
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017 377

Throughput-Optimal Multihop Broadcast on
Directed Acyclic Wireless Networks

Abhishek Sinha, Georgios Paschos, Chih-Ping Li, and Eytan Modiano, Fellow, IEEE

Abstract— We study the problem of efficiently disseminating
packets in multi-hop wireless networks. At each time slot,
the network controller activates a set of non-interfering links
and forward selected copies of packets on each activated link.
The maximum rate of commonly received packets is referred
to as the broadcast capacity of the network. Existing policies
achieve the broadcast capacity by balancing traffic over a set
of spanning trees, which are difficult to maintain in a large
and time-varying wireless network. In this paper, we propose
a new dynamic algorithm that achieves the broadcast capacity
when the underlying network topology is a directed acyclic
graph (DAG). This algorithm is decentralized, utilizes local
information only, and does not require the use of spanning
trees. The principal methodological challenge inherent in this
problem is the absence of work-conservation principle due to the
duplication of packets, which renders usual queuing modeling
inapplicable. We overcome this difficulty by studying relative
packet deficits and imposing in-order delivery constraints to
every node in the network. We show that in-order delivery is
throughput-optimal in DAGs and can be exploited to simplify
the design and analysis of optimal algorithms. Our capacity
characterization also leads to a polynomial time algorithm for
computing the broadcast capacity of any wireless DAG under
the primary interference constraints. In addition, we propose a
multiclass extension of our algorithm, which can be effectively
used for broadcasting in any network with arbitrary topology.
Simulation results show that the our algorithm has a superior
delay performance as compared with the traditional tree-based
approaches.

Index Terms— Broadcasting, network control.

Manuscript received July 7, 2015; revised February 9, 2016; accepted
June 5, 2016; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor D. Manjunath. Date of publication July 9, 2016; date of current version
February 14, 2017. This work was supported by the NSF under Grants CNS-
1217048 and AST-1547331, the ONR under Grant N00014-12-1-0064, and
the ARO MURI under Grant W911NF-08-1-0238. The work of G. Paschos
was supported by the WiNC Project through the National and Community
Funds (European Social Fund). Part of the paper appeared in the proceedings
of IEEE INFOCOM 2015.

A. Sinha and E. Modiano are with the Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: sinhaa@mit.edu; modiano@mit.edu).

G. Paschos was with the Informatics and Telematics Institute,
Centre for Research and Technology Hellas, Thessaloniki 57001,
Greece, and also with the Massachusetts Institute of Technology,
Cambridge, MA 02139 USA. He is now with the Mathematical and
Algorithmic Sciences Laboratory, France Research Center, Huawei
Technologies Company, Ltd., 92100 Boulogne–Billancourt, France (e-mail:
georgios.paschos@huawei.com).

C.-P. Li was with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA. He is
now with Qualcomm Research, San Diego, CA 92121 USA (e-mail:
cpli@qti.qualcomm.com).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author. It consists of a 137-kB PDF.

Digital Object Identifier 10.1109/TNET.2016.2582907

I. INTRODUCTION AND RELATED WORK

BROADCASTING refers to the fundamental network
functionality of delivering data from a source node to

all other nodes in a network. For efficient broadcasting,
one needs to use appropriate packet replication and forward-
ing to eliminate redundant transmissions. This is especially
important in power-constrained wireless networks which suffer
from interference and packet collisions. Broadcast applica-
tions include mission-critical military communications [1],
live video streaming [2], and data dissemination in sensor
networks [3].

The design of efficient wireless broadcast algorithms faces
several challenges. Wireless channels suffer from interference,
and a broadcast policy needs to activate non-interfering links at
every time slot. Wireless network topologies undergo frequent
changes, so that packet forwarding decisions must be made
in an adaptive fashion. Existing dynamic multicast algorithms
that balance traffic over several spanning trees [4] may be
used for broadcasting, since broadcast is a special case of
multicast. These algorithms, however, are not suitable for
wireless networks because enumerating all spanning trees is
computationally prohibitive, more so when this is to be done
repeatedly as and when the topology changes with time.

In this paper, we study the fundamental problem of through-
put optimal broadcasting in wireless networks. We consider
a time-slotted system. At every slot, a scheduler decides
which non-interfering wireless links to activate and which
set of packets to forward over the activated links, so that
all nodes receive packets at a common rate. The maximum
achievable common reception rate of distinct packets over all
scheduling policies is known as the broadcast capacity of the
network. To the best of our knowledge, no capacity-achieving
broadcast policy for wireless networks is known that does
not use spanning trees. The main contribution of this paper
is to design a decentralized and provably optimal wireless
broadcast algorithms that does not use spanning trees when
the underlying network topology is restricted to a DAG. Many
wireless networks fall in this category [5], [6].

To design the algorithm, we start out with considering a
rich class of scheduling policies Π that perform arbitrary
link activations and packet forwarding. We define the broad-
cast capacity λ∗ as the maximum common rate achievable
over this policy class Π. We next enforce two constraints
that lead to a tractable set of policies without any loss
of throughput-optimality. First, we consider the subclass of
policies Πin-order ⊂ Π which delivers packets to all nodes,
in the same order they arrive at the source, i.e., in-order.

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

378 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Second, we focus on the subset of policies Π∗ ⊂ Πin-order

that allows the reception of a packet by a node only if
all its incoming neighbours have received the packet. It is
intuitively apparent that the policies in the more structured
class Π∗ are easier to describe and analyze, but might not
be throughput-optimal. We prove the surprising result that
when the underlying network topology is a directed acyclic
graph (DAG), there is a broadcast policy π∗ ∈ Π∗ that achieves
the broadcast capacity of the network. In contrast, we also find
a (non-DAG) network containing a directed cycle in which no
control policy in the space Πin-order can provably achieve the
broadcast capacity.

To design the optimal broadcast policy π∗, we first establish
a queue-like dynamics for the system-state, represented by
relative packet deficits. This is non-trivial for the broadcast
problem because explicit queueing structures are difficult to
define due to packet duplications and consequent loss of
work-conservation. We subsequently show that, the problem
of achieving the broadcast capacity in a DAG reduces to the
problem of finding a scheduling policy stabilizing the relative
packet deficits, which can be solved by utilizing Lyapunov
drift analysis techniques [7], [8].

In this paper, our main contributions are as follows:
• We define the broadcast capacity of a wireless network

and show that it can be characterized by an edge-
capacitated graph ̂G that arises from optimizing the
time-averages of link activations. For integral-capacitated
DAGs, the broadcast capacity is determined by the min-
imum in-degree of the graph G, which is also equal to
the maximum number of edge-disjoint directed spanning
trees rooted at the source.

• We design a dynamic algorithm that utilizes local queue-
length information to achieve the broadcast capacity of
a wireless DAG network. This algorithm does not rely
on spanning trees, has small computational complexity
and is suitable for mobile wireless networks with time-
varying topology. This algorithm also yields a construc-
tive proof of a version of Edmonds’ disjoint tree-packing
theorem [9] which is generalized to wireless activations
but specialized to DAG topology.

• Based on our characterization of the broadcast capacity,
we derive a polynomial-time algorithm to compute the
broadcast capacity of any wireless DAG under the pri-
mary interference constraints.

• We propose a randomized multiclass extension of our
broadcast algorithm, which can be effectively used to do
broadcast on wireless networks with arbitrary topology.

• We demonstrate the superior delay performance of our
algorithm, as compared to the centralized tree-based algo-
rithms [4], via numerical simulations. We also explore the
efficiency/complexity trade-off of the proposed multiclass
extension through extensive numerical simulations.
Related Works: In the literature, a simple method for

wireless broadcast is to use packet flooding [10]. The flood-
ing approach, however, leads to redundant transmissions
and collisions, known as broadcast storm [11]. In the wired
domain, it has been shown that forwarding useful packets at
random is optimal for broadcast [12]; this approach, however,

does not extend to the wireless setting due to interference
and the need for scheduling appropriate activation sets [13].
Broadcasting on wire line networks can also be carried out
using network coding [14], [15]. However, efficient link acti-
vation under network coding remains an open problem. There
are also a number of papers on minimizing the total latency for
broadcasting a finite number of packets in a network [16]–[18].
However these works do not deal with achieving the capacity
of the network, which is the focus of this paper.

The rest of the paper is organized as follows. Section II
introduces the wireless network model. In Section III,
we define the broadcast capacity of a wireless network and
provide a useful outer bound on the capacity from a cut-set
consideration. In Section IV, we propose a dynamic broadcast
algorithm that achieves the broadcast capacity in a DAG.
In section V, we propose an efficient algorithm for computing
the broadcast capacity of any wireless DAG under the pri-
mary interference constraints. Our DAG-broadcast algorithm
is extended to networks with arbitrary topology in section VI.
Illustrative simulation results are presented in Section VII.
Finally, we conclude our paper in section VIII.

II. THE WIRELESS NETWORK MODEL

We consider a time-slotted wireless network represented by
the tuple

(

G(V, E), c,S
)

, where V is the set of nodes, E is
the set of directed point-to-point links, c = (ce, e ∈ E) is the
capacity-vector of the links and S is the set of all feasible
link-activations. An element s = (se, e ∈ E) of the activation
set S is an |E|-dimensional binary vector, such that all links
e ∈ E with se = 1 can be activated simultaneously at a slot.
The structure of the activation set S depends on the underlying
interference model. For example, under the primary interfer-
ence constraint (also known as node-exclusive interference
constraint [19]), the set S consists of |E|-dimensional binary
vectors corresponding to different matchings of the underlying
graph G [20], see Fig. 1. For the case of a wire line network,
S is the set of all binary vectors since there is no interference.
In this paper we allow an arbitrary link-activation set S, thus
capturing arbitrary wireless interference models.

