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a b s t r a c t

Optical fiber networks consist of fibers that are laid out along physical terrestrial paths. As

such, they are vulnerable to geographical physical failures, such as earthquakes and Electro-

magnetic Pulse (EMP) attacks. Moreover, such disasters can lead to multiple, geographically

correlated, failures on the fiber network. Thus, the geographical layout of the fiber infrastruc-

ture has a critical impact on the robustness of the network in the face of such geographical

physical failures.

In this paper, we develop tools to analyze network connectivity after a ‘random’ geographic

disaster. The random location of the disaster allows us to model situations where the phys-

ical failures are not targeted attacks. In particular, we consider disasters that take the form

of a ‘randomly’ located disk or line in a plane. Using results from geometric probability, we

are able to calculate certain network performance metrics to such a disaster in polynomial

time. In particular, we can evaluate average two-terminal reliability in polynomial time under

both ‘random’ failure models. This is in contrast to the case of independent link failures for

which there exists no known polynomial time algorithm to calculate this reliability metric.

Finally, we present numerical results that make clear geographically correlated failures are

fundamentally different from independent failures. Our novel approach provides a promising

new direction for modeling and designing networks to lessen the effects of geographically

correlated failures.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Optical fiber networks consist of fibers that are laid out

along physical terrestrial paths. As such, they are vulnerable

to geographical physical failures, such as hurricanes and Elec-

tromagnetic Pulse (EMP) attacks [22,36,42]. Moreover, such

disasters can lead to multiple, geographically correlated,
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failures on the fiber network. Thus, the geographical layout

of the fiber infrastructure has a critical impact on the robust-

ness of the network in the face of such geographical phys-

ical failures. In this paper, we evaluate the impact of geo-

graphically correlated failures on network connectivity with

respect to a randomly located line or disk failure.

Previous works have considered the problem of finding

the worst-case location for a geographic failure, represented

as a disk or line segment, in a geographic network with re-

spect to certain network connectivity measures [1,3,34]. This

models the scenario where the network is attacked with the

intention to reduce its capacity or connectivity. On the other

hand, in this paper we consider the impact of a randomly

located disaster on network connectivity. The random loca-

tion of the disaster can model failure resulting from a natural
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Fig. 1. Let Z be a line in the plane, O be the origin, and H be the closest point

on Z to O (see Fig. 1). Note that every line in the plane can be parameterized

by ρ and θ where θ is the smallest non-negative angle between the x-axis

and the line’s normal and |ρ| is the Euclidean distance between H and O such

that ρ ∈ R, θ ∈ [0, π ), and the equation of the line is x cos θ + y sin θ − ρ = 0.
disaster such as a hurricane or collateral (non-targeted) dam-

age in an EMP attack.

In the context of the logical topology, many works have

studied the effect of large-scale failures [12,13,18,25]. Some

of these works consider random link failures by modeling

the Internet as a random graph [9] and applying percola-

tion theory. Additionally many papers have studied network

reliability (e.g., [10,19,26,45]), however most works that fo-

cus on physical topologies consider only a small number

of fiber failures (e.g., [29,30]). It has been shown through

measurements (e.g., [17]) that factors such as population

density influence the topology of the Internet [8,23,44]. How-

ever, these papers do not account for geographically corre-

lated failures. In contrast, in this paper we consider disaster

events which cause many failures in a certain geographical

area (e.g., [6,11,22,36]). Only recently has the impact of ge-

ographically correlated failures started to receive attention

(e.g. [39], [34], [1]).

Our method is to use geometric probability to assign a

measure to sets of lines and disks in the plane that inter-

sect some set of line segments (e.g. network links whose

removal would disconnect the network). Using these basic

tools which are introduced and explained in Section 2, we

are able to calculate network performance metrics to these

random cuts in polynomial time.

To the best of our knowledge our work is among the first

to apply geometric probability techniques to network surviv-

ability. In [43] the survivability of undersea cables with re-

spect to a randomly located disk is studied, however only

a two node topology was considered. Also, [24] applied ge-

ometric probability techniques to detection in sensor net-

works, and [41] considers a probabilistic region failure model

whose failure region consists of several annuli and has prob-

abilistic effect. For a more comprehensive overview of geo-

graphically correlated failure models see [20].

Although the two failure models presented in this paper

are idealized and do not capture the non-uniform effects and

varying sizes of certain real-world failures, these models can

be used as a ‘first order’ approximation for randomly located

disasters.

A notable contribution of this paper is the development of

an algorithm to calculate the average two-terminal reliability

of a network in polynomial time with respect to non-targeted

line or disk failure. This result is significant because calculat-

ing this metric assuming independent link failures is known

to be NP-hard [7]. Another contribution of this paper is nu-

merical results for some network performance metrics using

our algorithms which show the importance of node place-

ment on the survivability of the network. We also present re-

sults based on real-world networks that show independent

and geographically correlated failures are fundamentally

different.

This paper is organized as follows: In Sections 2 and 3

we introduce geometric probability and present algorithms

that allow us to evaluate joint link failure probabilities af-

ter a random line or disk cut. In Section 4 we use these re-

sults to demonstrate how to evaluate average two-terminal

reliability under our failure models (among other metrics).

In Section 5 we present some numerical results to show the

significance of geometry on the survivability of the network

and that make clear that geographically correlated failures
are fundamentally different from independent failures. We

conclude and discuss future research directions in Section 6.

2. Modeling randomly located disasters in geographic

networks

In this section we describe how to model disasters as ran-

domly located lines or disks using geometric probability. We

initially focus only on disasters which remove links along a

random line. This may model damage to communication in-

frastructure in a localized area that is the result of a natural

disaster (e.g. an earthquake). We then shift focus to randomly

located disks of a particular radius. The circular form of the

attack may better model the effect of large storms that affect

large areas or collateral damage in an EMP or bomb attack.

After introducing some basic definitions and tools from geo-

metric probability, we review classical results which allow us

to find single link failure probabilities. These results are req-

uisite for Section 3 where we show how to find relevant joint

link failure probabilities to a random line or disk failure.

2.1. Random line disaster

Geometric probability is the study of probabilities in-

volved in geometric problems. In our case, we are interested

in the probability that a ‘randomly’ (infinitely long) placed

line in a plane will intersect a certain set of links (e.g., links

whose removal would disconnect the network). It should be

noted that the problem we are interested in is very similar in

nature to the Buffon’s Needle problem [40].

Before proceeding further, we will present some useful

notation. Let C be a closed bounded convex set on the plane.

Denote the perimeter (where perimeter is the length of the

boundary) of a set of points in the plane C by LC and its area by

RC. Also, let [C] denote the set of all lines in the plane which

intersect C.

