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Abstract—Backpressure routing and scheduling, with its
throughput-optimal operation guarantee, is a promising technique
to improve throughput in wireless multihop networks. Although
backpressure is conceptually viewed as layered, the decisions of
routing and scheduling are made jointly, which imposes several
challenges in practice. In this work, we present Diff-Max, an
approach that separates routing and scheduling and has three
strengths: 1) Diff-Max improves throughput significantly; 2) the
separation of routing and scheduling makes practical implemen-
tation easier by minimizing cross-layer operations; i.e., routing is
implemented in the network layer and scheduling is implemented
in the link layer; and 3) the separation of routing and scheduling
leads to modularity; i.e., routing and scheduling are independent
modules in Diff-Max, and one can continue to operate even if the
other does not. Our approach is grounded in a network utility
maximization (NUM) formulation and its solution. Based on
the structure of Diff-Max, we propose two practical schemes:
Diff-subMax and wDiff-subMax. We demonstrate the benefits of
our schemes through simulation in ns-2.

Index Terms—Backpressure routing and scheduling, network
utility maximization, wireless networks.

I. INTRODUCTION

B ACKPRESSURE routing and scheduling has emerged
from the pioneering work in [1] and [2], which showed

that, in wireless networks, one can stabilize queues for any
feasible traffic by making routing and scheduling decisions
based on queue backlog differences. Moreover, it has been
shown that backpressure can be combined with flow control to
provide utility-optimal operation guarantee [3].
The strengths of these techniques have recently increased the

interest in practical implementation of backpressure in wireless
networks, some of which are summarized in Section VI. How-
ever, the practical implementation of backpressure imposes sev-
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Fig. 1. Example topology consisting of three nodes and two flows 1,
2. Note that this small topology is a zoomed part of a large multihop wireless
network. The source and destination nodes of flows 1 and 2 are not shown in this
example, i.e., nodes are intermediate nodes that route and schedule flows 1
and 2. (a) Backpressure: Node constructs per-flow queues and and
determines the queue backlog differences at time ;

, where . Based on the differences as well
as the channel state of the network, , backpressure makes joint routing and
scheduling decisions. (b) Diff-Max: Node constructs per-flow queues and

in the network layer and per-link queue sizes and in the link layer,
and makes routing decision based on the queue backlog differences at time ;

,
where . Separately, node makes the scheduling decision based on

, and .

eral challenges mainly due to the joint nature of the routing and
scheduling, which is the focus of this paper.
In the backpressure framework, each node constructs

per-flow queues. Based on the per-flow queue backlog dif-
ferences, and by taking into account the state of the network,
each node makes routing and scheduling decisions (note that
scheduling algorithm is also called max-weight [4]). Although
the backpressure framework is conceptually viewed as layered,
the decisions of routing and scheduling are made jointly. To
better illustrate this point, let us discuss the following example.
Example 1: Let us consider Fig. 1(a) for backpressure op-

eration. At time , node makes routing and scheduling de-
cisions for flows 1 and 2 based on the per-flow queue sizes

, as well as the queue sizes of the other nodes,
i.e., and in this example, and using the channel state of the
network . In particular, backpressure determines a packet
(and its flow) that should be transmitted over link by

such that . The
decision mechanism is the same for link . The scheduling
algorithm also determines the link activation policy. In partic-
ular, the maximum backlog difference over each link is cal-
culated as; and . Based
on and , the scheduling algorithm deter-
mines the link that should be activated. Note that the decisions of
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routing and scheduling are made jointly in backpressure, which
imposes several challenges in practice. We elaborate on them
next.
Routing algorithms are traditionally designed in the network

layer, while the scheduling algorithms are implemented in the
link layer. However, the joint routing and scheduling nature of
backpressure imposes challenges for practical implementation.
To deal with these challenges, [5] implements backpressure at
the link layer, and [6] proposes updates to the MAC layer. This
approach is practically difficult due to device memory limi-
tations and strict limitations imposed by device firmware and
drivers not to change the link-layer functionalities. The second
approach is to implement backpressure in the network layer,
e.g., [7]–[9], which requires joint operation of the network and
link layers so that backpressure implemented in the network
layer operates gracefully with the link-layer functionalities.
Thus, the network and link layers should work together syn-
chronously, which may not be practical for many off-the-shelf
devices.
Existing networks are designed in layers, in which protocols

and algorithms are modular and operate independently at each
layer of the protocol stack. E.g., routing algorithms at the net-
work layer should work in a harmony with different types of
scheduling algorithms in the link layer. However, the joint na-
ture of backpressure stresses joint operation and hurts modu-
larity, which is especially important in contemporary wireless
networks, which may vary from a few node networks to ones
with hundreds of nodes. It is natural to expect that different
types of networks, according to their size as well as software
and hardware limitations, may choose to employ backpressure
partially or fully. E.g., some networks may be able to employ
both routing and scheduling algorithms, while others may only
employ routing. Therefore, the algorithms of backpressure, i.e.,
routing and scheduling should be modular.
In this paper, we are interested in a framework in which the

routing and scheduling are separated. We seek to find such a
scheme where the routing operates in the network layer and the
scheduling is implemented in the link layer. The key ingredients
of our framework, which we call Diff-Max,1 are: 1) per-flow
queues at the network layer and making routing decisions based
on their differences; 2) per-link queues at the link layer and
making scheduling decisions based on their size.
Example 1—Continued: Let us consider Fig. 1(b) for

Diff-Max operation. 1) Routing: At time , node makes
routing decision for flows 1 and 2 based on queue backlogs

and . This decision is made at the network
layer and the routed packets are inserted into the link-layer
queues. Note that in backpressure, routed packets are scheduled
jointly, i.e., when a packet is routed, it should be transmitted if
the corresponding links are activated. Hence, both algorithms
should make the decision jointly in backpressure. However, in
Diff-Max, a packet may be routed at time , and scheduled and
transmitted at a later time where . 2) Scheduling:
At the link layer, links are activated and packets are transmitted

