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This paper develops a novel network protection scheme that provides guarantees on both
the fraction of time a flow has full connectivity, as well as a quantifiable minimum grade of
service during downtimes. In particular, a flow can be below the full demand for at most a
maximum fraction of time; if after a network failure the flow is below its full demand, it
must still support at least a fraction q of that demand. This is in contrast to current protec-
tion schemes that offer either availability-guarantees with no bandwidth guarantees dur-
ing the downtime, or full protection schemes that offer 100% availability after a single link
failure.

We show that the multiple availability guaranteed problem is NP-Hard, and develop an
optimal solution in the form of an MILP. If a connection is allowed to drop to 50% of its
bandwidth for just 1 out of every 20 failures, then a 24% reduction in spare capacity can
be achieved over traditional full protection schemes. Allowing for more frequent drops
to partial flow, additional savings can be achieved. Algorithms are developed to provision
resources for connections that provide multiple availability guarantees for both the sharing
and non-sharing case. For the case of q ¼ 0, corresponding to the standard availability con-
straint, an optimal pseudo-polynomial time algorithm is presented.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

As data rates continue to rise, a network failure can
cause catastrophic service disruptions. To protect against
such failures, networks typically use full protection
schemes, often doubling the cost of resources needed to
route a connection. An alternative approach is to provide
a guarantee on the maximum time a connection can be dis-
rupted. This is known as an ‘‘availability guarantee’’, and it
is a bound on the fraction of time or probability that a con-
nection can be disrupted. However, these disruptions
(downtimes) may be unacceptably long; thus, many ser-
vice providers opt for the more resource intensive full pro-
tection. In this paper, we propose a novel protection
scheme with multiple availability guarantees. In addition
to the traditional availability guaranteed protection, which
maintains the full demand for at least a guaranteed frac-
tion of time, we guarantee partial connectivity at all times.
Thus, our approach is a hybrid between the traditional
availability guarantees and full protection schemes.

Full protection schemes have been studied extensively
[1–7]. The most common full protections schemes are
1þ 1 or 1 : 1 guaranteed path protection [8]. In 1þ 1 path
protection, two copies of the data are sent over a primary
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path and a failure disjoint protection path. Since two cop-
ies of the data are sent, the connection is guaranteed to
survive any individual path failure. The downside of this
strategy is that the protection resources are always uti-
lized, and cannot be used to protect another connection
while the original primary path is functioning. Alterna-
tively, 1 : 1 protection reserves resources on a disjoint
backup path for protection, but does not utilize that path
until a failure has occurred. With proper sharing strategies,
protection resources can be used by multiple primary
demands as long as they are not needed for more than
one connection at any given moment in time. The disad-
vantage of 1 : 1 protection is the additional complexity
required for implementation. In this paper, we will refer
to both the 1þ 1 and 1 : 1 protection schemes as disjoint
path full protection, and specify the particular form as
needed.

In addition to full protection schemes, there has also
been a growing body of literature for backup provisioning
to meet availability guarantees [9–15]. In all of these, pri-
mary and backup flows are allocated such that the connec-
tion is disrupted for at most a specified fraction of time or
probability. During these down-states, the service is com-
pletely disrupted. A version of availability guarantees is
considered in [16], where an end-to-end flow having a cer-
tain expected capacity, based on link availabilities, is found;
multi-path routing is used to distribute risk, but no guaran-
tees on flow are provided. In our paper, a flow is guaranteed
to be at least a fraction q of the full demand at all times,
which is known as ‘‘partial protection’’. Our novel approach
is the first to combine the traditional availability guarantee
and partial protection guarantee to allow the user to specify
flows with different availability guarantees. Moreover, it is
particularly applicable to IP-over-WDM networks where
MPLS tunnels are used to provision resources.

The partial protection framework was first introduced
in [17]. More recently, [18,19] developed a ‘‘theory’’ of par-
tial protection such that after any single link failure, the
flow can drop to the partial protection requirement. In
[18,19], a fraction q of the demand is guaranteed to remain
available between the source and destination after any sin-
gle link failure, where q is between 0 and 1. When q is
equal to 1, the service will have no disruptions after any
single failure, and when q is 0, there will be no flow
between the two nodes during the down state. In our work,
flows can drop below the full demand for at most a speci-
fied fraction of time, and maintain at least q of that
demand at all times.

The novel contributions of this paper include a frame-
work for Multiple Availability Guaranteed Protection
(MAGP) and providing associated algorithms to provision
resources to meet these guarantees for both the cases
when protection resources can and cannot be shared.
Moreover, in the q ¼ 0 case, corresponding to the previ-
ously studied scenario where full availability is guaranteed
for a fraction of time, we develop an optimal pseudo-poly-
nomial algorithm. A preliminary version of this work was
published in [20].

This paper is outlined as follows. In Section 2, the model
for MAGP is described. In Section 3, MAGP is shown to be
NP-Hard, and the minimum-cost solution to MAGP is for-
mulated as an MILP. In Section 4, optimal solutions and
algorithms for MAGP are developed when protection
resources cannot be shared, and in Section 5, an algorithm
is developed for when protection resources can be shared.

2. Multiple availability guaranteed protection

In this paper, routing strategies are developed and ana-
lyzed to minimize the total cost and capacity allocation
required to satisfy each demand’s protection and availabil-
ity requirements. A demand needs to be routed from its
source s to destination t such that the flow must be fully
available for some given percentage of time. In other
words, a flow can drop below the full demand for at most
some specified downtime for any given time period, and
must maintain at least a fraction q of that full demand at
all times. Primary and protection resources are provisioned
at the time of routing for a connection, which guarantees
that sufficient capacity exists after a failure for that flow
to meet its availability requirements. Similar to [11–15],
the probability of simultaneous failures is assumed to be
negligible, and we only consider single-link failures. To
simplify the analysis, a ‘‘snapshot’’ model is used: The net-
work state is considered after a failure has occurred. Let pij

be the conditional probability that edge fi; jg failed given
that a network failure has occurred. For ease of exposition,
instead of availability or maximum downtime, the Maxi-
mum Failure Probability (MFP) is considered, and its value
is denoted by P. After some network failure occurs, a flow
can be below the full demand, but at least a fraction q of
the demand, with at most probability P. When a flow is
below its full demand (but always at least q), that connec-
tion will be considered in a ‘‘downstate’’. The maximum
failure probability is the conditional probability that a con-
nection is in a downstate given some link disruption has
occurred in the network.

This maximum failure probability can be related to the
metric of availability by accounting for the expected time
between failures and mean time to repair. Assuming that
both the time between failures and the length of repair
of any failure as exponential random variables with
parameters 1

k and 1
l, respectively. The expected proportion

of time there will be some failure is l
kþl. With MAGP, after

some failure in the network, a connection can fall below its
full demand with probability less than P. In other words,
ð1� PÞ percent of failures must have no effect (i.e., zero
repair time). With a maximum failure probability P, the
expected value for repair time becomes lP, and the pro-
portion of time a connection is down is lP

kþlP. We note that

with MAGP, when a connection is ‘‘down’’, it still maintains
a fraction q of the original connection’s demand.

