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Abstract—This paper develops a novel mesh network
protection scheme that guarantees a quantifiable minimum
grade of service upon a failure within the network using
multipath routing. Typically, networks fully guarantee
service after a single-link failure, which is often an over-
provisioning of resources to maintain essential traffic for
the infrequent event of a failure. Our scheme guarantees
that a fraction ¢ of each demand remains after any single-
link failure, at a fraction of the price of full protection. A
linear program is developed to find the minimum-cost
capacity allocation to meet both demand and protection re-
quirements. For ¢ <1, an exact algorithmic solution for the
minimum-cost routing and capacity allocation is developed
using multiple shortest paths. For ¢ > 1, an algorithm is de-
veloped based on disjoint path routing that performs, on
average, within 1.4% of optimal, and runs four orders of
magnitude faster than the minimum-cost solution achieved
via the linear program. Moreover, the partial protection
strategies developed achieve reductions of up to 83% over
traditional full protection schemes.

Index Terms—Multipath routing; Networks; Network
survivability; Network protection and restoration.

1. INTRODUCTION

esh networks with ever-increasing data rates are

being deployed to meet the increasing demands of
the telecom industry. As data rates continue to rise, the
failure of a network line element or worse, a fiber cut,
can result in severe service disruptions and large data loss,
potentially causing millions of dollars in lost revenue [1].
Currently, there exist few options for protection that offer
less than complete restoration after a failure. Due to the
cost of providing full protection, service providers may offer
lower tiers of protection that are best effort, and offer no
guarantees on fully restoring a connection [2]. Additionally,
the time that any given connection is in a failed state due to
a fiber cut is relatively small [2,3]; thus service providers
may wish to only support essential traffic after a network
failure. By defining varying and quantifiable grades of
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protection, service providers can protect vital services
without incurring the cost of providing full protection, mak-
ing protection more affordable and better suited to user/
application requirements. The protection scheme devel-
oped in this paper provides “partial protection” guarantees,
at a fraction of the cost of full protection, with each session
having its own differentiated protection guarantee.

Guaranteed network protection has been studied exten-
sively [4-9]. The most common in backbone networks today
is guaranteed path protection [10], which provides an edge-
disjoint backup path for each primary path, resulting in
100% service restoration after any link failure. Best effort
protection is still loosely defined, but generally offers no
guarantees on the amount of protection provided. In best
effort protection, a service will be protected, if possible,
with any unused capacity after fully protecting all guaran-
teed services [2,11]. Best effort protection can also be re-
ferred to as partial capacity restoration, since a service will
be restored within existing unused capacity, typically re-
sulting in less than 100% restoration.

Many users may be willing to tolerate short periods of re-
duced capacity to protect only essential services if data rate
guarantees can be made at a reduced cost. In this paper, we
consider an alternate form of guaranteed protection, where
a fraction of a demand is guaranteed in the event of a link
failure. If provided at a reduced cost, many users may opt
for partial protection guarantees during network outages.

A quantitative framework for deterministic partial pro-
tection in optical networks was first developed in [12]. In
that work, a minimum fraction g of the demand is guaran-
teed to remain available between the source and destina-
tion after any single-link failure, where g is between 0 and
1. When q is equal to 1, the service is fully protected, and
when q is 0, the service is unprotected. Partial protection
has been considered in a number of areas, with a set of pro-
posed algorithms and heuristics: [13] considers partial
protection to protect high-definition video with regular-
definition service, and [14] provides a comparison of pro-
posed implementations for IP-over-WDM networks. In [15],
the partial protection problem on groomed optical WDM
networks is studied, under the assumption that flows must
traverse a single path. More recently, [16] shows that the
amount of partial protection that can be guaranteed de-
pends on the topology of the network. The work in [16] de-
velops algorithms for partial protection across disjoint
paths. The main purpose of our paper is to provide a quan-
titative framework for how to make optimal allocation de-
cisions across disjoint paths, in order to provide protection
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guarantees. This paper is an extended version of our pre-
liminary work on this topic [17,18]. Ideas developed in our
preliminary works have recently been extended to orthogo-
nal frequency-division multiplexing optical networks [19].

