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Failures in fiber-optic networks may be caused by natural disasters, such as floods or earth-
quakes, as well as other events, such as an Electromagnetic Pulse (EMP) attack. These
events occur in specific geographical locations, therefore the geography of the network
determines the effect of failure events on the network’s connectivity and capacity.

In this paper we consider a generalization of the min-cut and max-flow problems under a
geographic failure model. Specifically, we consider the problem of finding the minimum
number of failures, modeled as circular disks, to disconnect a pair of nodes and the
maximum number of failure disjoint paths between pairs of nodes. This model applies to
the scenario where an adversary is attacking the network multiple times with intention
to reduce its connectivity. We present a polynomial time algorithm to solve the geographic
min-cut problem and develop an ILP formulation, an exact algorithm, and a heuristic
algorithm for the geographic max-flow problem.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Fibers in optical networks are laid out along physical
paths, hence they are susceptible to geographical physical
events such as earthquakes and Electromagnetic Pulse
(EMP) attacks [6,13]. These types of disasters may lead to
multiple geographically correlated failures on the fiber
infrastructure. Thus, the survivability of the fiber network
is affected by its geographical layout. In this paper, we
attempt to account for geographically correlated failures
on network connectivity and flow.

Previous works considered the problem of finding the
worst-case location for a failure in a geographic network
with respect to certain network connectivity measures
[1,11]. The impact of a single randomly located disaster
on network connectivity is considered in [9,10,16]. In this
work we consider the problem of finding the minimum
number of failures, modeled as circular disks, to disconnect
a pair of nodes and the maximum number of failure
disjoint paths between pairs of nodes.

Min-cut and max-flow problems similar to the ones
presented here have also received some attention in the
literature. Recently [15] considered the problem of a
geographic max-flow and min-cut in a wireless network
setting. In [8] the problem of finding the maximum num-
ber of geographically disjoint paths with minimum total
cost is discussed in a continuous setting where paths
may be placed anywhere within a polygonal domain.
Finally, [2] considers a related problem to the geographic
max-flow and min-cut, where failures of nearly arbitrary
shape occur at a finite set of candidate locations. Here we
take the geography into account by allowing failures to
take place at any location, yet restricting the shape of a
failure to a geometric disk.

We first consider a geographical variant of the min-cut
problem. Given a set of points on the plane, each of which
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Fig. 1. The light gray area (yellow area in online color version) above
represents the protected zone that no circular failure may be centered.
The gray disks (red disks in online color version) represent disasters that
remove links (of unit capacity) they intersect. Two disasters are required
to disconnect the two nodes S and T (shown above), so the geographic
min-cut is two. Also, since the top pair of paths can be intersected by the
same failure, geographic max-flow is two; two failure disjoint paths are
given by the topmost and bottommost path. In contrast, the standard
min-cut and max-flow is three. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

1 In this paper we define a closed walk as a sequence of nodes where the
first and last node are the same and every pair of consecutive nodes are
connected by a link.

118 S. Neumayer et al. / Computer Networks 77 (2015) 117–127
represents a node, and non-crossing line segments
between these points representing links, what is the min-
imum number of circular attacks such that two nodes, S
and T, are disconnected from each other. If applied to the
national fiber plant, the solution to this problem is the
number of geographic failures required to disconnect two
cities. If we do not restrict the locations of potential failure
sites, the geographic min-cut will be at most one because
nodes S or T can trivially be eliminated with a single fail-
ure. In order to make the problem more relevant and real-
istic we restrict potential failure locations (see Fig. 1). This
can represent fibers that have been hardened against EMP
attacks or a well defended city. We show that we only need
to consider a polynomial number of possible failure sites,
thus reducing the geographic min-cut to a discrete prob-
lem. Then applying methods from [2], we show how to find
a solution in polynomial time. We obtain numerical results
for a specific backbone network [7], thereby demonstrating
the applicability of our min-cut algorithm to a real-world
network.

Next, in the context of geographic attacks and path-pro-
tection algorithms we study a geographic max-flow prob-
lem: the largest set of paths between nodes S and T such
that no two paths can be intersected by the same failure.
The solution to this problem gives the maximum number
of paths that are geographically disjoint with respect to
disasters of a particular radius. See Fig. 1 for an example.
We then develop an ILP formulation, an exact algorithm,
and a heuristic algorithm for this geographic max-flow
problem.

Finally, we explore the analogue to the min-cut
max-flow theorem in the geographic setting. In particular,
we show that the cardinality of the solutions to these geo-
graphic min-cut and max-flow problems are not the same.
Supported by simulation results, we conjecture this
difference is no greater than one, i.e. max-flow 6min-
cut 6max-flow þ1.

2. Geographic min-cut

We start by formulating the geographic min-cut prob-
lem and presenting an algorithm to solve this problem in
polynomial time.
2.1. Network model and problem formulation

Let N be an ordered set of points in the plane represent-
ing nodes. Assume the points representing the nodes are in
general position, that is no three points are collinear. A link
from node i to node j is represented as a line segment in
the plane with endpoints at node i and node j. Let the set
of undirected links be given by E. We assume that the
graph is simple (contains no self-loops or multiple edges)
and connected, and links do not intersect each other except
at node locations.

