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Abstract—We consider the problem of survivability in multi-
layer networks. In single-layer networks, a pair of disjoint paths
can be used to provide protection for a source–destination pair.
However, this approach cannot be directly applied to layered net-
works where risk-disjoint paths may not always exist. In this paper,
we take a new approach, which is based on finding a set of paths that
may not be disjoint but together will survive any single risk. We
start with two-layered communication networks, where the risks
are fiber failures. We prove that in general, finding the minimum
survivable path set (MSPS) is NP-hard, whereas if we restrict the
length of paths the problem can be solved in polynomial time. We
formulate the problem as an integer linear program (ILP), and
use this formulation to develop heuristics and approximation al-
gorithms. Moreover, we study the minimum cost survivable path
set problem, where the cost is the number of fibers used, and thus,
nonadditive. Finally, we generalize the survivability problem to the
networks with more than two layers. By applying our algorithms
for survivable path set, we assess the survivability of communica-
tion networks that operate relying on power from a power grid.

Index Terms—Approximation algorithms, minimum survivable
path set, multilayer networks.

I. INTRODUCTION

ONE of the most important advances in modern communi-
cation networks is embedding multilayer network archi-

tectures such as IP-over-WDM.1 In these layered networks, a
logical topology is embedded onto a physical topology such that
each logical link is routed using a path in the physical topology.
While such a layering approach makes it possible to take advan-
tage of the flexibility of upper layer technology (e.g., IP) and the
high data rates of lower layer technology (e.g., WDM), it raises
a number of challenges for efficient and reliable operations. One
challenge is providing protection for this layered network where
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1Wavelength-division multiplexing (WDM) is a technology that allows mul-

tiple signals path through a single optical fiber by multiplexing different wave-
lengths.

loss of a single fiber may cause failure of multiple logical links
using it. In this paper, we consider the protection problem in the
two layered communication network, and extend it to the case
of three layers consisting of a physical-logical communication
network and a power grid.

The main objective in the protection of a communication net-
work is to guarantee its connectivity in the case of a failure.
Since in reality the probability of two simultaneous failures is
very low, we assume that only one failure occurs at a time. The
protection problem in single-layer networks is rather straight-
forward; namely, providing a pair of disjoint paths (one for
primary and one for backup) guarantees a route between two
nodes against any single link failure.

This approach, however, cannot be directly applied to lay-
ered networks, because a pair of seemingly disjoint paths at the
logical layer may share a physical link and thus simultaneously
fail in the event of a physical link failure. The notion of shared
risk link group (SRLG) disjoint paths, i.e., two paths between
the source and destination nodes that do not share any risk (e.g.,
fiber and conduit) was introduced in [1] and formulated in [2].
Nearly all the previous works in the context of layered network
protection have focused on finding SRLG-disjoint paths ([3]–[9]
among others).

Although the SRLG-disjoint paths problem has been well
studied, there are networks in which SRLG-disjoint paths do not
exist between a source and a destination. There has been some
efforts to address this challenge by choosing a pair of maximally
disjoint SRLG paths; i.e., a pair of paths that share the minimum
number of risks [2], [10], [11]. Clearly, this cannot survive any
single failure; thus, we take an alternative approach that is based
on finding a set of paths that together will survive any single
failure. Thus, in the case that SRLG-disjoint paths do not exist,
we may find three or more paths such that in the event of a failure,
at least one of the paths remains connected. This notion of
survivable path set generalizes the traditional notion of SRLG-
disjoint paths, enables us to provide protection for a broader
range of scenarios and increases the survivability of the network.

The concept of multiple survivable paths has been studied
in the single-layer setting [12], [13], where they split data over
multiple paths and ensure that the delay over all paths are limited.
They select the paths so that in the case of failure of any path,
all or a fraction of traffic is guaranteed to survive. However, this
problem remains largely unexplored in the multilayer setting.
We say that a pair of nodes (i, j) is survivable if in the case
of any single physical failure, nodes i and j remain connected.
Moreover, we say that a network is survivable if in the case of
any single physical failure, the logical layer remains connected
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[14]. Clearly, this requires the survivability of every pair of
nodes in the network; i.e., if there exists a pair of nodes that
is not survivable, then the network is not survivable as well.
Therefore, we define the general metric of “survivability” as the
fraction of the total pairs of nodes that remain connected after a
failure. A network is survivable if survivability is equal to one.

Our contributions in this paper can be summarized as follows:
1) we introduce a new notion of survivable path set to provide

pairwise protection even for the case where SRLG-disjoint
paths do not exist;

2) we prove the NP-hardness of the minimum survivable path
set (MSPS) problem;

3) we show that under certain practical restrictions, the
MSPS problem can be solved in polynomial time;

4) we develop heuristics and approximation algorithms for
the MSPS problem;

5) we introduce the new problem of minimum fiber surviv-
able path set (MFSPS) to minimize the number of fibers
used in the survivable path set;

6) we prove the NP-hardness of the MFSPS problem, and
provide heuristics to solve it;

7) finally, we generalize the survivability problem to more
than two layers where failures can occur in any layer, and
by applying our algorithms for survivable path set, we
assess the survivability of a communication network that
relies on power from a power grid.

The rest of this paper is organized as follows. In Section II,
we present the two-layered communication network model. In
Section III, we study the problem of finding a minimum set of
paths that will survive any single fiber failure and develop several
approximation algorithms. We also compare the performance of
our approximation algorithms through numerical evaluation. In
Section IV, we study the problem of minimizing the backup
fibers in the survivable path set and develop new heuristics. In
Section V, we generalize the survivability problem to networks
with more than two layers. In particular, we show how the power
grid affects the survivability of a communication network. The
conclusion is presented in Section VI.