In this paper, we build upon the initial framework devel-
oped in [12] and develop a “theory” for partial protection
using multipath routing. We develop optimal algorithms
for capacity allocation and explicit expressions for the
amount of required additional backup capacity. Routing
strategies that allocate working and backup capacity to
meet partial protection requirements are derived. Similar
to [16], flow bifurcation over multiple paths is allowed
(multipath routing). Bifurcation reduces the amount of ad-
ditional backup capacity needed to support the protection
requirements. In fact, we show that depending on the value
of g, it may be possible to provide protection without any
additional backup capacity at all.

A linear program is developed to find the optimal
minimum-cost capacity allocation needed to guarantee par-
tial protection in the event of a link failure. Without backup
capacity sharing, a routing and capacity assignment strat-
egy based on shortest paths is shown to be optimal for g < %
For g > %, an efficient algorithm based on disjoint path
routing is shown to have a cost that is at most twice the
optimal minimum-cost solution, and in practice only
slightly above optimal. We also consider the case in which
backup capacity sharing is possible. With backup capacity
sharing, demands may share protection resources if at
most one demand will use those resources at a time. For
the backup sharing case, we show that depending on the
value of g, it may be possible to provide protection at min-
imal allocation cost, i.e., the shortest path routing. We con-
sider two cases for backup capacity sharing: preemptive
and nonpreemptive partial protection. For the preemptive
case, primary resources available prior to a link failure
may be preempted to provide backup for other demands,
as long as all protection requirements are met after the fail-
ure. For the nonpreemptive case, only demands that are
directly affected by the link failure drop to the rates guar-
anteed under partial protection.

In Section II, the partial protection model is described.
In Section III, the partial protection problem is formulated
as a linear program with the objective of finding the mini-
mum-cost allocation of primary and backup capacity. In
Section IV, solutions for partial protection without the
use of backup capacity sharing are developed, including
a simple path-based routing for an optimal solution when
g < %, and when q > %, properties of an optimal solution for
a network of disjoint paths are determined and used to de-
velop a time-efficient algorithm. In Section V, backup
capacity sharing is considered, and an algorithm is devel-
oped for the case of routing demands one at a time upon
their arrival.

II. PARTIAL PROTECTION MODEL

The objective of partial protection is to find an allocation
that ensures that enough capacity exists to support the full
demand before a link failure and a fraction q of that demand
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afterward. We assume that the graph G, with a set of ver-
tices V and edges E, is at least two-connected. Each link
has a fixed cost of use: ¢;; for each edge {i.j} € E. We consider
only single-link failures. We consider both the cases when
backup capacity can and cannot be shared. With backup
capacity sharing, demands can share protection resources
if at most one demand will use those resources at a time.
Under the single-link failure model, if two primary flows
are disjoint, then at most one can fail at a time, and at most
one will need to use its backup resources. Both primary traf-
fic and protection flows (defined as the flow after a failure)
can be bifurcated to traverse multiple paths between the
source and destination, which is often referred to as multi-
path routing [20]. Without loss of generality, we assume unit
demands, unless noted otherwise.

We now present a motivating example. We assume that
link costs are all 1 (in the following section we consider non-
uniform link costs), and with uniform link costs, the objec-
tive is to minimize the total capacity needed to support the
flow and the partial protection requirements.