We model disasters as disks of radius rb and refer to
these disks as holes. We assume a hole removes all links
that intersect it. We also assume a hole may be centered
anywhere in the plane, except inside a protective disk of
radius rp centered at nodes S and T.

We now define the following problem and demonstrate
its formulation.

Geographical Min-Cut By Circular Disasters (GMCCD)
Problem: Given a graph drawn in the plane G ¼ fN; Eg,
two distinct nodes S and T, hole radius rb, and protection
radius rp, find a minimum cardinality set of holes that discon-
nect S from T.

2.2. Algorithm to solve GMCCD problem

We describe an algorithm that finds a solution to the
GMCCD problem. For clarity of presentation we break
down the algorithm into steps. We initially note that holes
may be centered anywhere not inside the protective disks;
thus there are an infinitely uncountable number of holes to
consider in general. The first step (step 1) of the algorithm
reduces this infinitely sized set of potential holes to a poly-
nomial (quadratic) sized set by extending the methods in
[11]. Once this set of holes is enumerated, we can apply a
simplified algorithm for computing geographic min-cut
based on [2]. We do this by first creating a dual-like graph
(step 2) and then running an algorithm based on shortest
closed walks1 on this new dual-like graph to solve the
GMCCD problem (step 3).

Step 1: There are an infinite number of hole locations
centered outside the protective disks; in this step we find
a polynomial (quadratic) sized set of holes from which
we can construct a solution to the GMCCD problem.

Before proceeding, we introduce some notation. Let
Hðe; rbÞ be the set of points whose shortest distance to line
segment e is less than or equal to rb. Such a shape is known
as a hippodrome [5]. Note that a hole of radius rb is cen-
tered in Hðe; rbÞ if and only if the hole intersects e (see
Fig. 2).

In [11] we considered the same failure model without
the protected zone. Under this model we found a polyno-
mial (quadratic) sized set of hole locations such that every
hole in the plane can be represented by one of these
locations and intersects at least the same set of links. For
example, any hole centered in the intersection of the two
hippodromes in Fig. 3 can be represented by a hole
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Fig. 2. Let Hðe; rbÞ be the set of points whose distance to link l is less than
or equal to rb . Such a shape (shown above) is known as a hippodrome [5].
A hole of radius rb is centered in Hðe; rbÞ if and only if the hole intersects l.
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Fig. 3. The light gray area (yellow area in the online color version) above
represents the protected zone. a represent centers of some holes given by
the algorithm in [11]. These holes intersect both links above, however
they are centered in the protected zone. We consider additional holes
centered at the points labeled b. Note two of these points correspond to
holes that intersect both links and are not centered within the protected
zone. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 4. The red disks above represent most of the holes considered in step
1 of the algorithm for this particular graph (some holes are omitted for
clarity). Note that many of these disks intersect a pair of links at exactly
one location. This is an effect of the algorithm used to reduce the set of
candidate hole locations presented in [11]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 5. The dual-like graph is shown by the dotted portion of the figure
above. The solid dots and line segments represent the original network G.
For ease of presentation, we take the set of gray disks (red disks in the
online color version) above to be U. G has five faces; each of these faces
represents a node in K (shown as dashed circles). There exists a link
between two nodes in K for each hole in U that intersects the faces they
represent. Note, there exist two holes intersecting face one and face five,
u1 and u2. So there exist two links between node one and node five in K;
one corresponding to u1 and the other corresponding to u2. Also, for
presentation purposes the only self-loop in K shown is located at node 4
and corresponds to u5; there are more self-loops in K (see Fig. 7). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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centered on one of the two points labeled a. Holes centered
at one of these locations will intersect the same links as
any hole centered in the intersection of the hippodromes.

The polynomially sized set of potential failure locations
found in [11] cannot be used for the GMCCD problem
because of the restrictions that holes cannot be placed
inside the protected zones. For example, the set of holes
found in [11] would have us consider the holes marked
with a in Fig. 3. However, these holes are centered inside
the protected zone and cannot be considered. If we con-
sider additional holes that are centered at the intersection
of the boundaries of the protected zones and hippodromes
(shown by points labeled by b in Fig. 3), we can show that
this expanded set of potential failure locations is sufficient.
The details can be found in Appendix A. Let this polynomi-
ally (quadratic) sized set of potential hole locations for the
GMCCD problem be given by U. A subset of potential holes
for a particular graph is shown in Fig. 4.

Step 2: We construct an undirected dual-like graph from
G, the original graph, and U, the polynomially sized set of
potential hole locations. Let this dual-like graph be
denoted by K.

We first introduce some notation. The drawing of G in
the plane partitions the rest of the plane into connected
regions called faces (including the outer, infinitely large
region). For example, the graph in Fig. 5 divides the plane
into five faces, four bounded faces and one infinitely large
face.