We assume that the graph G, with a set of vertices V,
edges E, and edge failure probabilities P, is at least two-
connected. Since only single-link failures are considered,
edge failures are disjoint events; hence, the sum of all
the link failure probabilities is equal to one (i.e.,P
fi;jg2Epij ¼ 1). Similar to previous works, the primary flow

is restricted to a single path. After the failure of a link, a
network management algorithm reroutes the traffic along
the allocated protection paths.
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Consider the example in Fig. 1, with link failure proba-
bilities and flow allocations as labeled (p and f respec-
tively). A unit demand needs to be routed from s to t
with P ¼ 1

4 and partial protection requirement q. In [18], a
simple partial protection scheme called 1þ q protection
was developed, which routes the primary demand on one
path and the partial protection requirement onto another
edge-disjoint path. After any failure along the primary
path, the partial protection requirement is met. This is
shown in Fig. 1a with the solid line carrying the primary
flow of 1 and the dotted line carrying the protection flow
of q. However, in this example the maximum failure prob-
ability is exceeded for the 1þ q routing: after a failure, the
flow drops below the unit demand between s and t with a
probability of 1

2 (because the failure of either of the primary
links would drop the demand below its full capacity). A
naive alternative would be to simply allocate another path
for protection, which would be similar to the 1þ 1 (or
1 : 1) full protection scheme (shown in Fig. 1b), and utilize
4 units of capacity. After any failure, the full demand of 1 is
maintained; thus, the user will face no downtime, which
meets and exceeds the maximum probability of failure
requirement of 1

4.
If we allow different levels of protection on different

segments of the primary path, then a more resource effi-
cient allocation is possible. Consider keeping the primary
flow on the same bottom two edges as before, but instead
of allocating an end-to-end backup path along the top two
edges, 1 unit of flow is allocated to protect against the fail-
ure of fs;vg and q units of flow to protect against the fail-
ure of fv; tg (shown in Fig. 1c). If after some disruption
Fig. 1. Comparison of MAGP and traditional protection schemes.
either of the fs;vg edges fail, 1 unit of flow will still remain
from s to t. By fully protecting the primary fs;vg edge,
there is zero probability that its failure will cause the flow
to drop below the full demand. The probability that the
flow will drop below 1 after some failure is 1

4, which meets
the MFP requirement. This routing only needs 3þ q units
of capacity, as opposed to the 4 units that full protection
requires.

3. Minimum-cost multiple availability guaranteed
protection

This section investigates minimum-cost allocations for
Multiple Availability Guaranteed Protection (MAGP). We
first define the MAGP problem. Then, the MAGP problem
is shown to be NP-Hard. Subsequently, in Section 3.1 an
MILP is formulated to find a minimum-cost routing that
meets a demand’s partial protection and availability
requirements. In Section 3.2, MAGP is compared to the
guaranteed 1þ 1 or 1 : 1 full protection scheme.

We assume a graph G, with a set of vertices V, edges E,
and edge failure probabilities P. Each edge fi; jg has an
associated cost cij. After a single-link failure, the network
can enter a downstate with at most a Maximum Failure
Probability (MFP) of P, where the MFP is the conditional
probability that the network is in a downstate given some
link disruption. During a downstate, the flow between a
source and destination may fall below the full demand,
but must always remain at a minimum fraction q of the
demand. We now show that finding the minimum-cost
solution to MAGP is NP-Hard.

Theorem 1. The minimum-cost multiple availability guar-
anteed protection problem is NP-Hard.
Proof. To demonstrate NP-Hardness of MAGP, a reduction
from the 1–0 knapsack problem [21] is performed. See
Appendix A for the complete proof. h
3.1. Mixed integer linear program to meet multiple
availability guaranteed protection

Since finding a minimum-cost solution for MAGP is NP-
Hard, in this section a mixed integer linear program (MILP)
is developed to solve for the minimum-cost solution. For a
connection request between two nodes s and t, the flow
can drop to a fraction q of the demand with at most prob-
ability P. Again, the snapshot model is used, and the set of
link failure probabilities P are conditional given a network
failure has occurred.

For the MILP, the following values are given:

� G ¼ ðV ; E;C;PÞ is the graph with its set of vertices,
edges, costs, and edge failure probabilities, respectively.
� dst is the required demand between nodes s and t.
� qst is the fraction of the demand between s and t that

must be supported in the event of a link failure.
� cij is the cost of link fi; jg.
� pij is the probability that link fi; jg has failed given a net-

work failure has occurred.
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� Pst is the maximum probability that the service between
s and t falls below its full demand after some network
failure.

The following variables will be solved:

� xst
ij is the primary flow for demand ðs; tÞ on link
fi; jg; xst

ij ¼ f0;1g.
� wij is the total primary flow assigned on link
fi; jg;wij P 0.
� sij is the spare capacity assigned on link fi; jg; sij P 0.
� zst

kl is 1 if the failure of link fk; lg causes the flow between
s and t to drop below the full demand for that connec-
tion; 0 otherwise.
� f st

ij;kl is the flow on link fi; jg after the failure of link fk; lg
for demand ðs; tÞ; f ij

ij;kl P 0.
� yst

ij;kl is the spare capacity on link fi; jg for failure of link
fk; lg for demand ðs; tÞ; yst

ij;kl P 0.

Objective:

� Minimize the cost of allocation over all links.
minimize
X
fi;jg2E

cijðwij þ sijÞ ð1Þ

Subject to:

� Flow conservation constraints for primary flow: route
primary traffic to meet the set of demands.
X
fi;jg2E

xst
ij �

X
fj;ig2E

xst
ji ¼

1 if i¼ s

�1 if i¼ t

0 otherwise

8><
>:

; 8i2V ; 8ðs;tÞ 2 ðV ;VÞ

ð2Þ

� Full demand availability constraint: The probability that

the flow between s and t drops below 1 after a failure is
simply the sum of the failure probabilities of the individ-
ual edges causing the flow to drop below 1. The sum of
these failure probabilities cannot exceed P.
X
fk;lg2E

pklz
st
kl 6 Pst; 8ðs; tÞ 2 ðV ;VÞ ð3Þ
� Flow conservation constraints for partial service: if the
failure of link fk; lg causes the flow to drop below the
full flow for demand ðs; tÞ, route qst from s to t; other-
wise, maintain the full flow. Let F st

kl be the expression
ð1� zst

klÞ þ qstzst
kl.
2

9

12

14
X

fi; jg2 E
fi; jg–fk; lg

f st
ij;kl �

X

fj; ig2 E
fj; ig–fk; lg

f st
ji;kl ¼

F st
kl if i¼ s

�F st
kl if i¼ t

0 otherwise

8><
>:

;

8i2V ; 8ðs;tÞ 2 ðV ;VÞ; 8fk; lg2 E ð4Þ
1 4 5 6 8 11 13
� Working allocation is enough on link fi; jg for all
demands.
3

10
X
ðs;tÞ2ðV ;VÞ

dstxst
ij ¼ wij; 8fi; jg 2 E ð5Þ
7

Fig. 2. 14 Node NSFNET backbone network.
� Capacity allocation: primary and spare capacity
assigned on link fi; jg meets protection requirements
after the failure of link fk; lg.
f st
ij;kl 6 xst

ij þ yst
ij;kl;

8fi; jg 2 E; 8fk; lg 2 E
8ðs; tÞ 2 ðV ;VÞ ð6Þ
� Spare allocation is enough on link fi; jg for all demands
after failure of edge fk; lg
X
ðs;tÞ2ðV ;VÞ

dstyst
ij;kl 6 sij;

8fi; jg 2 E

8fk; lg 2 E ð7Þ

For some demand between nodes s and t, a minimum-
cost solution will provide an edge capacity allocation such
that the flow drops to a fraction qst of that demand with at
most probability Pst .