1Note that Diff means that the routing is based on the queue differences,
and Max refers to the fact that the scheduling is based on the maximum of the
(weighted) link-layer queues. Finally, the hyphen in Diff-Max is to mention the
separation of the routing and scheduling.

based on per-link queue sizes , and . The details
of Diff-Max are provided in Section III.
Our approach is grounded in a network utility maximization

(NUM) framework [10]. The solution decomposes into several
parts with an intuitive interpretation, such as routing, sched-
uling, and flow control. The structure of the NUM solution pro-
vides insight into the design of our scheme, Diff-Max. By sepa-
rating routing and scheduling, Diff-Max makes the practical im-
plementation easier and minimizes cross-layer operations. The
following are the key contributions of this work.
• We propose a new system model and NUM framework to
separate routing and flow scheduling. Our solution to the
NUM problem separates routing and scheduling such that
routing is implemented at the network layer and scheduling
is at the link layer. Based on the structure of the NUM so-
lution, we propose Diff-Max. We show that the determin-
istic version of Diff-Max optimizes utility, and we conjec-
ture that its stochastic version satisfies stability and utility
optimality.

• We extend Diff-Max to employ routing and intranode
scheduling, but disable internode scheduling. We call the
new framework Diff-subMax, which reduces computa-
tional complexity and overhead significantly, and provides
high throughput improvements in practice. Namely,
Diff-subMax only needs information from one-hop away
neighbors to make its routing and scheduling decisions.
Furthermore, we show that the deterministic version of
Diff-subMax provides utility optimality for the networks
with predetermined internode scheduling.

• We propose a window-based routing scheme, wDiff-
subMax, which implements routing but disables the
scheduling. wDiff-subMax is a heuristic developed based
on Diff-Max and Diff-subMax, and it is designed for the
scenarios in which the implementation of the scheduling
in the link layer is impossible (or not desirable) e.g., due
to device restrictions. wDiff-subMax makes the routing
decisions on the fly and reduces overhead.

• We evaluate our schemes in amultihop setting and consider
their interaction with transport, network, and link layers.
We implement our schemes in a simulator, ns-2 [11], and
show that they significantly improve throughput as com-
pared to adaptive routing schemes such as Ad hoc On-De-
mand Distance Vector (AODV) [12] and Destination-Se-
quenced Distance-Vector Routing (DSDV) [13].

The structure of the rest of the paper is as follows.
Section II gives an overview of the system model.
Section III presents the Diff-Max formulation and design.
Section IV presents the development and implementation
details of Diff-Max schemes. Section V presents simulation
results. Section VI presents related work. Section VII concludes
the paper.

II. SYSTEM OVERVIEW

In this section, we provide an overview of the system model
for separation of routing and scheduling. We also provide back-
ground on the backpressure framework so that we can make a
connection and comparison between our scheme and backpres-
sure throughout the rest of the paper.
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Fig. 2. Wireless mesh network. The queues at the network and link layers as
well as the interaction among the queues inside node are shown in detail.
and are the network-layer queues for flows and , and and are
the per-link queues for the links . The routing algorithm operates in
the network layer; the scheduling is implemented in the link layer.

A. Separation of Routing and Scheduling

We consider multihop wireless networks in which packets
from a source traverse potentially multiple wireless hops before
being received at their destination. In this setup, each wireless
node is able to perform routing, scheduling, and flow control. In
this section, we provide an overview of this setup and highlight
some of its key characteristics. Fig. 2 shows the key parts of our
system model in an example topology.
Setup: We consider a wireless network which consists of
nodes and edges, where is the set of nodes and is

the set of edges. We consider in our formulation and analysis
that time is slotted, and refers to the beginning of slot .
Sources and Flows: Let be the set of unicast flows between

source–destination pairs in the network. Each flow arrives
from an application layer to a transport layer with rate

at time-slot . The arrivals are i.i.d. over the slots, and
their expected values are , and are fi-
nite. The transport layer stores the arriving packets in reservoirs
(i.e., transport-layer per-flow queues), and controls the flow. In
particular, each source is associated with rate and a utility
function , which we assume to be a strictly concave func-
tion of . The transport layer determines at time-slot ac-
cording to the utility function , and packets are trans-
mitted from the transport-layer reservoir to the network layer at
slot .
Queue Structures: At node , there are network-

and link-layer queues. The network-layer queues are per-flow
queues; i.e., is the queue at node that only stores the
packets from flow . The link-layer queues are per-link
queues; i.e., at each node , a link-layer queue is
constructed for a neighbor node (Fig. 2).2
Flow Rates: Our model optimizes the flow rates among dif-

ferent nodes as well as the flow rates in a node among different
layers: transport, network, and link layers.

2Note that in some devices, there might be only one queue (per-node queue)
for data transmission instead of per-link queues in the link layer. Developing a
model with per-node queues is challenging due to coupling among actions and
states, so it is an open problem.

The transport layer determines at time and passes
packets to the network layer. These packets are inserted in

the network-layer queue (assuming that node is the source
node of flow ).
The flow rate from the network layer to the link-layer queues

is . In particular, is the flow rate of the packets, be-
longing to flow , from the network-layer queue; to the link-
layer queue; at node . Note that the optimization of flow
rate is the routing decision since it basically determines
how many packets from flow should be forwarded/routed to
node .
The link transmission rate from to is . Note that

bounds per-flow data rates; i.e., .
E.g., in Fig. 2, where is the
flow rate of flow over link . Note that the optimization
of link transmission rate corresponds to the scheduling
decisions since it determines which packets from which link-
layer queues should be transmitted as well as whether a link is
activated.
At every time-slot changes according to the following

dynamics:

(1)

where is the source node of flow and is an in-
dicator function, which is 1 if , and 0, otherwise. Note
that (1) is an inequality because the actual amount of flow rate
of flow over link may be lower than as there may
not be enough packets from flow in the link-layer queue at
node .
At every time-slot changes according to the following

queue dynamics:

(2)

Note that (2) is an inequality as the number of packets in
may be lower than .
Channel Model: At slot is the channel state vector,

where , where repre-
sents the edges such that and . We
assume that is the state of link at time and takes values
from the set according to a probability distribu-
tion which is i.i.d. over time-slots. If , packets can
be transmitted with rate . Otherwise (i.e., if ),
packets cannot be transmitted successfully.
Let denote the set of the link transmission rates feasible

at time-slot for channel state accounting for interference
among the wireless links. In particular, at every time-slot , the
link transmission vector
should be constrained such that .
Stability Region: Let be the vector of arrival rates

. The network stability region is defined as the closure
of all arrival rate vectors that can be stably transmitted in the
network, considering all possible routing and scheduling poli-
cies [1]–[3]. is fixed and depends only on channel statistics
and interference.
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Fig. 3. Backpressure system model in a wireless mesh network. Per-flow
queues inside node are shown in detail. and are the per-flow queues
for flows and , respectively. The backpressure routing and scheduling
algorithm operates jointly over the per-flow queues.