Geometric probability tells us how to assign a measure to

sets of lines; let this measure be denoted by m. The rest of

this section reviews results from geometric probability (see

[27,38]) that are necessary for the development of this work.

Let Z be a line in the plane, O be the origin, and H be

the closest point on Z to O (see Fig. 1). Note that every line
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Fig. 2. Consider a set of parallel lines (θ = 90◦ but variable ρ) that intersect

C. Projecting C onto a line perpendicular to the parallel lines results in line

segment ST . Let D(90°) be the length of this line segment. It seems reason-

able for a measure to map the set of parallel lines in the plane with θ = 90◦

that intersect C to D(90°). Note that D(θ ) remains unchanged if C is trans-

lated.

Fig. 3. Since every line in the plane can be parameterized by ρ and θ , we

can represent a line in G as a point in the (ρ , θ ) plane. Integrating over the

set of all these points allows us to assign a measure to the set G.

Fig. 4. Rectangle C with link Q inside.
in the plane can be parameterized by ρ and θ where θ is

the smallest non-negative angle between the x-axis and the

line’s normal and |ρ| is the Euclidean distance between H and

O such that ρ ∈ R, θ ∈ [0, π ), and the equation of the line is

x cos θ + y sin θ − ρ = 0.

Let C be a bounded closed convex set in the plane. We

first start by considering a set of parallel lines (fixed θ but

variable ρ) that intersect C (see Fig. 2). Projecting C onto a line

perpendicular to the parallel lines results in a line segment

(see Fig. 2). Let D(θ ) be the length of this line segment.

By considering D(θ ) over all angles, we have m([C]) as∫ π
0 D(θ )dθ . Note that D(θ ) is invariant under the transla-

tion of C and since D(θ ) = D(θ + π) we know
∫ π

0 D(θ )dθ
is invariant under the translation and rotation of C. We now

present the definition of the measure.

Definition 1 (Measure of a set of lines). The measure of a set

of lines G is defined as the integral

m(G) =
∫

G

dρdθ

Note we use G to denote both a set of lines and its equiva-

lent set of points in the (ρ , θ ) plane. In some sense, this inte-

gral is the area of G in the (ρ , θ ) plane. For a visualization of

the measure, see Fig. 3. Since every line in the plane can be

parameterized by ρ and θ , we can represent each line in G as

a point (ρ , θ ) in R × [0, π ).
We will now present two examples of evaluating∫ π
0 D(θ )dθ . Consider a circle of radius 1. Since the pro-

jection of this circle onto any line is a line segment of

length 2, we know that D(θ ) = 2 for all θ . So
∫ π

0 D(θ )dθ =
2π . Next consider a horizontal line segment of length 1.

By simple trigonometry, we know D(θ ) = | cos θ | and thus∫ π
0 D(θ )dθ = sin θ | π

2
0

− sin θ |ππ
2

= 2.

We now present an important result from geometric

probability.

Lemma 1. Let C be a bounded closed convex set and D(θ ) be

defined the same as above. Now,

m([C]) =
∫

[C]

dρdθ =
∫ π

0

D(θ )dθ = LC

Note this is consistent with the above examples (recall LC

is the perimeter of C). See [38, p. 30][27, p. 72] for a justifica-

tion of the above lemma.

2.1.1. Single link failures

Let [Q] and [C] be sets of lines in the plane such that

[Q] ⊂ [C]. Given m, the probability a ‘random’ line is in the

set [Q] when it is known to be in the set [C] is defined to be

ratio of measures [38, p. 30], m([Q])
m([C])

. This definition appeals

to intuition; m([C]) in some sense represents the ‘weight’ of

lines in [C] and m([Q]) represents the ‘weight’ of lines in [Q].

Therefore it makes sense that the probability a line in [C] is

also in [Q] is m([Q])
m([C])

.

We now present an example relating the above to net-

work survivability. Consider a rectangle C with height a and

width b and a line segment Q of length l inside C (see Fig. 4).

Now we consider a random line cut. We have:

Pr(Q cut|C cut) = m([Q])

m([C])
= LQ

LC

= l

a + b

2.1.2. Pairwise link failures

We now present a classic definition and result in geomet-

ric probability which allows us to find pairwise link failure

probabilities with respect to a random line cut. These results

are important because they are used in Section 3 to develop

a method for finding the probability a particular set of links

fail.

Definition 2 (Internal Cover). The internal cover of two

bounded convex sets in the plane, A and B, denoted by I(A, B)

is given by the following. If A
⋂

B = ∅ then the internal cover

is realized by a closed elastic string drawn about A and B and

crossing over a point O placed between A and B [38, p. 32-34]
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Fig. 5. The dotted curve shows the internal cover of A and B, denoted by I(A,

B). The dashed curve shows the boundary of the convex hull of A ∪ B.

Fig. 6. Pr( j and k cut | j cut ) = √
1 + d2 − d.

Fig. 7. Pr( j and k cut | j cut ) = ε.

Fig. 8. Pr( j and k cut | j cut ) = 1 − sin β
2

.

(see Fig. 5). If A
⋂

B 	= ∅, then the internal cover is realized

by a string which is wrapped around the entire perimeter of

both A and B. In this case, by convention, LI(A,B) = LA + LB.

Let conv(A) denote the convex hull of set A.

Lemma 2 ([38]). If A and B are bounded closed convex sets,

m([A]
⋂

[B]) = LI(A,B) − Lconv(A∪B)

For a proof, see [38, p. 32–34]. This lemma gives us the

measure of the set of lines that intersect two convex shapes

(e.g. line segments) in terms of perimeters of related shapes.

In the following, we use the above lemma to find the prob-

ability a link is cut (i.e. intersected by a random line) given

another particular link is also cut. Given two links, j and k, by

definition the probability a ‘random’ line is in the set [j] ∩ [k]

when it is known to be in the set [j] (note that [j] ∩ [k] ⊂ [j])

is the ratio of measures m([ j]∩[k])
m([ j])

. So, using Lemma 2, we

find

Pr(k cut| j cut) = m([k]
⋂

[ j])

m([ j])
= LI( j,k) − Lconv( j∪k)

L j

Examples demonstrating of the above result for pairwise

link failures are given below.

Example 1. Two parallel links, j and k, of length 1 are sepa-

rated by a distance d. The nodes form corners of a rectangle.

See Fig. 6. Since the length of a diagonal is given by
√

1 + d2,

we know LI( j,k) = 2 + 2
√

1 + d2. Also, the perimeter of the

rectangle is given by 2 + 2d. Therefore, Pr(j and k cut | j cut)

=
√

1 + d2 − d.

Example 2. Two links, j and k, of length 1 overlap as

shown in Fig. 7 where the length of the overlap is ε.

