the real source-destination pair in Gk is
ðs; dkÞ. Besides, the ith level has 2i� 1 “inner nodes”, where
we denote vi;j the jth inner node at level i. The “inner con-
tacts” in level i include the following.

� s! vi;1: active in slot i;
� vi;j ! vi;jþ1: active in slot i for any even j and in slots

i� 1, i for any odd j;
� vi;2i�1 ! di : active in slot i;
� vi;j ! di: active in slot i� 1 for any even j.
There is also a “cross-level edge” from a lower level to a

higher level, i.e., di ! viþ1;j which is active in slot i for any
1 � i � k� 1 and odd j.

Then we prove by induction that in Gk, MaxFlowd ¼ 1
and MinCutd ¼ k for any d � 2. When k ¼ 1, we have shown
thatMinCutd ¼ 1 andMaxFlowd ¼ 1 for any d � 2. Now sup-
pose the claim holds in G1; . . . ;Gk for some k � 1. In Gkþ1,
there are two possible choices for traveling from s to dkþ1:
one is via node dk (i.e., s! dk ! dkþ1) and the other is to
directly descend to the ðkþ 1Þth level (i.e., s! vkþ1;1 !
vkþ1;2 ! � � � ! dkþ1). By our induction, there is only one

Fig. 5. Examples used in the proof of Property (II) in Theorem 1. The
source-destination pair is ðs; dkÞ in graph Gk (k ¼ 1; 2; 3). Edge traversal
delay is one slot.
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d-disjoint journey from s to dk, so the former choice can yield
only one d-disjoint journey from s to dkþ1. Moreover, which-
ever journey from s to dkþ1 that travels via dk is chosen, it
cannot be d-disjoint of the latter choice of journey (i.e.,
s! vkþ1;1 ! vkþ1;2 ! � � � ! dkþ1) for any d � 2. As a result,
there is only one d-disjoint journey from s to dk, i.e.,
MaxFlowd ¼ 1 for any d � 2 in Gkþ1 .

As for MinCutd, we notice that MinCutd � kþ 1 in Gkþ1
since removing all the contacts starting from s can separate
s and dkþ1. Then it is sufficient to prove MinCutd � kþ 1,
i.e., any k d-removals cannot disconnect s and dkþ1 when
d � 2. To show this point, we first denote by C1 the set of
inner contacts in levels 1; 2; . . . ; k and all cross-level con-
tacts, and denote by C2 the inner contacts in level kþ 1.
Then we discuss three possible scenarios.

� Case 1: all the k d-removals are in C1. In this case, it is
still possible to travel from s to dkþ1 within level
kþ 1, i.e., s! vkþ1;1 ! vkþ1;2 ! � � � ! dkþ1.

� Case 2: all the k d-removals are in C2. It can be
observed that there are kþ 1 d-disjoint journeys from
dk to dkþ1, so even with k d-removals of the inner con-
tacts in level kþ 1, there is still one journey from dk
to dkþ1, thus preserving a journey s! dk ! dkþ1.

� Case 3: there are i > 0 d-removals in C1 and
k� i > 0 d-removals in C2. In this case, we first
notice that with i < k d-removals in C1, there is still
a journey from s to dk (by the induction in Gk) and
there are at least kþ 1� i d-disjoint journeys from dk
to dkþ1 even after the i d-removals in C1. As a result,
with k� i > 0 d-removals in C2, at least one journey
from dk to dkþ1 is preserved, thus also preserving a
journey s! dk ! dkþ1.

Therefore, we can conclude that MinCutd ¼ kþ 1 in Gkþ1
for any d � 2, which completes the induction proof.

The first proposition in Theorem 1 implies thatMaxFlow1

and MinCut1 can be efficiently computed. We provide two
possible approaches here. The first approach is to directly
solve the LP relaxation. Alternatively, we can first derive
the Line Graph of the original time-varying graph and then
apply traditional MaxFlow algorithms such as Ford-Fulker-
son algorithm to find the maximum number of node-disjoint
paths in the Line Graph. The correctness of this approach
can be easily verified by observing that MaxFlow1 equals
the maximum number of node-disjoint paths in the Line
Graph. This also gives the result for MinCut1 since
MinCut1 ¼ MaxFlow1.

The second proposition in Theorem 1 demonstrates that
Menger’s Theorem could break down in time-varying
graphs, which highlights a key difference between time-
varying and static graphs. Due to this fundamental differ-
ence, the traditional techniques used to compute MaxFlow
or MinCut in static networks, such as the Ford-Fulkerson
algorithm, cannot be applied to time-varying graphs to
compute MaxFlowd or MinCutd. In the next section, we will
further discuss the computation of the two metrics.

4 COMPUTATIONAL CONSIDERATION

In this section, we study the computational complexity and
related algorithms for computing MaxFlowd and MinCutd in
time-varying networks.