We note that, some wireless networks might have
point-to-multi-point links, where a transmission can be heard
by all out-neighbours. In this case, network-capacity expres-
sion and analysis of optimal algorithms would be different.
In this paper, for simplicity, we do not consider such situations.

Let r ∈ V be the source node at which stochastic broadcast
traffic is generated (or arrives externally). The number of
packets generated at the node r at slot t is denoted by the
random variable A(t) ∈ Z+, which is i.i.d. over slots with
mean λ and bounded second moment. These packets are to be
disseminated efficiently to all other nodes in the network.

III. WIRELESS BROADCAST CAPACITY

Intuitively, the network supports a broadcast rate λ if there
exists a scheduling policy under which all network nodes
can receive distinct packets at rate λ. The broadcast capacity
is the maximally supportable broadcast rate in the network.
Formally, we consider a class Π of scheduling policies where

SINHA et al.: THROUGHPUT-OPTIMAL MULTIHOP BROADCAST ON DIRECTED ACYCLIC WIRELESS NETWORKS 379

Fig. 1. A wireless network and its three feasible link activations under
the primary interference constraint. (a) A wireless network. (b) Activation
vector s1. (c) Activation vector s2. (d) Activation vector s3.

each policy π ∈ Π consists of a sequence of actions {πt}t≥1

executed at every slot t. Each action πt comprises of two
operations: (i) the scheduler activates a subset of links by
choosing a feasible activation vector s(t) ∈ S; (ii) each node
i forwards a subset of packets (possibly empty) to node j over
an activated link e = (i, j) (with se(t) = 1), subject to the
link capacity constraint. The policy class Π includes policies
that may use all past and future information, and may forward
any subset of packets over a link.

Let Rπ
i (t) be the number of distinct packets received by

node i ∈ V from the beginning of time up to time t,
under the action of a policy π ∈ Π. The time average
lim infT→∞ Rπ

i (T)/T is the rate of distinct packets received
at node i.

Definition 1 (Broadcast Policy): A policy π ∈ Π is called a
“broadcast policy of rate λ” if all nodes receive distinct
packets at rate λ, i.e.,

min
i∈V

lim inf
T→∞

1
T

Rπ
i (T) = λ, w. p. 1, (1)

where λ is the packet arrival rate at the source node r.
Definition 2: The broadcast capacity λ∗ of a wireless net-

work is the supremum of all arrival rates λ for which there
exists a broadcast policy π ∈ Π of rate λ.

A. An Upper Bound on Broadcast Capacity λ∗

We characterize the broadcast capacity λ∗ of a wireless
network by proving a useful upper bound. This upper bound is
understood as a necessary cut-set bound of an associated edge-
capacitated graph that reflects the time-averaged behaviour
of the scheduling policies in Π. We first give an intuitive

explanation of the bound, assuming that the limits involved
exist. In the proof of Theorem 1 we rigorously establish the
result without this assumption.

Fix a policy π ∈ Π. Let βπ
e be the fraction of time

link e ∈ E is activated under π; i.e., define the vector

βπ = (βπ
e , e ∈ E) = lim

T→∞
1
T

T
∑

t=1

sπ(t), (2)

where sπ(t) is the chosen link-activation vector by policy π
in slot t. The average packet flow rate over a link e under the
policy π is upper bounded by the product of the link capacity
and the fraction of time the link e is activated, i.e., ceβ

π
e .

Hence, we can define an associated edge-capacitated graph,
̂Gπ = (V, E, (ĉe)) where each link e ∈ E has capacity
ĉe = ceβ

π
e ; see Fig. 2 for an example of such an edge-

capacitated graph. Next, we provide a bound on the broadcast
capacity by maximizing the broadcast capacity on the ensem-
ble of graphs ̂Gπ over all feasible average edge-activation
vectors βπ.

Define a proper cut U of the network graph ̂Gπ as a proper
subset of the node set V that contains the source node r.
Define the edge-cut EU associated U as

EU = {(i, j) ∈ E | i ∈ U, j /∈ U}. (3)

Since U ⊂ V , there exists a node n ∈ V \ U . Consider the
throughput (rate of packet reception) of node n under policy π.
The max-flow min-cut theorem shows that the throughput of
node n cannot exceed the total link capacity

∑

e∈EU
ce βπ

e

across the cut U . This cut-set bound is valid even when
we consider the general flow of information in the network
(see [21, Th. 15.10.1]). Hence the cut-set bound holds even
when we allow network coding operations. By definition of
achievable broadcast rate λπ , we have λπ ≤

∑

e∈EU
ce βπ

e .
This inequality holds for all proper cuts U and we have

λπ ≤ min
U : a proper cut

∑

e∈EU

ce βπ
e . (4)

Equation (4) holds for any policy π ∈ Π. Thus, the broadcast
capacity λ∗ of the wireless network satisfies

λ∗ = sup
π∈Π

λπ ≤ sup
π∈Π

min
U : a proper cut

∑

e∈EU

ce βπ
e

≤ max
β∈conv(S)

min
U : a proper cut

∑

e∈EU

ce βe,

where the last inequality holds because the vector βπ lies in
the convex hull of the activation set S; Refer to Eqn. (2). Our
first theorem formalizes the above intuitive characterization of
the broadcast capacity λ∗ of a wireless network.

Theorem 1: The broadcast capacity λ∗ of a wireless
network G(V, E, c) with activation set S is upper bounded
as follows:

λ∗ ≤ max
β∈conv(S)

(

min
U : a proper cut

∑

e∈EU

ce βe

)

. (5)

Proof: See Appendix A.

380 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Fig. 2. The edge-capacitated graph �Gπ for the wireless network with unit link
capacities in Fig. 1 and under the time-average vector βπ = (1/2, 1/4, 1/4).
The link weights are the capacities ceβπ

e . The minimum proper cut in this
graph has value 1/2 (when U = {r, a, c} or {r, b, c}). An upper bound on
the broadcast capacity is obtained by maximizing this value over all vectors
βπ ∈ conv (S).

B. Constrained Policy-Space: In-Order Packet Delivery

Studying the performance of any arbitrary broadcast
policy π ∈ Π is analytically formidable because packets are
replicated across the network and may be received out of order.
To avoid unnecessary re-transmissions, each node must keep
track of the identity of the received set of packets, which
complicates the system state; because instead of the number of
packets received (as in classical back-pressure algorithm [7]),
the system state is properly described here by the identity of
the subset of packets received at each of the nodes.

To simplify the state, we focus on the subset of policies
Πin-order ⊂ Π that enforce the following constraint. It will be
shown subsequently that, this restriction can be made without
loss of throughput-optimality in a DAG.

Index the packets serially {1, 2, . . .} according to their order
of arrival at the source.

Constraint 1 (In-Order Packet Delivery Πin-order): In this
policy-space, a node is allowed to receive a packet p at
slot t only if all previous packets {1, 2, . . . , p− 1} have been
received by that node by slot t.

In-order packet delivery is practically useful in live media
streaming applications [2] where buffering out-of-order pack-
ets incurs increased delay and degrades the playback quality.
As shown below, Constraint 1 greatly simplifies the state space
representation of the system.

Let Ri(t) be the number of distinct packets received
by node i by time t. For policies in Πin-order, the set of
received packets by time t at node i is {1, . . . , Ri(t)}.
Therefore, the network state in slot t is given by the vector
R(t) =

(

Ri(t), i ∈ V
)

.
In section IV we show the existence of a throughput-optimal

broadcast policy in the space Πin-order when the underlying
topology is a DAG. On the other hand, the following comple-
mentary result, Lemma 1, says that there exists a non-DAG
network in which any broadcast policy in the space Πin-order

is not throughput optimal. This implies that the policy-space
Πin-order can not, in general, be utilized beyond DAGs while
preserving throughput optimality.

Lemma 1: Let λ∗
in−order be the broadcast capacity of the

policy subclass Πin−order ⊂ Π that enforces in-order packet
delivery. There exists a network topology containing a directed
cycle such that λ∗

in−order < λ∗.
Proof: See the supplementary material.

We will return to the problem of broadcasting in networks
with arbitrary topology in Section VI.