B. Background on Backpressure

In this section, we provide background on backpressure so
that we can make a connection and comparison between our
scheme and backpressure throughout the rest of the paper. We
consider a similar system model as Section II-A. Fig. 3 shows
the key parts of backpressure system model in an example
topology.
At node , there are per-flow queues. The per-flow

queue is the queue at node that only stores the packets
from flow . The flow rate is determined at time ,
and the corresponding number of packets are inserted in the net-
work-layer queue (assuming that node is the source node
of flow ). The flow rate from node to node for flow is .
Note that the optimization of flow rate is both the

routing and scheduling decision since it basically determines
howmany packets from flow should be forwarded/routed over
which links. Thus, at every time-slot changes according
to the following dynamics:

(3)

The backpressure scheme operates on per-flow queues and
makes routing and scheduling decisions based on the following
algorithm.
Backpressure:
• Routing & Scheduling: At each time-slot , the rate
is determined by

s.t. (4)

Backpressure routing and scheduling algorithm in (4) sta-
bilizes the network, and average queue backlog sizes are
bounded [1], [2]. Moreover, it has been shown that backpressure
can be combined with flow control to provide utility-optimal
operation guarantee [3].

III. DIFF-MAX: FORMULATION AND DESIGN

A. Network Utility Maximization
In this section, we formulate and design Diff-Max. Our first

step is the NUM formulation of the problem and its solution.
This approach sheds light into the structure of the Diff-Max
algorithms.3
1) Formulation: Our objective is to maximize the total utility

by optimally choosing the flow rates , as well as the amount
of data traffic that should be routed to each neighbor node; i.e.,

, and the link transmission rates; i.e.,

s.t.

(5)
The first constraint is the flow conservation constraint at the
network layer: At every node and for each flow , the sum
of the total incoming traffic, i.e., and exogenous
traffic, i.e., should be equal to the total outgoing traffic from
the network layer, i.e., . The second constraint is the
flow conservation constraint at the link layer; the link transmis-
sion rate, i.e., should be larger than the incoming traffic;
i.e., . Note that this constraint is an inequality be-
cause the link transmission rate can be larger than the actual
data traffic. The third constraint gives the relationship between
the network- and link-layer per-flow data rates, and the last
constraint requires that the vector of link transmission rates,

, should be the element of the avail-
able link rates . Note that is different than in the sense
that represents long-term average rates rather than instanta-
neous rates.
The first two constraints are key to our work because they

determine the incoming and outgoing flow relationships at
the network and link layers, respectively. This approach sep-
arates routing and scheduling and assigns the routing to the
network layer and scheduling to the link layer. Note that if
these constraints are combined in such a way that incoming
rate from a node and exogenous traffic should be smaller than
the outgoing traffic for each flow, we obtain the backpressure
solution [14], [15].
2) Solution: Lagrangian relaxation of the first constraint

gives the following Lagrange function:

(6)

3NUM optimizes the average values of the parameters (i.e., flow rates) that
are defined in Section II. By abuse of notation, we use a variable, e.g., as the
average value in our NUM formulation if both and refers to the
same parameter.
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where and are the Lagrange multipliers. The Lagrange
function can be rewritten as

(7)

Equation (7) can be decomposed into several intuitive subprob-
lems such as flow control, routing, and scheduling. First, we
solve the Lagrangian with respect to

(8)

where is the inverse function of the derivative of .
This part of the solution can be interpreted as the flow control.
Second, we solve the Lagrangian for and . The following
part of the solution can be interpreted as the routing:

s.t. (9)

The above problem is equivalent to

(10)

Third, we solve the Lagrangian for . The following part of
the solution can be interpreted as the scheduling:

s.t. (11)

The decomposed parts of the Lagrangian, i.e., (8), (10), and
(11), and the Lagrange multipliers and can be solved
iteratively via a gradient descent algorithm. The convergence
properties of this solution to the utility optimal operating point
are provided in the Appendix. Next, we design Diff-Max based
on the structure of the NUM solution.

B. Diff-Max
Now, we provide a stochastic control strategy including

routing, scheduling, and flow control. The strategy, i.e.,
Diff-Max, which mimics the NUM solution, combines sepa-
rated routing and scheduling together with the flow control.
Diff-Max:
• Routing: Node determines according to

s.t. (12)

where is constant larger than the maximum outgoing
rate from node is the set of node 's neighbors, and

is the network-layer virtual queue.
According to (12), packets are removed from
and inserted to the link-layer queue . This routing

algorithmmimics (10) and has the following interpretation.
Packets from flow can be transmitted to the next-hop
node as long as the network-layer queue in the next hop
(node ) is small, which means that node is able to route
the packets, and the link-layer queue at the current node
(node ) is small, whichmeans that the congestion over link

is relatively small. If the number of packets in
is smaller than the routing variable calculated by (12), the
packets are transmitted to the link-layer queues beginning
from the largest .
The routing algorithm in (12) uses per-link queues as well
as per-flow queues, which is the main difference of (12) as
compared to the backpressure routing. The backpressure
routing only uses per-flow queues and does not take into
account the state of the link-layer queues, which do not
exist in the standard backpressure formulation.