4.1 Computation ofMaxFlowd

We start with the computation of MaxFlowd for an arbitrary
value of d, referred to as the dd-MAXFLOW problem. We first
show that d-MAXFLOW is NP-hard to approximate within

OðjEj12��Þ for any � > 0 and then develop an algorithm that

achieves Oð
ffiffiffiffiffiffiffi
jEj

p
Þ-approximation. Finally, a special case

where d-MAXFLOW may be solved in polynomial time is
discussed.

4.1.1 Computational Complexity

The following theorem shows that d-MAXFLOW is even
NP-hard to approximate.

Theorem 2. d-MAXFLOW is NP-hard. It is even NP-hard to

achieve OðjEj1=2��Þ-approximation for any � > 0.

Proof. The proof is based on a reduction from the Bounded-
Length Edge-Disjoint Paths (BLEDP) problem which is
NP-hard [22].

� PROBLEM: BLEDP.
� INSTANCE:

- A weighted digraph G0 ¼ ðV 0; E0Þ, where the
weight on edge e indicates its length (denoted
by le). The length of each edge is a positive
integer.

- The source-destination pair ðs; dÞ.
- An integer L > 0 indicating the length

bound.
� QUESTION: Find the maximum number of edge-dis-

joint paths from s to d in G0 such that the length of
each of these paths is upper-bounded by L. tu

Here we make an additional assumption that there exists
no edge with its length greater than L in G0. We also assume
that there are no isolated nodes in G0. These assumptions do
not change the complexity of BLEDP because we can simply
remove these isolated nodes or long edges from G0 without
any influence on the optimal solution.

The high-level idea of the reduction is to transform the
“spatial length bound” into a “temporal length bound”. Note
that in ourmodel, a natural temporal bound T exists so we set
T ¼ L. In addition, we also need to make sure that whenever
edge e is crossed, a “temporal distance” of le slots is traversed.
Since it is assumed that edge-traversal delay is one time slot,
we can expand each edge in series such that extra delay is
incurred. To be more specific, if the length of edge e is le, we
replace this single edge by le edges that are concatenated in
series; each of the catenated edges has one-slot traversal delay
and is active in the entire time span. An example is illustrated
in Fig. 6. It is trivial to check that BLEDP is equivalent to solv-
ing d-MAXFLOW in the constructed time-varying graph for
d ¼ T . Hence, d-MAXFLOW isNP-hard.

It remains to investigate the hardness of approximating
d-MAXFLOW. Guruswami et al. [22] proved that BLEDP is

NP-hard to approximate within OðjE0j12��Þ for any � > 0.
Moreover, in their constructed graph (underlying the BLEDP
problem) for proving the inapproximability bound, the sum
of arc lengths is

P
e2E0 le ¼ OðjE0jÞ. In our constructed time-

varying graph, we have jEj ¼
P

e2E0 le ¼ OðjE0jÞ, which

implies jE0j ¼ VðjEjÞ. Therefore, it is also NP-hard to achieve

OðjEj12��Þ-approximation for d-MAXFLOW.
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4.1.2 Approximation Algorithm

Next, we propose a greedy algorithm that achieves Oð
ffiffiffiffiffiffiffi
jEj

p
Þ

approximation. Such an approximation ratio is near-optimal

as compared to the inapproximability bound of OðjEj12��Þ
(see Theorem 2). The greedy algorithm is inspired by the
Blocking Flow Algorithm [24] for the network flow prob-
lem. Intuively, it iteratively calculates the shortest journey
that is d-disjoint from those previously selected journeys.
Before we move on to the detailed algorithm description, it
is necessary to introduce a short-hand term called interfering
contact.

Definition 12 (Interfering Contact). Consider a journey J .
A contact ðe; tÞ is said to be an interfering contact of journey J
if there exists a contact ðe; t0Þ used by J such that jt� t0j < d.

If J is one of the d-disjoint journeys, then its interfering
contacts cannot be used by any other d-disjoint journey.

Now we are ready to present a greedy algorithm for
d-MAXFLOW, shown as Algorithm 1. It first computes the
Line Graph (see Section 2.3) of the original time-varying
graph and then finds an s-d path with the least number of
nodes in the Line Graph. By the property of Line Graphs (see
Observation 1 in Section 2.3), this path corresponds to a jour-
ney in the original time-varying graph; then we add this jour-
ney to the set of d-disjoint journeys. The next operation is to
remove all the interfering contacts of this journey from the
time-varying graph and reconstruct the Line Graph from the
remaining time-varying graph. If s and d are still connected in
the Line Graph, the above procedure is repeated until s and d
are disconnected. From the definition of interfering contacts,
we can easily verify that the obtained journeys are d-disjoint.