C. Achieving the Broadcast Capacity in a DAG

At this point we concentrate our attention to Directed
Acyclic Graphs (DAGs). Graphs in this class are appealing for
our analysis because they possess the well-known topological
ordering of the nodes [20]. For DAGs, the upper bound (5)
on the broadcast capacity λ∗ in Theorem 1 will be relaxed
further. For each receiver node v �= r, consider the proper cut
Uv that separates the node v from the rest of the network. i.e.,

Uv = V \ {v}. (6)

Using these collection of cuts {Uv, v �= r}, we obtain a
relaxed upper bound λDAG on the broadcast capacity λ∗ as:

λDAG � max
β∈conv(S)

min
{Uv ,v �=r}

∑

e∈EUv

ce βe (7)

≥ max
β∈conv(S)

min
U : a proper cut

∑

e∈EU

ce βe ≥ λ∗,

where the first inequality uses the subset relation
{Uv, v �= r} ⊆ {U : a proper cut} and the second inequality
follows from Theorem 1. In Section IV, we will propose
a dynamic policy that belongs to the policy class Πin-order

and achieves the broadcast rate λDAG. Combining this result
with (7), we establish that the broadcast capacity of a DAG
is given by

λ∗ = λDAG = max
β∈conv(S)

min
{Uv,v �=r}

∑

e∈EUv

ce βe,

= max
β∈conv(S)

min
U : a proper cut

∑

e∈EU

ce βe. (8)

The capacity is achieved by a broadcast policy that uses
in-order packet delivery. In other words, we show that impos-
ing the in-order packet delivery constraint does not reduce the
broadcast capacity when the topology is a DAG. As a corol-
lary, we also retrieve the result that network-coding operations
do not increase the broadcast-capacity in our setting.

From a computational point of view, the equality
in Eqn. (8) is attractive, because it implies that for computing
the broadcast capacity of any wireless DAG, it is enough to
consider only those cuts that separate a single (non-source)
node from the rest of the network. Note that, there are only
|V |− 1 of such cuts, in contrast with the total number of cuts
in Eqn. (5), which is exponential in the size of the network.
This fact will be exploited in section V to develop a strongly
poly-time algorithm for computing the broadcast capacity of
any wireless DAG network under the primary interference
constraints.

IV. DAG BROADCAST ALGORITHM

In this section we design a throughput-optimal broadcast
policy for wireless DAGs. We start by imposing an additional
constraint on packet-forwarding that leads to a new subclass
of policies Π∗ ⊆ Πin-order. As we will see, policies in Π∗

can be described in terms of relative packet deficits which

SINHA et al.: THROUGHPUT-OPTIMAL MULTIHOP BROADCAST ON DIRECTED ACYCLIC WIRELESS NETWORKS 381

Fig. 3. Containment relationships among different policy classes.

constitute a simple dynamics. We analyze the dynamics of the
minimum relative packet deficits, which behaves like virtual
queues. We design a dynamic control policy π∗ ∈ Π∗ that
stabilizes the virtual queues. The main result of this section is
to show that this control policy achieves the broadcast capacity
whenever the network topology is a DAG.

A. System-State by Means of Packet Deficits

We showed earlier in Section III-B that, constrained to the
policy-space Πin-order, the system-state is completely repre-
sented by the vector R(t). However this constrained policy-
class alone is not sufficient to obtain a one-step dynamics
of the system, which is an essential prerequisite to design a
stabilizing control policy. As a result, we restrict our attention
to a sub-class of policies in Πin-order, defined as follows.

A node i is called an in-neighbor of node j if there exists
a directed link (i, j) ∈ E in the underlying graph G. The set
of all in-neighbours of a node j is denoted by δin(j). The
out-neighbours of a node is defined similarly.

Constraint 2 (Policy-space Π∗): A packet p is eligible for
transmission to node j at a slot t, only if all the in-neighbours
of j have received packet p in some previous slot.

We denote this new policy-class by Π∗ ⊆ Πin-order. It will be
shown subsequently that this restriction can be done without
loss of throughput-optimality. Fig. 3 shows the relationship
among different policy classes.1

Following two properties of the system-state R(t) under the
action of a policy π ∈ Π∗ will be useful.

Lemma 2: Under any policy π ∈ Π∗, we have:
(1) Rj(t) ≤ mini∈δin(j) Ri(t)
(2) The indices of packets p that are eligible to be transmit-

ted to the node j at slot t are given by
{

p | Rj(t) + 1 ≤ p ≤ min
i∈δin(j)

Ri(t)
}

.

The proof of the above lemma follows directly from the
definition of the policy-space Π∗.

Define the packet-deficit Qij(t) over the link (i, j) ∈ E to

be Qij(t)
def= Ri(t) − Rj(t). Under a policy in Π∗, Qij(t) is

always non-negative because, by part (1) of Lemma 2, we have

Qij(t) = Ri(t)−Rj(t) ≥ min
k∈δin(j)

Rk(t)− Rj(t) ≥ 0.

The variable Qij(t) denotes the number of packets received
by node i but not by node j upto time t. Intuitively, if all

1We note that, if the network contains a directed cycle, then a deadlock
might occur under a policy in Π∗ and may yield zero broadcast throughput.
However, this problem does not arise when the underlying topology is a DAG.

Fig. 4. Under a policy π ∈ Π∗, the set of packets available for transmission
to node j in slot t is {11, 12, 13, 14}, which are present at all in-neighbors of
the node j. The in-neighbor of j having the smallest packet deficit is i∗t = c,
and Xj(t) = min{Qaj(t), Qbj(t), Qcj(t)} = 4.

packet-deficits {Qij(t)} are bounded asymptotically, the total
number of packets received by any node is not lagging far from
the total number of packets generated at the source; hence,
the broadcast throughput will be equal to the packet generation
rate.

To analyze the system dynamics under a policy in Π∗, it is
useful to define the minimum packet deficit at node j �= r by

Xj(t)
def= min

i∈δin(j)
Qij(t). (9)

From part (2) of Lemma 2, Xj(t) is the maximum number of
packets that node j is allowed to receive from its in-neighbors
at slot t under Π∗.

As an example, Fig. 4 shows that the packet deficits at
node j, relative to its in-neighbors a, b, and c, are Qaj(t) = 8,
Qbj(t) = 5, and Qcj(t) = 4 respectively. Thus Xj(t) = 4 and
node j is only allowed to receive four packets in slot t due to
Constraint 2.

We can rewrite Xj(t) as

Xj(t) = Qi∗t j(t), where i∗t = arg min
i∈δin(j)

Qij(t), (10)

i.e., the node i∗t is the in-neighbor of node j from which
node j has the smallest packet deficit in slot t; ties are broken
arbitrarily in deciding i∗t .2 Our optimal broadcast policy will be
described in terms of the minimum packet deficits {Xj(t)}j �=r.

B. The Dynamics of the State Variables {Xj(t)}
We now analyze the dynamics of the state variables

Xj(t) = Qi∗t j(t) = Ri∗t (t)−Rj(t) (11)

under a policy π ∈ Π∗. Define the service rate vector
μ(t) = (μij(t))(i,j)∈E by

μij(t) =

{

cij if (i, j) ∈ E and the link (i, j) is activated,

0 otherwise.

Equivalently, we may write μij(t) = cijsij(t), where s(t) is
the link-activation vector s(t), chosen for slot t. At node j,
the increase in the value of number of packets received,
i.e., Rj(t), depends on the identity of the received packets;
in particular for efficiency, the node j must receive distinct
packets. Next, we clarify which set of packets are allowed to
be received by node j at time t.

The number of available packets for reception at node j
is min{Xj(t),

∑

k∈V μkj(t)}. This is because: (i) Xj(t) is

2We note that the minimizer i∗t is a function of the node j and the time
slot t and should be properly denoted as i∗t (j); we slightly abuse the notation
by dropping the symbol j from i∗t throughout to simplify notations.

382 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

the maximum number of packets node j can receive from its
in-neighbours subject to the Constraint 2; (ii)

∑

k∈V μkj(t)
is the total incoming transmission rate at node j under a given
link-activation decision. To correctly derive the dynamics
of Rj(t), we consider the following efficiency requirement
on policies in Π∗:

Constraint 3 (Efficient forwarding): Given a service rate
vector μ(t), node j pulls from the activated incoming links
the following subset of packets (denoted by their indices)
{

p | Rj(t) + 1 ≤ p ≤ Rj(t) + min{Xj(t),
∑

k∈V

μkj(t)}
}

,

(12)

The specific subset of packets that are pulled over each
incoming link are disjoint but otherwise arbitrary.3

Constraint 3 requires that scheduling policies must avoid
forwarding the same packet to a node over two different
incoming links. Under certain interference models such as the
primary interference model, at most one incoming link per
node is activated in a slot and Constraint 3 is redundant.

In Eqn. (11), the packet deficit Qi∗t j(t) increases with Ri∗t (t)
and decreases with Rj(t), where Ri∗t (t) and Rj(t) are both
non-decreasing. Hence, we can upper-bound the increase of
Qi∗t j(t) by the total service rate of the activated incoming
links at node i∗t , i.e.,

∑

m∈V μmi∗t (t) . Also, we can express
the decrement of Qi∗t j(t) by the exact number of distinct
packets received by node j from its in-neighbours, given by
min{Xj(t),

∑

k∈V μkj(t)} by Constraint 3. Consequently,
the one-slot evolution of the variable Qi∗t j(t) is given by4

Qi∗t j(t + 1) ≤
(

Qi∗t j(t)−
∑

k∈V

μkj(t)
)+ +

∑

m∈V

μmi∗t (t)

=
(

Xj(t)−
∑

k∈V

μkj(t)
)+ +

∑

m∈V

μmi∗t (t),

(13)

where (x)+ = max(x, 0) and we recall that Xj(t) = Qi∗t j(t).
It follows that Xj(t) evolves over slot t according to

Xj(t + 1)
(a)
= min

i∈δin(j)
Qij(t + 1)

(b)

≤ Qi∗t j(t + 1)

(c)

≤
(

Xj(t)−
∑

k∈V

μkj(t)
)+ +

∑

m∈V

μmi∗t (t), (14)

where the equality (a) follows the definition of Xj(t), inequal-
ity (b) follows because node i∗t ∈ δin(j) and inequality (c)
follows from Eqn. (13). In Eqn. (14), if i∗t = r, the notation
is slightly abused to define

∑

m∈V μmr(t) = A(t) for the
source node r, where A(t) is the number of exogenous packet
arrival at source at slot t.