These links intersect, so LI( j,k) = 4 by definition. Also, it is

evident Lconv( j∪k) = 2(2 − ε). Therefore, Pr(j and k cut | j

cut) = ε.

Example 3. Two links, j and k, of length 1 are at an angle

β to each other and share a common node. See Fig. 8. These

links intersect, so LI( j,k) = 4. Also, the perimeter of the convex

hull is given by 2 + 2 sin β . Therefore, Pr( j and k cut | j cut )
2
= 1 − sin β
2 . This result agrees with our intuition. If β = 0,

then the links are on top of each other and the probability

is one. If β = π, then only lines which intersect the shared

node intersect both links and the probability is zero.

2.2. Random circular disaster

We now shift focus from the random line failure model

to a randomly located disk failure model. We are interested

in the probability that a ‘randomly’ placed disk (of a partic-

ular radius) in the plane will intersect a certain set of links.

We model a failure event in the network as a single randomly

located disk of a radius rb.

Before proceeding further, we will present some useful

notation. Given a set in the plane, let 〈 · 〉 denote the set of

all disks in the plane of radius rb that intersect it.

Geometric probability tells us how to assign a measure to

sets of disks; let this measure be denoted by μ. The rest of

this section reviews results from geometric probability (see

[27,38]) that are necessary for the development of this work.

Note that every disk in the plane of radius rb can be pa-

rameterized by the location of its center. Denote the center

of disk D as [xD, yD] (see Fig. 9). Let DO be the disk of radius rb

centered at the origin.

We now present the definition of the measure μ.

Definition 3 (Measure of a set of disks). The measure μ of a

set of disks G is defined as the integral

μ(G) =
∫

G

dxdy

Note we use G to denote both a set of disks and the set of

centers of these disks. This integral is the area of the set of

centers of the disks in G and will be denoted by area(G). This

definition appeals to intuition; in the same way the ‘size’ of a
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Fig. 9. Every disk in the plane of radius rb can be parameterized by the lo-

cation of its center. Denote the center of disk D as [xD , yD].

Fig. 10. The shape above represents Q⊕DO . This shape is known as a hippo-

drome and it represents the set of all points whose shortest distance to Q is

less than or equal to rb [16]. Denote the hippodrome corresponding to a link

Q and radius rb by H(Q, rb). Note that a disk D of radius rb intersects Q iff [xD ,

yD] ∈ H(Q, rb).

Fig. 11. The rectangle C and line segment link Q are shown in solid. The

center of every disaster that intersects Q is given by the dotted hippodrome

H(Q, rb). The center of every disaster that intersects C is given by C⊕DO which

is shown as the larger dotted shape.

Table 1

Table of geometric probability notation.

LC Perimeter of convex set C

RC Area of convex set C

[C] The set of lines that intersect convex set C

〈C〉 The set of disks of a particular radius whose center lies in

convex set C

conv(A) The convex hull of set A

I(A, B) The internal cover of convex sets A and B

A⊕B The Minkowski sum of sets A and B

m() A measure on sets of lines. Given a convex set C, this

measure has the property m([C]) = LC

μ() A measure on sets of disks. Given a convex set C, this

measure has the property μ(〈C〉) = RC + LCrb + π rb
2

where rb is the radius of disks considered
set of points in the plane is its area, the ‘size’ of a set of disks

is the area of the disks centers.

Definition 4 (Minkowski sum). The Minkowski sum of two

sets in the plane A and B in Euclidean space, denoted by A⊕B,

is given by

A ⊕ B = {a + b|a ∈ A, b ∈ B}
Intuitively, every point in the Minkowski sum C⊕DO

(where C is a convex set) represents a center of a disk of ra-

dius rb that intersects C. We will now discuss an important

example. Let Q be a line segment link; consider Q⊕DO (see

Fig. 10). This shape is known as a hippodrome and it repre-

sents the set of all points whose distance to Q is less than or

equal to rb [16]. Denote the hippodrome corresponding to a

link Q and radius rb by H(Q, rb). Note that a disk D of radius rb

intersects Q iff [xD, yD] ∈ H(Q, rb).

Lemma 3. [38, pp. 80–123] Let C be a bounded closed convex

set of points in the plane, then

μ(〈C〉) =
∫
〈C〉

dxdy = area(C ⊕ DO) = RC + LCrb + π rb
2

(again, where RC is the area of C). Intuitively, every point

in the Minkowski sum C⊕DO represents a center of a unique

disk of radius rb that intersects C. Integrating over the set of

centers of these disks yields the measure of 〈C〉. For example,

consider a line segment link Q of length d. Now the measure

of the set of disks of radius rb that intersect Q is μ(〈Q〉) =
area(Q ⊕ DO) = area(H(Q, rb)) = 2 drb + π rb

2

Let 〈Q〉 and 〈C〉 be sets of disks of radius rb in the plane

such that 〈Q〉⊂ 〈C〉. Similar to the random line case, given μ,

the probability that a ‘random’ disk is in the set 〈Q〉 given it

is in the set 〈C〉 is given by the ratio μ(〈Q〉)
μ(〈C〉) . Note that C con-

tains the centers of all possible disk failures and is required

for normalization purposes.
We now present an example relating to network surviv-

ability. Consider a rectangle C with height a and width b and

a line segment Q of length d inside C (see Fig. 11). Now we

consider a random disk-cut. We have:

Pr(Q cut|C cut) = μ(〈Q〉)
μ(〈C〉) = area(Q ⊕ DO)

area(C ⊕ DO)

= 2 drb + π rb
2

ab + 2(a + b)rb + π rb
2

(1)

In Table 1 we summarize the descriptions of geometric

probability notation introduced so far.

3. Geographically correlated link failures

In this section we present algorithms that calculate the

measure of disks or lines intersecting only a particular set

of links. This result will allow us to calculate the probabil-

ity that a randomly located disaster intersects a certain set

of links in a network (e.g. links whose removal would dis-

connect the network). We will then use these algorithms to

efficiently calculate network performance metrics with re-

spect to random failures. The details of this section may be

skipped and the reader may proceed without loss of conti-

nuity to Section 4 on evaluating network reliability.

3.1. Random line disaster

Assume we are given a set of line segments, Q, on a plane

such that the endpoints are in general form; that is, no three
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Fig. 12. Shown above are three line segments, Q1, Q2, and Q3, and a

line Z which does not intersect the convex hull of P. We want to find

m([Q1]
⋂

[Q2]
⋂

[Q3]) which is equivalent to m(Z
⋂

[Q1]
⋂

[Q2]
⋂

[Q3]).