One routing strategy for providing backup capacity is to
use a single primary path and a single backup path similar
to the 1:1 guaranteed path protection scheme. Consider
the network shown in Fig. 1. With 1:1 protection, one unit
of capacity is routed on a primary path and one unit of
capacity on a backup [Fig. 1(a)l. Upon a link failure, 100%
of the service can be restored via the backup path. Now,
consider a partial protection requirement to provide a frac-
tion ¢ = 2 of backup capacity in the event of a link failure. A
simple protection scheme similar to 1:1 protection would
be to route one unit along the primary path and Z along
a disjoint protection path, as shown in Fig. 1(b). We will
refer to this protection scheme as 1:q protection. More for-
mally, 1:q protection routes the full demand along a pri-
mary path, and reserves sufficient capacity for at least a
fraction ¢ of the full demand on a failure-disjoint backup
path. After the failure of the primary path, at least a frac-
tion g of the original demand will be available between the
source and destination. In the example from Fig. 1(b), if the
primary path fails, sufficient backup capacity remains to
provide service for £ of the demand.

For both partial and full protection requirements, in
many cases capacity savings can be achieved if the risk



732 J. OPT. COMMUN. NETW./VOL. 6, NO. 8/AUGUST 2014

is distributed by spreading the primary allocation across
multiple paths. For example, by spreading the primary
allocation across the three available paths, as shown in
Fig. 2(a), any single-link failure results in a loss of at most
% of the demand. To fully protect this demand against any
single-link failure (i.e., ¢ = 1), additional spare capacity al-
location? of s = % needs to be added to each link. With this
strategy, a total of 1.5 units of capacity are required, as
opposed to the total of 2 units needed by 1:1 protection
If instead the protection requirement was g = £, no spare
allocation is needed since after any failure 2 % umts are guar-
anteed to remain. By spreading the primary and backup
allocation across the multiple paths between the source
and destination, the risk is effectively distributed and
the fraction of primary allocation lost by a link failure is
reduced.

III. MiNiMUM-CoST PARTIAL PROTECTION

In this section, a linear program is developed to achieve
an optimal minimum-cost solution to the partial protection
problem. The objective of the linear program is to find a
minimum-cost routing strategy to meet demand d and par-
tial protection requirement g for a set of demands. In par-
ticular, a demand’s full flow requirement must be routed
before any failure, and in the event of any link failure, a
fraction g of that flow must remain. Backup capacity shar-
ing is utilized to further reduce the capacity allocation (and
cost) needed to meet demand and protection requirements.
If two demands’ primary paths are edge disjoint, then
under a single-link failure model, only one demand can fail
at a time. Hence, backup capacity can be shared between
the two since at most one demand will need to use it at any
given point in time. The linear program to solve for the
optimal routing strategy, denoted LPpp, is defined below.
We start by considering the case in which only primary de-
mands that are directly affected by a failure are switched to
their respective protection flows (no preemption). After-
ward, the linear program is modified to allow for all
demands’ primary capacity to be preempted after a failure
to route protection flows, so long as all demands have their
protection requirements met.

A. Linear Program to Meet Partial Protection: LPpp

The following values are given:

= (V,E, ) is the graph with its set of vertices, edges,
and costs.
¢ d* is the total demand between nodes s and ¢.

e % is the fraction of the demand between s and ¢ that
must be supported in the event of a link failure.

® c;; is the cost of link {i,j}.

1We define spare capacity allocation to be the capacity that must be allo-
cated in addition to the necessary capacity used to support the primary
demand before a link failure.
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The LP solves for the following variables:

. xfjt is the primary flow on link {i,j} for demand
(s, 1), f} >0.

. fth 18 the protection flow on link {z J} after the failure of
11nk {k,l} for demand (s, 1), fy w2

oy 1S the spare capac1ty for demand (s,t) on link {i,j} for
fallure of link {&,[}, le w =0

* w;; is the total primary flow on link {i.j}, w; > 0.
s;; is the total spare allocation on link {i.j}, s;; > 0.