C. A Throughput-Optimal Broadcast Policy

Like the Back-Pressure algorithm [7], our broadcast policy
is designed to keep the deficit process {X(t)}t≥0 stochas-
tically stable. For this, we regard the variables Xj(t) as

3Due to Constraints 1 and 2, the packets in (12) have been received by all
in-neighbors of node j.

4We emphasize that for a given node j, the node i∗t , as defined in (10),
depends on time t and may be different from the node i∗t+1.

Algorithm 1 Optimal Broadcast Policy π∗ for a Wireless DAG
At each slot t, the network-controller observes the state-
variables {Rj(t), j ∈ V } and executes the following
actions
1: For each link (i, j) ∈ E, compute the deficit Qij(t) =

Ri(t) − Rj(t) and the set of nodes Kj(t) ⊂ δout(j) for
which node j is their deficit minimizer, i.e.,

Kj(t)←
{

k ∈ V | j = arg min
m∈δin(k)

Qmk(t)
}

. (15)

The ties are broken arbitrarily (e.g., in favor of the highest
indexed node) in finding the argmin(·) in Eqn.(15).

2: Compute Xj(t) = mini∈δin(j) Qij(t) for j �= r and assign
to link (i, j) the weight

Wij(t)←
(

Xj(t)−
∑

k∈Kj(t)

Xk(t)
)

. (16)

3: In slot t, choose the link-activation vector s(t) =
(se(t), e ∈ E) such that

s(t) ∈ arg max
s∈S

∑

e∈E

ceseWe(t). (17)

4: Every node j �= r uses activated incoming links to pull
packets {Rj(t)+1, . . . , Rj(t)+min{

∑

i cijsij(t), Xj(t)}}
from its in-neighbors according to the Constraint 3.

5: The vector (Rj(t), j ∈ V) is updated as follows:

Rj(t+1)←
{

Rj(t)+A(t), j = r,

Rj(t)+min{
∑

i cijsij(t), Xj(t)}, j �= r,

virtual queues that follow the dynamics (14). By performing
drift analysis on the virtual queues Xj(t), we propose the
following max-weight-type broadcast policy π∗, described in
Algorithm 1. However, the way the weights are computed
in π∗ (16), is very much different from the Back-Pressure
algorithm. Also the fundamental feature of packet duplications
is essentially new here. The policy π∗ belongs to the space Π∗

and enforces the constraints 1, 2, and 3. We will show that
this policy achieves the broadcast capacity λ∗ of a wireless
network over the general policy class Π when the underlying
topology is a DAG. The steps of the algorithm are illustrated
in Fig. 5.

Distributed Implementation: As evident from the descrip-
tion of Algorithm 1, computation of the weight-vectors W (t)
and packet forwarding decisions are made locally by individual
nodes. The only network-wide operation that the algorithm
needs to perform is step 3, where it needs to select the
maximum-weighted feasible activation set. The problem of
scheduling the Max-weight activation set in a distributed
fashion has been studied extensively in the literature [22], [23].
In particular, the work of Bui et al. [23] designs a dis-
tributed algorithm for solving the Max-weight scheduling
problem with constant overhead in the primary interference
setting.

The next theorem demonstrates the optimality of the broad-
cast policy π∗ described above.

SINHA et al.: THROUGHPUT-OPTIMAL MULTIHOP BROADCAST ON DIRECTED ACYCLIC WIRELESS NETWORKS 383

Fig. 5. Running the optimal broadcast policy π∗ in slot t in a wireless
network with unit-capacity links and under the primary interference constraint.
Step 1: computing the deficits Qij(t) and Kj(t); a tie is broken in choosing
node a as the in-neighbor deficit minimizer for node c, hence c ∈ Ka(t);
node b is also a deficit minimizer for node c. Step 2: computing Xj(t) for
j �= r and Wij(t). Step 3: finding the link activation vector that is a
maximizer in (17) and forwarding the next in-order packets over the activated
links. Step 4: a new packet arrives at the source node r and the values of
{Rr(t + 1), Ra(t + 1), Rb(t + 1), Rc(t + 1)} are updated.

Theorem 2: If the underlying topology of G is a DAG,
then for any exogenous packet arrival rate λ < λDAG,
the broadcast policy π∗ yields

min
i∈V

lim inf
T→∞

Rπ∗
i (T)
T

= λ, w.p. 1,

where λDAG is the upper bound on the broadcast
capacity λ∗ in the general policy class Π, as given by
Eqn. (7). Consequently, the broadcast policy π∗ achieves

the broadcast capacity λ∗ in any wireless Directed Acyclic
Graph.

Proof: See Appendix B.

D. Number of Disjoint Spanning Trees in a DAG

As a corollary, Theorem 2 yields an interesting combinato-
rial result that relates the number of disjoint spanning trees in
a DAG to the in-degrees of its nodes.

Lemma 3: Consider a directed acyclic graph G = (V, E)
that is rooted at a node r, has unit-capacity links, and possibly
contains parallel edges. The maximum number k∗ of edge-
disjoint spanning trees in G is given by

k∗ = min
v∈V \{r}

din(v),

where din(v) denotes the in-degree of the node v.
Proof: See Appendix C.

V. AN EFFICIENT ALGORITHM FOR COMPUTING THE

BROADCAST CAPACITY OF A DAG

In this section we exploit Eqn. (8) and develop an LP to
compute the broadcast capacity of any wireless DAG network
under the primary interference constraints. Although this LP
has exponentially many constraints, using a well-known sep-
aration oracle, it can be solved in strongly polynomial time
utilizing the ellipsoid algorithm [24].

Under the primary interference constraint, the set of feasible
activations of a graph are its matchings [20]. For a subset of
edges E′ ⊂ E, let χE′ ∈ {0, 1}|E| where χE′

(e) = 1 if
e ∈ E′ and is zero otherwise. Let us define

Pmatching(G) = convexhull({χM |M is a matching in G})
(18)

We have the following classical result from Edmonds [25].
Theorem 3: The set Pmatching(G) is characterized by the

set of all β ∈ R
|E| such that:

βe ≥ 0 ∀e ∈ E
∑

e∈δin(v)∪δout(v)

βe ≤ 1 ∀v ∈ V

∑

e∈E[U]

βe ≤
|U | − 1

2
; U ⊂ V, |U | odd, (19)

where E[U] is the set of edges (ignoring their directions) with
both end points in the subset U ⊂ V .

Hence following Eqn. (8), the broadcast capacity of a DAG
can be obtained by the following LP:

maxλ (20)

Subject to,

λ ≤
∑

e∈δin(v)

ceβe ∀v ∈ V \ {r} (21)

β ∈ Pmatching(G) (22)

384 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

From the equivalence of optimization and separation
(via the ellipsoid method), it follows that the above LP is
poly-time solvable if there exists an efficient separator
oracle for the constraints (21), (22). Since there are only
linearly many constraints (|V | − 1, to be precise) in (21),
the above requirement reduces to an efficient separator for
the matching polytope (22). We refer to a classic result
from the combinatorial-optimization literature which shows
the existence of such an efficient separator for the matching
polytope.

Theorem 4 [25]: There exists a strongly poly-time
algorithm that, given G = (V, E) and β : E → R

|E|,
determines if β is feasible for (19) or outputs an inequality
from (19) that is violated by β.

This directly leads to the following theorem.
Theorem 5: There exists a strongly poly-time algorithm to

compute the broadcast capacity of any wireless DAG under
the primary interference constraints.

The following corollary implies that, although there
are exponentially many matchings in a DAG, to achieve
the broadcast capacity, randomly activating (with appropriate
probabilities) only |E|+ 1 matchings suffice.

Corollary 1: The optimal broadcast capacity λ∗ in a
wireless DAG, under the primary interference constraints, can
be achieved by randomly activating (with positive probability)
at most |E|+ 1 matchings.

Proof: Let (λ∗, β∗) be an optimal solution of
the LP (20). Hence we have β∗ ∈ Pmatching(G) ≡
convexhull({χM |M is a matching in G}). Since the poly-
tope Pmatching(G) is a subset of R

|E|, by Carathéodory’s
theorem [26], the vector β∗ can be expressed as a convex com-
bination of at most |E|+1 vertices of the polytopePmatching(G),
which are matchings of the graph G. This concludes the proof.

VI. BROADCASTING ON NETWORKS WITH ARBITRARY

TOPOLOGY: MULTICLASS ALGORITHM

In this section we extend the above broadcast policy for
DAGs to arbitrary networks, which may possibly contain
directed cycles. From the negative result of Lemma 1, we know
that any policy ensuring in-order packet delivery at every
node, cannot achieve the broadcast capacity in arbitrary net-
works in general. To get around this difficulty, we introduce
the notion of broadcasting using multiple classes K of packets.
The idea is as follows: each class k ∈ K has a one-to-one
correspondence with a given permutation ≺k of the nodes; for
an edge (a, b) ∈ E if the node a appears before the node b in
the permutation ≺k (we denote this condition by a ≺k b), then
the edge (a, b) is included in the class k, otherwise the edge
(a, b) ignored by the class k. The set of all edges included in
the class k is denoted by Ek ⊂ E. It is clear that each class k
corresponds to a unique embedded DAG topology Gk(V, Ek),
which is a subgraph of the underlying graph G(V, E). Different
classes correspond to different permutations of nodes.