3.2. Comparison to full protection

Multiple availability guaranteed protection is compared
to disjoint path full protection via simulation. The perfor-
mance of the strategies is compared using the NSFNET
topology (Fig. 2) with 100 random unit demands. The pro-
tection requirement q is set to 1

2 for all demands. All link
costs are set to 1, and the probability of failure for any link
is proportional to its length, which is reasonable since a
longer fiber will have a higher likelihood of being acci-
dently cut. The maximum failure probability P is varied
from 0 to .3 by .05 increments. While the main focus of this
paper is the case where the primary flow is restricted to a
single path, this simulation also considers allowing the pri-
mary flow to be bifurcated. Bifurcation reduces the loss of
flow after any edge failure, thereby reducing the total allo-
cation needed to meet requirements. Relaxing the binary
integer constraint on the primary flow variables in the
MILP corresponds to enabling bifurcation of the primary
flow. Routing solutions for MAGP were determined using
CPLEX to solve the MILP. Due to the length of running time
of the MILP, each demand is run individually, which is the
case without protection resource sharing. When resources
cannot be shared, 1þ 1 and 1 : 1 protection will become
the same in terms of resource utilization. Protection
resource sharing is considered in Section 5, where a one-
at-a-time routing scheme is utilized. The shortest pair of
disjoint paths were used for 1þ 1 protection [22].

The average cost to route the demand and protection
capacity using the different routing strategies is plotted
in Fig. 3 as a function of the maximum failure probability
P. The shortest path routing without protection consider-
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ations is used as a lower bound. The cost of providing
incremental protection with parameters q and P is the dif-
ference between the cost of the respective protection strat-
egies and shortest path routing.

Note that allowing the primary flow to bifurcate allows
requirements to be met using a lower cost allocation. This
is because splitting the primary flow distributes the risk so
that upon an edge failure, less primary flow is disrupted,
which then requires less protection resources. If the flow
is allowed to drop to 1

2 for 1 out of 20 failures (5% of the
time), then a savings of 24% in protection capacity is real-
ized for the case with bifurcation, and 17% without bifurca-
tion as compared to 1þ 1 protection. As the flow is allowed
to drop more often to its partial protection requirement
after a failure, savings increase. For P ¼ 0:1, a savings of
45% and 30% is seen for MAGP with and without bifurca-
tion, respectively. For P ¼ 0:2, the savings are 65% and
49%. Further increases in P result in only small additional
savings; hence, the simulations were stopped at P ¼ 0:3.
4. Optimal solution and algorithms without backup
capacity sharing

While the MILP presented in the previous section finds
an optimal solution to the multiple availability guaranteed
protection problem, it is not a computationally efficient
method of finding a solution, nor does it provide insight
into why a solution is optimal. In this section, we analyze
the MAGP problem to help develop efficient algorithms
and heuristics for finding a minimum-cost routing when
backup capacity sharing in the network is not allowed.
The MAGP problem requires identifying a primary path
such that segments of it are protected in a way that after
a link failure, the flow drops to q with probability of at
most P.

The case of q ¼ 0 is explored in Section 4.1. When q ¼ 0,
there is no partial protection requirement, so there is only
a single availability guarantee. This is the traditional avail-
ability guarantee, which has been examined in previous
works. An optimal pseudo-polynomial algorithm is pre-
sented to solve MAGP with q ¼ 0, which to the best of
our knowledge is the first such algorithm. In Section 4.2,
the case of q > 0 is examined. We show that finding a fea-
sible solution to the closely related problem of singly con-
strained shortest pair of disjoint paths is strongly NP-Hard
(there exists no pseudo-polynomial or �-approximation
algorithm), and conjecture that the MAGP problem with
q > 0 is also strongly NP-Hard. Hence, a heuristic for solv-
ing MAGP with q > 0 is developed. Multiple availability
guaranteed protection with the use of backup capacity
sharing is examined in Section 5.

4.1. Availability guarantees with q ¼ 0

When q ¼ 0, the partial protection requirement is
removed and no flow is needed during the downtime. To
solve this problem, a primary path needs to be found such
that segments of it are protected, and after a failure, the
flow can drop to 0 with probability of at most P. First, a
restricted version of the problem is considered where we
try to meet availability requirements without the use of
spare allocation. It can be shown that the solution to the
restricted problem is the constrained shortest path (CSP)
problem [23]. Next, the problem without restrictions on
spare allocation is studied. We transform this unrestricted
problem to an instance of the restricted one, and use CSP to
find an optimal pseudo-polynomial algorithm for MAGP
when q ¼ 0.

4.1.1. Availability guarantees without spare allocation
First, we consider finding the lowest-cost path between

s and t that meets the availability guarantee without the
use of spare allocation. In other words, we want to find
the lowest-cost path such that the sum of all the failure
probabilities in that path are less than P. This problem is
recognized to be the constrained shortest path problem
(CSP) [23], which is NP-Hard. A dynamic program exists
that finds the minimum-cost solution to CSP in pseudo-
polynomial time [24], with a running time of Oðn2PÞ, where
n is the number of nodes in the network; the P factor is
what makes this running time pseudo-polynomial. CSP
assumes all inputs are integer, so instead of the failure
probabilities being between 0 and 1, we multiply P and
all pij values, 8fi; jg 2 E, by the smallest factor that makes
all the values integer (all inputs are assumed to be
rational). Thus, for the remainder of this section, P and pij

are assumed to be integer.
In general, a path may not exist from the source to the

destination that can meet the availability requirement.
Furthermore, if one exists, it is not necessarily of lowest
cost. We next examine augmenting the flow with spare
allocation to find a minimum-cost solution that meets
requirements.

4.1.2. Availability guarantees with spare allocation
We now examine allowing the use of spare allocation to

protect segments of the primary path in a manner that
ensures the entire end-to-end path meets availability guar-
antees. If a failure of a segment in the primary path does not
cause a disruption in the end-to-end flow, then that seg-
ment is considered protected. A routing that meets guaran-
tees will be a concatenation of protected and unprotected
segments. Fig. 4 shows a sample solution for a unit demand
between v1 and v6 with P ¼ 0:2, which illustrates how
the use of spare allocation enables meeting availability
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Fig. 4. Routing to meet P ¼ 0:2 with q ¼ 0 from v1 to v6.
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guarantees. The probabilities of link failure are as labeled,
and all lines represent a unit flow.