The objective of LPpp is to minimize the cost of allocation
over all links:

JieE
subject to the following constraints:

e Flow conservation constraints for primary flow: route
primary traffic to meet the set of demands:

dst ifi=s

E xst st

UAeE 0 otherwise

VieV, V(st)eV.,V). (2

> st ifi=t ,

{ij}ek

e Partial protection constraint: route flow to meet partial
protection requirement ¢ after failure of link {&,/}:

ditgst ifi=s
st _ st _ ]St st 7 =
D fiw= ) fiw = -d'et ifi=t .
{ijieE yileE .
ik} Uik} 0 otherwise

VieV, VI eE, V(s t)e(V,V). 3

e Primary capacity on link {i,j} must meet all primary
flows before a link failure
xf =wy, Y{ij}€E. 4)
(s.)EV.V)

¢ Primary and spare capacity on link {,j} for each demand
meets partial protection requirements after failure of
link {%&,1}:

vV {i,j} €E, V{kl}eE

Y (s.t) € (V.,V) 5)

Hu <% Y

e Spare capacity on link {i,;} satisfies all protection flows
after failure of link {%,[}:

Z Yiim < Sip

(s.)e(V.,V)

ViijleE

VikD ek ©6)

A minimum-cost solution will provide flows to meet all
primary demands before a link failure and flows to meet
their respective partial protection requirements after any
single-link failure. Protection capacity sharing is captured
in constraint (6): for all demands that use link {i,} for pro-
tection after the failure of link {%, [}, enough spare capacity
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Fig. 3. Example of flow not being conserved at node v.

is allocated in addition to those demands’ primary capacity
to meet protection flow requirements. The spare capacity
allocated to link {7,j} will be the maximum needed for all
possible link failures and will be shared amongst all the
demands. To allow for preemption, constraints (5) and (6)
are replaced by constraint (7).

e After failure of link {%,l}, all protection flows that use
link {i,j} can use any available primary and spare
allocation:

ViijleE

viener P

Y fifn<wy+ sy,
GHEV.Y)

With bifurcation, each of the flows may be routed over
multiple paths. An interesting characteristic of the optimal
solution given by the linear program is that, at each node,
flow conservation for the primary flow is maintained, but
the total allocation for primary plus spare capacity, given
by (w;; + s;;) for edge {i,j}, does not necessarily maintain
flow conservation. Consider the example demonstrated
in Fig. 3. For ¢ = 1 between s and ¢, each of the two links
between nodes s and v will need one unit of allocation, and
each of the links between nodes v and ¢ will need % unit of
allocation. It is easily verified that after any link failure,
one unit of flow will always remain between s and ¢. How-
ever, at node v, there is a total of two units of flow going in
and 1.5 units going out. Prior to a link failure, the primary
path between s and ¢ will use one edge between s and v, and
between v and ¢, two links will be used, each with a capacity
allocation of % After a link failure, similar allocations will
be used to maintain full flow. Hence the total flow to sup-
port the demand before and after the link failure is con-
served; however, the capacity used to achieve this flow is
not conserved at v.
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Fig. 4. Without backup capacity sharing: capacity cost versus q.
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B. Comparison to Standard Protection Schemes

To compare the optimal solution to alternative protec-
tion schemes, two simulations are run: one in which backup
capacity sharing is not allowed, and one in which it is. For
the case without backup capacity sharing, 1000 random
graph topologies are generated, each containing 50 nodes
with an average node degree of 3.1, and having random
link costs. Two nodes are randomly chosen from each graph
to be the source and destination. The minimum-cost partial
protection routing, as found by LPpp, is compared to the
standard scheme of 1:1 protection, as well as 1:q protec-
tion. By not allowing flow to bifurcate, i.e., xff € {0,1},
V{i,j} € E, the resulting scheme would be 1:q protection
(and hence is now a mixed integer linear program). The
linear programs are solved by using the CPLEX solver.
Suurballe and Tarjan’s algorithm [21] for the shortest pair
of disjoint paths is used to solve for 1:1 protection.