We now describe the dual-like graph K. Every node in
the dual-like graph K corresponds to a face in G. For exam-
ple, in Fig. 5 G has five faces; each of these faces represents
a node in K (shown as dashed circles). There exists a link
between two nodes in K for each hole u 2 U that intersects
the faces they represent. For example, in Fig. 5 there exist
two holes intersecting face one and face five, u1 and u2. So
there exist two links between node one and node five in K;
one corresponding to u1 and the other corresponding to u2.
Note, because every link in K is associated with a hole,
there exist more than one edge between two nodes in K
if more than one hole intersects their corresponding faces.

Step 3: The final step finds a solution to the GMCCD
problem by considering a set of closed walks in K and then
from this set finds the shortest walk whose corresponding
holes disconnect S from T (see Fig. 6). This is similar to a
known algorithm to find the min-cut in a planar graph
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Fig. 6. The dashed links above represents a closed walk in K such that the
corresponding holes (shown as disks) remove links which disconnect S
and T. By searching over a set of closed walks in K, we will be able to find a
solution to the GMCCD problem.
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Fig. 7. The graph shown above is K from Fig. 5 complete with self-loops.
Every link is marked with its respective hole.
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(in the standard sense); the algorithm finds the shortest
closed walk in the dual graph that disconnects S from T
[14].

We now describe the algorithm. First, for all nodes in
the dual-like graph run Dijkstra’s algorithm [3]. This gives
a shortest path tree rooted at each node. Denote links in
this tree for node n by Cn. Notice that when a set of links
is removed from the graph new faces are created. Intui-
tively, a shortest path in K between two nodes gives the
minimum number of disasters such that the faces corre-
sponding to these nodes will be contained in a larger face
Fig. 8. A solution to the GMCCD problem when rb ¼ 1:3; rp ¼ 3:0, S = Dallas, and
the hole locations and the light gray disks (yellow disks in the online color vers
points to the east and west of Chicago, are required to disconnect these cities. (Fo
referred to the web version of this article.)
after the disaster. It is worth emphasizing that this face is
not necessarily the outer face of the new graph.

Next, for every link e in K consider the closed walk in
Cn [ e which contains node n and link e. A solution to the
GMCCD problem is given by finding the closed walk in
Cn [ e for all nodes n and links e in K and then searching
over these walks for the shortest one whose corresponding
holes disconnect S from T.

For example, consider Fig. 7. Let the link from node ni to
nj associated with hole u be given by fðni;njÞ;ug. The solid
links are the links in the shortest path tree rooted at node
2, C2. Consider the link fð1;5Þ;u2g. Now C2 [ fð1;5Þ;u2g
contains a closed walk given by ffð1;2Þ;u2g; fð2;5Þ;
u2g; fð1;5Þ;u2gg. Since hole u2 does not disconnect S and
T (every hole in this cycle is marked with u2), fu2g is not
a candidate solution. Now consider the link fð1;5Þ;u1g.
The resulting closed walk is given by ffð1;2Þ;u2g; fð2;5Þ;
u2g; fð1;5Þ;u1gg. Since disasters u1 and u2 disconnect S
and T; fu1;u2g is a candidate solution. Enumerating over
all nodes and edges in K and finding the minimum cardi-
nality candidate solution solves the GMCCD problem (in
this example, a solution is given by fu1;u2g).

Theorem 1. The algorithm described in steps 1–3 finds a
solution to the GMCCD problem.
Proof. In step 1 we identify a polynomial (quadratic) sized
set of locations such that we can find a geographic min-cut
considering only holes placed at these locations. Once
these locations have been identified the correctness of
steps 2 and 3 follow from [2]. h

Let M be the set of nodes in K. As a result of Euler’s for-
mula [3] jNj � jEj þ jMj ¼ 2, we know jMj is linear in jNj.
Since each hole generates up to OðjMj2Þ edges in K (imagine
a hole that intersects every face) and there are OðjMj2Þ
potential holes, we know there are at most OðjMj4Þ edges
in K. The algorithm creates a shortest path tree for every
node in K and considers a closed walk for every node-link
pair in K of which there are OðjMj5Þ. For every closed walk
considered, the algorithm explicitly checks if the set of
holes corresponding to the closed walk disconnects S and
T. A closed walk may correspond to OðjMjÞ holes and a hole
may remove up to OðjMjÞ links in the original non-dual
T = Chicago. The gray disks (red disks in the online color version) represent
ion) represent the protected zones. Only two disasters, located at ‘choke’
r interpretation of the references to color in this figure legend, the reader is



Fig. 9. A solution to the GMCCD problem when rb ¼ 1; rp ¼ 3:0, S = Dallas, and T = Chicago. The gray disks (red disks in the online color version) represent
the hole locations and the light gray disks (yellow disks in the online color version) represent the protected zones. Note four disasters with rb ¼ 1 are
required to disconnect the two cities, whereas only two disasters are required with rb ¼ 1:3 (see Fig. 8). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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graph. So naively checking ST connectivity for each closed
walk takes up to OðjMj2Þ. Thus, the algorithm runs in time
at most OðjMj7Þ.