The primary segments between node pairs ðv2;v4Þ and
ðv5;v6Þ are unprotected, and their total probability of fail-
ure must be at most the maximum failure probability of
P ¼ 0:2. The primary segments between node pairs
ðv1;v2Þ and ðv4;v5Þ are completely protected with the pri-
mary path segment being protected by a disjoint backup
path. After a failure of either of these protected primary
segments, one unit of flow still remains; they contribute
a total failure probability of zero to the routing. In this
example, disjoint paths were used for the protected seg-
ments between node pairs ðv1;v2Þ and ðv4;v5Þ. In fact,
the lowest cost allocation to form a protected segment
between any two nodes i and j is the minimum-cost pair
of disjoint paths between the two, as demonstrated in
Lemma 1.

Lemma 1. The minimum-cost protected segment between
nodes i and j is the minimum-cost pair of disjoint paths.
Proof. For a segment between i and j to be protected, 1
unit of flow must remain between the source and destina-
tion after any single edge failure in the primary path. No
backup edge will have an allocation greater than 1 because
the primary flow will have 1 unit, and exactly 1 unit will
need to be restored after any primary failure. An equivalent
problem is to find the lowest-cost routing for 2 units of
flow between i and j in a network where every edge has
a maximum capacity of 1. After any single edge failure, at
least 1 unit of flow will remain. This is a minimum-cost
flow problem [23], whose solution has integer flows when
given integer inputs. Since every edge has a capacity of 1,
there will be two distinct edge-disjoint flows of 1 unit
each. Clearly, the lowest-cost solution has these flows rou-
ted on the minimum-cost pair of disjoint paths. h

Using Lemma 1, every possible protected segment
between any two nodes can be transformed to a single
edge with a failure probability of 0 and a cost equivalent
to the minimum-cost pair of disjoint paths between the
nodes. We denote the cost and probability of the mini-
mum-cost pair of disjoint paths between nodes i and j as
ĉij and p̂ij ¼ 0, respectively. Now, any protected segment
between some node pair ði; jÞ can be represented as a single
edge between i and j in the network. This edge contains the
primary and spare allocation that would be used if a pro-
tected segment between i and j was needed. Adding an
edge for every possible protected segment transforms the
problem back to the restricted version where no spare allo-
cation was allowed. This problem can now be solved using
the constrained shortest path algorithm.

Our proposed algorithm is as follows. We take the graph
G, where every edge has a cost and a failure probability
associated with it, and augment the graph with an edge
between every pair of nodes ði; jÞ such that the cost of that
edge is the minimum-cost pair of disjoint paths between i
and j, and the probability of failure for that edge is zero.
Thus the new augmented graph has two kinds of edges
between nodes i and j: unprotected edges corresponding
to the original edges in graph G (if such an edge existed)
with a cost cij and failure probability pij, and protected
edges with a cost ĉij and failure probability p̂ij ¼ 0, where
ĉij is the cost of the shortest pair of disjoint paths between
i and j. We next run the constrained shortest path algo-
rithm on the augmented graph to find the minimum-cost
solution. We call this algorithm the Segment Protected
Availability Guaranteed Algorithm (SPAG).

Theorem 2. SPAG will return a minimum-cost routing, if one
exists, and has a running time of Oðn4logðnÞ þ n2PÞ.
Proof. To meet availability requirements, a solution will
have a primary path that consists of a combination of pro-
tected and unprotected segments. As shown in Lemma 1, a
protected segment between any two nodes is the shortest
pair of disjoint paths between those nodes. Using the
above graph augmentation, an edge is added for every fea-
sible protected segment. The constrained shortest path
algorithm then evaluates every possible combination of
protected and unprotected segments to find the lowest
cost solution between the source and destination.

For the running time, the Oðn4logðnÞÞ component comes
from Oðn2Þ iterations of the shortest pair of disjoint paths
algorithm (there are Oðn2Þ node pairs), which takes
Oðn2logðnÞÞ time per iteration [22]. The recursion for the
constrained shortest path problem runs in Oðn2PÞ time. h

A simulation similar to that of Section 3.2 was used to
compare SPAG to the optimal solution without bifurcation
for q ¼ 0. Simulation results show that SPAG is in fact opti-
mal for all tested demands.

4.2. Meeting availability requirements with q > 0

Next, we examine the case of q > 0. The problem now
has multiple availability guarantees: after an edge failure
in the primary path, the flow either remains at 1 or, with
at most a probability of P, drops to q. Consider a sample
solution shown for a unit demand between nodes v1 and
v6 with a maximum failure probability of 0.2 in Fig. 5,
which consists of alternating fully-protected and q-pro-
tected segments (the dotted line being the q flow). Between
node pairs ðv1;v2Þ and ðv4;v5Þ, the primary segments are
fully protected, and a failure in those primary segments will
not cause a drop in end-to-end flow. Between node pairs
ðv2; v4Þ and ðv5;v6Þ, the primary segments have q flow rou-
ted on a segment that is edge-disjoint; after a failure in the
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Fig. 5. Routing to meet P ¼ 0:2 and q > 0 from v1 to v6.
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primary segment, flow will drop to q with a probability of at
most 0.2. We conjecture that the multiple availability guar-
anteed protection problem with q > 0 is strongly NP-Hard1

by demonstrating the complexity of a related disjoint paths
problem, previously unexplored in the literature, to be
strongly NP-Hard. Using this result, we present an efficient
heuristic for solving the q > 0 case.

A sample solution is shown in Fig. 5, which consists of
alternating fully-protected and q-protected segments (the
dotted line being the q flow).

We consider protecting a q-protected segment by find-
ing a pair of disjoint paths between i and j such that one of
them is constrained: the primary segment is constrained to
have a probability of failure of at most P. We call this prob-
lem the Singly Constrained Shortest Pair of Disjoint Paths
(SCSPD). There has been work trying to find the shortest
pair of disjoint paths such that each path is constrained
by the same parameter [25]. The authors of [25] found that
this doubly constrained problem, while NP-Hard, has an
�-approximation algorithm. Their problem is distinct from
ours in that SCSPD only constrains one of the two paths.
Clearly, a solution to the doubly constrained problem is a
feasible solution to the singly constrained one, but it is
not necessarily optimal, and a lack of a solution to the for-
mer does not imply the non-existence of a solution to the
latter. In fact, we show that when the constraint is relaxed
for one of the paths, SCSPD becomes strongly NP-Hard,
which means that a solution cannot be �-approximated,
nor can there be any pseudo-polynomial algorithm for
optimality [21].

Theorem 3. The singly constrained shortest pair of disjoint
paths problem is strongly NP-Hard.
Proof. To demonstrate strong NP-Hardness of SCSPD, a
reduction from the 3SAT problem [26] is performed. See
Appendix B for the complete proof. h

Since SCSPD is strongly NP-Hard, the dynamic program-
ming approach used to solve for q ¼ 0 does not work when
q > 0. We conjecture that the multiple availability guaran-
teed protection when q > 0 is in fact also strongly NP-Hard,
thereby necessitating a heuristic approach to solve the
problem. Our proposed heuristic augments the q ¼ 0 algo-
rithm: after an optimal solution for q ¼ 0 is found, find the
shortest disjoint path for the unprotected segments and
allocate a flow of q to them. We call this algorithm the Seg-
ment Protected Multiple Availability Guaranteed Algo-
rithm (SPMAG).