Fig. 13. Consider all lines that intersect two points in P. Let the intersection

points of these lines and Z be denoted by α (shown as dots on Z above). Let

the divisions of Z into line segments and rays by points in α be denoted by

M. Let us impose an ordering on M and denote Mi to be the ith segment in

M.
endpoints are collinear1. Let the ith line segment be denoted

by Qi. Our goal is to find m(
⋂|Q|

i=1
[Qi]); that is, the measure of

the set of lines that intersect all segments in Q.

Sylvester in [40] shows how to solve for m(
⋂|Q|

i=1
[Qi]).

However, their approach takes exponential time in |Q|; this

is because the perimeter of the convex hull of every sub-

set of Q must be considered. Ambartzumian in [4] and [5]

provides an algorithm to calculate m(
⋂|Q|

i=1
[Qi]) in polyno-

mial time. The algorithm in this section presents an alternate

way to solve for m(
⋂|Q|

i=1
[Qi]) in polynomial time by reduc-

ing the problem to finding pairwise link failures, as was done

in Section 2.1.2.

In the following, for clarity of presentation we break down

our procedure into steps for finding m(
⋂|Q|

i=1
[Qi]).

Step 1:

In this step we will introduce a line on the plane and par-

tition it into a set of line segments and rays ( a ray is a subset

of a line consisting of a point and all points on that line which

extend infinitely in one direction away from that point). We

then find an alternate expression for m(
⋂|Q|

i=1
[Qi]) which in-

clude these line segments and rays.

Let P be the set of endpoints of the line segments in Q. Let

us impose an arbitrary ordering on P and denote the ith point

in P by Pi. Let PiPj be the line segment between Pi and Pj.

We start by arbitrarily placing a vertical line Z such that

it does not intersect the convex hull of P (see Fig. 12).

Note that m(
⋂|Q|

i=1
[Qi]) = m

(
(
⋂|Q|

i=1
[Qi])

⋂
[Z]

)
because the

set of all lines which do not intersect Z has measure

zero.

Now, consider all lines that intersect two points in P. Let

the intersection points of these lines and Z be denoted by α.

Let the divisions of Z into line segments and rays by points in
1 This assumption is not restrictive as we can slightly perturb the location

of the endpoints to satisfy this condition.
α be denoted by M (see Fig. 13). Let us impose an ordering on

M and denote Mi to be the ith segment in M.

Now,

m

( |Q|⋂
i=1

[Qi]

)
= m

(( |Q|⋂
i=1

[Qi]

)⋂
[Z]

)

= m

(( |Q|⋂
i=1

[Qi]

)⋂( ⋃
Mj∈M

[Mj]

))

= m

( ⋃
Mj∈M

(( |Q|⋂
i=1

[Qi]

)⋂
[Mj]

))

Since every [Mj] is disjoint from [Mk] when j 	= k up to

measure zero, we have:

m

( ⋃
Mj∈M

(( |Q|⋂
i=1

[Qi]

)⋂
[Mj]

))

=
∑

Mj∈M

m

(( |Q|⋂
i=1

[Qi]

)⋂
[Mj]

)
Our problem is now reduced to computing

m
(
(
⋂|Q|

i=1
[Qi])

⋂
[M j]

)
for every j. That is, the measure of

the set of lines that intersect both Mj and each of the

segments in Q. We will show that computing this is easy

because it is equivalent to computing m([PkPl]
⋂

[M j]) for

some k and l. That is, m
(
(
⋂|Q|

i=1
[Qi])

⋂
[M j]

)
is the same as

the measure of the set of lines intersecting Mj and a line

segment connecting two points in P.
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Fig. 14. This is the setup for the proof of Lemma 4. Here X is above W, so

θ1 = arctan( d1

x
) and θ2 = arctan( d2

x
).

Fig. 15. An example to demonstrate the definitions of T(X), AX
1 , and AX

2 in

steps 2 and 3. Here T(X) is the ordered set {P1, P3, P2, P4, P5, P6}. AX
1 is the

last point in T(X) such that there does not exist a Pi and Pj ahead of AX
1 where

PiPj ∈ Q . Here AX
1 = P2. AX

2 is the first point in T(X) such that there exists a Pi

before AX
2 where PiA

X
2

∈ Q . Here AX
2 = P4. Note how the dotted line segment

AX
1

AX
2

has the property [X]
⋂

(
⋂|Q|

i=1
[Qi]) = [X]

⋂
[AX

1
AX

2
].
Step 2:

In this step we show for all points on an Mj, the ordering

of points P (in a rotational sense) is the same.

In the following steps, we assume X is a point on Z such

that X 	∈ α.

Definition 5.. (T(X)): T(X) is an ordered set of all points in P

such that when Z is rotated counter-clockwise about X, the

order in which points in P are intersected is the ordering in

T(X).

For an illustration of this definition see Fig. 15.

Lemma 4. T (X ) = T (X ′) for every X ∈ Mj and X′ ∈ Mj.

Intuitively, this lemma states that the ordering of T(X) is

the same for all X in Mj.

Proof. We want to show the ordering of T(X) is constant for

all X in any Mj. This is equivalent to showing the pairwise

ordering in T(X) is constant for all X in any Mj.

We will use geometry techniques to prove the pairwise

ordering in T(X) is constant. In order to do this we will present

some notation. Consider two different points in P, P1 and

P2. Assume the line that contains P1 and P2 intersects Z (the

proof is trivial otherwise) and denote this intersection point

by W. Let the distance between W and P1 be given by d1 and

the distance between W and P2 be given by d2. Without loss

of generality, assume d1 < d2. Let X be a point on Z such that

X 	= W. Let x denote the distance between X and W. Let θ1 be

the angle Z must rotate counter-clockwise about X to inter-

sect P1 and θ2 be the angle to intersect P2. Realizing arctan is

a strictly monotonically increasing function, from geometry

we have:

θ1 = arctan

(
d1

x

)
< arctan

(
d2

x

)
= θ2 ∀ X above W

θ1 = π − arctan

(
d1

x

)
> π − arctan

(
d2

x

)
= θ2 ∀ X below W

See Fig. 14 for clarification.

Now let X′ ∈ Mj for some j such that X′ 	= W. Now, the

equations above imply: P comes before P in both T(X) and
1 2
T(X′) or P1 comes after P2 in both T(X) and T(X′). Because

the above holds for any two different P1 and P2, this com-

pletely specifies the ordering of T(X) and T(X′) and also im-

plies T (X ) = T (X ′). �

Step 3:

In this step we show the measure of all lines which inter-

sect Mj and all line segments in Q is the same as the measure

of all lines which intersect Mj and some line segment con-

necting two points in P. This reduces the problem to finding

the measure of the set of lines intersecting two line segments, a

problem which we already know how to solve (see Lemma 2).

Definition 6.. (AX
1 ). AX

1 is the last point in T(X) such that there

does not exist Pk and Pl ahead of AX
1 where PkPl ∈ Q .