2.3. Numerical results

We used the algorithm in the previous section to solve
the GMCCD problem for a major network provider [7]. We
replace every link intersection with a node in this network
which allows our algorithm to be applied. All distance
units mentioned here are in longitude and latitude coordi-
nates (one unit is approximately 60 miles) and for simplic-
ity we assume latitude and longitude coordinates are
projected directly to ½x; y� pairs on the plane.

Fig. 8 shows a solution to the GMCCD problem when
rb ¼ 1:3; rp ¼ 3; S = Dallas, and T = Chicago. Only two
disasters, located at ‘choke’ points to the east and west of
Chicago, are required to disconnect these cities. Fig. 9
shows that when rb is reduced slightly to 1 a total of four
disasters are required to disconnect the two cities.

3. Geographic max-flow

In the context of geographic attacks and path-protec-
tion algorithms we consider the geographic max-flow
problem: the maximum number of paths between nodes
S and T such that no two paths can be disconnected by
the same hole. The solution to this problem gives the max-
imum number of paths which are geographically disjoint
with respect to disks of a particular radius.

In this section we formulate the geographic max-flow
problem, develop an exact algorithm as well as a low com-
plexity heuristic algorithm for the problem, and present
numerical results based on real-world networks.

3.1. Problem formulation

We use the network and disaster model from the last
section.

Geographical Max-Flow By Circular Disasters
(GMFCD) Problem: Given a graph drawn in the plane
G ¼ fN; Eg, two distinct nodes S and T, hole radius rb, and pro-
tection radius rp, find the maximum cardinality set of paths
connecting S and T such that no hole intersects a pair of these
paths.

Let P be a set of paths from S to T. Let H be the set of all
holes in the plane centered outside the open disks of radius
rp centered at S and T (centered outside the protected
zone). The solution to the GMFCD optimization problem
below is a geographical max-flow.

max jPj
such that 9=h 2 H where

pi \ h – ; and pj \ h – ;
8 pi 2 P

8 pj 2 P
; i – j

We are able to find an ILP formulation of the GMFCD
problem with a polynomial number of constraints. The
idea for this formulation is to find paths, each with a differ-
ent ‘label’, such that each one of these paths obeys some
flow constraints and every pair of these paths is failure
disjoint.

Denote the cardinality of a solution to the GMCCD prob-
lem by C and denote the cardinality of a solution to the
GMFCD problem by F. Note that F 6 C since every path in
a GMFCD solution must be intersected by a hole in order
to disconnect the network and there exists no hole that
intersects a pair of paths in a GMCCD solution. Let
A ¼ f1;2; . . . ;Cg. We use this set to limit the number of
variables in the ILP formulation.

Define the following {0, 1} variables for all (undirected)
links ði; jÞ 2 E and for all a 2 A:

xa
ij ¼

1 if ði; jÞ has label a

0 otherwise

(

We call link ði; jÞ active with label a if xa
ij ¼ 1. In the ILP con-

straints below we ensure that sets of active links with the
same label obey flow conservation constraints.

Define the following {0, 1} variables for all nodes i 2 N
and for all a 2 A:

ya
i ¼

1 if there exists a node j such that xa
ij ¼ 1

0 otherwise

(
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Fig. 10. A graph and holes in the context of [2]. There are two holes
shown in gray above (red in online color version). One hole intersects e2

and e3 and the other intersects e1 and e4. So the two dashed paths in
above constitute a geographic max-flow in this setting. Note however
that in our context, there exists a hole centered at the middle node that
intersects the middle four links so F ¼ 1. This example makes clear the
key difference between the two settings; in our setting geographic max-
flow paths must be node disjoint except perhaps for nodes located inside
the protected zone. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Intuitively, ya
i is 1 if any active links with label a have an

endpoint at i. This variable allows us to write the flow
constraints in (3) below.

Define the following {0, 1} constants for all links
ði; jÞ 2 E and for all links ðk; lÞ 2 E:

bij
kl ¼

1 if 9h 2 H that intersects both ði; jÞ and ðk; lÞ
0 otherwise

�

Effectively, bkl
ij ¼ 1 if links ði; jÞ and ðk; lÞ intersect the same

hole. If a pair of active links is intersected by the same hole
then constraint (2) below ensures they cannot have differ-
ent labels, and thus the paths they form are failure disjoint.