A simulation similar to that of Section 3.2 was run com-
paring SPMAG and the optimal solution to MAGP without
1 In addition to being NP-Hard, a problem that is Strongly NP-Hard
indicates that there exists no pseudo-polynomial or e-approximation
algorithm for finding a solution [21].
flow bifurcation; the results are plotted in Fig. 6. On aver-
age, SPMAG performs within 6% of the optimal solution to
the multiple availability guaranteed protection problem.
5. Algorithm with backup capacity sharing

In the previous section, efficient algorithms were pre-
sented without the use of backup capacity sharing, includ-
ing an optimal algorithm for the case of q ¼ 0, which
corresponds to the standard availability constraint. These
results are useful for a basic understanding of the Multiple
Availability Guaranteed Protection problem (MAGP), and
for networks that do not allow protection sharing. But
many times, networks do utilize backup sharing, and sig-
nificant savings can often be achieved. In this section, a
time-efficient algorithm for MAGP using backup capacity
sharing is presented.

If two primary flows for two different demands are
edge-disjoint from one another, then under a single-link
failure model, at most one can be disrupted at any given
point in time. Since at most one demand will need to be
restored after a failure, two failure-disjoint flows can share
backup capacity.

Determining how much backup capacity can be shared
for guaranteed path protection was examined in [2,3].
These papers use conflict sets to determine potential
backup sharing on an edge by keeping track of how much
backup capacity was allocated on one edge to protect
against the failure of another. If more backup capacity is
already allocated on some edge than is needed to protect
for the failure of another edge, then that edge’s backup
capacity can be shared. This model can be extended to
the partial protection framework by guaranteeing that
any particular demand has its partial flow requirement
met after a failure. An example without probabilistic avail-
ability guarantees is given in Fig. 7. Define the variable hkl

ij

to be the number of units of capacity used on edge fi; jg to
protect against the failure of edge fk; lg. The maximum



Fig. 7. Example of a conflict set with partial protection.

Fig. 8. Example of algorithm with P ¼ 0:2.
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number of units allocated on edge fi; jg to protect against
any edge failure is the total spare allocation needed on
fi; jg. In Fig. 7, two demands with q1 ¼ 1 and q2 ¼ 1

2 are rou-
ted. Both demands use edge fi; jg for protection with 1 unit
being needed after the failure of fk; lg and 1

2 unit being
needed after the failure of fm;ng. In this example we have
hkl

ij ¼ 1 and hmn
ij ¼ 1

2.
Now, consider a new demand with q3 ¼ 1

2. If this
demand were to have its primary flow routed on edge
fk; lg and use fi; jg for protection, hkl

ij will increase by 1
2 unit.

Since the amount of spare allocation on an edge is the max-
imum capacity needed to protect against any edge failure,
the total allocation will increase by 1

2. Alternatively, if the
demand were to use fm;ng instead of fk; lg;hmn

ij will
increase by 1

2, and the maximum number of units needed
to protect against any edge failure will still only be 1. No
additional resources are required for protection on fi; jg
under this routing scenario. For the exact implementation
of conflict sets for protection resource sharing, see [2,3].

We now consider meeting probabilistic availability
guarantees. Given some primary path between s and t, cer-
tain segments will be fully-protected, and others will be
partially protected with a flow of q. For each edge in the pri-
mary path, the cost of using 1 or q units on edge fi; jg for
backup is calculated using conflict sets. For a primary path
with a set of edges S, let bðS;1Þ be the cost of backup edges
for fully protecting any edge, and bðS; qÞ be the cost of
backup edges that partially protect an edge with a flow of q.

Next, we calculate the cost of protecting each possible
segment of a given primary path with either full or partial
protection; if there are v nodes in the primary path, then
there are vðv�1Þ

2 segments contained within that path. We
construct a new graph Gst

S with two edges between every
pair of nodes in the primary path; these two edges corre-
spond to fully or partially protecting the primary segment
between nodes i and j. For every primary segment in the
primary path, we find two paths that are disjoint to that
segment: one that fully protects that segment, and one
that partially protects it. For full protection, the edge
between nodes i and j in Gst

S is the shortest disjoint path
to primary segment ði; jÞ using the set of edge costs
bðS;1Þ; for partial protection, the edge between i and j in
Gst

S is the shortest disjoint path to primary segment ði; jÞ
using bðS; qÞ. The cost of the edge in Gst

S to fully protect pri-
mary segment ði; jÞ is c1

ij, and has failure probability p1
ij ¼ 0.

The cost of the edge in Gst
S to partially protect primary seg-

ment ði; jÞ is cq
ij, and has failure probability pq

ij equal to the
failure probability of the primary path segment between
nodes i and j. Once Gst

S is fully constructed, we find the con-
strained shortest path in Gst

S from s to t with a maximum
failure probability of Pst . This path will be the backup,
which meets all partial protection and availability require-
ments when combined with the initial primary path.

Since jointly optimizing the primary and protection
path with backup sharing is NP-Hard [2], we choose a sim-
ple strategy of using the shortest path for the primary. This
is in contrast to [2,3] that offer a heuristic approach to
jointly optimize the primary and protection path for each
incoming demand. Our simulations (presented at the end
of this section) show that using the shortest path for the
primary route actually performs better than jointly opti-
mizing the primary and backup paths for each incoming
demand.

The algorithm for MAGP to route a demand using
backup capacity sharing is as follows. For an arriving
demand between s and t, find the shortest path between
those two nodes; Sst will be the set of edges in that shortest
path. We then construct the graph Gst

S using the procedure
discussed above, and then we find the lowest-cost shared
backup to meet protection and availability requirements.
This algorithm is called Dynamic Multiple Availability
Guaranteed Segment Protection ðDMAGSPÞ. The pseudo-
code for this algorithm can be found in Appendix C.

An example is shown in Fig. 8. A unit demand needs to
be routed between v1 and v4, with a maximum failure
probability of P ¼ 0:2. For this example, the shortest path
between v1 and v4 has already been found and is given,
with this path being v1—v2—v3—v4. This shortest path is
chosen to be the primary route; failure probabilities for
the edges of that primary path are as labeled in the figure.

For demonstration purposes, the protection paths pro-
tecting each possible segment of the primary path are
already computed, and are shown in Fig. 8a. For each seg-
ment of the primary path, two arcs are constructed
between that segment’s two end nodes: one that fully pro-
tects against a failure in that segment, having probability
of failure p1

ij ¼ 0, and one that q-protects that segment,
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with probability of failure pq
ij equal to the sum of the edges’

failure probabilities in that primary segment. The arcs
above the primary path are the lowest-cost full protection
paths for each segment of the primary, and the arcs below
the path are the lowest-cost partial protection paths. Costs
of protecting the primary path segments with 1 or q units
of flow are labeled on the arcs.

The protection paths for each of the primary path seg-
ments (the arcs above and below the primary path), form
the new graph Gst

S . The constrained shortest path algorithm
is run on Gst

S between v1 and v4 with a maximum failure
probability of P, which returns the final backup path. The
backup path for this example with P ¼ 0:2, as shown in
Fig. 8b, meets all protection and availability requirements
when combined with the primary path found previously.
In this example, the segment between v1 and v3 is q pro-
tected, whereas the segment between v3 and v4 is fully
protected.