II. COMMUNICATION NETWORK MODEL

We consider a layered network that consists of a logical
topology GL = (VL ,EL ) built on top of a physical topology
GP = (VP ,EP ), where V and E are the sets of nodes and
links, respectively, and VL ⊂ VP . Each logical link (i, j) in EL

is mapped onto an i − j path in the physical topology. This is
called lightpath routing. Different lightpaths may use the same
fiber (physical link), therefore when a fiber fails, all the light-
paths using that fiber will fail. Hence, a logical path survives the
failure of any fiber that it does not use.

As mentioned earlier, we generalize the traditional notion of
SRLG-disjoint paths to account for the case where there does not
exist a pair of SRLG-disjoint paths. In a layered network, a set
of logical paths is said to be survivable if at least one of the paths
remain connected after any single physical link failure. Hence, a
survivable set consisting of two paths is a pair of SRLG-disjoint
paths. Note that, there may exist a survivable path set even if
SRLG-disjoint paths do not exist. For example, consider the

Fig. 1. Topologies in multilayer networks. (a) Physical Topology. (b) Logical
Topology. (c) Mapping.

physical and logical topologies in Fig. 1. Each dashed line in
Fig. 1(c) shows the lightpath routing of each logical link over
the physical topology. Under this lightpath routing, each pair of
logical paths between nodes 1 and 4 shares some fiber.

Suppose that we want to find a set of logical paths between
nodes 1 and 4 that can survive any single physical link failure.
Clearly, there does not exist a pair of SRLG-disjoint paths as
each pair of logical paths shares a fiber. However, it is straight-
forward to check that the set of three paths can survive any
single fiber cut, although they are not SRLG-disjoint. This ex-
ample shows that the traditional protection schemes based on
SRLG-disjoint paths (such as the ones in [2]) may fail to pro-
vide protection against single physical link failures, while there
exists a set of paths that can together provide protection. Our
goal in this paper is to address the problem of finding a set
of survivable paths that together will survive any single fiber
failure.

III. MSPS

We start with the problem of finding a MSPS, i.e., the min-
imum number of paths between a pair of nodes s and t that
survive any single physical link (fiber) failure. We present a
path-based integer linear program (ILP) formulation for this
problem, assuming that the entire set of s − t paths with their
routings over fibers is given. For each path j, let Pj be a binary
variable which takes the value 1 if path j is selected, and 0
otherwise. The matrix A ∈ Rm×n refers to the mapping of all
n paths over the m fibers such that aij = 0 if path j uses fiber
i and aij = 1 otherwise. Let e be a m × 1 vector of ones. The
MSPS problem can be expressed as follows:

minimize
n∑

j=1

Pj (1a)

subject to A × P ≥ e (1b)

Pj ∈ {0, 1}, j = 1, . . . , n. (1c)

In the aforementioned, the objective function is the number
of selected paths. Each row i ∈ {1, . . . , m} in constraint (1b)
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requires that at least one selected path survives the failure of
fiber i, i.e., the selected path set should be survivable. Hence,
the optimal solution to the above optimization problem gives a
MSPS whenever one exists. Although this formulation requires
the knowledge of every path (which is possibly exponential in
the number of fibers), the compact and clean expression of the
path-based formulation enables us to analyze the useful proper-
ties of survivable path sets. Later, we will use this formulation
to develop heuristics and approximation algorithms for finding
an MSPS. Note that the MSPS problem can also be described
by link-based formulation using a polynomial number of con-
straints and variables without enumerating all of the paths [15].

A. MSPS in General Setting

In this section, we show that the MSPS problem is NP-hard
in general and discuss some algorithms that can be used to
solve the problem. In Section III-B, we will study the MSPS
problem under a practical constraint. Our first result pertains to
the complexity of the MSPS problem as stated in Theorem 1.

Theorem 1: Computing the minimum survivable paths in
multilayer networks is NP-complete.

Proof: The Minimum survivable paths problem can be re-
duced from the minimum set cover problem, which is known to
be NP-complete. Given an instance of minimum set cover prob-
lem with set of elements E and set of subsets R, we construct
a physical topology E = {f1 , . . . , fm} containing m elements,
where each fi corresponds to fiber i and a logical topology
R = {P1 , . . . , Pn} containing n sets, where each Pj corre-
sponds to the set of fibers that are not used by path j; i.e., all
fibers that survive the failure of path j. It follows that the mini-
mum number of logical paths that survives any of the physical
fibers is equal to the size of a minimum set cover.

As the last step of the proof, we need to show we can
construct a physical topology with the given routing. Given
set R = {P1 , . . . , Pn}, we can obtain set R̄ = {P̄1 , . . . , P̄n},
where each P̄j corresponds to the set of fibers that are used by
path j. We assume that each path is made of only one s − t
lightpath; thus, the logical topology is made of n parallel s − t
logical links. Given sets E and R̄, the physical topology and
lightpath routing in [16] can be used. �

Since the problem is computationally hard to solve, we con-
sider heuristics and approximation algorithms that give a set of
survivable paths in polynomial time. Owing to the similarity to
the set cover problem, the heuristics that have been developed
for set cover problems can be used here. In particular, a common
approach to solve the set cover problem is the greedy algorithm.
In order to apply the greedy algorithm to our setting, one needs
to enumerate all of the paths with their routings on the fibers.
In general, the number of paths in a multilayer network is expo-
nential in the total number of fibers. Moreover, in each iteration,
the greedy algorithm tries to find a path that survives the max-
imum number of fibers; i.e., the path that uses the minimum
number of fibers. Since the total number of paths is exponen-
tial in the number fibers, it is not possible to search through all
paths. In fact, it was shown that even this subproblem is equiv-
alent to the minimum color path problem, which is known to be
NP-hard [17].

Another approach that can be used to approximate the set
cover problem is randomized rounding, which is based on solv-
ing the linear program (LP) relaxation of the original ILP formu-
lation, and rounding the solution randomly. Randomized round-
ing gives an O(log m) approximation, where m is the number
of fibers [18]. This is the best possible approximation for the
MSPS problem, which is due to the fact that the minimum
set cover problem cannot be approximated within better than a
log m factor in polynomial time [19].