Definition 7.. (AX
2

). AX
2

is the first point in T(X) such that there

exists a Pk before AX
2

where PkAX
2

∈ Q .

See Fig. 15 for an example.

Lemma 5. If AX
1 comes before AX

2 , then [X]
⋂

(
⋂|Q|

i=1
[Qi]) =

[X]
⋂

[AX
1

AX
2

], otherwise if AX
2 comes before AX

1 , then

[X]
⋂

(
⋂|Q|

i=1
[Qi]) = ∅.

Intuitively, this lemma says the set all lines that intersect

X and every line segment in Q is the same as the set of all lines

which intersect X and some PkPl . Take Fig. 15 as an example.

The set of lines that intersect X and all three line segments is

equivalent to the set of lines that intersect X and P2P4.

Proof. We first use the definitions of AX
1

and AX
2

to find the

angles of lines which intersect X and every Qi ∈ Q. Then con-

ditioned on the ordering of AX
1

and AX
2

in T(X), we use this set

of angles to prove the lemma.
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Fig. 16. The measure of disks that intersect C, l3, and l4 but neither l1 or

l2 is given by the area of the shaded region above (for ease of presenta-

tion we do not picture C). This measure can be written as μ(〈C〉 ∩ 〈l3〉 ∩
〈l4〉 − 〈l1〉 ∪ 〈l2〉) or alternatively as area((C ⊕ DO) ∩ H(l3, rb) ∩ H(l4, rb) −
H(l1, rb) ∪ H(l2, rb)).

Fig. 17. We approximate H(l, rb), shown as a dashed hippodrome above, by

the inscribing polygon Ĥn(l, rb) such that H(l, rb) shares the line segment

portion of its boundary with Ĥn(l, rb) and each end of Ĥn(l, rb) forms half of

a regular 2n-sided polygon. The solid polygon above is Ĥ4(l, rb).
We first introduce some useful terminology. Let Vθ denote

the line which is a counter-clockwise rotation of Z about X

by θ degrees. Let Vθ1
denote the line which intersects both

AX
1

and X and let Vθ2
denote the line which intersects both

AX
2 and X. The definition of AX

1 implies θ1 is the smallest θ
such that for every Qi ∈ Q there exists a Vθ with θ ≤ θ1

such that Qi is intersected. Intuitively, θ1 is the smallest an-

gle θ such that Vθ can intersect every Qi ∈ Q. The definition

of AX
2

implies θ2 is the largest θ such that for every Qi ∈ Q

there exists a Vθ with θ ≥ θ2 such that Qi is intersected.

Intuitively, θ2 is the largest angle θ such that Vθ can inter-

sect all Qi ∈ Q. Since θ1 is the smallest angle θ such that

Vθ can intersect every Qi ∈ Q and θ2 is the largest angle θ
such that Vθ can intersect all Qi ∈ Q, this implies Vθ intersects

every Qi ∈ Q iff θ1 ≤ θ ≤ θ2.

If we assume AX
1

comes before AX
2

in T(X), this implies θ1

≤ θ2. Note from geometry, we know a line subsects angle

∠AX
1

XAX
2

iff this line intersects X and AX
1

AX
2

; thus θ1 ≤ θ ≤
θ2 iff Vθ intersects AX

1
AX

2
. Since Vθ intersects every Qi ∈ Q iff

θ1 ≤ θ ≤ θ2, this implies [X]
⋂

(
⋂|Q|

i=1
[Qi]) = [X]

⋂
[AX

1
AX

2
].

If we assume AX
2

comes before AX
1

in T(X), this implies θ2

≤ θ1. Since Vθ intersects every Qi ∈ Q iff θ1 ≤ θ ≤ θ2, this

implies if θ2 < θ1 no line intersects X and every Qi ∈ Q. Also,

if θ2 = θ1 only the line Vθ1
intersects X and every Qi ∈ Q. In

this case, since Vθ1
intersects AX

1
and AX

2
, Vθ1

is equivalent to

BAX
1
,AX

2
. �

Lemma 6. Assume X ∈ Mj. If AX
1

comes before AX
2

in

T(X), then m
(
[M j]

⋂
(
⋂|Q|

i=1
[Qi])

)
= m([M j]

⋂
[AX

1
AX

2
]), other-

wise m([M j]
⋂

(
⋂|Q|

i=1
[Qi])) = 0.

Proof. Direct result of Lemmas 4 and 5 and the fact

m([αi]) = 0 ∀αi ∈ α. �

Summary:

In step 1 we place a vertical line Z and partition it

into a set of line segments and rays M. We then show

m(
⋂|Q|

i=1
[Qi]) = ∑

M j∈M m
(
(
⋂|Q|

i=1
[Qi])

⋂
[M j]

)
. Lemma 6 along

with a lemma about rays (see the technical report [33])

shows how to compute m
(
(
⋂|Q|

i=1
[Qi])

⋂
[M j]

)
in constant

time assuming we know AX
1

and AX
2

. For a given X ∈ Mj,

T(X) can be computed in polynomial time by sorting the

angles between XPi and Z for all i. AX
1 and AX

2 can then be

found by enumerating through T(X). Since |M| is polyno-

mial, this allows us to calculate m(
⋂|Q|

i=1
[Qi]) in polynomial

time.

The complexity of this algorithm can be reduced by going

through all Mj ‘in order,’ thus eliminating the need to sort P

for all Mj in M.

3.2. Random circular disaster

Let L be the set of all line segment links in the network

and C be a convex polygon that contains L. Consider some

set of links K ⊂ L. We wish to find the measure of all disks

of radius rb that intersect C and every link in K but inter-

sect no links in L − K. See Fig. 16 for an example. This mea-

sure is given by μ
(〈C〉 ∩ (∩k∈K〈k〉) − ∪q∈(L−K)〈q〉). It is clear

that a disk D belongs to this measured set iff (i) [x , y ]
D D
∈ C⊕DO, (ii) [xD, yD] ∈ H(k, rb) ∀k ∈ K, and (iii) [xD, yD] 	∈
H(q, rb) ∀q ∈ (L − K). So, this measure can also be written as

area
(
(C ⊕ DO) ∩ (∩k∈K H(k, rb)) − ∪q∈(L−K)H(q, rb)

)
. For ease

of presentation we abuse notation and denote this measure

by area(K).

Definition 8.. (area(K)). Let area(K) be given by the measure

of all disks of radius rb that intersect C and every link in K but

intersect no links in L − K.