The solution to the ILP below is a solution to the GMFCD
problem.

max
X
a2A

X
ðS;jÞ2E

xa
Sj ð1Þ

such that

xa
ij þ xa0

kl 6 1 8 a 2 A
ði; jÞ 2 E

and 8 a0 2 A
ðk; lÞ 2 E

ð2Þ

where bij
kl ¼ 1 and a – a0

X
j:ði;jÞ2E

xa
ij ¼

ya
i if i ¼ S or T

2ya
i otherwise

�
8 i 2 N

a 2 A ð3Þ

xa
ij; y

a
i 2 f0;1g 8i 2 N; 8ði; jÞ 2 E; and 8a 2 A

Constraint (2) above ensures that a pair of active links
with differing labels cannot be intersected by the same
hole. Note that constraint (2) is generated only for xa

ij and
xa0

ij pairs where bkl
ij ¼ 1 and a – a0 (this reduces the total

number of constraints), so there must be some offline com-
putation done to find bkl

ij .
Constraint (3) consists of flow conservation equations

that ensure the total number of active links with a partic-
ular label and endpoints is either 0 or 2 except for nodes S
and T (0 or 1 for nodes S and T). This ensures active links
with a particular label form an ST path (or a cycle not
including S or T).

The objective function in the above ILP maximizes the
total number of active label-link pairs that have an end-
point at S. Since the flow constraint (3) above ensures an
active link with label a and endpoint at S must be part of
an ST path consisting of links active with label a and con-
straint (2) ensures differently labeled links do not interfere,
this ILP will give us the maximum number of failure
disjoint paths (i.e. a solution to the GMFCD problem). In
Section 3.5 we obtain numerical results using this ILP
and its relaxations, and compare these results to heuristic
algorithms.

3.2. Bounds on C and F

We now present a few bounds on C and F. We first note
that C – F. A simple example demonstrating this is given in
Fig. 12. Note in this example C ¼ 2 and F ¼ 1; a geographic
min-cut is given by fu1;u2g and the max-flow is given by
the path corresponding to the dashed curve. This is inter-
esting as it shows the analogue to the max-flow min-cut
theorem [3] does not hold in our setting. Also we know
that F 6 C because every geographic max-flow path must
be intersected by a hole in a geographic min-cut or other-
wise there would remain a path from S to T after the
removal of holes on the min-cut.

We now discuss the relationship between our problems
and the ones found in [2]. The max-flow and min-cut prob-
lem in [2] differs from the GMFCD and GMCCD problem in
two key aspects. First, a hole in [2] need not be a disk; the
only requirement is that every hole be homeomorphic to a
disk. Second, in [2] holes may only be placed in a finite
number of set locations (as opposed to our case where
there exists an infinite number of holes outside the pro-
tected zones). This is a crucial difference because under
the model of [2] some nodes or links may not be inter-
sected by a hole. This means that it is possible for a pair
of geographic max-flow paths to intersect each other. In
contrast, in the context of our geometric problems, since
holes can be centered anywhere on the plane outside the
protected zone, we know that a pair of geographic max-
flow paths must be node disjoint outside the protected
zone (see Fig. 10).

Since only a polynomial number of hole locations need
to be considered (as discussed in step 1 of Section 2), it fol-
lows that the GMFCD and GMCCD problems are special
cases of the geographic max-flow and min-cut problems
described in [2]. Thus, some of the results presented in
[2] can be applied to our setting. For example, in the spe-
cial case where S and T share a common face (that is, S
and T are both nodes on the same face) it is known that
C 6 F þ 1. Moreover, in our setting there exists a case
where this bound is tight (i.e., can be met with equality)
as demonstrated by the example in Fig. 12.

There exists a family of graphs for which it is known
that C ¼ F [2]. These graphs do not contain what are
known as ‘bad’ holes. Applying a type of greedy algorithm
to these graphs results in a solution to the GMFCD prob-
lem. Details can be found in below. These results are used
to prove the correctness of the exact algorithm presented
in the next subsection.

We now describe a family of graphs for which [2] shows
that C ¼ F. In order to describe these graphs we introduce
some notation. Assume S and T are on a same face, denoted
by B. Consider the two paths between S and T that form the
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Fig. 12. A simple network where S and T lie in the same face (a version of
this example may be found in [15]). All relevant holes are shown above in
gray (red in online color version); others holes can effectively be ignored.
Note C ¼ 2 and F ¼ 1 (a geographic min-cut is given by fu1;u2g and max-
flow given by path corresponding to the blue dotted curve). This shows
the analogue to the max-flow min-cut theorem [3] does not hold in our
setting. Also, it shows that there exists a case where the bound C 6 F þ 1
(shown in [2]) is tight for our problem when S and T lie in the same face.
(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

S. Neumayer et al. / Computer Networks 77 (2015) 117–127 123
boundary of B. Denote them by q and r respectively. We
now define a bad hole with respect to face B.

Definition 1. A bad hole with respect to face B is a hole
that intersects both q and r but does not contain a curve
with endpoints on q and r that only intersects faces other
than B.

For an example of some bad holes, see the holes in Fig. 11.

Lemma 1 [2]. If there does not exist a bad hole with respect
to a common ST face, then C ¼ F.

In fact, when there is no bad hole a simple greedy algo-
rithm is optimal. The greedy algorithm starts with path q
and removes all links not hole disjoint with path q. The
common face will now be a subset of a larger face for
which a new q and r are defined. We remove all links not
hole disjoint with respect to this new path q and repeat
until S and T are no longer connected.