• Scheduling: At each time-slot , the link rate is de-
termined by

s.t. (13)

where (13) mimics (11) and has the following interpreta-
tion. The link with the largest queue backlog ,
taking into account the channel state vector, should be ac-
tivated, and a packet(s) from the corresponding queue, i.e.,

, should be transmitted. Note that the scheduling in (13)
is known to be a difficult problem [10], [14]. Therefore,
in Section IV, we propose suboptimal, low-complexity
scheduling algorithms that interact well with the routing
algorithm in (12).
The scheduling algorithm in (13) differs from backpres-
sure in the sense that it is completely independent from the
routing. In particular, (13) makes the scheduling decision
based on the per-link queues and the channel state

, while backpressure uses maximum queue backlog
differences dictated by the routing algorithm. As it is
seen, the routing and scheduling are operating jointly in
backpressure, while in Diff-Max, these algorithms are
separated.

• Flow Control:At every time-slot , the flow/rate controller
at the transport layer of node determines the number of
packets that should be passed from the transport layer to
the network layer according to

s.t. (14)

where is a constant larger than the maximum out-
going rate from node , and is a finite constant, .
The flow control in our solution mimics (8) as well as the
flow control algorithm proposed in [3].

IV. IMPLEMENTATION DETAILS

We propose practical implementations of Diff-Max (Fig. 4)
as well as Diff-subMax, which combines the routing algorithm
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Fig. 4. Diff-Max operations at endpoints and intermediate nodes.

with a suboptimal scheduling, and wDiff-subMax, which makes
routing decision based on a window-based algorithm.

A. Diff-Max

1) Flow Control: The flow control algorithm, implemented
at the transport layer at the end nodes (see Fig. 4), determines
the rate of each flow. We implement our flow control algorithm
as an extension of UDP in the ns-2 simulator.
The flow control algorithm, at the source node , divides time

into epochs (virtual slots) such as , where
is the beginning of the th epoch. Let us assume that

where is the epoch duration.
At time , the flow control algorithm determines the rate

according to (14). We consider (note
that any other concave utility function can be used). After
is determined, a corresponding number of packets are passed to
the network layer and inserted to the network-layer queue .
Packets that are not forwarded to the network layer are stored in
a reservoir at the transport layer and transmitted in later slots. At
the receiver node, the transport protocol receives packets from
the lower layers and passes them to the application.
2) Routing: The routing algorithm, implemented at the net-

work layer of each node (see Fig. 4), determines routing policy,
i.e., the next hop(s) to which packets are forwarded.
The first part of our routing algorithm is the neighbor dis-

covery and queue size information exchange. Each node trans-
mits a message containing the size of its network-layer queues,

. These messages are in general piggybacked to data packets.
The nodes in the network operates in the promiscuous mode.
Therefore, each node, let us say node , overhears a packet from
node even if node transmits the packet to another node, let us
say node . Node reads the queue size information from the
data packet that it receives or overhears (thanks to operating on
the promiscuous mode). The queue size information is recorded
for future routing decisions. Note that when a node hears from
another node through direct or promiscuous mode, it classifies it
as its neighbor. The neighbor nodes of node form a set . As
we mentioned, queue size information is piggybacked to data
packets. However, if there is no data packet for transmission,
the node creates a packet to carry queue size information and
broadcasts it.

Algorithm 1: The routing algorithm at node at slot .

1: for do
2: Read the network-layer queue size information of

neighbors:
3: Read the link-layer queue size information:
4:
5:
6:
7: Remove packets from
8: Pass packets to the link layer and insert them

in

The second part of our routing algorithm is the actual routing
decision. Similar to the flow control algorithm, the routing al-
gorithm divides time into epochs, such as ,
where is the beginning of the th epoch at node . Let us
assume that where is the epoch duration.
Note that we use and instead of and because these
two time epochs do not need to be the same nor synchronized.
At time , the routing algorithm checks

for each flow . Note that is not the instanta-
neous value of at time , but the latest value of heard by
node before . Note also that is the per-link queue
at node , and this information should be passed to the network
layer for routing decision. According to (12), is deter-
mined , and packets are removed from

and inserted to the link-layer queue at node . Note that
the link layer transmits packets from only to node , hence
the routing decision is completed. The routing algorithm is sum-
marized in Algorithm 1. Note that Algorithm 1 considers that
there are enough packets in for transmission. If not, the al-
gorithm lists all the links in decreasing order, according
to the weight, . Then, it begins to
route packets beginning from the link that has the largest weight.
3) Scheduling: The scheduling algorithm in (13) assumes

that time is slotted. Although there are time-slotted system im-
plementations, and also recent work on backpressure imple-
mentation over time-slotted wireless networks [9], IEEE 802.11
MAC, an asynchronous medium access protocol without time-
slots, is the most widely used MAC protocol in current wireless
networks. Therefore, we implement our scheduling algorithm
in (13) on top of 802.11 MAC (see Fig. 4) with the following
updates.
The scheduling algorithm constructs per-link queues at the

link layer. Node knows its own link-layer queues, , and
estimates the loss probability and link rates. Let us consider
that and are the estimated values of and , respec-
tively. is calculated as one minus the ratio of correctly trans-
mitted packets over all transmitted packets in a time window
over link .4 is calculated as the average of the recent (in a

4Note that we do not use instantaneous channel states in our implemen-
tation since it is not practical to get this information. Even if one can estimate

using physical-layer learning techniques, should be estimated
, which is not practical in current wireless networks.
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Algorithm 2: Diff-Max scheduling algorithm at node .

1: if , or is updated such that then
2: Determine such that

3: if such that then
4: Reduce 802.11 MAC contention window size and

access the medium
5: Transmit a packet from according to FIFO rule
6: else
7: Tell 802.11 MAC that there are no packets in the

queues available for transmission

window of time) link rates over link . , and are
piggybacked to the data packets and exchanged among nodes.
Note that this information should be exchanged among all nodes
in the network since each node is required to make its own de-
cision based on global information. Also, each node knows the
general topology and interfering links.
The scheduling algorithm that we implemented mimics (13).