We note that finding area(K) exactly is difficult because

it requires finding the area of intersections and unions of

hippodromes. In the following we describe a method for ap-

proximating area(K) which is based on approximating hip-

podromes by polygons for which there are known meth-

ods to calculate intersections, unions, and area. We ap-

proximate H(l, rb) by the inscribing polygon Ĥn(l, rb) such

that H(l, rb) shares the line segment portion of its bound-

ary with Ĥn(l, rb) and each end of Ĥn(l, rb) forms half

of a regular 2n-sided polygon (see Fig. 17). Let ârean(K)

be defined the same as area(K) except that every hip-

podrome is replaced by its polygon approximation. Us-

ing techniques for finding the intersection, union, and

area of polygons [35], we can find ârean(K) in polynomial

time.

Lemma 7. limn→∞ ârean(K) = area(K) ∀ K ⊂ L

The above lemma shows that ârean(K) is a good approxi-

mation for area(K) for large enough n. A proof may be found

in the technical report [33].
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4. Evaluating network reliability metrics

In this section we introduce and show how to evalu-

ate some performance metrics with respect to the random

line and disk failure models. After introducing our network

model, we show that our performance metrics of interest can

be evaluated in polynomial time. In particular, we can evalu-

ate average two-terminal reliability in polynomial time. This

result is significant because calculating this metric under in-

dependent link failures is known to be NP-hard [7].

4.1. Network model

We start by describing our network model. Our geomet-

ric graph model contains a set of nodes N where each node is

represented by a point on the plane. We assume the node lo-

cations are in general form; that is no three are collinear. Let

L be the set of all links in the network; we assume every link

has a capacity associated with it. A link between two nodes is

represented by a line segment with endpoints at the respec-

tive node locations. In order to assign probabilities to random

line events, we assume the set which contains all nodes and

links (conv(N)) is a subset of some bounded closed convex

set C with perimeter LC. If a ‘random’ disaster that intersects

C also intersects some links, those links are disrupted. Our

goal is to evaluate the performance metrics described below

in Definition 9 after a single random line or disk failure that

intersects C.

4.2. Performance metrics

We first introduce some network performance metrics

and then describe how to evaluate each one after the removal

of the intersected links. We will use the tools developed in

Section 3 to evaluate average values of these metrics with re-

spect to a random failure.

Definition 9 (Performance metrics).

• ATR - The all terminal reliability of the network. The all

terminal reliability is defined to be 1 if the network is

connected and 0 otherwise. In order to verify connectiv-

ity of the network a Breadth First Search algorithm can be

used.

• ATTR - The average two terminal reliability of the network

over all pairs of nodes. The two terminal reliability be-

tween two nodes is defined to be 1, if there is a path be-

tween them and 0, otherwise [37]. Effectively this met-

ric is the probability a randomly chosen pair of nodes is

connected. If the network is fully connected, the value of

ATTR is 1. Otherwise, we have to sum over the number of

node pairs in every connected component and divide it

by the total number of node pairs in the network. That is,

we sum the value of k(k − 1) over every connected com-

ponent, where k is the number of nodes in each of the

components, and then divide this sum by N(N − 1). This

ratio gives the fraction of node pairs that are connected to

each other. In order to verify connectivity or to count the

number of nodes in each connected component a Breadth

First Search algorithm can be used.
In this paper we only discuss the above two metrics.

However, the following relevant metrics can also be evalu-

ated with respect to random failures using the results of this

section.

• TC - The total capacity of the intersected links.

• MFST - The maximum flow between a given pair of nodes

s and t.

• AMF - The average value of maximum flow between all

pairs of nodes.

It is apparent from the descriptions above that evaluating

each metric after the removal of intersected links takes poly-

nomial time in |N|.

4.3. Evaluation of the metrics under the random line failure

model

We now show how to evaluate the metrics in Definition 9

with respect to a random-line cut. The basic idea is that every

line which separates the nodes in the same way removes the

same set of links. Using the techniques in Section 3, we calcu-

late the measure of the set of lines that separate the nodes in

this way; this allows us to calculate the weighted average of

a metric over all possible cuts. We start by introducing some

useful terminology.

Definition 10 (Line-partition). A line-partition is a partition

of a set of nodes into two subsets which are separated by a

line. It is important to notice that not all partitions of N are

line-partitions.

Let P be the set of all line-partitions created by lines that

intersects conv(N). For each line-partition p in P, let [p] be the

set of all lines which form the line-partition p. For a particular

p, let the set of all line segments connecting a node in one

subset to a node in the other subset be given by Qp (including

those which represent links in the network).

Lemma 8. m([p]) = m(∩q∈Qp
[q]) for every p ∈ P

Proof. If a line intersects every line segment in Qp, then it

separates the endpoints of the line segments in Qp into sub-

sets that form p or it intersects a node. On the other hand, if a

line forms a line partition p, then it separates nodes into two

subsets and thus will intersect every line segment that has

endpoints in both subsets (this is precisely Qp). See Fig. 18.

Thus [p] = ∩q∈Qp
[q] except for a set of lines which intersect

nodes. Since the set of lines which intersect nodes has zero

measure (points have zero perimeter), the result follows. �

Now, let [r] be the set of lines that intersect C but

not conv(N). That is, [r] = [C]\[conv(N)]. Thus, m([r]) =
m([C]) − m([conv(N)]) by countable additivity of measures.

Note that (∪p∈P[p]) ∪ [r] = [C] up to a set of measure zero.

Now, since every line which forms the same line-partition re-

moves the same links, evaluating the performance measures

to a random line-cut becomes a weighted average over each

partition. Let Y(p) be the performance metric on the network

when links that intersect a line in [p] are removed. Since
m([p])

LC
is the probability a random line-cut will create a par-

tition p, the performance metric to a random line-cut can be



S. Neumayer, E. Modiano / Computer Networks 94 (2016) 14–28 23

Fig. 18. Consider a line-partition of a set of nodes, N, into two non-empty subsets in the figure above. One subset has nodes colored grey and the other has nodes

colored black. A line separates N into these subsets iff it intersects every dashed line segment connecting a grey node and black node.

Fig. 19. Consider a line-cut resulting in a line-partition in which neither

subset of nodes is empty. Now rotate this line-cut clockwise until nodes pre-

vent any further clockwise movement (imagine that the line cannot pass

through the nodes).
expressed as

m([r])

LC

Y (r) +
∑
p∈P

m([p])

LC

Y (p)

= LC − Lconv(N)

LC

Y (r) +
∑
p∈P

m(
⋂

q∈Qp
[q])

LC

Y (p) (2)

Section 3 shows how to calculate m(
⋂

q∈Qp
[q]) in polyno-

mial time. The performance metrics in Definition 9 can be

calculated in polynomial time as discussed above. In the fol-

lowing, we will show that |P| is O(|N|2).

Lemma 9 ([21]). There are O(|N|2) line-partitions of a set of |N|

nodes.