A simulation similar to that of Section 3.2 was run, this
time with demands arriving dynamically at random and
serviced one-at-a-time in the order of their arrival. The
protection requirement q for each demand is drawn from
a truncated normal distribution with mean of q ¼ 1

2 and
standard deviation r ¼ 1

2. The maximum failure probability
P has a truncated normal distribution with a standard devi-
ation r ¼ :025; the mean of P is varied between 0 and 0.3.
We compare multiple availability guaranteed protection
with and without sharing (which jointly optimizes the pri-
mary and backup path for each incoming demand),
DMAGSP, and 1:1 protection with backup capacity sharing.

The capacity needed to route the demand and protec-
tion flows are plotted in Fig. 9 as a function of the expected
value of P. Again, the shortest path routing without protec-
tion considerations is used as a lower bound for the capac-
ity allocation. MAGP with backup sharing, which jointly
optimizes the primary and backup paths for each incoming
demand, achieves an average reduction in excess resources
of 42% over 1:1 protection with sharing for all values of P
that were tested, and an average reduction of 51% over
MAGP without sharing.

A notable result is that Dynamic Multiple Availability
Guaranteed Segment Protection (DMAGSP) in fact per-
forms better than the greedy optimal solution with
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dynamic arrivals. This can be explained by observing that
the algorithm takes the simple strategy of the shortest path
as the primary for each connection, as opposed to jointly
optimizing the primary and backup routes, which may take
a longer primary path to take advantage of backup sharing.
This longer path makes it potentially more difficult for
future demands to find disjoint primary routes, lowering
their ability to share protection resources. While other
works have focused on finding heuristics to jointly opti-
mize the primary and backup paths for each incoming
demand, it appears a better approach is to simply take
the shortest path for the primary route.
6. Conclusion

In this paper, a novel network protection scheme with
multiple availability guarantees was introduced. In partic-
ular, the multiple availability guarantees will maintain the
full demand for at least a guaranteed fraction of time and
guarantee a partial flow during the downtime. If the
demand is allowed to drop to 50% of its flow for only 1
out of every 20 failures, a 24% reduction in excess
resources can be realized over the traditional disjoint path
full protection schemes. For the q ¼ 0, which corresponds
to the previously studied scenario where full availability
is guaranteed for a fraction of time, we developed an opti-
mal pseudo-polynomial algorithm. For the case of q > 0,
we developed a time-efficient heuristic (segment pro-
tected multiple availability guaranteed protection) that
performs within 6% of the optimal solution to the multiple
availability guaranteed protection problem. We then
extended the Multiple Availability Guaranteed Problem
(MAGP) to the case where backup capacity sharing is uti-
lized to lower the total amount of resources needed to
meet protection and availability requirements. An algo-
rithm for MAGP with protection sharing was developed
for dynamic arrivals, which in fact performs better than
jointly optimizing the primary and backup paths for each
incoming demand.
Appendix A. Proof of NP-Hardness for multiple
availability guaranteed protection

To demonstrate NP-Hardness of MAGP, the 1–0 knap-
sack problem [21] will be reduced to MAGP. The knapsack
problem finds the maximum value subset of k items, with
the ith item having cost ci and weight pi, such that the max-
imum weight P of the knapsack is not exceeded.

Consider the network shown in Fig. A.10 with link costs
and probabilities denoted by ci and pi, respectively. We
wish to find a minimum-cost routing for a unit demand
from s to t with a maximum failure probability P and par-
tial protection requirement q ¼ 0. After any link failure, the
network will either maintain its full flow of 1 unit, or have
no flow with a probability of at most P. There are k distinct
link groups, where each of the two links in any group have
the same probability of failure and cost. Primary flow has
to be allocated onto at least one of these links, otherwise
the primary demand cannot be met. If the network main-
tains full connectivity after a primary failure in the kth link
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Fig. B.11. Sample network to solve an instance of 3SAT from [26].
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group, then each link in that group will have an allocation
of 1 unit. If there is no flow after a link failure, then only
one link has an allocation of 1, and the other 0. So, every
link group has at least one link with a flow of 1, which is
a fixed cost regardless of protection allocation.

To find the lowest cost protection allocation to meet
availability guarantees, we need to find the lowest cost
combination of the remaining links after the primary flow
is allocated such that the sum of the failure probabilities
for the links that have no allocation are less than P. Our

objective is min
Pk

i¼1cið1� ziÞ, subject to the constraint ofPk
i¼1pizi 6 P, with zi 2 f0;1g 8i 2 1; . . . ; k. The objective

can be rewritten to maximize the cost of the links that

do not have allocation: min
Pk

i¼1cið1� ziÞ ¼ max
Pk

i¼1cizi.
We now recognize this to be the NP-Hard 1–0 knapsack
problem with a maximum weight of P, and cost and weight

of the ith item being the cost and probability, respectively,
of each pair of links in the ith link group. If there existed a
polynomial time solution to MAGP, then there would exist
one for the 1–0 knapsack problem. Therefore, MAGP is at
least as hard as the 1–0 knapsack problem.
Appendix B. Proof of strong NP-Hardness for singly
constrained shortest pair of disjoint paths

To prove that SCSPDP is strongly NP-Hard, we borrow a
reduction that demonstrates the NP-Hardness of a differ-
ent, but similar, problem [26] and adapt it to the SCSPD
problem. The authors of [26] attempt to find the ‘‘min-
min’’ disjoint pair of paths, which is defined as the mini-
mum-cost pair of disjoint paths that contains, over all sets
of possible disjoint paths, the minimum-cost shorter path.

To demonstrate this problem is NP-Hard, they construct
a mapping of the 3SAT problem to a graph where a solution
to their problem will simultaneously solve the 3SAT prob-
lem. A solution to 3SAT determines if there exists a 1/0
assignment to the variables that will make a specific boolean
expression true [21]. The graph in Fig. B.11 is a sample
network corresponding to the instance of the 3SAT problem
of ðx1 _ x2 _ x3Þ ^ ðx̂1 _ x̂3 _ x4Þ ^ ðx2 _ x̂3 _ x4Þ ^ ðx̂2 _ x3 _ x̂4Þ
[26]. Without going into the specifics of the reduction (see
[26] for details), a generalized version of their result is: if
two disjoint paths can be found between s and t such that
one of them uses only the dotted lines, then that solution
is also a solution to the 3SAT problem (see [26] for the proof).
To demonstrate strong NP-Hardness, one needs to show the
problem remains NP-Hard after the value of all inputs to the
system have been bounded by some polynomial [21].