Each node knows per-link queues, i.e., , estimated loss prob-
abilities, i.e., , and link rates, i.e., , for as well
all maximal independent sets, which consist of links that are
not interfering. Let us assume that there are maximal inde-
pendent sets. For the th maximal independent set such that

, the policy vector is; ,
where if link is in the th maximal set, and ,
otherwise. Our scheduling algorithm selects th maximal inde-
pendent set such that .
Node calculates whenever one of the parameters,
changes. If, according to , node decides that it should acti-
vate one of its links, then it reduces the contention window size
of 802.11 MAC so that node can access the medium quickly
and transmit a packet. If node should not transmit, then the
scheduling algorithm tells 802.11MAC that there are no packets
in the queues available for transmission. Note that in order to
complement Diff-Max scheduling, the 802.11 protocol has to
be slightly modified. The scheduling algorithm is summarized
in Algorithm 2.
Note that Algorithm 2 is a hard problem because it is reduced

to maximum independent set problem, [10], [14]. Furthermore,
it introduces significant amount of overhead; each node needs
to know every other node's queue sizes and link loss rates. Due
to the complexity of the problem and overhead, we implement
this algorithm for small topologies over ns-2 for the purpose
of comparing its performance to suboptimal scheduling algo-
rithms, which we describe next.

B. Diff-Submax
Diff-subMax is a low-complexity and low-overhead coun-

terpart of Diff-Max. The flow control and the routing parts of
Diff-subMax is exactly the same as in Diff-Max. The only dif-
ferent part is the scheduling algorithm, which uses 802.11MAC
protocol without any changes. When a transmission opportu-
nity arises according to the underlying 802.11 MAC at time ,
then the scheduling algorithm of node calculates weights for

all outgoing links to its neighbors. Let us consider link at
time . The weight is . Based on
the weights, the link is chosen as .
This decision means that a packet from the link-layer queue

is chosen according to FIFO rule and transmitted. Note that
this scheduling algorithm only performs intranode scheduling,
i.e., it determines from which link-layer queue packets should
be transmitted, but it does not determine which node should
transmit, which is handled by 802.11 MAC.
Diff-subMax has several nice features. We show in the

Appendix that the deterministic version of Diff-subMax
provides utility optimality for the networks with predeter-
mined internode scheduling such as CSMA/CA. Furthermore,
Diff-subMax reduces the complexity of the algorithm and
overhead significantly. In particular, each node calculates and
compares weights for each neighbor node. Therefore,
the complexity is linear with the number of (neighbor) nodes.
The overhead is also significantly reduced; each node needs to
know the queue size only of its one-hop away neighbors.

C. wDiff-subMax

wDiff-subMax is a heuristic designed as an extension of Diff-
subMax for the scenarios that link-layer operations and data ex-
change (between the network and link layers) are not possible
due to Wi-Fi firmware or driver restrictions or may not be de-
sired. Therefore, wDiff-subMax does not employ any sched-
uling mechanism, but only the routing and flow control. The
flow control algorithm is the same as in Diff-Max. Yet, the
routing algorithm is updated as explained next.
Per-flow queues as well as per-link queues are required in

(12) to make the routing decision. If per-link queues are not
available at the network layer, the routing decision may not
be efficient as there may be (uncontrolled) congestion in the
link-layer queues. In order to make the routing decisions effi-
ciently, we propose a heuristic called wDiff-subMax. The main
idea behind wDiff-subMax is to react to link-layer congestion,
while still implementing (12). To achieve this, wDiff-subMax
employs acknowledgement (ACK) mechanism and uses an ad-
ditive increase/multiplicative decrease (AIMD) algorithm.
wDiff-subMax labels each packet with a timestamp at the net-

work layer. When a packet is received by the next hop, an ACK
packet, echoing the timestamp of the packet, is transmitted back
to the previous hop. The network layer of the previous hop re-
ceives ACKs and determines round-trip time (RTT) for each
packet. is the average round-trip time of the ACKs
received in the last slot (i.e., at slot ), and is the
average round-trip time of the packets.
wDiff-subMax keeps a windows size for link

and flow at slot . At each slot , the routing parameter
is set to and packets are passed to

the link layer. wDiff-subMax determines the window size ac-
cording to AIMD as explained next.
If and , then

is increased by 1. Note that, in this case, per-slot
RTT is smaller than the average RTT, which means that con-
gestion level in the link layer is low, and there is a positive
queue backlog difference between the two nodes. Thus, more
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Fig. 5. Topologies used in simulations. (a) Triangle topology. There are two flows between sources and receivers , i.e., from node to ( - )
and from node to ( - ). (b) Diamond topology. There are two flows between sources and receivers , i.e., from node to ( - )
and from node to ( - ). (c) Grid topology. Twelve nodes are randomly placed over a 4 3 grid. An example node distribution and possible flows are
illustrated in the figure.

Fig. 6. Numerical results for the triangle topology shown in Fig. 5(a). The loss is over link . (a) Throughput of flow. (b) Throughput of
flow. (c) Total utility.

Fig. 7. Numerical results for the triangle topology shown in Fig. 5(a). The loss is over all links. (a) Throughput of flow. (b) Throughput of
flow. (c) Total utility.

packets can be transmitted over this link, so is in-
creased. On the other hand, if and

, then is decreased by 1 since
the link-layer congestion level is high, and less packets should
be transmitted over this link. If none of the packets in the last
slot is ACKed, this means that congestion is very high, and
packets are dropped. In this case, is halved so that the
number of packets over link could be reduced sharply. After

is determined, is set to and
packets are passed to the link layer. Note that wDiff-subMax,
similar to Diff-subMax, reduces computational complexity and
overhead significantly as compared to Diff-Max.