The average cost to route the demand and protection
capacity using the different routing strategies is plotted
in Fig. 4 as a function of g. The top line, showing capacity
requirements under 1:1 protection, remains constant for
all values of ¢. The next two lines from the top are 1:¢q and
LPpp, respectively. As expected, both meet demand and
protection requirements use fewer resources than 1:1;
however, the minimum-cost solution produced by the par-
tial protection linear program that allows flow to bifurcate
uses significantly less capacity allocation. A lower bound on
the capacity requirement is the shortest path routing,
which provides no protection (shown in the bottom line
of the figure). The cost of providing partial protection g
is the difference between the cost of the respective protec-
tion strategies and the shortest path routing. Our partial
protection scheme achieves reductions in excess resources
of 82% at q = % to 12% at ¢ = 1 over 1:1 protection, and
65% at q = %to 12% at ¢ = 1 over 1:q protection. Addition-
ally, we note that only two disjoint paths were typically
used for a given source/destination pair. Additional disjoint
paths, if available, are longer than the initial pair of
disjoint paths, and were often too costly to use.

For the case in which backup capacity sharing is allowed,
we compare both preemptive and nonpreemptive partial
protection with the 1:1 and 1:q protection schemes, which
now allow for backup capacity sharing. Because of the dif-
ficulty of jointly optimizing all demands when backup
capacity can be shared, we consider the case of routing
the demands one at a time upon their arrival. A similar
method was used in [7,8,22] for the case of backup resource

Fig. 5. 14-node NSFNET backbone network.
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Fig. 6. With backup capacity sharing: capacity cost versus gq.

sharing with 1:1 guaranteed protection. In our tests, we
assume that once a connection is established, it remains
active for the length of the simulation. To compare the vari-
ous backup capacity schemes, we run a simulation using
100 random unit demands on a given network. It would
be infeasible to run such a test on 1000 random graphs,
as was done in the case in which protection resources were
not shared. Instead of choosing a random topology, we run
the simulation on the well-known NSFNET topology, as
seen in Fig. 5.

The protection requirement, q, for each demand has a
truncated normal distribution with standard deviation
c= % The mean of g is varied between 0 and 1 for each iter-
ation. The average costs to route the demand and protec-
tion capacity using the different routing strategies are
plotted in Fig. 6 as a function of the expected value of q.
Once again, the shortest path routing without protection
considerations is used as a lower bound for the allocation
cost. In this simulation, preemptive partial protection is
able to meet requirements using only the capacity needed
for the shortest path routing for g < %, and only an addi-
tional increase in total capacity of 2% for g < %. When con-
sidering savings in excess resources, preemptive partial
protection achieves reductions of 83% at ¢ = 1 over both
1:1 protection and 1:q protection, which are the same at
q = 1. Nonpreemptive shared partial protection, at
q = 1, achieves reductions in excess resources of 59% over
1:1 shared protection and 19% over 1:q shared protection.
An interesting observation is that 1:q and the linear pro-
gram without preemption are almost parallel. A possible
explanation for why this may be is that the LP without pre-
emption, as noted above, will often use two disjoint paths
for a given source/destination pair, with the flow split
evenly amongst the two paths. For the case of 1:q with
backup capacity sharing, the solution also uses two disjoint
paths, with the backup path being shared amongst failure-
disjoint primary paths.

IV. Sorurtions WritHouT Backur CAPACITY SHARING

In this section, we provide insights on the structure of
the solution to the minimum-cost partial protection prob-
lem when backup capacity sharing cannot be utilized. In
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Subsection IV.A, we are able to derive an exact algorithmic
solution to the partial protection problem for g < %, which
runs in polynomial time using a simple series of shortest
paths. When ¢ > 1, we analyze solutions for simpler two-
node networks in Subsection IV.B. Using these insights for
a two-node network for g > %, combined with the exact sol-
ution for g < %, a time-efficient algorithm is developed in
Subsection IV.C for general mesh networks. In Section V,
the case in which backup capacity sharing is allowed is

considered.