Lemma 2 [2]. If there does not exist a bad hole with respect
to a common ST face, then greedy algorithm returns a solution
to the GMFCD problem.

It is interesting to note that the greedy algorithm is not
always guaranteed to give an optimal solution when there
exist bad holes (in contrast the analogous greedy algorithm
always works in the non-geographic setting [4]). Fig. 11
shows an example of the greedy approach failing. The
greedy algorithm outputs just one path whereas the opti-
mal solution is given by the two paths that form a
rectangle.

3.3. Exact algorithm

Next we present an algorithm to solve the GMFCD prob-
lem exactly that works by applying a greedy routine to
every ST path. We give a brief overview of the algorithm.
Let p be a ST path in G. We remove every link that is not
hole disjoint with p (effectively, every link outside the pro-
tected zone that intersects a ‘worm’ around p is removed).
q r

S T

Fig. 11. The gray disks (red disks in the online color version) above are
examples of bad holes on this graph. Note S and T share the outer
infinitely large face. Consider the paths that form the boundary of this
common face, shown as the dotted path labeled q and the dashed path
labeled r. Each of these holes intersects both q and r but does not contain
a curve with endpoints on q and r that only intersects the inside faces,
thus they are bad holes. We also note that the greedy algorithm outputs a
single path, q, whereas the optimal solution is given by the two center
paths which form a rectangle. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
Denote the resulting graph by G0 and let F 0 denote the car-
dinality of the geographic max-flow for G0. S and T now
share a common face on G0 (with a caveat described in
Appendix B). It can be shown that the greedy algorithm
on G0 finds the geographic max-flow for G0. Additionally,
if p belongs to a solution to the GMFCD problem, then
F ¼ F 0 þ 1 and so p combined with the set of paths found
by the greedy approach is an optimal solution. Thus, by
considering all ST paths we can find a set of paths that
includes p that is an optimal solution to the GMFCD prob-
lem. See Algorithm 1 for an explicit description.

Algorithm 1. Exact Algorithm to Solve GMFCD Problem.

1: maxDisjointPaths ;
2: for every ST path p do
3: call greedyRoutineðpÞ

maxDisjointPaths
Procedure greedyRoutineðpÞ
4: disjointPaths p
5: G0  G except for links that intersect a hole that

intersects p
6: while S and T in same component of G0 do
7: call removeQ
8: if jdisjointPathsj > jmaxDisjointPathsj then
9: maxDisjointPaths  disjointPaths
Procedure removeQ
10: fq; rg  ST paths that form the boundary of the

new face
11: disjointPaths  disjointPaths [ q
12: G0  G0 except for links that intersect a hole that

intersects q

We now present a few lemmas which help prove that
Algorithm 1 solves the GMFCD problem.
Lemma 3. G0 contains no bad holes with respect to the new
common face S and T share.
Proof. Let B denote the new common face S and T share
after the removal of links not hole disjoint with path p.



B

p

q

r

Fig. 13. The dashed links represent path p. Every link not hole disjoint with path p is removed. The gray face (teal face in the online color version) B above
represents the new common face S and T share. q and r are the two ST paths that form the boundary of B. If a hole intersects both q and r, it must not
intersect p (because all links intersecting a hole that intersects p are removed). This hole must then contain a curve with endpoints on q and r that only
intersects faces other than B (shown as the gray dashed curve above).
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Let q and r be two ST paths that form the boundary of face B
(see Fig. 13).

We will use proof by contradiction. Assume there exists
a bad hole with respect to B, denoted by h. Hole h must
intersect both q and r but not p (because all links
intersecting a hole that intersects p are removed). Thus, h
must contain a curve with endpoints on q and r that only
intersects faces other than B (see Fig. 13). So, h is not a bad
hole, a contradiction. h
Lemma 4. If p is a path in a solution to the GMFCD problem,
then F 0 þ 1 ¼ F.
Proof. G0 necessarily contains all the other disjoint paths
in the solution to the GMFCD problem because only links
not hole disjoint from p were removed from G. Since p is
a single path, we have F 0 þ 1 ¼ F.
Theorem 2. Algorithm 1 finds an exact solution for the
GMFCD problem.
Proof. A path in a solution to the GMFCD problem will
be considered by Algorithm 1 since every ST path is enu-
merated. Let p denote one of these paths. By Lemma 3
we know G0 contains no bad holes with respect to the
new common face S and T share. So, by Lemma 2 the
greedy algorithm obtains a geographic max-flow for G0.
Since p is assumed to be in the solution, by Lemma 4
we know F 0 þ 1 ¼ F. Thus, path p combined with the
result of the greedy algorithm on G0 is a solution to
the GMFCD problem. h

This algorithm may not be practical since typically the
number of ST paths grows exponentially with the size of
a graph, however, it gives insight to the development of a
good heuristic algorithm.