V. PERFORMANCE EVALUATION

A. Numerical Simulations
We simulate Diff-Max as well as the standard backpressure

in an idealized time-slotted system. In particular, we consider
triangle and diamond topologies shown in Fig. 5(a) and (b). In

both topologies, there are two flows, and ,
and all nodes are capable of forwarding packets to their neigh-
bors. The simulation duration is 10 000 slots, and each simula-
tion is repeated for 10 seeds. Each slot is in the ON or OFF state
according to an i.i.d. random process with a given loss proba-
bility. The utility function in these simulations is utility, i.e.,

.
Fig. 6 shows the throughput and total utility (aggregated over

per-flow utilities) versus the loss probability for the triangle
topology when the link is lossy. As can be seen, the
throughput and the total utility of Diff-Max is equal to that
of backpressure. Similar results are observed in Fig. 6 for the
same setup when all links are lossy. Note that the total utili-
ties in Figs. 6 and 7 are negative as we employ utility in
these simulations. As can be seen, the throughput and utility of
Diff-Max is equal to that of backpressure. The same results are
shown for the diamond topology in Figs. 8 and 9. These results
show that Diff-Max achieves the same throughput and utility as
backpressure.
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Fig. 8. Numerical results for the diamond topology shown in Fig. 5(b). The loss is over link . (a) Throughput of flow. (b) Throughput of
flow. (c) Total utility.

Fig. 9. Numerical results for the diamond topology shown in Fig. 5(b). The loss is over all links. (a) Throughput of flow. (b) Throughput of
flow. (c) Total utility.

B. NS-2 Simulations

In this section, we simulate our schemes Diff-Max,
Diff-subMax, and wDiff-subMax using the ns-2 simulator [11].
The simulation results show that our schemes significantly im-
prove throughput, utility, and delay performance as compared
to AODV [12] and DSDV [13] routing schemes. Next, we
present the simulator setup and results in detail.
1) Setup: We considered three topologies: the diamond

topology shown in Fig. 5(b), a grid topology shown in Fig. 5(c),
and a random topology. In the diamond topology, the nodes are
placed over a 500 500-m terrain. Two flows are transmitted
from node to nodes and . In the grid topology, 4 3
cells are placed over an 800 600-m terrain; 12 nodes are
randomly placed in the cells. In the grid topology, each node
can communicate with other nodes in its cells or with the ones
in neighboring cells. Four flows are generated randomly. In
the random topology, 20 nodes are randomly generated and
located over an 800 800-m terrain according to a uniform
distribution. Ten flows are generated and transmitted between
randomly selected nodes.
We consider CBR flows, which start at random times within

the first 5 s and remain on until the end of the simulation, which
is 100 s. The CBR flows generate packets with interarrival times
0.01 ms. IEEE 802.11 is used in the MAC layer (with updates
for Diff-Max implementation as explained in Section IV). We
simulated a Rayleigh fading channel with average channel loss
rates 0%, 20%, 30%, 40%, 50%.5 We have repeated each 100-s
simulation for 10 seeds.

5We consider the loss rates in the range up to 50% because previous studies
of IEEE 802.11b-based wireless mesh networks [16], [17], have reported packet
loss rates as high as 50%.

The channel capacity is 1 Mb/s, the buffer size at each node is
set to 1000 packets, and packet sizes are set to 1000 B. We com-
pare our schemes Diff-Max, Diff-subMax, and wDiff-subMax
to AODV and DSDV in terms of transport-level throughput,
total utility (added over all flows), and average delay (averaged
over all packets and flows). We employ utility in our simu-
lations, i.e., . On the other hand, packet
delay is measured at the transport layer. Let be the time that
the th packet of flow is received by the transport layer at the
receiver side, and be the time that the same packet is seen
by the transport layer at the transmitter side. Then, the packet
delay is .
The Diff-Max parameters are set as follows. For the flow con-

trol algorithm: ms, packets, . For
the routing algorithm: ms, packets.
2) Results: Fig. 10(a) shows the simulation results for the

diamond topology, where only link is lossy. Diff-Max
performs better than the other schemes for the range of loss
rates since Diff-Max activates the links based on the per-link
queue backlogs, loss rates, and link rates. On the other hand,
Diff-subMax, wDiff-subMax, AODV, and DSDV use classical
802.11 MAC. When the loss rate over link increases,
the total throughput of all the schemes decreases as expected.
As can be seen, the decrease in our schemes Diff-Max,
Diff-subMax, and wDiff-subMax is linear, while the decrease
of AODV is quite sharp. The reason is that when AODV expe-
riences loss over a path, it deletes the path and recalculates new
routes. Therefore, AODV does not transmit over lossy links for
some time period and tries to find new routes, which reduces
throughput. On the other hand, DSDV performs better than
AODV at low loss rates thanks to keeping track of multiple
routes and exploiting a new route when one becomes lossy. Yet,
it is worse than AODV at higher loss rates, as it requires more
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Fig. 10. Diamond topology. (a) Total throughput (in kb/s) versus average loss
rate in the diamond topology. (b) Per-flow (as well as total) throughput of dif-
ferent policies when the average loss rate is set to 10%.

packet exchanges among nodes at high loss rates, which con-
sumes higher bandwidth and reduces throughput. Diff-subMax
and wDiff-subMax improve throughput significantly as com-
pared to both AODV and DSDV thanks to exploring routes
to improve throughput. The improvement of our schemes is
up to 22% and 21% over AODV and DSDV, respectively.
Also, Diff-subMax and wDiff-subMax have similar throughput
performance, which emphasizes the benefit of the routing part
and the effective link-layer queue estimation mechanism of
wDiff-subMax.
Fig. 10(a) also shows that when loss rate is 50%, the

throughput improvement of all schemes (except DSDV) are
similar, because at 50% loss rate, link becomes very
inefficient, and all of the schemes transmit packets mostly from
flow to over path and have similar perfor-
mance at high loss rates. DSDV is worse because it requires
more packet exchanges to keep the routing table, which wastes
resources.
Fig. 10(b) elaborates more on the above discussion. It shows

the throughput of two flows to and to as well as their
total value when the loss rate is 10% over link . As can be
seen, the rate of flow is very low in AODV as compared to
our schemes because AODV considers link to be broken
at some periods during the simulation, while our schemes con-
tinue to transmit over this link. Although DSDV outperforms
AODV, our schemes are still better than it in terms of throughput
thanks to exploring routes to improve throughput.
Fig. 11(a) shows the delay versus loss probability for the

diamond topology, where only the link is lossy. As
can be seen, Diff-Max introduces higher delay as compared
to Diff-subMax and wDiff-subMax because Diff-Max can
delay packet transmission from some queues depending on
their occupancy. In other words, Diff-Max transmits packets
from the nodes with larger queue size, which may delay some
packets significantly. On the other hand, Diff-subMax and