An incoming packet at the source node is admitted to some
class k ∈ K, according to some admission-policy. All packets
admitted in a given class k ∈ K are broadcasted while
maintaining the in-order delivery restriction within the class k,

Algorithm 2 Multiclass Broadcast Algorithm for General
Topology

Require: Graph G(V, E), total number of classes K
1: Generate K permutations {≺i}Ki=1 of the nodes V uni-

formly at random (with the source {r} at the first position)
and obtain the induced DAGs Gk(V, Ek), where e =
(a, b) ∈ Ek iff a ≺k b.

2: For each permutation ≺k, maintain a class k and the
packet-counter variables {R(k)

i } at every node i =
1, 2, . . . , |V |.

3: Each class observes intra-class packet forwarding con-
straints (1), (2) and (3) described in sections III and IV.

4: Define the state variables {Qk(t), Xk(t)} and compute the
weights {W k(t)}, for each class k = 1, 2, . . . , K exactly
as in Eqn. (16), where each class k considers the edges Ek

only for Eqns. (15) and (16).
5: An incoming packet to source r at time t joins the class k

corresponding to

arg min
k∈K

∑

j∈Kk
r (t)

Xk
j (t) (23)

6: The overall weight for an edge e (taken across all the
classes) is computed as

We(t) = max
k:e∈Ek

W k
e (t) (24)

7: Activate the edges corresponding to the max-weight acti-
vation, i.e.,

s(t) ∈ arg max
s∈S

∑

e∈E

ceseWe(t). (25)

8: For each activated edge e ∈ s(t), forward packets corre-
sponding to a class achieving the maximum in Eqn. (24).

however there is no such inter-class constraint for delivering
packets from different classes. Hence the resulting multi-class
policy does not belong to the space Π∗ but belongs to the
general policy-space Π. This new multi-class policy keeps
the best from both worlds: (a) its state-space complexity is
Θ(|K||V |), where for each class we have the same state-
representation as in π∗ and (b) by relaxing the inter-class
in-order delivery constraint, it has the potential to achieve
the full broadcast capacity of the underlying graph with
sufficiently many classes.

Hence the broadcasting problem reduces to construction of
multiple classes (equivalently, permutations of the vertices V)
in G such that they cover the graph efficiently, from a
broadcast-capacity point of view. In Algorithm-2, we choose
the permutations uniformly at random with the condition
that the source r always appears at the first position of the
permutation.

Theorem 6: The multiclass broadcast Algorithm-2 with K
classes supports a broadcast rate of

λK = max�
k βk∈conv(S)

K
∑

k=1

min
j �=r

∑

i

cijβ
k
ij , (26)

where we use the convention that βk
ij = 0 if (i, j) /∈ E(k).

SINHA et al.: THROUGHPUT-OPTIMAL MULTIHOP BROADCAST ON DIRECTED ACYCLIC WIRELESS NETWORKS 385

The right hand side of Eqn. (26) can be understood as
follows. Consider a feasible stationary activation policy πSTAT

which activates class k on the edge (i, j) βk
ij fraction of time.

Since, by construction, each of the class follows a DAG,
lemma (3) implies that the resulting time-averaged graph
has a broadcast capacity of λk = minj

∑

i cijβ
k
ij for the

class k. Thus the total broadcast rate achievable by πSTAT is
simply λK =

∑K
k=1 λk =

∑

k minj

∑

i cijβ
k
ij . Given these

K classes, following the same line of argument as in (20),
we can develop a similar LP to compute the broadcast-rate
achievable (26) by these K classes by maximizing over all
feasible {βk}K1 , in strongly poly-time.

The proof of Theorem (6) follows along the exact same
line of argument as in Theorem (2), where we now work with
the following Lyapunov function L̂(Q(t)), which takes into
account all K classes:

L̂(Q(t)) =
K

∑

k=1

∑

j �=r

(Xk
j (t))2 (27)

We then compare the drift of multiclass broadcast algorithm 2
with the stationary randomized policy πSTAT above to show
that the Multiclass broadcast algorithm is stable under all
arrival rates below λ. The details are omitted for brevity.

Since the broadcast-rate λK achievable by a collection of K
embedded DAGs in a graph G is always upper-bounded by
the actual broadcast capacity λ∗ of G, we have the following
interesting combinatorial result as a corollary of Theorem (6)

Corollary 2: Consider a wire line network, represented by
the graph G(V, E). For a given integer K ≥ 1, consider
K arbitrary classes (i.e., permutations of vertices) as in
Theorem (6), with {Ek}Kk=1 being their corresponding edge-
sets. Then, for any set of non-negative vectors {βk}Kk=1

with
∑

k βk
ij ≤ 1, ∀(i, j), the following lower-bound for the

broadcast capacity λ∗ holds:

λ∗ ≥
K

∑

k=1

min
j �=r

∑

i

cijβ
k
ij (28)

where we use the convention that βk
ij = 0 if (i, j) /∈ Ek.

The above corollary may be contrasted with Eqn. (7),
which provides an upper bound to the broadcast capacity λ∗.
We also note that, the lower-bound in Eqn. (28) is tight
when the classes are chosen corresponding to the maxi-
mum number of edge-disjoint spanning trees, obtained from
Edmonds’ Theorem [9].

VII. SIMULATION RESULTS

We present a number of simulation results concerning the
delay performance of the optimal broadcast policy π∗ in
wireless DAG networks with different topologies. For sim-
plicity, we assume primary interference constraints for wireless
networks throughout this section. Delay for a packet is defined
as the number of slots required for it to reach all nodes in the
network, after its arrival to the source r.

A. Diamond Topology

Consider a 4-node wireless network as shown Fig. 6 (a).
Link capacities are indicated alongside the links. The broadcast

Fig. 6. A wireless DAG network and its three embedded spanning trees.
(a) The wireless network. (b) Tree T1. (c) Tree T2. (d) Tree T3.

Fig. 7. Average delay performance of the optimal broadcast policy π∗ and the
tree-based policy πtree that balances traffic over different subsets of spanning
trees.

capacity of the network is upper bounded by the total capacity
of incoming links to node c, which is 1. This is because
at most one of its unit-capacity incoming links to node c
may be activated at any slot, under the primary interference
constraint. To determine the broadcast-capacity of the network,
consider three spanning trees {T1, T2, T3} rooted at the source
node r, as shown in Fig. 6 (b),(c),(d). By finding an optimal
time-sharing of all feasible link-activations over a subset of
spanning trees using linear programming and using Eqn. (26),
we can show that the broadcast-rate achievable using the
tree T1 only is 3/4, using the trees {T1, T2} only is 6/7, and
using the trees {T1, T2, T3} together is 1. Thus, the upper-
bound is achieved and the broadcast capacity of the network
is λ∗ = 1.

We compare the performance of our throughput-optimal
broadcast policy π∗ with the tree-based policy πtree proposed

386 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

TABLE I

AVERAGE DELAY PERFORMANCE OF THE TREE-BASED POLICY πtree OVER DIFFERENT SUBSETS
OF SPANNING TREES AND THE BROADCAST POLICY π∗

Fig. 8. The 10-node wireless DAG network and a subset of spanning trees.
(a) The wireless network. (b) Tree T1. (c) Tree T2. (d) Tree T3. (e) Tree T4.
(f) Tree T5.

in [4]. While the policy πtree is originally proposed to transmit
multicast traffic in a wired network by balancing traffic over
multiple trees, we generalize their policy πtree for broad-
casting packets over spanning trees in the wireless setting.
Fig. 5(a) shows a comparison of the average delay perfor-
mance under the policy π∗ and the tree-based policy πtree

over different subset of trees. The simulation duration is 105

slots. We observe that the policy π∗ achieves the broadcast
capacity and, in general, has better delay performance than the
tree-based scheme in the high traffic regime.

B. Mesh Topology

Since the throughput-optimal broadcast policy π∗ does not
rely on limited number of tree structures, it has the potential to
exploit all degrees of freedom in the network. Such freedom

Fig. 9. Fraction of optimal broadcast rate λ
λ∗ achievable by the multiclass

broadcast algorithm with randomly chosen K classes for randomly generated
wired networks with N = 10 nodes.

leads to better delay performance as compared to the tree-
based broadcast policies [4]. To illustrate this effect, consider
the 10-node DAG network in Fig. 8 (a). For every pair of
node {i, j}, 1 ≤ i < j ≤ 10, the network has a directed
link from node i to j with capacity (10 − i). By induction,
the number of spanning trees rooted at the source node 1
can be calculated to be 9! ≈ 3.6 × 105. Among them,
we choose five arbitrary spanning trees {Ti, 1 ≤ i ≤ 5},
shown in Fig. 8 (b),(c),(d),(e),(f), over which the tree-based
algorithm πtree is simulated. Table I demonstrates the superior
delay performance of our throughput-optimal broadcast pol-
icy π∗, as compared to that of the tree-based algorithm πtree.
The table also shows that a tree-based algorithm that does not
use enough number of trees might result in degraded broadcast
throughput.