Proof. Harding [21] shows there are
(|N|

2

)
+ 1 line-partitions

of a set of |N| points, no three of which are collinear. �

We will now provide some intuition behind the above re-

sult. Consider a line that forms a line-partition in which nei-

ther subset of nodes is empty (the line intersects conv(N)).

Now rotate this line clockwise until nodes prevent any fur-

ther clockwise movement (imagine that the line cannot pass

through the nodes). There will be two points stopping the

line from moving any further. Now, these two points spec-

ify this partition, and since there are
(|N|

2

)
ways to pick two

nodes, there are
(|N|

2

)
partitions (see Fig. 19). The additional

partition comes from the case when the line does not inter-

sect conv(N).

Theorem 1. Evaluating any performance metric in Definition 9

with respect to a random line cut takes polynomial time in N.

Proof. Since |P| is polynomial in |N| and evaluating

m(
⋂

q∈Qp
[q]) and Y(p) takes polynomial time, Eq. 2 can

be evaluated for any performance metric in polynomial

time. �

This is particularly interesting for the case of ATTR because

calculating this metric assuming independent link failures is

known to be NP-hard [7]. This is a consequence of the fact

not all partitions of N are line-partitions (i.e. there are many

more possible partitions under the independent link failure

model).
4.4. Evaluation of the metrics under the random circular disk

failure model

Next we show how to evaluate the metrics above with re-

spect to a random-disk cut of radius rb. The basic idea is that

the center of all disks of radius rb that intersect a particular

set of links (and no other links) is some set in the plane. By

showing that the number of these sets we need to consider

grows polynomially in N and by evaluating the area of each

set, we can evaluate a ‘weighted average’ of a metric over all

possible cuts.

Let U be the set of all subsets of L that can be intersected

by exactly one disk of radius rb. Evaluating performance met-

rics to a random disk-cut is a weighted average over every K ∈
U. Let Y(K) be a reliability metric evaluated after the removal

of every link in K. Since area(K)
area(C⊕DO)

is the probability a ran-

dom disk of radius rb that intersects C also intersects every

link in K and no links in (L − K), the performance metric to a
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Fig. 20. This figure shows the hippodromes and related intersections with

respect to NSFNET [28] and a circular cut of approximately 120 miles.

Fig. 21. Two networks of 4 nodes connected in serial by line segments of

length 1. The network in case (i) resembles a line segment of length 3 and

the network in case (ii) resembles a line segment of length 1.

Fig. 22. Assuming LC = 10π, the figure shows ATR versus number of nodes

for different network configurations. The dotted line represents the network

which resembles a line segment of length 1, the solid line represents the

network which resembles a line segment of length |N| − 1, and the dashed

line represents independent link failures.
random disk-cut can be expressed as:∑
K∈U

area(K)

area(C ⊕ DO)
Y (K) (3)

Section 3 shows how to approximate area(K) in polyno-

mial time. Y(K) for the performance metrics can also be cal-

culated in polynomial time. In the following, we apply the

theory of arrangements to show that the size of U grows poly-

nomially with respect to N.

Let ∂ denote the boundary of a set. Consider the set of

curves R = ∂C ∪ {∂H(l, rb)|l ∈ L}. These curves partition C,

the set containing the network, into regions called faces. For

example, in Fig. 20 which corresponds to the NSFNET with

rb = 2, every colored area represents a different face. By enu-

merating these faces, we can enumerate every element in U

(since every disk centered in a particular face intersects the

same links). Arrangements, a computational geometry tool,

allow us to enumerate the faces of a set of curves in the plane

in polynomial time [15], [2]. However, the theory requires

that every pair of curves intersect in a finite number of lo-

cations [15] which does not hold in our setting. Nonetheless,

the theory can be applied with a minor perturbation to the

geometry.

Since enumerating U, evaluating Y(K), and approximating

area(K) all take polynomial time, the network performance

metrics can be approximated in polynomial time under a

random disk failure.

5. Numerical results

In this section we evaluate some network performance

metrics using the results of the previous section. We first in-

troduce an example that demonstrates the significance of ge-

ometry on the survivability of the network. We then present

results based on real-world networks that show that inde-

pendent and geographically correlated failures are funda-

mentally different. Lastly, we present results that show the

effect of the size of disk and line segment failures.

5.1. An example to demonstrate the importance of geometry

In this example, every link has a length of one, so every

link is intersected by a random failure with equal probability.

We consider different geometries of the same network and

evaluate ATR to random line-cuts. For comparison, we also

evaluate ATR assuming independent link failures.

Consider a network of |N| nodes connected in series by

line segments of length 1. We consider two different cases of
geometries for this network. In case (i) the network resem-

bles a line segment of length |N| − 1, and in case (ii) the net-

work resembles a line segment of length 1 (see Fig. 21). As-

suming LC = 10π and letting |N| vary (assuming |N| ≤ 10), we

calculate ATR to random line-cuts in both cases using meth-

ods described in Section 4. Also, since any particular link of

length 1 fails with probability 2
10π with respect to a random

line-cut, we evaluate ATR when links fail independently with

probability 2
10π .

Fig. 22 shows the results.

In case (i), ATR is approximately 1 − 2(|N|−1)
10π since ATR

is 1 if any link is intersected and 0 otherwise. In case (ii),

ATR is approximately 1 − 2
10π for all |N| (again, since ATR is

1 if any link is intersected and 0 otherwise). When links

fail independently with probability 2
10π , ATR is given by

Pr(no links fail) = (1 − 2
10π )|N|−1. Note this value lies be-

tween the results for the two geometric networks.

These results agree with intuition. In case (i) when the

network resembles a line segment of length |N| − 1, the net-

work is spread out and the probability of any link being inter-

sected is larger when |N| is larger. In case (ii) when the net-

work resembles a line segment of length 1, the network has

a perimeter of 2 and thus the probability of any link being
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Fig. 23. This figure shows NSFNET from 1991 [28].

Fig. 24. ARCOS-1 network circa 2009 [14].

Fig. 25. The solid line shows ATTR versus the probability a unit (lati-

tude/longitude) of fiber is cut by a random disk of rb = 2 (approximately 120

miles). The dashed line shows ATTR assuming links fail independently such

that links fail with the same probability as in the random disk-cut case.
intersected is small. This example highlights the importance

of node location on the survivability of the network.

5.2. Independent versus correlated failures

We consider NSFNET as found in 1991 [28] and the

ARCOS-1 ring network [14]. The NSFNET network we con-

sider has 14 nodes and connects major universities across the

U.S. (see Fig. 23). ARCOS-1 has 24 nodes and connects regions

on the Dominican Republic, Florida, Mexico, Panama, and

Venezuela (see Fig. 24). All distance units mentioned in this

section are in longitude and latitude coordinates (one unit

is approximately 60 miles) and for simplicity we assume lati-

tude and longitude coordinates are projected directly to [x, y]

pairs on the plane. We assume that all the link capacities are

equal to 1. We also assume each network is contained within

a rectangular set C. We note that representing the physical

fiber links by line segments is a first-order approximation.