Fortunately, practical systems impose certain physical con-
straints that make the survivable path-set problem easier to solve.
Due to physical impairments and delay constraints, paths are
typically limited in length, and we show that this physical limi-
tation makes the MSPS problem tractable.

B. Path Length Restricted Version

In this section, we assume that each logical path is restricted
to using at most K fibers. Restricting the length of paths (i.e.,
number of fibers on each path) is a realistic assumption, because
each logical link is typically constrained in the number of fibers
that it may use (due to budget and/or delay constraints), and
each logical path is constrained in the number of logical links.
We would like to remind the difference between logical path
and logical link in this paper. A logical link (i, j) is a link in the
logical layer of network, which is mapped onto a path from node
i to node j in the physical topology. This is called the lightpath
routing. A logical path between s and t is a set of logical links
that form a path from node s to node t in the logical layer of
network.

Lemma 1: Under the path length restriction, the optimal
number of survivable paths is at most K + 1.

Proof: By the assumption, each path uses at most K fibers,
and thus, at least m − K fibers are survived by a path. Suppose
that we have selected an arbitrary path, and want to add other
paths to form a survivable path set. In the worst case, each of
the newly selected paths can survive only a single fiber, which
is not survived by the previously selected paths. Since there
are at most K fibers that are not survived by the first path, we
need at most K additional paths to survive the rest of the fibers.
Therefore, the total number of paths will not exceed K + 1. �

Lemma 2: In the path length restricted version of MSPS, the
total number of logical paths is polynomial in the number of
fibers m, and can be enumerated in polynomial time.

Proof: Under the assumption of restricted path length, a log-
ical path can consist of up to K fibers, and thus, at most K
logical links. In a graph with n nodes, there can be O(nK )
paths of length up to K. Since the number of nodes is at most
2m, the total number of logical paths of length up to K is
O(mK ). A simple exhaustive search can be used to enumerate
all the logical paths.

Theorem 2: The path length restricted version of the MSPS
problem can be solved in polynomial time.

Proof: By Lemma 1, MSPS needs at most K + 1 paths to
survive any single failure. Therefore, one can find the exact
solution by searching through all subsets of paths with sizes
2, 3, ...,K + 1. This will take O(PK +1) iterations, where P is
the total number of paths. On the other hand, by Lemma 2, the
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total number of paths is O(mK ). Therefore, the total running
time of exhaustive search is O(mK (K +1)), which is polynomial
in the total number of fibers. �

Although this exhaustive search returns an optimal solution,
its running time can be prohibitive for large values of m and
K. This motivates us to study heuristics and approximation
algorithms with better running time. First, we consider a greedy
algorithm, followed by a randomized algorithm based on ε-net,
which is a well-known technique in the area of computational
geometry.

1) Greedy Algorithm: The first heuristic we consider is a
greedy algorithm, which is similar to the greedy algorithm for
the minimum set cover problem. The input to the greedy algo-
rithm is the set of paths with the set of fibers used by each path
and the set of all fibers. The greedy algorithm is an iterative
algorithm that works as follows. In the first step, it selects a path
that uses the minimum number of fibers. In the second step, it
selects the path that survives the maximum number of fibers
that are not survived yet. The second step is repeated until the
selected path set survives all of the fibers. Following the proof
of Lemma 1, it can be shown that the greedy algorithm also
finds a survivable path set with size at most K + 1.

As discussed in Section III-A, the greedy algorithm generally
gives an O(log m) approximation to the MSPS set. However,
under the assumption of restricted path length, it provides a
better approximation as stated in Theorem 3.

Theorem 3: The greedy algorithm provides an O(log K) ap-
proximation in polynomial time for the path length restricted
version of MSPS.

Proof: Let ξ be the size of MSPS. Let ni be the number of
fibers that are not survived after the ith iteration of the greedy
algorithm. Clearly, we have n1 ≤ K. Now, note that there is a
path that survives at least n1

ξ of the remaining n1 fibers, because
otherwise the size of the optimal path set would be larger than
ξ. Hence, in the second iteration, the greedy algorithm would
select a path that survives at least n1

ξ of fibers. Thus

n2 ≤ n1 −
n1

ξ
≤ K

(
1 − 1

ξ

)
. (2)

Similarly

n3 ≤ n2 −
n2

ξ
≤ K

(
1 − 1

ξ

)2

(3)

and in general

ni ≤ K

(
1 − 1

ξ

)i

. (4)

The greedy algorithm will terminate when nt < 1, and this
condition is satisfied when

K

(
1 − 1

ξ

)t

< 1 (5)

where t is the total number of iterations. Since 1 − x < e−x for
x > 0, inequality (5) is satisfied when

Ke−
t
ξ ≤ 1 ⇔ t ≤ ξ × log K. (6)

Therefore, the greedy algorithm provides an O(log K) approx-
imation.

To prove the polynomial time complexity, note that in each
iteration of the greedy algorithm, the best path can be found
in O(mK ) by searching through all the paths (see the proof
of Theorem 2). Furthermore, as mentioned earlier, the greedy
algorithm terminates in at most K + 1 iterations. Therefore, the
computational complexity of the greedy algorithm is O(KmK ).

�
Although the greedy algorithm runs significantly faster than

the exhaustive search algorithm, its running time can still be
prohibitive for large K and m. Hence, we develop a novel ran-
domized algorithm that has a considerably better running time.
This algorithm builds upon solutions to the closely related set
cover and hitting set problems [20]. In particular, the algorithm
is based on ε-net, a concept in computational geometry, which
provides an approximation algorithm for the hitting set problem.