Fig. 11. Diamond topology. (a) Average delay (in seconds) versus average loss
rate in the diamond topology. (b) Per-flow (as well as total) delay of different
policies when the average loss rate is set to 50%.

wDiff-subMax transmit packets from the link-layer queues
based on 802.11 MAC scheduling, which reduces delay. On
the other hand, the delay performance of Diff-subMax and
wDiff-subMax is comparable to and better than AODV and
DSDV for all loss rates, which shows that our algorithms are
quite efficient in terms of delay. The delay performance of
DSDV is high and increases with loss rate as DSDV should up-
date its routing table periodically and needed, which increases
packet delay [13]. Fig. 11(b) shows per-flow and total delay of
each algorithm when the loss rate over link is 50%. As
can be seen, the delay of each flow is very large in DSDV while
the delay performances of other algorithms are comparable.
Fig. 12 presents the results for the grid topology. In this

scenario, one third of the links, which are chosen randomly, are
lossy with 10% loss rate. Fig. 12(a) shows the total throughput
of our schemes as well as AODV and DSDV. Although
the throughput performances of our schemes are better than
AODV, the total throughput of DSDV is slightly better than
our schemes. The reason is that DSDV treats some flows (with
longer paths) unfairly, and they do not get much (or even any)
opportunity to transmit. Since the flows with shorter paths
can transmit most of the time, the total throughput of DSDV
becomes better. On the other hand, Fig. 12(b) shows that the
total utilities of Diff-subMax and wDiff-subMax are better than
DSDV. It is expected as our schemes are designed to maximize
the total utility in (14). In other words, even though the total
throughput of DSDV may be higher at some scenarios, the total
utility, which we maximize, of Diff-subMax and wDiff-subMax
is higher.
Fig. 13 presents the simulation results for the same grid

topology setup. Fig. 13(a) shows the total utility versus average
loss rate for our schemes as well as AODV and DSDV. Our
schemes Diff-subMax and wDiff-subMax significantly im-
prove the total utility as compared to both AODV and DSDV.
Fig. 13(b) considers the same setup and presents average delay
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Fig. 12. Grid topology. (a) Total throughput. (b) Total utility of Diff-subMax,
wDiff-subMax, AODV, and DSDV. There is no loss over the links.

Fig. 13. Grid topology. (a) Total utility versus average loss rate. (b) Average
delay versus average loss rate.

versus average loss rate. As can be seen, Diff-subMax and
wDiff-subMax significantly improve delay as compared to
AODV and DSDV.
Fig. 14 presents the simulation results for the random

topology. In this scenario, one third of the links, which are
chosen randomly, are lossy with a rate between 0% to 50%.
Fig. 14(a) shows the total utility versus average loss rate results.
As can be seen, our schemes significantly improve the total
utility as compared to AODV and DSDV. The improvement in
this scenario is higher as compared to the grid topology since
there are more routing opportunities that can be exploited in
this random topology scenario.

Fig. 14. Random topology. (a) Total utility versus average loss rate. (b) Av-
erage delay versus average loss rate.

Fig. 15. Topology that we consider for the flow in the middle problem. There
are three flows: Flow 1 from to , Flow 2 from to , and Flow 3 from

to . Each dashed ellipse shows a transmission and interference range of
the node that is located in the center of the ellipse. In this scenario, Flow 1 suffers
from the flow in the middle problem.

Fig. 14(b) shows the average delay versus average loss
rate results for the random topology. Diff-subMax and
wDiff-subMax improve the delay performance as compared to
AODV and DSDV. The improvement as compared to DSDV
is especially significant. These results show that Diff-subMax
and wDiff-subMax improve both utility and delay as compared
to AODV and DSDV.

C. Flow in the Middle Problem
In this section, we demonstrate the benefit of our modular

algorithm design to address a specific problem called the “flow
in the middle problem” [5].
Let us consider the topology shown in Fig. 15, where there are

three flows: Flow 1 from to , Flow 2 from to , and
Flow 3 from to . In this scenario, Flow 1 suffers from the
flow in the middle problem when 802.11 MAC is employed. In
particular, node is subject to more interference as compared
to node and as it shares the medium with four other nodes.
On the other hand, nodes and share the wireless medium
with only two nodes. Since, 802.11 MAC tends to give equal
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Fig. 16. Per-flow throughput versus time for the topology shown in Fig. 15. The channel capacity is 1 Mb/s, the buffer size at each node is set to 1000 packets,
packet sizes are set to 1000 B, and link loss probabilities are 0. (a) Diff-subMax with updated 802.11 MAC. (b) AODV. (c) DSDV.

opportunity to all nodes in the wireless medium, node will
transmit less, which will reduce the rate of Flow 1. Thus, the
rates of Flow 2 and Flow 3 will be higher, while Flow 1 has
lower rate. Note that the flow in the middle problem arises from
the fair share nature of 802.11 MAC. Since our Diff-subMax
and wDiff-subMax algorithms also employ 802.11 MAC, the
flow in the middle problem may also be seen in our algorithms.
However, thanks to our modular design, Diff-subMax could

be easily updated to address the flow in the middle problem,
which is not possible with AODV and DSDV. In particular,
if the contention window size of 802.11 MAC is arranged de-
pending on the weight of the chosen link (similar to [5] and [6])
in Diff-subMax, i.e., if the contention window size is inversely
proportional to , where is the chosen link, then the middle
in the flow problem can be alleviated.
The ns-2 simulation results in Fig. 16(a) show that

Diff-subMax with updated 802.11 MAC addresses the flow
in the middle problem for the topology shown in Fig. 15. On
the other hand, Flow 1 still suffers in AODV and DSDV as
shown in Fig. 16(b) and (c). This shows the effectiveness of
our modular design to address problems arising from different
layers.