We will first show the problem to be NP-Hard by
assigning costs and probabilities to the edges of the
above network such that solving SCSPD will also solve
the 3SAT problem. Then, we will demonstrate that SCSPD
is in fact strongly NP-Hard. Assume there exists D dotted
edges and L solid edges in the 3SAT reduced graph. Since
we can assign parameters of our choosing to the edges,
assign a cost of 0 for the dotted edges and a cost of 1
to the solid edges. We choose the failure probability of
each dotted edge to be a

D and the probability of each
solid edge to be 1�a

L , such that a 6 1�a
L ! a 6 1

1þL. Addi-
tionally, choose a maximum probability of failure P such
that a 6 P < 1�a

L . Since using any solid edge will make
that path violate the maximum failure probability P,
the only feasible solution to SCSPD on this network is
for the constrained path to use only dotted edges. But
if such a solution could be found, it would solve the
3SAT problem, which is NP-Hard. The problem in fact
remains NP-hard when all input values are polynomial
bounded: L and D are polynomial bounded by the num-
ber of inputs from the 3SAT problem, and a can be cho-
sen to be polynomial bounded. If all input parameters to
a problem are bounded by some polynomial, and the
problem remains NP-Hard, then the problem is strongly
NP-Hard [21]. Finding any feasible solution to SCSPD
on this bounded graph will still solve the 3SAT problem.
Therefore, SCSPD is strongly NP-Hard.
Appendix C. Pseudocode for DMAGSP

The following are input parameters to Dynamic Multi-
ple Availability Guaranteed Segment Protection (DMAGSP)
algorithm. Graph G ¼ ðV ; E;P;CÞ : E is the set of edges; V is
the set of vertices; P are the set of edge failure probabili-
ties; C are the edge costs. K is the set of paths for the pri-
mary flows already allocated, with kab being the set of edge
allocations for the primary flow for the demand between
nodes a and b. D is the set of backup flow allocations, with
dab

ij being the amount of protection flow allocated to edge
fi; jg to protect against a failure of the primary path for
the demand between nodes ða; bÞ. The current demand to
be routed is from node s to t, with a demand of d, partial
protection requirement of q, and maximum failure proba-
bility of P. The output of the DMAGSP algorithm will be a
primary path from s to t using the set of edges Sst that car-
ries a flow of d, and a backup path using the set of edges Bst ,
with allocation bst

ij on edge fi; jg of that path. We first pres-
ent the pseudocode for the function shared_backup in
Algorithm 1, which will find the lowest cost path, carrying
a flow of f, that is disjoint to the primary path between u
and v, which has a set of edges S. The output of the function
will be the set of edges for the backup path B, and the cost
of that backup path b. We then present the pseudocode for
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the full Dynamic Multiple Availability Guaranteed Seg-
ment Protection (DMAGSP) scheme in Algorithm 2. We
refer the reader to Fig. 8 from Section 5 for an illustrative
example.

Algorithm 1. ðB; bÞ = shared_backupðG;K;D; S;u;v ; f Þ.
1: Determine the set of primary paths from K that are
edge-disjoint to S; label this set of primary paths as
C

2: for 8fi; jg 2 E n S do

3: cb
ij ¼max cijðf �

P
ða;bÞ2Cdab

ij Þ; 0
� �

// On edge {i,j},

set the cost of protection capacity that can be shared to
zero

4: end for

5: The edge costs cb
ij form the set Cb

6: Using the set of edges E n S, with edge costs Cb, find
the shortest path from u to v

7: Label the set of edges of this path B, and set
b ¼

P
fi;jg2Bcb

ij
Algorithm 2. ðSst; BstÞ = DMAGSPðG;K;D; s; t; d; q; PÞ.

1: Find a shortest path from s to t; label these set of
edges as Sst

2: for every possible path segment Suv of Sst (the path
segment goes from node u to v) do

3: Find the shared protection path for the full
demand d and the partial protection requirement
qd:

BðSuv ;1Þ; bðSuv ;1Þ
� �

= shared_backupðG;K;D; Suv ;

u;v; dÞ
BðSuv ; qÞ; bðSuv ; qÞ
� �

= shared_backupðG;K;D; Suv ;

u;v; dqÞ
4: In protection graph Gst

S , create two edges between
nodes u and v:

The first edge has a cost bðSuv ;1Þ, and probability
of failure p1

uv ¼ 0
The second having a cost bðSuv ; qÞ, and probability

of failure pq
uv ¼

P
fi;jg2Suv pij

5: end for
6: In protection graph Gst

S , find the constrained
shortest path [24] from node s to t such that the
sum of the failure probabilities for the edges of that
path do not exceed P

7: Label the set of edges of this path as Bst
References

[1] S. Ramamurthy, L. Sahasrabuddhe, B. Mukherjee, Survivable WDM
mesh networks, J. Lightwave Technol. 21 (2003) 870–884.

[2] C. Ou, J. Zhang, H. Zang, L. Sahasrabuddhe, B. Mukherjee, New and
improved approaches for shared-path protection in WDM mesh
networks, J. Lightwave Technol. 22 (2004) 1223–1232.
[3] G. Mohan, S. Murthy, A. Somani, Efficient algorithms for routing
dependable connections in WDM optical networks, IEEE/ACM Trans.
Network. 9 (2002) 553–566.

[4] B. Mukherjee, WDM optical communication networks: progress
and challenges, IEEE J. Select. Areas Commun. 18 (2000) 1810–
1824.

[5] W. Yao, B. Ramamurthy, Survivable traffic grooming with path
protection at the connection level in WDM mesh networks, J.
Lightwave Technol. 23 (2005) 2846.

[6] H. Wang, E. Modiano, M. Médard, Partial path protection for WDM
networks: end-to-end recovery using local failure information, in:
Proceedings of Seventh International Symposium on Computers and
Communications, ISCC 2002, IEEE, 2002, pp. 719–725.

[7] W. Grover, Mesh-Based Survivable Networks: Options and
Strategies for Optical, MPLS, SONET, and ATM Networking,
Prentice Hall, 2004.

[8] A. Saleh, J. Simmons, Evolution toward the next-generation core
optical network, J. Lightwave Technol. 24 (2006) 3303–3321.

[9] J. Zhang, K. Zhu, H. Zang, N. Matloff, B. Mukherjee, Availability-aware
provisioning strategies for differentiated protection services in
wavelength-convertible WDM mesh networks, IEEE/ACM Trans.
Network. (TON) 15 (2007) 1177–1190.

[10] C. Saradhi, M. Gurusamy, L. Zhou, Differentiated QOS for
survivable WDM optical networks, Commun. Magaz., IEEE 42
(2004) S8–14.

[11] M. Tacca, A. Fumagalli, A. Paradisi, F. Unghváry, K. Gadhiraju, S.
Lakshmanan, S. Rossi, A. Sachs, D. Shah, Differentiated reliability in
optical networks: theoretical and practical results, J. Lightwave
Technol. 21 (2003) 2576–2586.

[12] R. Banner, A. Orda, The power of tuning: a novel approach for the
efficient design of survivable networks, IEEE/ACM Trans. Network.
(TON) 15 (2007) 737–749.

[13] L. Song, J. Zhang, B. Mukherjee, Dynamic provisioning with
availability guarantee for differentiated services in survivable
mesh networks, IEEE J. Select. Areas Commun. (JSAC) 25 (2007)
35–43.

[14] W. Yao, B. Ramamurthy, Survivable traffic grooming with
differentiated end-to-end availability guarantees in WDM mesh
networks, in: The 13th IEEE Workshop on Local and
Metropolitan Area Networks, 2004. LANMAN 2004, IEEE, 2004,
pp. 87–90.