2) ε-Net Algorithm: Our ε-net algorithm is an iterative algo-
rithm, which selects each path with some probability. If all the
fibers are survived by the selected path set in the first iteration,
the algorithm terminates. Otherwise, it changes the probability
of selecting each path and selects a new set of paths using the
new probabilities, until all fibers are survived.

Let Wj be the weight of path j, initialized as Wj = 1. Define
the weight of each fiber i to be the sum of the weights of paths
surviving fiber i, i.e.,

W (fi) =
∑

j :ai j =1

Wj. (7)

Definition 1: A fiber is said to be ε-Survivable if

W (fi) ≥ ε
n∑

j=1

Wj for some ε ∈ (0, 1) (8)

where n is the total number of paths.
Note that when all of the paths have the same weight of 1,

a fiber is ε-Survivable if it is survived by at least ε × n paths.
Hence, if a fiber is ε-Survivable with large ε, then it is likely
to be survived by randomly selected paths. This observation is
exploited in our ε-net algorithm as discussed below.

By applying the randomized algorithm for the hitting set prob-
lem from [21] and [22], we can obtain a path-selection algorithm
for selecting a random subset of paths that will survive all of
the ε-Survivable fibers, with high probability. In particular, the
algorithm finds a set of paths via s independent random draws,
such that in each draw, a path is selected from the entire path set
according to the probability distribution μ(Pj ) = Wj∑ n

j = 1 Wj
∀j.

Results from [23] and [24] showed that s = cd
ε log 1

ε , where d
is the VC-dimension of our problem set and c is a constant.

Definition 2: Let R be a set of subsets of X . A subset A ⊂ X
is shattered by R if every subset of A can be obtained as the
intersection of some S ∈ R with A.

The VC-dimension of R, denoted by dim(R), is defined as
the supremum of the sizes of all finite shattered subsets of X . If
arbitrarily large subsets can be shattered, the VC-dimension is
∞ [22].

Consider the following setting for our survivability problem.
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Example: Let X = {P1 , . . . , Pn} be the set of all s − t paths
in the logical layer. Moreover, let R = {f1 , . . . , fm} be the set
of subsets of X , where each set fi denotes the set of paths that
survive the failure of fiber i and m is the number of fibers.
Let A be an arbitrary subset of X . According to Definition
2, set A is shattered by R if the intersection of A with sets
f1 , . . . , fm produces all of the subsets of A. For instance, set
A = {P1 , P2 , P3} is shattered by R if there exist at least eight
sets {f1 , . . . , f8} such that

A ∩ f1 = P1 , A ∩ f2 = P2 , A ∩ f3 = P3

A ∩ f4 = {P1 , P2}, A ∩ f5 = {P1 , P3}, A ∩ f6 = {P2 , P3}
A ∩ f7 = A, A ∩ f8 = ∅.

In the following, we use Definition 2 to find an upper bound
on the VC-dimension of set R.

Lemma 3: In path length restricted version of MSPS, the
VC-dimension d is O(log K).

Proof: Let d denote the VC-dimension of our setting. Then,
by Definition 2, there exists a subset of paths denoted by A such
that |A| = d and the intersection of A with the elements of R
(i.e., {f1 , . . . , fm}) generates all the subsets of A.

Let M be the set of all subsets of A; therefore, |M | = 2|A | =
2d . It is easy to see that each element Pj ∈ A is absent exactly
in half of the elements of M , which is equal to 2d−1 subsets of
A. As a result, there exists at least 2d−1 sets fi so that Pj /∈ fi ;
i.e., path j does not survive the failure of at least 2d−1 fibers.
On the other hand, by the assumption of path length restriction,
each path has at most K fibers; therefore, each path does not
survive the failure of at most K fibers.

Hence, The inequality 2d−1 ≤ K holds. This gives d ≤ 1 +
log K, and thus, d = O(log K). �

Corollary 1: Our path-selection algorithm selects s =
c log k

ε log( 1
ε ) independent paths to find an ε-net with high prob-

ability, where c is a constant.
Using the techniques in [24], we design an iterative ε-net

algorithm as follows. The algorithm is initialized by setting
ε = 1

2 . In each iteration, it applies the random path selection
and checks the survivability of the selected path set. If not all
fiber failures are survived, the algorithm doubles the weight of
all paths that survive the failure of fibers in S̄, where S̄ is the
set all the fibers that are not survived yet (so that such fibers
are more likely to be survived by the new selected paths). This
random path selection is repeated 2

ε log(2εn) times2 with the
new probability distribution (but the repetition is terminated
immediately if all the fibers are survived). If all fibers are not
survived yet, the algorithm decreases the value of ε by half; and
repeats the previous steps.

Let ξ be the optimal value of the MSPS problem. Using Corol-
lary 1 and applying the results in [23] and [24], the following
theorem can be proved.

2[24, Lemma 3.4] states that if there is a hitting set of size c, the doubling
process cannot iterate more than 4c log( n

c ) times. Thus, in our case, if there is
a hitting set (defined as a subset of paths such that every fiber can be survived
by at least one of the paths in the subset) of size 1

2ε , we can find it in at most
2
ε log(2εn) iterations.

TABLE I
PERFORMANCE BOUNDS UNDER PATH LENGTH RESTRICTED VERSION:

EXS-EXHAUSTIVE SEARCH, T-TYPE, D-DETERMINISTIC, P-PROBABILISTIC

Method Approximation Running Time T

ExS Exact Solution O (mK (K + 1 ) ) D
Greedy O (log K ) O (K mK ) D
ε-net O (log K log ξ) O (K log(K ) log(m ) log(log(K ))) P

Theorem 4: The ε-net algorithm finds a set of survivable
paths of size O(log K log ξ)ξ, with high probability.

Moreover, it can be shown that the computational complexity
of the ε-net algorithm is O(K log(K) log(m) log(log(K))).

Finally, we propose another algorithm, which we call the
random-sweep greedy (RSG) algorithm. Although, we could
not quantify the performance of this algorithm analytically, it
performs near optimally in many scenarios as will be shown in
Section III-C.