C. Multiclass Simulation for Arbitrary Topology

To simulate the multiclass broadcast algorithm of
section VI, we randomly generate an ensemble of 500 wire line
networks (not necessarily DAGs), each consisting of N = 10
nodes and unit capacity links. By solving the LP correspond-
ing to Eqn. (26), we compute the average fraction of the
total broadcast capacity achievable using K randomly chosen
classes by the Multiclass Algorithm 2 of section VI. The result
is plotted in Figure 9. It follows that a sizeable fraction of

SINHA et al.: THROUGHPUT-OPTIMAL MULTIHOP BROADCAST ON DIRECTED ACYCLIC WIRELESS NETWORKS 387

the optimal capacity may be achieved by using a moderately
many classes. However, it also shows that the required number
of classes for achieving a certain fraction of the capacity
increases as the broadcast capacity of the network increases.
This is due to the fact that increased broadcast capacity of a
network would warrant an increased number of DAGs to cover
it efficiently.

VIII. CONCLUSION

In this paper we study the problem of broadcasting in a
wireless network under general interference constraints. When
the underlying network topology is a DAG, we propose a
dynamic algorithm that achieves the broadcast capacity of the
network. Our novel algorithm, based on packet deficits and the
in-order packet delivery constraint, is promising for application
to other systems with packet duplications, such as multicasting
and caching systems. We also propose a heuristic extension of
our DAG broadcast algorithm to networks with arbitrary topol-
ogy. Future work would involve detailed study of throughput-
optimal broadcasting in arbitrary networks, where optimal
policies must be sought in the space Π \Πin-order.

APPENDIX

A. Proof of Theorem 1

Fix an ε > 0. Consider a broadcast policy π ∈ Π that
achieves a broadcast rate of at least λ∗ − ε, as defined
in (1); this policy π exists by the definition of the broadcast
capacity λ∗ in Definition 2. Consider any proper cut U of
the network G. By definition of a proper-cut, there exists a
node i /∈ U . Let sπ(t) = (sπ

e (t), e ∈ E) be the link-activation
vector chosen by policy π in slot t. The maximum number of
packets that can be transmitted across the cut U by any policy
in slot t is at most

∑

e∈EU
ces

π
e (t), which is the total capacity

of all activated links across the outgoing-edges from the cut U ,
where the link subset EU has been defined in Eqn. (3). Thus,
the number of distinct packets Rπ

i (T) received by a node i by
time T can be upper-bounded as follows

Rπ
i (T) ≤

T
∑

t=1

∑

e∈EU

ces
π
e (t) = u ·

T
∑

t=1

sπ(t), (29)

where we define the |E|-dimensional cut-vector
u = (ue, e ∈ E), such that ue = ce1[e∈EU], and a · b
is the inner product of two vectors.5 Dividing both sides
by T yields

Rπ
i (T)
T

≤ u ·
(

1
T

T
∑

t=1

sπ(t)
)

.

Hence,

λ∗ − ε
(a)

≤ min
j∈V

lim inf
T→∞

Rπ
j (T)
T

≤ lim inf
T→∞

Rπ
i (T)
T

≤ lim inf
T→∞

u ·
(

1
T

T
∑

t=1

sπ(t)
)

, (30)

5Note that Eqn. (29) remains valid even if the network coding operations
are allowed.

where (a) follows because π is assumed to be a broadcast
policy of rate at least λ∗ − ε. Since the above holds for any
proper-cut u ∈ U , we have

λ∗ − ε ≤ min
u∈U

lim inf
T→∞

u ·
(

1
T

T
∑

t=1

sπ(t)
)

(31)

Now consider the following lemma.
Lemma 4: For any policy π ∈ Π, there exists a vector

βπ ∈ conv(S) such that

min
u∈U

lim inf
T→∞

u ·
(

1
T

T
∑

t=1

sπ(t)
)

= min
u∈U

u · βπ

Proof: Consider a sequence of vectors ζπ
T

def=
1
T

∑T
t=1 sπ(t), indexed by T ≥ 1. Since sπ(t) ∈ S for

all t ≥ 1, we have ζπ
T ∈ conv (S) for all T ≥ 1. Since

|U| is finite, by the definition of lim inf , there exists a sub-
sequence {u · ζπ

Tk
}k≥1 of the sequence {u · ζπ

T }T≥1 such
that

min
u∈U

lim
k→∞

u · ζπ
Tk

= min
u∈U

lim inf
T→∞

u · ζπ
T . (32)

Since the set conv (S) ⊂ R
|E| is closed and bounded, by the

Heine-Borel theorem, it is compact. Hence any sequence in
conv(S) has a converging sub-sequence. Thus, there exists
a sub-sub-sequence {ζπ

Tki
}i≥1 and βπ ∈ conv(S) such

that

ζπ
Tki
→ βπ, as i→∞.

It follows that

min
u∈U

u · βπ (a)
= min

u∈U
lim

i→∞
u · ζπ

Tki

(b)
= min

u∈U
lim

k→∞
u · ζπ

Tk

(c)
= min

u∈U
lim inf
T→∞

u · ζπ
T

(d)
= min

u∈U
lim inf
T→∞

u ·
(

1
T

T
∑

t=1

sπ(t)
)

,

where (a) uses the fact that if xn → x then c · xn → c · x
for any c, xn, and x ∈ R

l, l ≥ 1; (b) follows from the fact
that if the limit of a sequence {zk ≡ u · ζπ

Tk
} exists then

all sub-sequences {zki ≡ u · ζπ
Tki
} converge and limi zki =

limk zk; (c) follows from Equation (32) and (d) follows from
the definition of the sequence ζπ

T . This completes the proof of
the lemma.

Combining Lemma 4 with Eqn. (31), we have that there
exists a vector βπ ∈ conv(S) such that

λ∗ − ε ≤ min
u∈U

u · βπ. (33)

Maximizing the right hand side of Eqn. 33 over all
βπ ∈ conv(S), we have

λ∗ − ε ≤ max
β∈conv(S)

(

min
u∈U

u · β
)

(34)

388 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Since the above inequality holds for any ε > 0, by taking
ε↘ 0 and expanding the dot product, we have

λ∗ ≤ max
β∈conv(S)

(

min
U :a proper cut

∑

e∈EU

ceβe

)

. (35)

B. Proof of Theorem 2

We complete the proof in four steps. First, using the
dynamics of Xj(t) in the space Π∗ (Eqn. (14)), we derive
an expression of one-slot drift of an appropriately defined
Quadratic Lyapunov function L(X(t)). Second, we design
an auxiliary stationary randomized policy πRAND for link-
activations that yields optimal broadcast throughput. Third,
this randomized policy is used to show that the system X(t)
is strongly stable for all arrival rates λ < λ∗, under the
optimal broadcast policy π∗ ∈ Π∗. Finally, based on the above
analysis, we finally show that the policy π∗ is a throughput-
optimal broadcast policy for any wireless DAG network.

(a) An Upper-bound on the drift of the policy π∗:
Lemma 5: For the dynamics

Q(t + 1) ≤ (Q(t)− μ(t))+ + A(t) (36)

where all variables are non-negative and (x)+
def
= max{x, 0},

we have,

Q2(t + 1)−Q2(t) ≤ μ2(t) + A2(t) + 2Q(t)(A(t)− μ(t)).
Proof: Squaring both sides of Eqn. (36), we have

Q2(t + 1)

≤
(

(Q(t)− μ(t))+
)2 + A2(t) + 2 A(t)(Q(t)− μ(t))+

≤ (Q(t)− μ(t))2 + A2(t) + 2 A(t)Q(t),

where we use the fact that x2 ≥ (x+)2, Q(t) ≥ 0, and
μ(t) ≥ 0. Rearranging the above inequality finishes the
proof.

Applying Lemma 5 to the dynamics (14) of Xj(t) yields,
for each node j �= r,

X2
j (t + 1)−X2

j (t)

≤ Y (t) + 2Xj(t)
(

∑

m∈V

μmi∗t (t)−
∑

k∈V

μkj(t)
)

, (37)

where Y (t) def= (
∑

m∈V μmi∗t (t))2 + (
∑

k∈V μkj(t))2. Let
C =

∑

e ce, the sum of the capacities of all links in the
network. Now the node i∗t could be the source node r or a non-
source node in the network. In either case, since μe(t) ≤ ce,
∀e ∈ E, the first term in Y (t) above is upper-bounded by
max{A2(t), C2} and the second term is upper-bounded by C2.
Hence, Y (t) ≤ max{A2(t), C2} + C2 ≤ A2(t) + 2C2.
Since the number of arrivals per slot A(t) is assumed to have
bounded second moment, there exists a finite constant B > 0
such that E[Y (t)] ≤ E

(

A2(t)
)

+ 2C2 ≤ B.