3.4. Heuristic

The basis of the heuristic algorithm presented here is to
try to identify the paths that are likely to be in the
geographic max-flow. The algorithm works similarly to
the exact algorithm above except we apply the greedy rou-
tine to a subset of paths, instead of every ST path. In partic-
ular, the subset of paths considered consists of those found
by a standard (node disjoint) max-flow algorithm on the
original topology. We apply the greedy routine on every
one of these paths and return the largest set of disjoint
paths found. In the next section we provide some numeri-
cal results using this heuristic. See Algorithm 2 for an
explicit description.

Algorithm 2. Heuristic Algorithm For GMFCD Problem.

1: maxDisjointPaths  ;
2: P  max-flow ST paths (non-geographic)
3: for every path p 2 P do
4: call greedyRoutineðpÞ
5: return maxDisjointPaths
3.5. Numerical results

Similar to Section 2.3, we discuss the results of our
developed algorithms for the GMFCD problem when
applied to a major network provider [7].

Fig. 14 shows a result of the GMFCD heuristic algorithm.
The four disks represent hole locations in a geographic
min-cut. The four ‘worms’ correspond to hole disjoint
paths found using the GMFCD heuristic algorithm. Since
the cardinality of the geographic max-flow and min-cut
solutions is the same and F 6 C, we know the heuristic
has found an optimal solution to the GMFCD problem in
this case.

Fig. 15 shows the cardinality of a solution to the GMCCD
problem and result of the GMFCD heuristic algorithm as a
function of hole radius. As expected, the cardinality of the
results decreases as hole radius increases. Additionally,
since F 6 C, these results show the GMFCD heuristic algo-
rithm gives an optimal solution to the GMFCD problem for
nearly all radii considered.

It is known C 6 2F þ 2 in the more general setting of [2].
However we believe our geographical setting allows for
this bound to be tightened. We conjecture that C 6 F þ 1.



Fig. 14. Result of GMFCD heuristic algorithm when rb ¼ 1:0; rp ¼ 3:0, S = Dallas, and T = Chicago. The four gray disks (red disks in the online color version)
represent the hole locations in a geographic min-cut and the light gray disks (yellow disks in the online color version) represent the protected zones. The
four light gray ‘worms’ (teal ‘worms’ in the online color version) correspond to hole disjoint paths found using the heuristic algorithm. Since the cardinality
of the max-flow and min-cut solutions is the same and F 6 C, we know the heuristic has found an optimal solution to the GMFCD problem. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Cardinality of a solution to the GMCCD problem and result of the
GMFCD heuristic algorithm as a function of hole radius rb when rp ¼ 3:0,
S = Dallas, and T = Chicago. As expected, the cardinality of the results
decreases as hole radius increases. Additionally, since F 6 C, these results
show the GMFCD heuristic algorithm gives an optimal solution to the
GMFCD problem for nearly all radii considered (the plots are nearly the
same and largely overlap).
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Using the algorithm in Section 2 and running CPLEX on the
ILP in Section 3, we solve the GMCCD and GMFCD prob-
lems exactly for 1000 randomly generated geographic
graphs consisting of 13 nodes. We found C ¼ F for 98.8%
of the instances and C ¼ F þ 1 for the remaining 1.2%.
There was not a single example where C exceeded F by
more than 1, thus supporting our conjecture.

We also compared the result of the GMFCD heuristic
algorithm to the GMFCD optimal solution for these 1000
randomly generated graphs. The GMFCD heuristic algo-
rithm returned an optimal solution for 98.8% of these
instances and contained one less path than the GMFCD
optimal solution for the remainder.

3.6. Complexity of the GMFCD problem

The max-flow problem in [2] is shown to be NP-hard,
however, the proof does not directly transfer to our setting
since in our setting geographic max-flow paths cannot
intersect outside protected zones. We believe a polynomial
time solution may be possible and this is a subject of future
work.
4. Conclusions and future work

Motivated by applications in the area of network sur-
vivability, in this paper we present a geographic max-flow
and min-cut problem where failures, modeled as disks,
may be placed anywhere in the graph except for certain
protected zones. We show these problems can be reduced
to discrete ones and present a polynomial time algorithm
for the GMCCD problem based on ideas from [2,11]. We
then develop an ILP formulation, an exact algorithm, and
a heuristic algorithm for the GMFCD problem. Using these
algorithms, we obtain numerical results for a specific back-
bone network, thereby demonstrating the applicability of
our algorithms to a real-world network.

Our approach provides a way to look at network surviv-
ability in the face of multiple disasters or attacks that takes
into account the geographical correlation between links.
Some future directions include application of this approach
to the electric power transmission network, finding a tight
bound on the difference between geographic min-cut and
max-flow (i.e. the analog to the max-flow min-cut theo-
rem), finding the complexity of the GMFCD problem, and
the development of network design tools (e.g. how to build
a network under some constraints such that geographic
min-cut is maximized).
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Appendix A. Details of Step 1

There are an infinite number of hole locations centered
outside the protective disks; in this step we find a polyno-
mial (quadratic) sized set of candidate holes for the
GMCCD problem. We first make a note about holes. Let h
and h0 be holes such that h0 intersects every link h does



Fig. 16. No hole intersects the nodes located in the protected zone, so
removing links not hole disjoint with some path will never result in a
graph where S and T are on the same face.
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in addition to possibly other links. We note that if h
belongs to a set of holes that disconnects S and T, then
replacing h with h0 will still result in S and T being discon-
nected (if S and T are disconnected, removing additional
links will also leave them disconnected).