Using the results of Section 4, we calculate ATTR of

NSFNET and ARCOS-1 to random-disk cuts of rb = 2 while the

size of C varies. The size of C is varied to change the probabil-

ity a unit of fiber is cut. So we can plot ATTR versus the prob-

ability a unit of fiber is cut. See Fig. 25 for results. Note the

linear form of the result in the figure; this agrees with Eq. 3

since 1/area(C⊕D) is proportional to the probability a unit of

fiber is cut.

Next, we calculate ATTR of the networks assuming inde-

pendent link failures such that links fail with the same prob-

ability as in the random disk-cut case. Thus the probability

a link fails is still a function of its length, however links fail
independently. Since the total number of links is small in

each network, calculating ATTR by enumerating all possible

failures is still feasible (possible failures are exponential in

number of links). Note the total expected number of removed

links is the same for both the independent and geographi-

cally failure models. See Fig. 25 for results.

Notice that in NSFNET ATTR under independent failures is

greater than in the case of random disk-cuts. Perhaps this is

because in most cases at least three links must fail indepen-

dently to disconnect the network; however a disk that inter-

sects a node is guaranteed to disconnect the network. Since

most backbone networks are likely to be well connected, we

expect a random disk-cut to lead to lower ATTR than inde-

pendent link failures in this type of mesh network setting.

We also note that similar results were found for the random

line-cut setting.

Looking at the results for the ARCOS-1 network we see the

opposite tendency; ATTR under independent failures is typi-

cally less than the case of random disk-cuts. Perhaps this is
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Fig. 26. The solid line shows the total expected capacity removed versus the

number of randomly located circular disasters of rb = 2. Using the algorithm

in [34], the dashed line shows the total capacity removed versus the number

of intentionally located circular disasters of rb = 2 (approximately 120 miles).

Fig. 27. The solid line shows ATTR versus the diameter of a randomly lo-

cated disk failure event (one unit is approximately 60 miles). The dashed

line shows ATTR versus the length of a randomly located line segment fail-

ure event.
because a single disk that intersects ARCOS-1 usually only re-

moves two adjacent links creating components of size 1 and

|N| − 1 (where |N| is the number of nodes) whereas just two

independent link failures on opposite sides of the ring create

components of size |N|/2 and |N|/2 (which results in lower

ATTR).

5.3. Multiple disk failures

Next we calculate the TC metric of the NSFNET and

ARCOS-1 networks under sequential disk failures, both in-

tentional and random. We assume every additional random

failure is located independently of the previous failures. We

first describe how to evaluate metrics after sequential fail-

ures, then we present some numerical results.

To calculate a network metric after two randomly lo-

cated sequential disk failures, we simply evaluate the

weighted average of the metric over each pair of possi-

ble areas (each area represents the set of centers of disks

that remove exactly the same links). Eq. 3 then becomes∑
K′∈P

∑
K∈P

area(K′) area(K)

area(C⊕DO)2 Y (K ∪ K′). For n failures, Eq. 3

becomes∑
K1∈P

· · ·
∑
Kn∈P

(
n∏

i=1

area(Ki)

area(C ⊕ DO)

)
Y (

n⋃
i=1

Ki).

In [34] we propose an algorithm to evaluate network reli-

ability metrics after an intentional disk failure. To calculate a

network metric after sequential intentional failures, we sim-

ply apply the algorithm found in [34] iteratively.

Fig. 26 shows the results for multiple failures, both inten-

tional and random for NSFNET (similar results for ARCOS-1

are not shown). As expected, the plots are sub-linear (the plot

for randomly-located failures is barely sub-linear) since each

additional failure is being placed on a smaller network. Note

that random failures result in much less disruption than in-

tentional failures.
5.4. Effect of size of disk and line segment failures

We now consider the effect of the size of randomly lo-

cated failure events. We consider two failure models, the ran-

domly located disk failure model and a randomly located line

segment failure model. Although the tools to exactly com-

pute the effect of a randomly located line segment disaster

have not been developed, we consider this failure model here

since it moves away from the idealized infinitely long line

failure model assumptions. To compute the effect of a ran-

domly located line segment disaster, we used a Monte Carlo

simulation approach and so the associated line segment re-

sults are approximate.

See Fig. 27 for results showing the effect of the size of the

disasters on the ATTR metric. Notice that for both the NSFNET

and ARCOS-1 networks, the effect of a randomly located ran-

dom line segment disaster is small compared to the effect of a
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Fig. 28. The solid line shows AMF (average maximum flow between all pairs

of nodes) versus the diameter of a randomly located disk failure event (one

unit is approximately 60 miles). The dashed line shows AMF versus the

length of a randomly located line segment failure event.
randomly located disk disaster. This agrees with our expecta-

tion since a random disk only needs to intersect a node to dis-

connect the network into at least two components (the node

that is intersected is disconnected from the rest of the net-

work), whereas a randomly located line segment has a negli-

gible probability of intersecting a node and must completely

‘slice’ the network in order to disconnect it.

In Fig. 28 we present similar results for NSFNET with re-

spect to the AMF (average maximum flow between all pairs of

nodes) metric. Our results show that a randomly located line

segment link is more likely to have an effect on the AMF met-

ric as compared to ATTR. We believe this is because a random

line segment that intersects links on the network is likely to

affect the maximum flow between some pairs of nodes but

may not affect the connectivity of the network. Additionally,

we observe random disks of diameter d have a larger impact

than a random line segment of length d. This agrees with our

expectation since, loosely speaking, a line segment of length

d causes less damage than a disk of diameter d.

6. Conclusions

Motivated by applications in the area of network robust-

ness and survivability, we focused on the problem of geo-

graphically correlated network failures. Namely, we focused

on randomly located geographical attacks on the network

which can model the ‘random’ nature of a natural disaster

or collateral damage. In particular, we focused on random

line and disk cuts. Using tools from geometric-probability

we demonstrated how to compute failure probabilities and

showed how to calculate ATTR and other network perfor-

mance metrics in polynomial time under these failure mod-

els. This result is significant because calculating this metric

assuming independent link failures is known to be NP-hard

[7]. We then presented some numerical results to demon-

strate the significance of geometry on the survivability of the

network.
Our approach provides a fundamentally new way to look

at network survivability that takes into account the geo-

graphical correlation between links. Some future research di-

rections include the consideration of multiple line-cuts (in-

stead of a single line failure), convex cuts (e.g., oval cuts), and

robust network design in the face of geographical failures.
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