3) RSG Algortihm: RSG algorithm is a modified version of
the greedy algorithm. Here, the RSG removes a path (from the
selected path set), which survives the fibers covered by other
selected paths so that the size of the selected path set can be
further reduced while maintaining the survivability.

The RSG algorithm also requires the knowledge of the set of
paths and associated fibers. Let Pi be the set of selected paths in
the first i iterations, and Sj be the set of fibers that are survived
by path j. The first two iterations of RSG are the same as the
greedy algorithm. That is, in each iteration, it selects a path that
survives the maximum number of fibers that are not survived
yet. If the first two paths survive all of the fibers, the algorithm
terminates. Otherwise, it continues as follows.

Suppose the RSG algorithm is in the ith iteration. First, find
a path, say i, that survives maximum number of fibers. Then,
pick a path, say j, randomly from the previously selected path
set Pi−1 , and find S∗ = ∪k∈Pi ,k =jSk , which is the set of fibers
that are survived by any of the selected paths other than path j.
If Sj ⊂ S∗, remove path j from the set Pi . Note that removing
such a path does not affect the survivability of the selected path
set, i.e., the same set of fibers are still survived after the removal.
However, it will decrease the number of selected paths by one.
Repeat this procedure for all paths j, and check if they can be
removed from the selected path set Pi .

Table I summarizes the performance of each algorithm under
the path length restriction.

C. Numerical Comparison of Algorithms

We compare the performance of our algorithms using large-
scale random network topologies, as well as the US backbone
network topology. In particular, we compare the following al-
gorithms.

1) ILP-based optimal algorithm computed by CPLEX; de-
noted by OPT.

2) Simple Greedy algorithm from Section III-B1; denoted
by MSPSG.

3) Random-Sweep Greedy algorithm from Section III-B3;
denoted by RSG.
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Fig. 2. Comparison of algorithms for MSPS under path length restriction.

4) ε-net algorithm from Section III-B2; denoted by EPS.
5) Randomized rounding algorithm from Section III-A;

denoted by RR.
1) Performance in Large-Scale Random Topologies With

Path Length Restriction: We first consider a random layered
network, where the logical topology consists of ten paths be-
tween nodes s and t. This layer is mapped onto the physical
topology containing 100 fibers, using the mapping structure
shown in [16]. In the K restricted version of the problem, each
path consists of at most K fibers. For each value of K, we
generate 1000 random topologies each with ten paths routed
on the physical topology in a way that each path can select up
to K fibers at random, uniformly and independently. We then
apply our algorithms to each network in order to find a MSPS
(i.e., to solve the MSPS problem). Note that the performance
of randomized rounding and ε-net algorithms depends on the
survivability guarantee of the algorithms, which are 99.9% and
100%, respectively, for the results shown below.

Fig. 2 compares the average number of survivable paths found
by each algorithm. It can be seen that as the value of K increases,
the number of paths increases. This is due to the fact that when
K is large, logical paths consist of more fibers; therefore, more
logical paths are needed since they can share more fibers. Fig. 3
compares the logarithm of the running time of the algorithms.
It can be seen that the randomized rounding algorithm is the
fastest, while the RSG algorithm and the ε-net algorithm have
larger running times. Note also that the running times are nearly
independent of K.

2) Performance in Real Networks: Next, we examine the
performance of the approximation algorithms over the US back-
bone topology shown in Fig. 4(a). We have designed the logical
layer and lightpath routing of logical layer on top of the phys-
ical layer. For every pair of nodes in the logical layer, we find
the MSPS both using CPLEX to find the exact solution and our
approximation algorithms. We constrain the length of paths to
four logical links, and find the average size of the MSPS over
the pairs of nodes.

Fig. 3. Run time comparison of different heuristics and optimal algorithm.

Fig. 4. US backbone topology. (a) US Backbone Topology (Source: [25]).
(b) Logical Topology. (c) LightPath routing.
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TABLE II
COMPARISON OF ALGORITHMS FOR MSPS IN US BACKBONE

Method Number of Paths Running Time (ms)

ILP 2.113 6.4
RSG 2.196 0.59
MSPSG 2.25 0.24
RR 2.336 0.047
EPS 3.177 0.33

Table II shows the average number of paths and average
running time of each algorithm. It can be seen that the RSG is
nearly optimal, and furthermore, the randomized rounding gives
a solution almost instantly. We also note that the survivability
guarantees of the randomized rounding and ε-net algorithms are
98% and 97%, respectively, for the results shown in the table.

As explained in Section I, we define the metric of survivabil-
ity as the fraction of pair of nodes that can survive any single
failure. Moreover, the survivability of network has significantly
increased from 86.66% to 97.77% due to allowing a set of sur-
vivable paths instead of only two physically disjoint paths. In
particular, simulation results show that 5 out of 45 pairs need
to have three paths to survive any single failure. Those pairs
are (6, 22), (8, 13), (9, 13), (10, 13), (9, 22). One reason for re-
quiring three paths is that two SRLG-disjoint paths do not exist
under the mapping in Fig. 4(c). For example, for pair (9, 13),
paths (9 − 8 − 10 − 13) and (9 − 23 − 13) are logically dis-
joint. However, they share fiber (9 − 10), and thus, are not
physically disjoint. Another reason is that two SRLG-disjoint
paths use more than four logical links in one of the paths, and
thus, they are not used. For example, for pair (8, 13), one can find
paths (8, 10, 13) and (8, 4, 6, 16, 22, 23, 13) that are physically
disjoint. However, the second path contains six logical links,
and is not selected since we only use logical paths containing
no more than four logical links.