We now describe how to find a set of potential failure
locations for the GMCCD problem. First, we apply an algo-
rithm from [11] where the graph and disaster model is the
same except that there exists no protected zones. The algo-
rithm creates a polynomial (quadratic) sized set of holes,
denoted by A, such that for every hole in the plane there
exists a hole a 2 A that intersects at least the same set of
links. Note however, one of these holes may be centered
inside one of the protective disks around S or T (see
Fig. 3), and so we must consider additional holes to solve
the GMCCD problem. Let A0 be the set of disks in A not cen-
tered in the protected zone.

Let h be a hole not centered in the protected zone and
let a be a hole in A that intersects at least the same links
as hole h. We will show there exists a polynomially (qua-
dratic) sized set of holes centered outside the protected
zone, denoted by M, such that if hole a is in the protected
zone, then a hole m 2 M intersects at least the same links
as hole h. So, for every hole not centered in the protected
zone there exists a hole in A0 [M that intersects at least
the same set of links. Thus, A0 [M gives us a polynomial
(quadratic) sized set of candidate holes for the GMCCD
problem.

In the following we present notation that allows us to
describe the locations of the holes in M. Let OS denote
the circle centered at S with radius rp and let OT denote
the circle centered at T with radius rp. Let e denote a link
and let e

$
denote the line that contains e. Let @Hðe; rbÞ

denote the boundary of Hðe; rbÞ.

Lemma 5. Let M be the set of all holes of radius rb centered
on at least one of the following sets:

(i) [e2EfOS \ @Hðe; rbÞje does not have an endpoint at S or
rp – rbg,

(ii) [e2EfOT \ @Hðe; rbÞje does not have an endpoint at T or
rp – rbg,

(iii) [e2EfOS \ e
$
je has an endpoint at S and rp ¼ rbg,

(iv) [e2EfOT \ e
$
je has an endpoint at T and rp ¼ rbg.

Assume there exists a polynomially (quadratic) sized set of
holes A such that for every hole in the plane there exists a hole
a 2 A that intersects at least the same links. Given a hole h not
centered in the protected zone, if a hole a 2 A is in the
protected zone and intersects at least the same set of links as
h, then there exists a hole m 2 M that intersects at least the
same links as h.
Proof. Let b denote the center of hole h and a denote the
center of a. Let Z denote the set of all links that intersect
h. Note that x 2 \z2ZHðz; rbÞ iff x is the center of a hole that
intersects every z 2 Z. So b 2 \z2ZHðz; rbÞ and
a 2 \z2ZHðz; rbÞ. Also note that \z2ZHðz; rbÞ is convex and
thus path-connected, so there exists a path p in
\z2ZHðz; rbÞ from a to b that necessarily intersects OS or
OT . Let y be this intersection point. The hole centered at y
must necessarily intersect at least the same links as h since
y 2 \z2ZHðz; rbÞ.

W.l.o.g. assume y lies on OS. Note every point in the sets

ðiÞ and ðiiiÞ above lies on OS. Let y0 be the first point in ðiÞ or

ðiiiÞ in the clockwise direction from y on OS. Now,
y0 2 \z2ZHðz; rbÞ since every hippodrome y intersects is
also intersected by y0. Therefore a hole centered on ðiÞ or
ðiiiÞ must intersect every link that intersects h. h

Since for each link we consider at most eight holes
(jOS \ @Hj 6 4 and jOT \ @Hj 6 4 under conditions above),
M is of polynomial (quadratic) size. Since jA0j is polynomial
(quadratic), the set of potential holes for the GMCCD prob-
lem, A0 [M, is of polynomial (quadratic) size. For the
remainder of the section let U ¼ A0 [M.

Appendix B. Modifying G

Here we discuss a caveat for applying Algorithms 1 and
2s. We first note that removing every link not hole disjoint
with some ST path does not ensure S and T lie on the same
face. See Fig. 16 for an example. Here we note how to mod-
ify G so that when links around a ST path are removed S
and T are guaranteed to share a common face. Let O be a
circle of radius rp � rb centered at S (assume rp � rb P 0).
Note no hole may intersect a link anywhere within this cir-
cle. Place nodes everywhere O intersects a link. Consider
the links forming paths that lie entirely within O that have
endpoints at S and these new nodes. Replace these links
such that there exists a path inside O from S to each of
these new nodes such that these paths do not intersect
each other except at S. Repeat this process for T. Now when
links within rb of a particular path are removed (outside
the protected zone) S and T are guaranteed to be on the
same face. Since the removed links do not intersect any
hole and since the connectivity of G is unchanged outside
the protected zone, the solution to the GMFCD problem
remains the same. We assume the exact algorithm is
applied after this modification.
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