Now define a Quadratic Lyapunov function L(X(t)) def=
∑

j �=r X2
j (t). From Eqn. (37), the one-slot drift Δ(X(t))

of L(X(t)) may be computed to be

Δ(X(t)) � E[L(X(t + 1))− L(X(t)) |X(t)]

= E
[
∑

j �=r

(

X2
j (t + 1)−X2

j (t)
)

|X(t)
]

≤ B|V |+2
∑

j �=r

Xj(t)E
[
∑

m∈V

μmi∗t (t)−
∑

k∈V

μkj(t) |X(t)
]

(a)
= B|V | − 2

∑

(i,j)∈E

E[μij(t) |X(t)]
(

Xj(t)−
∑

k∈Kj(t)

Xk(t)
)

= B|V | − 2
∑

(i,j)∈E

E[μij(t) |X(t)] Wij(t), (38)

where (a) follows from changing the order of summation and
Kj(t) and Wij(t) are as defined in Eqn. (15) and (16), respec-
tively. To emphasize the fact that the drift upper-bound (38)
depends on the control policy π ∈ Π∗, we attach a superscript
π to the control variables μ(t) as follows:

Δπ(X(t)) ≤ B|V | − 2
∑

(i,j)∈E

E[μπ
ij(t) |X(t)] Wij(t). (39)

Our optimal broadcast policy π∗ ∈ Π∗ is chosen to minimize
the upper-bound on the drift expression, given by the right-
hand side of Eqn. (39), among all policies in the space Π∗.

(b) Construction of a Stationary Randomized Policy
πRAND : Next, we construct an auxiliary randomized link-
activation policy πRAND, which will be useful later in the
proof. Let the vector β∗ ∈ conv (S) attain the upper-bound in
Eqn. (5):

β∗ ∈ arg max
β∈conv(S)

min
U : a proper cut

∑

e∈EU

ceβe.

From Caratheodory’s theorem [26], there exist at most
(|E| + 1) link-activation vectors {sk ∈ S} and associated
non-negative scalars {pk ≥ 0} with

∑|E|+1
k=1 pk = 1, such that

β∗ =
|E|+1
∑

k=1

pksk. (40)

Hence, from Theorem 1 we have,

λ∗ ≤ min
U : a proper cut

∑

e∈EU

ceβ
∗
e . (41)

Consider an exogenous packet arrival rate λ at the source,
which is strictly less than the broadcast capacity λ∗. Thus,
there exists an ε > 0 such that λ + ε ≤ λ∗. From
Eqn. (41),

λ + ε ≤ min
U : a proper cut

∑

e∈EU

ceβ
∗
e . (42)

For any node v �= r other than the source, consider the specific
proper cuts Uv = V \ {v}, defined earlier in Eqn. (6). From
Eqn. (42), we have

λ + ε ≤
∑

e∈EUv

ceβ
∗
e , ∀v �= r. (43)

Since the underlying network topology G = (V, E) is
a DAG, there exists a topological ordering of the nodes such
that: (i) the nodes can be labelled serially as {v1, . . . , v|V |},

SINHA et al.: THROUGHPUT-OPTIMAL MULTIHOP BROADCAST ON DIRECTED ACYCLIC WIRELESS NETWORKS 389

where v1 = r is the source node with no in-neighbours and
the node v|V | has no outgoing neighbours and (ii) all edges
in E are oriented from vi → vj , i < j [27]; From Eqn. (43),
we define probabilities qj ∈ [0, 1] for each node vj such
that

qj

∑

e∈EUvj

ceβ
∗
e = λ + ε

j

|V | , j = 2, . . . , |V |. (44)

Consider a randomized link-activation policy πRAND defined
as follows: at every slot t (i) it randomly selects a feasible
link-activation vector s(t) = sk with probability pk, given
in Eqn. (40), k = 1, 2, . . . , |E| + 1; (ii) for each selected
link e = (vi, vj), incoming to the node vj with se(t) = 1,
the link e is activated independently with probability qj , given
by Eqn. (44). The activated links are used to forward packets,
subject to the constraints that define the policy class Π∗ (i.e.,
in-order packet delivery and that a network node is only
allowed to receive packets that have been received by all of its
in-neighbors). Note that this randomized policy is independent
of the state X(t). Since each node j ∈ V is relabeled by
the topological ordering as vl ∈ V for some 2 ≤ l ≤ |V |,
from Eqn. (44) we conclude that, for each node j �= r,
the total expected incoming transmission rate to node j is
given by

∑

i:(i,j)∈E

E[μπRAND

ij (t) |X(t)] =
∑

i:(i,j)∈E

E[μπRAND

ij (t)]

= ql

∑

e∈EUvl

ceβ
∗
e = λ + ε

l

|V | . (45)

Equation (45) shows that under the randomized policy πRAND,
the total expected incoming capacity to each node j �= r
is strictly larger than the packet arrival rate λ. According
to the abuse of notation in (14), at the source node r
we have

∑

i:(i,r)∈E

E[μπRAND

ir (t) |X(t)] = E[
∑

i:(i,r)∈E

μπRAND

ir (t)] = λ.

(46)

From Eqns. (45) and (46), if node i appears prior to node j
in the aforementioned topological ordering, i.e., if i ≡ vli <
vlj ≡ j for some li < lj , then

∑

k:(k,i)∈E

E[μπRAND

ki (t) |X(t)]

−
∑

k:(k,j)∈E

E[μπRAND

kj (t) |X(t)] ≤ − ε

|V | (47)

(c) Stochastic Stability of {X(t)}t≥0 under π∗ : The drift
inequality (39) holds for any policy π ∈ Π∗. Our broadcast
policy π∗ observes the system state X(t) and minimizes
the upper-bound on drift at every slot. Comparing the acti-
vations selected by the policy π∗ with πRAND in slot t,

we have

Δπ∗
(X(t)) ≤ B|V | − 2

∑

(i,j)∈E
E
[

μπ∗
ij (t) |X(t)]Wij(t)

≤ B|V | − 2
∑

(i,j)∈E

E
[

μπRAND

ij (t) |X(t)]Wij(t)

= B|V |+ 2
∑

j �=r

Xj(t)
(

∑

m∈V

E
[

μπRAND

mi∗t
(t) |X(t)

]

−
∑

k∈V

E
[

μπRAND

kj (t)|X(t)
]

)

≤ B|V | − 2ε

|V |
∑

j �=r

Xj(t). (48)

Since node i∗t is an in-neighbour of node j (10), the node i∗t
must appear before j in any topological ordering of the
DAG G. Hence, the inequality in (48) follows directly
from (47). Taking expectation of both sides in (48) with
respect to X(t),

E
[

L(X(t + 1))
]

− E
[

L(X(t))
]

≤ B|V | − 2ε

|V |E||X(t)||1,

where || · ||1 is the �1-norm. Summing the above inequality
over t = 0, 1, 2, . . . T − 1 yields

E
[

L(X(T))
]

− E
[

L(X(0))
]

≤ B|V |T− 2ε

|V |

T−1
∑

t=0

E||X(t)||1.

Dividing the above by 2T ε/|V | and using L(X(T)) ≥ 0,

1
T

T−1
∑

t=0

E||X(t)||1 ≤
B|V |2

2ε
+
|V |E[L(X(0))]

2T ε

Taking a lim sup of both sides as T →∞, we have

lim sup
T→∞

1
T

T−1
∑

t=0

∑

j �=r

E[Xj(t)] ≤
B|V |2

2ε
, (49)

which implies that the virtual-queue process {X(t)}∞t=0 is
strongly stable [8] under the policy π∗ ∈ Π∗.

(d) Throughput-optimality of π∗ : Finally, we show that the
strong stability of the virtual queues Xj(t) implies that the
policy π∗ achieves the broadcast capacity λ∗ in a DAG, i.e., for
all arrival rates λ < λ∗, we have

lim
T→∞

Rj(T)
T

= λ, ∀j.

Equation (14) shows that the virtual queues Xj(t) have
bounded departures (due to the bounded link capacities). Thus,
strong stability of Xj(t) implies that all virtual queues Xj(t)
are rate stable [8, Th. 2.8], i.e., limT→∞ Xj(T)/T = 0, w.p.1
for all j. Using union-bound, it follows that,

lim
T→∞

1
T

∑

j �=r

Xj(T) = 0, w.p. 1 (50)

Now consider any node j �= r in the network. We can
construct a simple path σ(r def= uk → uk−1 . . . → u1

def= j)
from the source node r to the node j by running Algorithm 3
on the DAG G(V, E).

390 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 1, FEBRUARY 2017

Algorithm 3 r→ j Path Construction Algorithm

Require: Graph G(V, E), node j ∈ V
1: i← 1
2: ui ← j
3: while ui �= r do
4: ui+1 ← argminm∈δin(ui) Qmui(t);
5: i← i + 1
6: end while

Algorithm 3 chooses the parent of a node ui in the path σ
as the one that has the least relative packet deficit as compared
to ui. Since the underlying graph G(V, E) is a connected DAG
(i.e., there is a path from the source to every other node in
the network), the above path construction algorithm always
terminates with a path σ(r → j). The number of distinct
packets received by node j up to time T can be written as a
telescoping sum of relative packet deficits along the path σ,

Rj(T) ≡ Ru1(T)

=
k−1
∑

i=1

(

Rui(T)−Rui+1(T)
)

+ Ruk
(T)

(∗)
= −

k−1
∑

i=1

Xui(T) + Rr(T)

= −
k−1
∑

i=1

Xui(T) +
T−1
∑

t=0

A(t), (51)

where the equality (∗) follows the observation that (see (10))

Xui(T) = Qui+1ui(T) = Rui+1(T)−Rui(T).