IV. MFSPS

Our focus so far has been on providing protection using the
minimum number of paths. In this section, our goal is to find a
survivable path set that uses the minimum number of fibers; i.e.,
Minimum Fibers in Survivable Paths Set (MFSPS). This may
seem to be equivalent to solving the minimum cost survivable
path set (MCSPS) problem, where the cost of each path is the
number of fibers used by that path. However, this is not trues as
the costs in MCSPS are additive, where in MFSPC a fiber that
is used by multiple paths should be counted just once. In order
to make this point clear, consider Fig. 5. The MCSPS problem
will find paths 1 and 2 as the set of survivable paths with total
cost 7, while the MFSPS problem will find paths 2, 3, and 4 as
the optimal survivable path, which has the total cost 6. In the
next section, we will develop an ILP formulation, and analyze
the complexity of MFSPS problem.

A. ILP Formulation and Complexity

We start with an ILP formulation of the problem. Similar to
the MSPS problem, the MFSPS problem can be formulated in

Fig. 5. Routing in multilayer network. (a) Logical Topology. (b) Routing.

several different ways, but here we only present the path-based
formulation, which will be used for developing heuristics and
approximation algorithms. Given a set of paths and associated
fibers, for each path j, assign a binary variable Pj , which takes
the value 1 if path j is selected and 0 otherwise. Similarly, for
each fiber i, assign a binary variable fi , which takes the value 1 if
fiber i is selected and 0 otherwise. The matrix A and vector e are
defined in the same way as in the MSPS formulation (1a)–(1c).

MFSPS : minimize
m∑

i=1

fi (9a)

subject to A × P ≥ e (9b)

fi ≥ Pj ∀fi ∈ Pj (9c)

Pj ∈ {0, 1} ∀Pj . (9d)

In the aforementioned, the objective function is the number
of fibers used by the selected paths. Again, the constraints in
(9b) require the selected path to be survivable. The constraints
in (9c) relate the selected paths and fibers, such that a fiber is
selected if at least one of the paths using the fiber is selected.
Clearly, the optimal solution to the above optimization problem
gives a set of survivable paths that use the minimum number of
fibers. This MFSPS problem can be shown to be NP-hard.

Theorem 5: Computing the set of survivable paths using the
minimum number of physical fibers is NP-hard.

Proof: We provide a mapping from the minimum three-set
cover problem, which is a special version of the set cover prob-
lem, where each set has exactly three elements, to the MFSPS
problem. The minimum three-set cover problem is NP-hard, and
holds all the inapproximability properties of the minimum set
cover problem.

Consider an instance of the minimum set cover problem with
the ground set E and a family of subsets F . Suppose that each
subset in F contains only three elements. To show a mapping, we
construct a physical topology as shown in Fig. 6, such that each
node on the left corresponds to a subset in F = {C1 , . . . , C|F |}
and the nodes on the right are the elements of E = {e1 , . . . , em},
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Fig. 6. Physical topology.

where m is the total number of fibers in our original problem.
Node j on the left is connected to node i on the right if and only
if ei ∈ Cj . Note that a node on the left is connected to only three
nodes on the right (i.e., each set contains only three elements).
Moreover, there are L fibers between node s and every node on
the left, where L is a very large number (L ≥ 3|E| + 2|F |).

We can construct a logical topology and its lightpath routing
over the physical topology such that for protection, we need to
have m paths from s to t that pass through all the nodes on
the right. Moreover, since each path between s and the nodes
on the left uses a large number of fibers, we should select a
survivable path set that uses the minimum number of nodes on
the left. Consequently, the minimum fiber survivable path set
for the aforementioned layered network gives a minimum set
cover for the given instance of E and F , which shows the NP-
hardness of the MFSPS problem. For the complete proof, see
Appendix A. �

Since the MFSPS problem is a reduction from the minimum
three-set cover problem, it does not have an efficient optimal
algorithm. If we consider the restricted version of the problem
where the length of each path is restricted to K fibers, then the
problem can be solved in polynomial time similar to Section III.
However, due to the large runtime of optimal algorithm, we will
develop a heuristic in the next section.

B. MFSPS Greedy Algorithm

Note that the goal here is to find a survivable path set that uses
the minimum number of fibers. Hence, it is desired to select a
path that uses a small number of new fibers (i.e., fibers not used
by already selected paths) while surviving many new fibers (i.e.,
fibers not survived by already selected paths) as possible. Note
that this is clearly different from the MSPS problem, where the
number of fibers does not matter. The MFSPS greedy algorithm
requires the set of paths and associated fibers as input. We define
a new cost metric in order to take into account the two factors
simultaneously. The cost Cj of path j, which is updated for
every iteration, is defined as follows:

Cj =
#newly used fibers by Pj

#newly survived fibers by Pj
.

Note that the nominator (denominator) is the number of fibers
used (survived) by path j and not used (not survived) by the

TABLE III
COMPARISON OF NUMBER OF FIBERS USED IN DIFFERENT FORMULATIONS

Method Number of Fibers Number of Paths

MFSPS ILP 11.2500 2.7727
MFSPS Greedy 11.5455 2.5682
MSPS ILP 17.4545 2.1136
MCSPS ILP 12.1591 2.1136

previously selected paths. Our greedy algorithm selects a path
with minimum cost, updates the costs of the remaining paths,
and continues until all the fibers are survived.

C. Numerical Comparison of Algorithms

We consider the same topology as in Section III-C2, and the
goal is to find the set of survivable paths between every pair of
nodes so that minimum number of fibers is used. We solve the
optimal MFSPS, optimal MSPS, optimal MCSP, and the greedy
algorithm presented for MFSPS in Section IV-B.