Nowwe estimate the time complexity of this greedy algo-
rithm. In each iteration (steps 1-1), we need to compute the
Line Graph and the path with the least number of nodes.
Recall that we denote jCj the total number of contacts in the

time-varying graph. Then it takes OðjCj2Þ time to construct

the Line Graph and OðjCj2Þ time to compute the path
with the least number of nodes (suppose BFS is used). Also
note that the total number of iterations is at most jCj since the
number of d-disjoint journeys cannot exceed jCj and each
iteration adds one d-disjoint journey. Consequently, the over-

all time complexity of the greedy algorithm isOðjCj3Þ.

Algorithm 1. Greedy Algorithm for d-MAXFLOW

Input:
G: the time-varying graph;
ðs; dÞ: the source-destination pair;
d: the degree of temporal disjointness;

Output:
J1; . . . ; Jm: a set of d-disjoint journeys.

1: Initializem ¼ 0;
2: Compute the Line Graph of G;
3: if s and d is disconnected in the Line Graph then
4: Go to step 10;
5: end if
6: m mþ 1;
7: In the Line Graph, find an s� d path Pm that passes

the least number of nodes (the corresponding journey
is denoted by Jm);

8: Remove all the interfering contacts of Jm from G;
9: Go to step 2;
10: END.

The approximation ratio of this greedy algorithm is given
in the following theorem.

Theorem 3. The greedy algorithm attains Oð
ffiffiffiffiffiffiffi
jEj

p
Þ approxima-

tion for d-MAXFLOW, i.e., OPT
ALG ¼ Oð

ffiffiffiffiffiffiffi
jEj

p
Þ.

Proof. If the the destination is unreachable from the source,
both the optimal solution and the greedy algorithm will
yield a result of zero, where no approximation gaps exist.
Hence, it is enough to consider the scenario where the
destination is reachable from the source.

Before the detailed proof, it is essential to define the
notions of short paths and long paths in the Line Graph. Let k
be an arbitrary positive integer. A short path consists of at
most k nodes while a long path is made up of more than k
nodes. Their corresponding journeys are called the short
journey (traversing at most k edges) and the long journey
(traversing more than k edges), respectively. Denote
J 	 ¼ fJ	1 ; . . .g the optimal solution and J ¼ fJ1; . . .g the
solution obtained by the greedy algorithm.

We first prove that the number of long journeys in J 	

is at most
jEjðT

d
þ1Þ

k . Indeed, since journeys in J 	 are d-dis-

joint, each edge can be traversed by at most dT
d
e journeys

in J 	. At the same time, each of the long journeys in J 	
traverses more than k edges so the total number of long

journeys in J 	 can be at most bd
T
dejEj
k c �

jEjðTdþ1Þ
k .

Thenwe prove that the number of short journey in J 	 is
at most 2k� jJ j. To show this point, we first prove that
each short journey (say J	j ) in J 	 is interfered by some

short journey (say Ji) in J (i.e., J	j and Ji use the same

edge within d slots). Note that each short journey in J 	
must be interfered by at least one journey in J otherwise
the greedy algorithm is not finished. Let Ji 2 J be the jour-
ney that interferes with some journey J	j 2 J 	 for the first
time, i.e., journeys constructed in the greedy algorithm
before Ji do not interfere with J	j . In other words, when the

greedy algorithm is constructing journey Ji, journey J	j is

also a candidate journey. Since Ji is selected rather than J	j ,

it implies that the number of edges traversed by Ji is less or

Fig. 6. Illustration of the reduction from BLEDP to d-MAXFLOW. Note
that in the constructed time-varying graph, edge traversal delay is one
time slot and each edge is active in the entire time span f1; 2; 3; 4g:
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equal to that of J	j . Due to the fact that J	j is a short journey,

we can conclude that Ji is also a short journey.
Meanwhile, each short journey in J can interfere with

at most 2k d-disjoint journeys because any short journey
in J contains at most k contacts and each of these con-
tacts can interferes with at most 2 d-disjoint journeys.
Hence, the total number of d-disjoint journeys that can be
interfered by the short journeys in J is at most 2k� jJ j.
Since we have shown that each short journey in J 	 is
interfered by at least one short journey in J , it is safe to
conclude that the number of short journeys in J 	 is
upper-bounded by 2k� jJ j, which means that

jJ 	j ¼ jJ 	longj þ jJ 	shortj �
jEjðT

d
þ 1Þ

k
þ 2k� jJ j: (1)

Now we set k to be the integer such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEjðT

d
þ 1Þ

q
� k <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEjðT

d
þ 1Þ

q
þ 1. Then it follows that

jJ 	j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEjðT

d
þ 1Þ

r
þ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEjðT

d
þ 1Þ

r
þ 1

�
jJ j

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEjðT

d
þ 1Þ

r
jJ j þ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEjðT

d
þ 1Þ

r
þ 1

�
jJ j

¼
�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEjðT

d
þ 1Þ

r
þ 2

�
jJ j;

where the first inequality follows from the setting of k
and the second inequality holds because of our prem-
ise that jJ j � 1 (i.e., the destination is reachable from
the source). Since T is a bounded integer and d � T ,
we can finally conclude that Algorithm 1 achieves

Oð
ffiffiffiffiffiffiffi
jEj

p
Þ-approximation. tu

In practice, the greedy algorithm also performs extremely
well, as is demonstrated by the following numerical results.