[15] J. Zhang, K. Zhu, H. Zang, B. Mukherjee, Service provisioning to
provide per-connection-based availability guarantee in WDM mesh
networks, in: Optical Fiber Communication Conference, Optical
Society of America, 2003, pp. 622–624.

[16] S. Rai, O. Deshpande, C. Ou, C. Martel, B. Mukherjee, Reliable
multipath provisioning for high-capacity backbone mesh networks,
IEEE/ACM Trans. Network. (TON) 15 (2007) 803–812.

[17] O. Gerstel, G. Sasaki, Quality of protection (QoP): a quantitative
unifying paradigm to protection service grades, Opt. Netw. Magaz. 3
(2002) 40–49.

[18] G. Kuperman, E. Modiano, A. Narula-Tam, Analysis and algorithms
for partial protection in mesh networks, in: INFOCOM, 2011
Proceedings IEEE, IEEE, 2011, pp. 516–520.

[19] G. Kuperman, E. Modiano, A. Narula-Tam, Partial protection in
networks with backup capacity sharing, in: National Fiber Optic
Engineers Conference, Optical Society of America, 2012, pp. 1–3.

[20] G. Kuperman, E. Modiano, A. Narula-Tam, Network protection
with multiple availability guarantees, in: 2012 IEEE International
Conference on Communications (ICC), IEEE, 2012, pp. 6241–6246.

[21] M. Garey, D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[22] J.W. Suurballe, R.E. Tarjan, A quick method for finding shortest pairs
of disjoint paths, Networks 14 (1984) 325–336.

[23] R. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice-Hall, New Jersey, 1993.

[24] H. Joksch, The shortest route problem with constraints, J. Math. Anal.
Appl. 14 (1966) 191–197.

[25] A. Orda, A. Sprintson, Efficient algorithms for computing disjoint
QOS paths, Twenty-Third Annual Conference of the IEEE Computer
and Communications Societies, INFOCOM 2004, vol. 1, IEEE, 2003,
pp. 727–738.

[26] D. Xu, Y. Chen, Y. Xiong, C. Qiao, X. He, On finding disjoint paths in
single and dual link cost networks, Twenty-Third Annual Conference
of the IEEE Computer and Communications Societies, INFOCOM
2004, vol. 1, IEEE, 2004, pp. 705–715.

http://refhub.elsevier.com/S1389-1286(14)00293-X/h0005
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0005
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0010
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0010
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0010
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0015
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0015
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0015
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0020
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0020
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0020
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0025
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0025
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0025
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0035
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0035
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0035
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0035
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0040
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0040
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0045
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0045
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0045
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0045
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0050
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0050
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0050
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0055
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0055
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0055
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0055
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0060
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0060
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0060
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0065
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0065
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0065
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0065
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0070
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0070
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0070
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0070
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0070
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0070
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0080
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0080
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0080
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0085
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0085
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0085
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0090
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0090
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0090
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0090
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0100
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0100
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0100
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0100
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0105
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0105
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0105
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0110
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0110
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0115
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0115
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0115
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0120
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0120
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0125
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0125
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0125
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0125
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0125
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0130
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0130
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0130
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0130
http://refhub.elsevier.com/S1389-1286(14)00293-X/h0130


12 G. Kuperman et al. / Computer Networks 74 (2014) 1–12
Greg Kuperman received his Ph.D. in Com-
munications and Networking from the Mas-
sachusetts Institute of Technology in 2013,
and he received his B.S.E in Computer and
Telecommunication Engineering and M.S.E. in
Electrical Engineering from the University of
Pennsylvania in 2005. He is currently a post-
doctoral researcher at MIT in the Laboratory
of Information and Decision Systems (LIDS).
Eytan Modiano received his B.S. degree in
Electrical Engineering and Computer Science
from the University of Connecticut at Storrs in
1986 and his M.S. and Ph.D. degrees, both in
Electrical Engineering, from the University of
Maryland, College Park, MD, in 1989 and 1992
respectively. He was a Naval Research Labo-
ratory Fellow between 1987 and 1992 and a
National Research Council Post Doctoral Fel-
low during 1992–1993. Between 1993 and
1999 he was with MIT Lincoln Laboratory
where he was a project leader for MIT Lincoln

Laboratory’s Next Generation Internet (NGI) project. Since 1999 he has
been on the faculty at MIT, where he is a Professor in the Department of
Aeronautics and Astronautics and the Laboratory for Information and

Decision Systems (LIDS). His research is on communication networks and
protocols with emphasis on satellite, wireless, and optical networks. He is
currently an Associate Editor for IEEE/ACM Transactions on Networking.
He had served as Associate Editor for IEEE Transactions on Information
Theory, and as guest editor for IEEE JSAC special issue on WDM network
architectures; the Computer Networks Journal special issue on Broadband
Internet Access; the Journal of Communications and Networks special
issue on Wireless Ad-Hoc Networks; and for IEEE Journal of Lightwave
Technology special issue on Optical Networks. He was the Technical
Program co-chair for IEEE Wiopt 2006, IEEE Infocom 2007, and ACM
MobiHoc 2007. He is a Fellow of the IEEE and an Associate Fellow of the
AIAA.

Aradhana Narula-Tam is an Assistant Leader
of the Airborne Networks Group at MIT Lin-
coln Laboratory. She joined the laboratory in
1998 and has worked in a variety of areas
including optical networking, dynamic
resource allocation for satellite communica-
tion systems, and IP Quality of Service. She
was the Principal Investigator for MIT Lincoln
Laboratory’s efforts on the DARPA Core Opti-
cal Networking program prior to taking a
temporary position as an Air Force civilian to
lead the Modem Processor Group product

team for the Family of Advanced Beyond Line-of-Sight Terminal (FAB-T)
program from 2009 to 2010. Upon returning to the laboratory, she has
focused on research and design of Line-of-Sight communication tech-

nologies and network architectures for highly mobile platforms in tactical
environments. Dr. Narula-Tam holds a BSE degree from the University of
Pennsylvania and SM and Ph.D. degrees from the Massachusetts Institute
of Technology, all in electrical engineering. Her doctoral thesis analyzed
theoretical performance limits of antenna diversity methods for mobile
communications. She has served as session and track chairs for IEEE
MILCOM and co-authored over 30 papers in the areas of wireless com-
munications, satellite communication systems and networking, and
optical networking.


	Network protection with multiple availability guarantees
	1 Introduction
	2 Multiple availability guaranteed protection
	3 Minimum-cost multiple availability guaranteed protection
	3.1 Mixed integer linear program to meet multiple availability guaranteed protection
	3.2 Comparison to full protection

	4 Optimal solution and algorithms without backup capacity sharing
	4.1 Availability guarantees with ? 
	4.1.1 Availability guarantees without spare allocation
	4.1.2 Availability guarantees with spare allocation

	4.2 Meeting availability requirements with [$]q?

	5 Algorithm with backup capacity sharing
	6 Conclusion
	Appendix A Proof of NP-Hardness for multiple availability guaranteed protection
	Appendix B Proof of strong NP-Hardness for singly constrained shortest pair of disjoint paths
	Appendix C Pseudocode for DMAGSP
	References