Using the bound
∑k−1

i=1 Xui(t) ≤
∑

j �=r Xj(t) (since
Xj(t) ≥ 0) and Eqn. (51), we conclude that for every
node j �= r,

1
T

T−1
∑

t=0

A(t)− 1
T

∑

j �=r

Xj(T) ≤ 1
T

Rj(T) ≤ 1
T

T−1
∑

t=0

A(t).

Finally, using the Strong Law of Large Numbers for the arrival
process {A(t)}t≥0 and Eqn. (50), we conclude

lim
T→∞

Rj(T)
T

= λ, ∀j. w.p. 1

This concludes the proof.

C. Proof of Lemma 3

We regard the DAG G as a wire line network in which all
links can be activated simultaneously at a slot. Theorem 2 and
Eqn. (8) show that the broadcast capacity of the network G is

λ∗ = λDAG = min
U : a proper cut

∑

e∈EU

ce = min
{Uv ,v �=r}

∑

e∈EUv

ce

(∗)
= min

v∈V \{r}
din(v), (52)

where the sets Uv and EUv are defined in Eqns. (6) and (3)
respectively. The equality (∗) follows from the assumption

that ce = 1, ∀e ∈ E. Edmond’s Theorem [9] states that the
maximum number of disjoint spanning trees in the graph G is

k∗ = min
U : a proper cut

∑

e∈EU

ce. (53)

Combining (52) and (53) completes the proof of the Lemma.

REFERENCES

[1] A. Karam, L. Zhang, and A. Lakas, “An efficient broadcasting scheme
in support of military ad hoc communications in battle field,” in Proc.
IEEE 9th Int. Conf. Innov. Inf. Technol. (IIT), Mar. 2013, pp. 78–83.

[2] Livestream, accessed on Jun. 27, 2016. [Online]. Available:
http://new.livestream.com/

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[4] S. Sarkar and L. Tassiulas, “A framework for routing and congestion
control for multicast information flows,” IEEE Trans. Inf. Theory,
vol. 48, no. 10, pp. 2690–2708, Oct. 2002.

[5] B. Pavkovic, W.-J. Hwang, and F. Theoleyre, “Cluster-directed acyclic
graph formation for IEEE 802.15.4 in multihop topologies,” in Proc.
IEEE 5th Int. Conf. New Technol., Mobility Security (NTMS), May 2012,
pp. 1–6.

[6] A. Federgruen and Y.-S. Zheng, “Optimal power-of-two replenish-
ment strategies in capacitated general production/distribution networks,”
Manage. Sci., vol. 39, no. 6, pp. 710–727, 1993.

[7] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[8] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures Commun.
Netw., vol. 3, no. 1, pp. 1–211, 2010.

[9] R. Rustin, Combinatorial Algorithms. New York, NY, USA: Algorith-
mics Press, 1973.

[10] Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic broadcast for
flooding in wireless mobile ad hoc networks,” in Proc. IEEE Wireless
Commun. Netw. (WCNC), vol. 2. Mar. 2003, pp. 1124–1130.

[11] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” Wireless Netw., vol. 8, nos. 2–3,
pp. 153–167, 2002.

[12] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in Proc. 26th IEEE Int. Conf.
Comput. Commun. (INFOCOM), May 2007, pp. 1073–1081.

[13] D. Towsley and A. Twigg, “Rate-optimal decentralized broadcasting:
The wireless case,” in Proc. ACITA, 2008, pp. 323–333.

[14] S. Zhang, M. Chen, Z. Li, and L. Huang, “Optimal distributed broad-
casting with per-neighbor queues in acyclic overlay networks with
arbitrary underlay capacity constraints,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2013, pp. 814–818.

[15] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with
intra-session network coding,” in Proc. 43rd Annu. Allerton Conf.
Commun., Control, Comput., 2005, pp. 797–815.

[16] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, “A survey
of gossiping and broadcasting in communication networks,” Networks,
vol. 18, no. 4, pp. 319–349, 1988.

[17] M. Chrobak, L. Gasieniec, and W. Rytter, “A randomized algorithm for
gossiping in radio networks,” in Computing and Combinatorics. Berlin,
Germany: Springer, 2001, pp. 483–492.

[18] S. Basagni, D. Bruschi, and I. Chlamtac, “A mobility-transparent deter-
ministic broadcast mechanism for ad hoc networks,” IEEE/ACM Trans.
Netw., vol. 7, no. 6, pp. 799–807, Dec. 1999.

[19] C. Joo, X. Lin, and N. B. Shroff, “Greedy maximal matching: Per-
formance limits for arbitrary network graphs under the node-exclusive
interference model,” IEEE Trans. Autom. Control, vol. 54, no. 12,
pp. 2734–2744, Dec. 2009.

[20] D. B. West, Introduction to Graph Theory, vol. 2. Upper Saddle River,
NJ, USA: Prentice-Hall, 2001.

[21] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2012.

[22] A. Brzezinski, G. Zussman, and E. Modiano, “Distributed through-
put maximization in wireless mesh networks via pre-partitioning,”
IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 1406–1419, Dec. 2008.

SINHA et al.: THROUGHPUT-OPTIMAL MULTIHOP BROADCAST ON DIRECTED ACYCLIC WIRELESS NETWORKS 391

[23] L. X. Bui, S. Sanghavi, and R. Srikant, “Distributed link scheduling
with constant overhead,” IEEE/ACM Trans. Netw., vol. 17, no. 5,
pp. 1467–1480, Oct. 2009.

[24] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization,
vol. 6. Belmont, MA, USA: Athena Scientific, 1997.

[25] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency,
vol. 24. Berlin, Germany: Springer, 2003.

[26] J. Matoušek, Lectures on Discrete Geometry, vol. 108. New York, NY,
USA: Springer, 2002.

[27] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani, Algorithms.
New York, NY, USA: McGraw-Hill, 2006.

Abhishek Sinha received the B.E. degree in
electronics and telecommunication engineering from
Jadavpur University, Kolkata, India, in 2010, and the
M.E. degree in electronics and telecommunication
engineering from the Indian Institute of Science,
Bangalore, India, in 2012. He is currently pursuing
the degree with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Tech-
nology. His research interests include optimization,
information theory, and network control. He is a
recipient of the Jagadis Bose National Science Talent

Search Scholarship.

Georgios Paschos received the Diploma degree
in electrical and computer engineering from
the Aristotle University of Thessaloniki, Greece,
in 2002, and the Ph.D. degree in wireless networks
from the Department of Electronics and Communi-
cation Engineering, University of Patras (supervisor
Prof. S. Kotsopoulos), Greece, in 2006. He spent
two years with the team of Prof. E. Modiano, Massa-
chusetts Institute of Technology. From 2008 to 2014,
he was with the Center of Research and Technol-
ogy Hellas—Informatics and Telematics Institute,

Greece, working with Prof. L. Tassiulas. Since 2014, he has been a Principal
Researcher with Huawei Technologies Company, Ltd., Paris, France, leading
the Network Control and Resource Allocation Team. He also taught with the
Department of Electrical and Computer Engineering, University of Thessaly,
from 2009 to 2011, as an Adjunct Lecturer. From 2007 to 2008, he was an
ERCIM Post-Doctoral Fellow with VTT, Finland, working on the team of
Prof. Norros. He serves as an Associate Editor of the IEEE/ACM TRANS-
ACTIONS ON NETWORKING and a TPC Member of the IEEE INFOCOM.
Two of his papers received the best paper award in GLOBECOM 2007 and
IFIP Wireless Days 2009, respectively.

Chih-Ping Li received the B.S. degree from
National Taiwan University in 2001, and the
M.S. and Ph.D. degrees from the University of
Southern California in 2005 and 2011, respectively,
all in electrical engineering. He was a Post-Doctoral
Associate with the Laboratory for Information and
Decision Systems, Massachusetts Institute of Tech-
nology, from 2011 to 2014. Since 2014, he has
been with the Corporate Research and Development
Department, Qualcomm Research, and works on
5G wireless system design and analysis. His research

interests include stochastic control, resource allocation, and QoS in commu-
nication networks, wireless networks, and queuing systems.

Eytan Modiano received the B.S. degree in elec-
trical engineering and computer science from the
University of Connecticut,CT, USA, Storrs, in 1986,
and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Maryland, College
Park, MD, USA, in 1989 and 1992, respectively.
He was a Naval Research Laboratory Fellow from
1987 to 1992, and a National Research Council
Post-Doctoral Fellow from 1992 to 1993. From
1993 to 1999, he was with the Lincoln Labora-
tory, Massachusetts Institute of Technology (MIT).

Since 1999, he has been a Faculty Member with MIT, where he is currently
a Professor with the Department of Aeronautics and Astronautics and the
Laboratory for Information and Decision Systems. His research is on com-
munication networks and protocols with an emphasis on satellite, wireless,
and optical networks. He was a co-recipient of the Sigmetrics 2006 Best
Paper Award and the WiOpt 2013 Best Paper Award. He is an Editor-at-Large
of the IEEE/ACM TRANSACTIONS ON NETWORKING, and served as an
Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY
and the IEEE/ACM TRANSACTIONS ON NETWORKING. He was the Techni-
cal Program Co-Chair of the IEEE WiOpt 2006, the IEEE INFOCOM 2007,
ACM MobiHoc 2007, and DRCN 2015. He is a Fellow of the IEEE and an
Associate Fellow of the AIAA, and served on the IEEE Fellows Committee.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