Numerical Results for the Greedy Algorithm. In order to
understand the performance of the greedy algorithm, we
compare it with the optimal solution to d-MAXFLOW. In
our experiment, 1000 random time-varying graphs are
tested. Each network has 20 nodes and the underlying static
graph is a random scale-free graph. The time horizon is
T ¼ 20 slots and we assume each link is active with a proba-
bility p ¼ 0:5 in each slot. The source-destination pair is also
randomly selected. The optimal solution to d-MAXFLOW is
derived by directly solving its ILP formulation. Fig. 7 shows
the comparison, where the approximation gap is calculated

by OPT�ALG
ALG . We can observe that the approximation gap is

usually less than 8 percent, much better than the theoretical
bound in Theorem 3.

4.1.3 Special Case: Fixed-Parameter Tractability

Sometimes we may only want to find a fixed number k d-dis-
joint journeys (called the dd-FIXFLOW(kk) problem) instead of
the maximum number. For example, traditional disjoint-path
protection usually exploits two disjoint paths, one as the pri-
mary path and the other as the backup path. Unfortunately,
d-FIXFLOW(k) problem is still NP-hard in general. This hard-
ness result can be easily derived from the work of Kleinberg
et al. [21]. They showed that a special case of d-FIXFLOW(k)
problem is NP-hard, where each link is active for exactly one
slot and spatial disjointness (i.e., d ¼ T ) is assumed. Hence,
d-FIXFLOW(k) problem is also NP-hard. However, the good

news is that d-FIXFLOW(k) is solvable in polynomial time if
the underlying graph is a Directed Acyclic Graph (DAG). In
other words, the problem in this special case is Fixed-Parame-
ter-Tractable (FPT) with respect to parameter k. This can be
achieved by modifying the classic Pebbling Game [25]. The
detailed procedures are as follows.

Suppose we are given a fixed integer k > 0 and need to
find k d-disjoint journeys. Denote by LðGÞ the Line Graph of
the input time-varying graph G and let LðGÞ be the Line Graph
of the underlying graph G. Then the pebbling game executes
the following operations.

� Perform topological sorting over LðGÞ. Note that if
there is an edge u! v in LðGÞ, then the level of u is
higher than the level of v. Also note that each node
in LðGÞ represents an edge in G, so after the topolog-
ical sorting we get the level for each edge in G.
Denote le the level of edge e 2 E.

� In LðGÞ, associate node ve;t, which corresponds to
contact ðe; tÞ, with level le.

� The pebbling game is run over LðGÞ with the follow-
ing rules. Initially, there are k pebbles at the source s.
In each round of the game, we decide whether peb-
bles can be moved. A pebble can be move from node
ve;t to ve0;t0 in LðGÞ if (i) there is an edge between ve;t
and ve0;t0 in LðGÞ, (ii) there are no other pebbles

resided in any node ve0;t00 such that jt00 � t0j < d, and

(iii) the level of node ve;t is higher than or equal to
any other nodes that are resided by a pebble. Note
that if a pebble is moved from node s, rule (iii) can
be ignored; if a pebble is moved to node d, rule (ii)
can be neglected. When all the pebbles are moved to
the destination d, the pebbling game is won.

Note that when the game ends, if all the k pebbles are
moved to the destination, we can easily find k d-disjoint
journeys by using the trajectories of pebbles (by Observation
1); otherwise the game is lost and it is impossible to find k
d-disjoint journeys. The correctness of the pebbling game is
given by Theorem 4.

Theorem 4. For a given constant k, the pebbling game is won if
and only if there are k d-disjoint journeys from s to d.

Proof. When the pebbling game is won, all of the k pebbles
are moved to the destination d along k paths P1; . . . ; Pk in
the line graph, which corresponds to k journeys in the
original time-varying graph: J1; . . . ; Jk. Then we prove
that these journeys are d-disjoint.