VI. RELATED WORK

Backpressure and Follow-Up Work: This paper builds on
backpressure, a routing and scheduling framework for commu-
nication networks [1], [2], which has generated a lot of interest
in the research community [4], especially for wireless ad hoc
networks [18]–[23]. Furthermore, it has been shown that back-
pressure can be combined with flow control to provide utility-
optimal operation guarantee [3], [22]. This paper follows the
main idea of backpressure and revisits it considering the prac-
tical challenges that are imposed by current networks.
Backpressure Implementation: The strengths of backpres-

sure have recently increased the interest in the practical im-
plementation of backpressure over wireless networks. Multi-
path TCP scheme is implemented over wireless mesh networks
in [7] for routing and scheduling packets using a backpressure
based heuristic. At the link layer, [5], [6], [24], and [25] pro-
pose, analyze, and evaluate link-layer backpressure-based im-
plementations with queue prioritization and congestion window
size adjustment. Backpressure is implemented over sensor net-
works [8] and wireless multihop networks [9], which are also
the closest implementations to ours. The main differences in our
work are that: 1) we consider separation of routing and sched-
uling to make practical implementation easier; 2) we design and

analyze a new scheme, Diff-Max; 3) we simulate and implement
Diff-Max over ns-2.
Backpressure and Queues: According to backpressure, each

node constructs per-flow queues. There is some work in the
literature to stretch this necessity. For example, [26] and [27]
propose using real per-link and virtual per-flow queues. Such a
method reduces the number of queues required in each node and
reduces the delay, but it still makes routing and scheduling de-
cisions jointly and does not separate routing from scheduling.
Therefore, this approach requires strong synchronization be-
tween the network and link layers, which is difficult to imple-
ment in practice as explained in Section I.

VII. CONCLUSION
In this paper, we proposed Diff-Max, a framework that sepa-

rates routing and scheduling in backpressure-based wireless net-
works. The separation of routing and scheduling makes prac-
tical implementation easier by minimizing cross-layer opera-
tions, and it leads to modularity. Our design is grounded in the
NUM formulation of the problem and its solution. Based on
the structure of Diff-Max, two practical schemes, Diff-subMax
and wDiff-subMax, are developed. Simulations in ns-2 demon-
strate significant improvement in terms of throughput, utility,
and packet delay as compared to AODV and DSDV.

APPENDIX
ANALYSIS OF DETERMINISTIC SOLUTIONS

A. Diff-Max
In this section, we analyze the deterministic solution of Diff-

Max. We first, explain the evolution of Lagrange multipliers,
and then discuss the convergence of the solution to the optimal
point.
Diff-Max—Lagrange Multipliers: The Lagrange multipliers
and are calculated using gradient descent

(15)
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where is the iteration number, and are the step-sizes of
the gradient descent algorithm, and the operator makes the
Lagrange multipliers positive.
Diff-Max—Convergence to the Optimal Point: The conver-

gence of the distributed solutions of Diff-Max, i.e., (8), (10),
(11), and (15), follows directly from the convergence of convex
optimization problems through gradient descent [15], [28].
In particular, if and

, then the solution converges,
i.e., , where is the utility optimal
operating point of the convex optimization problem in (5).

B. Diff-Submax

In this section, we analyze Diff-subMax and its convergence
properties.
Diff-subMax—Problem Formulation: Since Diff-subMax

uses 802.11's CSMA/CA mechanism for internode scheduling,
it is a solution to the following problem:

s.t.

(16)

where and are the loss probability and link rate over
link is the percentage of time that link is used for
transmission, and is the percentage of time node is active for
transmission. The percentage of time that a node is active, i.e.,
is determined by CSMA/CA, and it is constant in our problem.
Note that the only difference of (16) as compared to (5) is the last
two constraints. In particular, since CSMA/CA is employed for
internode scheduling, it gives opportunity to each node for trans-
mission. The percentage of these transmission opportunities is
constant in our problem because CSMA/CA makes these de-
cisions independent from our routing and internode scheduling
decisions. Then, after node is given opportunity for transmis-
sion by CSMA/CA, we determine the best link to activate.
Thus, the sum of the percentages of per-link activations, i.e.,

, should be less than the percentage of constant node
activation, i.e., , as shown in the last constraint of (16). Also,
the percentages of link activations can be translated into the link
transmission rates as shown in the fourth constraint of (16).
Diff-subMax—Decomposed Solution: If we solve the NUM

problem in (16), we get the same flow control, and routing prob-
lems as in Diff-Max, as we also explained in Section IV-B. In
particular, the flow control part solves

(17)

as in (8), and the routing part solves

(18)

as in (10). On the other hand, the scheduling part changes as it
solves

s.t.
(19)

This problem is expressed as

s.t. (20)

This problem is equivalent to determining the link according
to , where .
This solution is the deterministic version of what we proposed
to implement in Section IV-B. Next, we discuss the Lagrange
multipliers of Diff-subMax.
Diff-subMax—Lagrange Multipliers: The Lagrange multi-

pliers; and are calculated using gradient descent

(21)

where is the iteration number, and are the step-sizes of
the gradient descent algorithm, the operator makes the La-
grange multipliers positive, and is the percentage of time
that link is used for transmitting packets from flow .
Diff-subMax—Convergence to the Optimal Point: The

convergence of the solution set (17), (18), (20), and (21)
follows directly from the convergence of convex opti-
mization problems through gradient descent [15], [28].
In particular, if and

, then the solution converges,
i.e., , where is the optimal solution
to (16). Note that the optimal solution of Diff-subMax could be
smaller than the optimal solution of Diff-Max because Diff-Max
also optimizes internode scheduling, while Diff-subMax uses
CSMA/CA for internode scheduling. However, Diff-subMax
still optimizes flow control, routing, and intranode scheduling,
and its deterministic version converges to the utility-optimal
operating point.
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