Table III compares the average number of paths and num-
ber of fibers used in the survivable path sets, for different
algorithms, over all sets of node pairs. Table shows that the
MFSPS greedy algorithm performs near-optimally in the num-
ber of fibers. Moreover, It can be seen that while MFSPS ILP
gives the smallest set of fibers and largest set of paths, the
MSPS ILP gives the largest set of fibers and smallest set of
paths, which shows a tradeoff between these two metrics in this
example. This is due to the fact that if there exist SRLG-disjoint
paths, MSPS always finds such paths. However, if such paths
traverse many fibers, they will not be the optimal solution of
MFSPS. In fact, MFSPS may find more paths that use fewer
fibers. Note that such tradeoff between the number of paths and
fibers does not always exists, and it completely depends on the
topology. Finally, it can be seen from Table III that MCSPS ILP
has a reasonable performance as it keeps both the number of
paths and the number of fibers small.

V. SURVIVABILITY WITH MORE THAN TWO DEPENDENT

LAYERS: INTERACTION WITH THE POWER GRID

In this section, we generalize the problem of survivability
to networks with more than two dependent layers, where these
layers could belong to one or several infrastructures. It is easy to
see that one can always map the failures in different layers to the
set of survivable paths through a matrix AG similar to matrix A
in Section III, where rows of matrix AG correspond to the single
failures in all lower layers, and the columns of AG correspond
to the paths in the top layer. Similar to matrix A, AG (i, j) = 1 if
path j survives, the failure of risk i and AG (i, j) = 0 otherwise.
Once the matrix AG is constructed for a given layered network,
all of our algorithms in the previous sections can be readily
applied.

In the following, we investigate the survivability problem in
a network with three dependent layers, where the two top layers
are the logical and physical layers of communication network
and the lower layer is the power grid. We show how adding



PARANDEHGHEIBI et al.: SURVIVABLE PATH SETS: A NEW APPROACH TO SURVIVABILITY IN MULTILAYER NETWORKS 4749

the third layer of power grid will affect the survivability of the
network.

A. Power Grid and Communication Network

It has been shown that communication networks are depen-
dent on the power grid in the sense that communication nodes
receive power from the power grid. Therefore, if a power node
fails, all of the corresponding communication nodes that receive
power only from that power node will fail as well [26], [27].

Here, we consider a two layered communication network
that is dependent on a power grid. The model of communication
network is fully explained in Section II. In the following. we ex-
plain briefly the power grid model and the dependence between
the physical layer of the communication network and the power
grid.

1) Power Grid Model: The power grid can be modeled as a
graph Gpower = (V power , Epower), where V power and Epower

are power nodes and lines, respectively. There are three types of
power nodes in a grid: Generators that generate power, Loads
that consume power, and Substations that neither generate nor
consume power.

Unlike communication networks, the flow in power lines can-
not be controlled manually; instead, it is determined based on
the principles of electricity. As a consequence, the failure model
in the power grid is also different from that in communication
networks. When a power node or line fails, its load is shifted to
the other elements of the grid. During this process, the flow in
one or more lines may be pushed beyond their capacity, which
leads to the failure of these overloaded lines. Then, the failure
of these lines causes the redistribution of power and may lead
to extra failures. This process of failures in the power grid is
referred to as ‘cascading failures.”

In summary, unlike communication network, the failure of
an element in the power grid can lead to the failure of several
elements in that grid. In this paper, we do not discuss the details
of the cascading model (it can be found in [28]). Note that the
effect of cascading failures for any given set of initial failures
can be calculated in polynomial time.

2) Dependence Model: We assume that the nodes in the
physical layer of the communication network depend on one or
multiple loads in power grid. According to this model, when a
power line fails, the failure cascades through the power grid due
to overloading of some lines. Then, some loads lose their power
(power is zero), and the corresponding nodes in the physical
layer of the communication network fail as well. Consequently,
the fibers attached to those nodes fail, which lead to the failure
of links in the logical layer of the communication networks. In
this three-layered dependent network, there are risks of losing a
power line or a fiber, and the goal is finding a set of survivable
paths between every pair of nodes so that they can survive any
single failure of any type.

B. Simulation Results

In this section, we consider the US IP-backbone discussed
in Section III-C2 as the communication network and the IEEE

Fig. 7. Augmented IEEE 14-bus benchmark—Dotted lines show the addi-
tional lines; nodes 1, 2 are generators and 7, 8 are substations.

14-bus benchmark as the power grid. The information of IEEE
14-bus benchmark can be found in [29].

We tested the robustness of the grid for every single power
line failure, and observed that in some cases, loss of a power line
leads to the failure of the whole grid. Therefore, we improved the
power grid by adding some power lines between the generators
and loads. We set the reactance of the new lines to the average of
reactance of the old neighbor lines. Fig. 7 shows the augmented
topology of IEEE 14-bus benchmark. Dotted lines show the
additional power lines. We have also investigated the impact of a
single power line on the performance of power nodes. Table IV
shows the set of power nodes that fail due to single power
line failures considering the cascading effect inside the power
grid.

Next, we design the dependence topology of the communi-
cation nodes and the loads in power grid. Each communication
node can receive power from one or two power nodes. We
name these nodes as “primary” and “secondary” power nodes.
When a communication node receives power only from the pri-
mary nodes, it is a “single dependence” and when it receives
power from both primary and secondary nodes, it is a “double
dependence.” In the case of double dependence, a communica-
tion node fails if both primary and secondary power nodes fail.
Table V lists the communication nodes and the corresponding
primary and secondary power nodes. In this experiment, for ev-
ery communication node, we have set the closest power node
as the primary power node. However, we have selected two sets
of secondary power nodes. The secondary power nodes A have
been selected so that in the case of a single power line failure,
both the primary and secondary nodes may fail. However, the
secondary power nodes B have been selected so that in the case
of a single power line failure, at least of one of the power nodes
survives.
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TABLE IV
IMPACT OF A SINGLE POWER LINE FAILURES ON THE POWER NODES,