Fig. 7. Comparison between the greedy algorithm (Algorithm 1) and the
optimal solution to d-MAXFLOW.
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Suppose two of these journeys (say Ji and Jj) are not
d-disjoint, i.e., they use the same edge (say e) within d

slots. Assume Ji uses edge e in slot ti and Jj uses e at
time tj. Then we have jti � tjj < d by the assumption.
Without loss of generality, we let pebble pi reaches ve;ti
first. Then pebble pi must leave node ve;ti before pebble

pj reaches ve;tj since jti � tjj < d (by the second rule of

the pebbling game). Denote ve0;t0 the node that pj resides

in when pebble pi moves away from ve;ti . It is obvious

that pebble pj visits node ve0;t0 before node ve;tj , so the

level of ve0;t0 is higher than the level of ve;tj , i.e., le0 � le. By

the third rule of the pebbling game, for pebble pi to be
able to move away from node ve;ti , the level of node ve;ti
must be higher than the level of node ve0;t0 , which means

that le > le0 , thus resulting in a contradiction.
Conversely, it is clear that if there are k d-disjoint jour-

neys from s to d, then the k pebbles can be moved along
the paths corresponding to these journeys, which makes
the pebbling game won. tu
The analysis of time complexity for the pebbling game is

similar to [21]. Recall that the time-varying graph G has jCj
contacts, so there are jCj þ 2 nodes in the Line Graph
(including the source node s and the destination node d).
Varying the positions of the k pebbles in LðGÞ, we can obtain

ðjCj þ 2Þk patterns. The starting pattern is the one where all
the pebbles reside in node s and the ending pattern is the
one where all the pebbles reach node d. Hence, we will go

through at most ðjCj þ 2Þk patterns before the game ends,
and the overall time complexity of the pebbling game is

OðjCjkÞ. It is easy to see that when k is a fixed constant, the
pebbling game is polynomial-time but becomes exponential
when k is a part of the input parameters.

4.2 Computation ofMinCutd
In this section, we study the computation of MinCutd for an
arbitrary value of d, referred to as the dd-MINCUT problem.

4.2.1 Computational Complexity

The complexity of d-MINCUT is given in Theorem 5.

Theorem 5. d-MINCUT is NP-hard.

Proof. Kempe et al. [21] showed that in a special type of
time-varying graphs, where each link is active for only
one slot, it is NP-hard to determine whether there exists a
set of k nodes whose permanent removals can disconnect
the source-destination pair. This is obviously a restricted
instance of the node-version d-MINCUT problem, which
implies that the node-version d-MINCUT is NP-hard.
Moreover, it can be verified that node-version problems
are just a special case of edge-version problems by using
node splitting (see [19], Chapter 7.2). Hence, the edge-ver-
sion d-MINCUT problem is also NP-hard. tu

4.2.2 Approximation Algorithm

In this section, we present an approximation algorithm
(referred to as the min-weight algorithm) for d-MINCUT. The
algorithm is inspired by the fact that MinCutd can be effi-
ciently computed for d ¼ 1 (see Section 3.3). It first computes
the smallest one-cut and then constructs a feasible solution

to d-MINCUT out of the one-cut. The detailed procedures
are as follows.

� Step 1: Assign a weight to each contact according to
its “temporal closeness” to other contacts. Intui-
tively, if there are more contacts in the “temporal
neighborhood” of the given contact, then a d-removal
(i.e., a d-slot failure) of this contact will disable more
neighboring contacts at the same time. Hence, this
contact should be given a smaller weight such that it
has a higher priority of being removed. We let the
weight of a contact be inversely proportional to the
number of its “neighboring” contacts (see SETWEIGHT

in Algorithm 2).
� Step 2: Compute MinCut1 over the weighted time-

varying graph. Note that Property (I) in Theorem 1
still holds in weighted time-varying graphs, so
MinCut1 can be efficiently computed (e.g., by solving
the LP relaxation). After this step, we obtain a set of
contacts S	 with the smallest sum of weights whose
removals will disconnect the source-destination pair.

� Step 3: Compute the d-cover of S	, i.e., the smallest set
of d-removals needed to cover all the contacts in S	.
For example, suppose S	 ¼ fðe1; 1Þ; ðe1; 2Þ; ðe2; 2Þ;
ðe2; 4Þg and d ¼ 2. Then we need at least three
d-removals to cover all the contacts in S	: one for
ðe1; 1Þ and ðe1; 2Þ, one for ðe2; 2Þ and one for ðe2; 4Þ;
this means that jCoverdðS	Þj ¼ 3. Finally, the d-cover
of S	 is returned as a feasible solution to d-MINCUT.

The above steps are summarized in Algorithm 2. We
briefly discuss the complexity of this algorithm. The time
complexity used for setting weights (step 1) is OðjCjdÞwhere
jCj is the number of contacts in the time-varying network.
The time complexity of step 2 depends on the way we com-
pute MinCut1 (see Section 3.3 for different approaches). For
example, if Ford-Fulkerson Algorithm is used over the Line
Graph to compute MinCut1, then step 2 of Algorithm 2 con-

sumes OðjCj3Þ time. The computation of the d-cover (step 3)
consumesOðjCjÞ time. Hence, the overall time complexity of

themin-weight algorithm (Algorithm 2) isOðjCj3Þ.

Algorithm 2.Min-Weight Algorithm for d-MINCUT

1: Call SETWEIGHT to compute the weight for each contact;
2: ComputeMinCut1 over the weighted time-varying graph,

where we obtain a set of contacts S	 with the smallest sum of
weights whose removals will disconnect the source-destina-
tion pair;

3: Return the d-cover of S	 as the solution.
4: Procedure: SETWEIGHT

5: for each contact ðe; tÞ do
6: Scan all the d-slot windows containing ðe; tÞ, and find the

one that contains the maximum number of contacts (say
containingKe;t contacts);

7: Set ve;t ¼ 1
Ke;t

;
8: end for

The approximation ratio of the above min-weight algo-
rithm is given in the following theorem.

Theorem 6. The min-weight algorithm (Algorithm 2) achieves

d-approximation for d-MINCUT, i.e., ALGOPT � d.
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Proof. We make two simple observations regarding the
weights. The first is that ve;t � 1

d
since Ke;t � d. The second

is that the sum of weights that can be removed by one
d-removal is less than or equals to 1. Indeed, consider a cer-
tain d-removal that deletes contacts ðe; t1Þ; ðe; t2Þ; . . . ;
ðe; tmÞ. It should be obvious that Ke;ti � m for any

1 � i � m, which means
Pm

i¼1 ve;ti ¼
Pm

i¼1
1

Ke;ti
�

Pm
i¼1

1

m ¼ 1. Thenwe introduce the following lemma. tu

Lemma 2. LetC be an arbitrary set of contacts whose removals dis-
connect the source-destination pair. The following result holds

X
ðe;tÞ2C

ve;t � jCoverdðCÞj � d
X
ðe;tÞ2C

ve;t:

Proof. The lower bound directly follows from the second
observation mentioned above. Then we get down to prov-
ing the upper bound. Denote Ec the set of underlying
edges in C. For each edge e 2 Ec, suppose we need ne

d-removals to completely delete e from C, and the corre-
sponding removal heads are ðe; t1Þ; ðe; t2Þ ; . . . ; ðe; tneÞ,
where we assume 1 � t1 < t2 < � � � < tne � T . Denote
Ce;i the set of contacts deleted by the d-removal with head
ðe; tiÞ and define

We;i ¼
X

ðe;tÞ2Ce;i

ve;t; 8e 2 Ec and 1 � i � ne: (2)

Then we have

jCoverdðCÞj ¼
X
e2Ec

ne ¼
X
e2Ec

Xne
i¼1

P
ðe;tÞ2Ce;i

ve;t

We;i
; (3)

where the last equality is due to Equation (2). We also
notice that for any e 2 Ec and 1 � i � ne

X
ðe;tÞ2Ce;i

ve;t � ve;ti ;

because contact ðe; tiÞ is included in Ce;i. By simple trans-
formations, we obtainP

ðe;tÞ2Ce;i
ve;t

ve;ti

� 1 ¼
P
ðe;tÞ2Ce;i

ve;t

We;i
:

Since ve;ti � 1
d
, we have

d
X

ðe;tÞ2Ce;i

ve;t �
P
ðe;tÞ2Ce;i ve;t

ve;ti

�
P
ðe;tÞ2Ce;i

ve;t

We;i
:

Taking the above inequality into (3), we obtain

jCoverdðCÞj � d
X
e2Ec

Xne
i¼1

X
ðe;tÞ2Ce;i

ve;t ¼ d
X
ðe;tÞ2C

ve;t:

The last equality holds because C ¼
S

e2Ec

S ne
i¼1Ce;i and

any two sets in the collection fCe;ije 2 Ec; 1 � i � neg do
not intersect.

With the above lemma, we are ready to prove the
approximation ratio for the min-weight algorithm. Sup-
pose CALG is the set of contacts disabled by the solution
of the min-weight algorithm and C	 is the set of contacts
disabled by the optimal solution to d-MINCUT. Then
according to Lemma 2, we have

jCoverdðCALGÞj � d
X

ðe;tÞ2CALG

ve;t:

Since the min-weight algorithm first finds the minimum
number of 1-removals that can disconnect the source-des-
tination pair in theweighted time-varying graph, we have

X
ðe;tÞ2CALG

ve;t �
X
ðe;tÞ2C	

ve;t:

This implies that

jCoverdðCALGÞj � d
X
ðe;tÞ2C	

ve;t � djCoverdðC	Þj;

where the last inequality is due to the lower bound in
Lemma 2. Therefore, d-approximation is achieved by the
min-weight algorithm. tu

Numerical Results for the Min-Weight Algorithm. The simula-
tion setting is the same as that used for Algorithm 1. Fig. 8
shows the comparison between the min-weight algorithm
(Algorithm 2) and the optimal solution to d-MINCUT. We
notice that the min-weight algorithm is close to the optimum:
the approximation gap2 is less than 10 percent for a rela-
tively small value of d; in particular, the approximation gap is
zero when d ¼ 1. The final observation is that the approxima-
tion gap becomes largerwith the increase in d; this tendency is
consistentwith the theoretical approximation ratio of d.