CONSIDERING THE CASCADING FAILURES EFFECT

Failed Power Line Failed Power Nodes

(1,2) ∅
(1,3) 3
(1,4) 3
(1,5) 11
(1,6) ∅
(1,13) 3
(2,4) 5
(2,5) 5,6,10,11,12
(2,9) ∅
(3,4) ∅
(4,5) ∅
(4,7) 9,10,11
(4,9) ∅
(5,6) ∅
(6,11) 10,11
(6,12) 10,11
(6,13) 10
(7,8) 12
(7,9) 12,13
(9,10) ∅
(9,14) 12
(10,11) 14
(12,13) ∅
(13,14) ∅

TABLE V
DEPENDENCY TOPOLOGY

Communication Primary Secondary Secondary
Node Power Node Power Node A Power Node B

1 3 4 4
2 3 4 4
3 3 4 4
4 4 3 3
5 4 3 3
6 6 5 9
7 6 5 9
8 4 3 3
9 5 6 4
10 9 10 6
11 6 5 9
12 5 6 4
13 13 12 11
14 9 10 6
15 11 10 13
16 11 10 13
17 13 14 11
18 14 13 9
19 12 13 13
20 12 13 13
21 10 9 13
22 10 9 13
23 14 13 9
24 14 13 9

We consider the following five scenarios and check the sur-
vivability of the logical communication network under each
scenario.

1) Communication nodes are only dependent on primary
power nodes. The risk is the failure of a single power
node. Failures do not cascade through the power grid.

TABLE VI
MSPS IN POWER-COMMUNICATION NETWORK; IN THE FIRST COLUMN

NOTATION R REPRESENTS RISK TYPE; IN THE FIRST ROW, NOTATION P
REPRESENTS THE NUMBER OF PATHS; NoP MEANS THAT NO SET OF PATHS

CAN BE FOUND TO SURVIVE ANY SINGLE RISK

Scenario 1P 2P 3P N oP Survivability

Single Dependence
R :Power Node 3 21 2 19 57.77%
No Cascade
Single Dependence
R :Power Line 4 3 0 38 15.55%
Cascade
Double Dependence A
R :Power Line 4 10 0 31 31.11%
Cascade
Double Dependence B
R :Power Line 45 0 0 0 100%
Cascade
Double Dependence B
R :Power Line & Fiber 0 39 5 1 97.77%
Cascade

2) Communication nodes are only dependent on primary
power nodes. The risk is the failure of a single power
line. Failures cascade through the power grid.

3) Communication nodes are dependent on both primary and
secondary power nodes of set A. The risk is the failure of
a single power line. Failures cascade through the power
grid.

4) Communication nodes are dependent on both primary and
secondary power nodes of set B. The risk is the failure of
a single power line. Failures cascade through the power
grid.

5) Communication nodes are dependent on both primary and
secondary power nodes of set B. The risk is either the
failure of a single power line or the failure of a fiber.
Power line failures cascade through the power grid.

Table VI shows the number of pairs that can survive with
1, 2, or 3 paths and the pairs that cannot survive at all. Note
that surviving with only 1 path means that there exists a path
that will not fail due to any single failure. Moreover, the total
survivability of the network as the percentage of survivable pairs
is presented under each scenario. Since we have ten nodes in
our logical topology [see Fig. 4(b)], the total number of pairs is
45. Similar to Section III-C2, we consider paths that use fewer
than four logical links.

It can be seen that under scenario 1, 57.77% of the pairs
can survive any single failure event. This means that in 42.22%
of the pairs, all paths connecting each pair share at least one
power node. In scenario 2, the survivability has decreased to
15.55%, which is due to large scale cascading failures inside
the power grid. We also observed that under scenarios 3 and
4, the network becomes more robust as every communication
node is supported by two power nodes. Comparing scenarios 3
and 4 shows that choosing secondary nodes of set B (scenario
4) is indeed more robust and all pairs can survive with only one
path. This is because we had selected the primary and secondary
power nodes so that under any single power line failure, at least
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Fig. 8. Logical topology.

one of them can provide power for the communication nodes.
Therefore, no failure in power grid can affect the logical layer.
Finally, under scenario 5, we have considered two types of risks,
which are either fiber or power line failures. It can be seen that
the survivability results are similar to results in Section III-C2).
The reason is that under double dependency model B, the power
line failures do not affect the logical layer, and the failures in
this layer are only due to fiber losses.

One can also repeat the same experiment to find the set of
survivable paths that use the minimum number of fibers; i.e.,
MFSPS problem.

VI. CONCLUSION

We considered the problem of survivability in multilayered
networks. The traditional disjoint paths approach for protection
cannot be directly applied to layered networks, since physically
disjoint paths may not always exist in such networks. To address
this issue, we introduced the new notion of survivable path set.
We showed that, in general, the problem of finding the MSPS
in two-layered networks is NP-hard. However, under practical
constraints, we are able to develop both optimal and approxi-
mation algorithms for the MSPS problem. We also extended the
results to networks with more than two dependent layers and
showed that the same results hold in this general setting.

APPENDIX

LOGICAL TOPOLOGY OF THEOREM 5

In the logical topology in Fig. 8, from node s to the nodes on
the right, each logical link is routed exactly on one fiber, while
from nodes on the right side to node t, there are m parallel
logical links with a specific routing. The first logical link will be
routed on fibers f1 , U1 , and L2 to Lm , the second logical link
will be routed on fibers f2 , L1 , U2 , and L3 to Lm and so on.
Therefore, logical link i will use fibers fi , Ui and all the other
Lj s (j = i).

To survive any single failure in the fibers from the right nodes
to node t, we need to have at least m paths, each going through
one of the parallel logical links. Clearly, these m paths will not
share any fiber from the left nodes to the right nodes, as well.

Finally, to survive any fiber failure from node s to the left nodes,
it is enough to have at least two logically disjoint paths from
node s to the left nodes.

Consequently, it is enough just to have m paths from s to t
that cover all the nodes on the right-hand side. Since m > 3, it
is guaranteed that these m paths will pass through at least two
nodes on the left, as well; i.e., the paths will survive any single
fiber failure. The remaining of the proof is explained in the main
text.
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