5 APPLICATION IN BUS COMMUNICATION

NETWORKS

In this section, we demonstrate how to use our survivability
framework to facilitate the design of robust networks in prac-
tice. To be more specific, we exploit d-disjoint journeys to
design a survivable routing protocol for a real-world bus com-
munication network [2]. Each bus in the network has a pre-
designed route and is equipped with an 802.11 radio that
constantly scans for other buses. Since the route of each bus
is designed in advance, we can make a coarse prediction about
bus mobility and the evolution of their communication
topology. As a result, we can convert this bus communica-
tion network into a time-varying graph whose topology
changes according to the estimated bus mobility. However,
the prediction may be imperfect due to various reasons such
as unexpected obstacles, traffic accidents, traffic jam, etc. The

Fig. 8. Comparison between the min-weight algorithm (Algorithm 2) and
the optimal result to d-MINCUT.

2. The approximation gap is calculated by ALG�OPT
OPT .
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goal of survivable routing is to reduce the packet loss rate
due to these unpredictable failures. In the rest of this section,
we first present the design of the survivable routing protocol
using d-disjoint journeys. Then we discuss trace statistics,
simulation settings and results.

5.1 Survivable Routing Protocol: DJR

The basic idea of this protocol is to replicate each packet at
the source and send these copies along multiple d-disjoint
journeys obtained by solving d-MAXFLOW. When at least
one of these copies reaches the destination, the original
packet is successfully delivered. This replication-based pro-
tocol is referred to as Disjoint-Journey Routing (DJR).

5.2 Traces

We use the trace fromUMassDieselNet [2] where a public bus
transportation systemwas operated around Amherst, Massa-
chusetts. The trace records the contacts among 21 buses in
nine days, which roughly reflects bus mobility over the pre-
designed bus routes. We use such contact information as a
coarse prediction for the states of bus-to-bus links in the nine-
day period.However, we assume that the prediction is imper-
fect and unpredictable failuresmay disable these contacts (the
failuremodel will be introduced in the next section).

Fig. 9 shows the snapshots of the network topology at dif-
ferent instants on Day 1. Note that the position of each node
does not correspond to its physical location due to the lack of
geographical information. It can be observed that this bus
communication network is sparsely and intermittently con-
nected: at each point of time, there exist very few contacts in
the network and the topology could be very different at differ-
ent instants. This highlights the difficulty of exploiting spa-
tially-disjoint paths for robust transmission as in [26], [27].

Fig. 10 illustrates the statistics of the bus communication
network and reveals two important features of the network.
The first is the “bursty” structure of contacts between any two

buses; that is, buses only communicate with each other occa-
sionally. Fig. 10a illustrates such a bursty structure for a typi-
cal pair of buses. The second observation is that most
connections in this network last for only a short period of
time. As is shown in Fig. 10b,most contacts span less than 20s.

5.3 Simulation Settings

In our simulation, the slot length is identical to the trace reso-
lution, i.e., one second. According to the measurement in [2],
the average transmission rate is about 1.64 Mbps. If the
packet size is set to be 1 KB, the transmission time of one
packet is nearly negligible as compared to the slot length,
which implies zero link-traversal delay. Each packet has a
deadline (DDL) after which it will be dropped from the net-
work; naturally, the packet deadline can be modeled by the
time horizon T of the corresponding time-varying graph. A
packet is generated between a random source-destination
pair immediately after the previous packet expires or gets
delivered. In addition, at most n copies are allowed, meaning
that we can use at most n d-disjoint journeys to send these
copies. Algorithm 1 is used to compute d-disjoint journeys.

Since it is impossible to precisely predict future topology
changes, we impose random failures on the time-varying
graph generated from the trace. For each link, we let failures
occur in each slotwith a certain probability p, and the duration
of each failure is uniformly distributed within ½0; d
 seconds.
The performancemetric is the packet loss rate, i.e., the fraction
of packets that fail to reach the destination before the deadline.

5.4 Total Number of d-Disjoint Journeys

We first look at the maximum number of d-disjoint journeys
in the bus communication network (Fig. 11). First, it can be
observed that there exist very few d-disjoint journeys in this
network: less than three d-disjoint journeys when d � 5. Par-
ticularly, only one d-disjoint journey exists when d is rela-
tively large, which means that it is almost impossible to find
even two journeys that are spatially disjoint (i.e., d ¼ T ).
This observation indicates the lack of spatial connectivity in
this bus network and implies the inefficiency of traditional
Disjoint-Path Routing in networks with intermittent connec-
tivity since such a protocol only relies on spatial diversity.
Second, we can observe the diminishing return for the num-
ber of d-disjoint journeys: beyond a certain value of d, the
increase of d no longer reduces the number of d-disjoint jour-
neys. Such a tendency is due to the bursty contact structure
in this network (see Section 5.2). The final observation is
that extending the packet deadline increases the total

Fig. 9. Snapshots for the topology of the bus communication network.
Note that the position of each node does not correspond to its physical
location.

Fig. 10. Statistical structures of the bus communication network. (a) The
bursty pattern of the contacts between a typical pair of buses. (b) Histogram
for contact durations. Most contacts only last for a short period of time.
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number of d-disjoint journeys since there are more transmis-
sion opportunities within a longer deadline.

5.5 Tunability of DJR

Next, we study the two-dimensional tunability of DJR
(Fig. 12). We first investigate the tunability of n, i.e., the
maximum number of copies we are allowed to produce or
the maximum number of d-disjoint journeys we can use. If
we are allowed to use only one of the d-disjoint journeys
(n ¼ 1), DJR is ineffective and the packet loss rate remains
at a high level regardless of the value of d. If we can use
more d-disjoint journeys, the packet loss rate is significantly
reduced (of course, more redundant copies are created).

The influence of d is more interesting. With the increase
of d, the packet loss rate first goes down and then increases;
this tendency can be explained as follows. When d is small,
there exist many d-disjoint journeys and we can choose any
n of them to transmit copies of packets. With a fixed number
of disjoint journeys, it is known that larger temporal dis-
jointness makes the network more robust since it can sur-
vive failures of longer duration. Hence, the packet loss rate
first goes down. However, the increase of d also leads to the
reduction in the number of d-disjoint journeys (see Fig. 11);
beyond a certain value of d, the number of d-disjoint jour-
neys becomes smaller than n and we have to send copies
over fewer than n disjoint journeys, which means that the
network can survive fewer failures. Therefore, although
temporal disjointness continues to grow, the reduction in
the number of available disjoint journeys makes the loss
rate increase. Moreover, we can observe that there exists an
“optimal” value of d which minimizes the packet loss rate
(highlighted by shaded circles). In fact, this optimal value is
the maximum d such thatMaxFlowd � n.

6 RELATED WORK

Time-Varying Graphs. There is extensive literature seeking to
define metrics for time-varying graphs, such as connectivity
[15], [21], [33], distance [17], diameter [31], [32], etc. The
combinatorial properties of time-varying graphs are also an
active research area. For example, Kranakis et al. focused on
finding connected components in a time-varying graph; Fer-
reira et al. investigated the complexity for computing the
shortest journey [17] and the minimum spanning tree [33]
(see the survey [16]).

Survivability in Time-Varying Networks. Despite the exten-
sive research on time-varying graphs, there is very little litera-
ture on survivability of time-varying networks. The closest

work to ours was done by Berman [20] and Kleinberg et al.
[21]. They discussed vulnerability in so-called “edge-sched-
uled networks” or “temporal networks” where each link is
active for exactly one slot and only permanent failures hap-
pen. Our work considers a more general graph model while
leveraging the temporal features of failures, thus generalizing
their results. Scellato et al. [18] investigated a similar problem
in random time-varying graphs and proposed a metric called
“temporal robustness”. By comparison, our framework is
deterministic, thus guaranteeing the worst-case survivability.
Li et al. [30] studied a related but different problem in time-
varying networks; specifically, they proposed heuristic algo-
rithms to find the the min-cost subgraph of a probabilistic
time-varying graph such that the probability that the sub-
graph is temporally connected exceeds a certain threshold.

Time-Varying Graphs and DTNs. An important application
scenario of time-varying graphs is Delay Tolerant Networks
(DTN), where nodes have intermittent connectivity and can
only send packets opportunistically. The primary goal of
DTN is to improve the packet delivery ratio via some routing
schemes, and there is extensive literature in this area, such as
[28], [29], [30]. In contrast, our work does not focus on any
specific routing algorithm. Instead, this paper is intended to
understand the inherent survivability properties of a time-
varying network, which can facilitate the design of surviv-
able routing algorithms in DTNs (e.g., Section 5).

7 CONCLUSION

In this paper, we propose a new survivability framework for
time-varying networks, namely ðn; dÞ-survivability. In order
to evaluate ðn; dÞ-survivability, two metrics are proposed:
MinCutd and MaxFlowd. We analyze the fundamental rela-
tionship between the two metrics and show that Menger’s
Theorem only conditionally holds in time-varying graphs.
As a result, computing both survivability metrics is NP-
hard. To resolve the computational intractability, we
develop several approximation algorithms. Finally, we use
trace-driven simulations to demonstrate the application of
our framework in a real-world bus communication network.
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