A. Solution for g <1

As mentioned in Section II, the total primary and spare
allocation coming in and out of any given node for an opti-
mal solution does not necessarily maintain flow conserva-
tion. Without this property, most network flow algorithms
do not apply [23] and analysis of the linear program be-
comes difficult. We show that all minimum-cost solutions
for g < % will never need spare allocation, hence allowing
us to formulate the partial protection problem using stan-
dard network flow conservation constraints. This then al-
lows us to derive a simple path-based algorithmic solution.
All proofs for this section are provided in Appendix A.

We begin by demonstrating that spare capacity is never
needed for an optimal solution if the primary capacity on
an edge is less than or equal to (1 - g). Hence, any time a
link fails, at least ¢ remains in the network.

Lemma 1. No spare capacity is needed to satisfy the flow
and protection requirements if and only if the primary
capacity on each link is less than or equal to (1 - q).

In Subsection IV.B, we show routings with zero spare al-
location are not necessarily lowest-cost for all values of q.
However, Lemma 2 shows that when ¢ <1, the minimum-
cost solution will never use spare allocation.

Lemma 2. Given a demand between nodes s and t with a
protection requirement of q < 1, all minimum-cost solutions

have no spare capacity on any edge: s;; = 0, V{i.j} € E.

Combining Lemmas 1 and 2, it can be seen that a
minimum-cost solution exists that does not use any spare
allocation for ¢ <1, and that x;; < (1-gq). V{i.j} € E. Since
the problem can now be formulated for ¢ < 1 using no spare
allocation, flow conservation at each node is preserved. The
linear program can now be written using a standard flow
formulation without the use of spare allocation. The modi-
fied linear program, referred to as LP . 5, routes the flows
on the paths in a manner that minimizes total cost and en-
sures that no edge carries more than (1 -gq) of flow:

LP,. 5: min Z iy (8)
JieE
1 ifi=s
oay- Y xp=q-1 ifi=t . VieV, (9
{ijieE yileE 0 otherwise
x; <(1-q), V{ij€ek. (10)
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The above linear program achieves a minimum-cost
routing in a network by using only primary allocation to
meet the demand. LP,_ 5 is a network flow problem with
directed and capacitated edges, which is recognized as a
minimum-cost flow problem [23], for which algorithmic
methods exist for finding an optimal solution. In Theorem
1, we show that an optimal solution for ¢ <} uses at most
three paths with allocation g on each of the shortest pairs of
disjoint paths and allocation (1 — 2g) on the shortest path.
Consider a directed graph G = (V,E) with a source s and
destination ¢. Let p, be the cost of the shortest path, p; and
P2 be the costs of the two shortest pairs of disjoint paths, £,
be the flow on the shortest path, f; and f5 be the flows on
each of the two shortest pairs of disjoint paths, respectively,
and 7 4 (q) be the cost of the allocation needed to meet de-
mand and protection requirements between s and ¢ for a
value of ¢.2

Theorem 1. Given a source s and destination t in a
two-connected directed network G = (V,E) with q < %, there
exists a minimum-cost solution meeting primary and
partial protection requirements with fo = (1-2q) and 1 =
f2 = q, giving a total cost T 4(q) = (1 -2q)po + q(@1 + p2),
where path 0 is the shortest path and paths 1 and 2 are the

shortest pairs of disjoint paths.

B. Solutions for q > %

When g < %, no spare allocation is needed when spare
capacity cannot be shared, and the minimum-cost routing
to meet the demand and protection requirements can be
found using a series of shortest paths. When ¢ > %, it may
be necessary to use spare allocation to meet all require-
ments. Since the overall allocation of primary plus spare
capacity does not necessarily meet flow conservation at
any particular node, it may not be possible to provide a sim-
ple flow-based description of the optimal solution, as was
done when ¢ <1.

If we consider N disjoint paths between the source and
destination, with the ith path having cost p;, we see that
this is equivalent to a two-node network with N links
where the ith link has cost p;. Hence, we investigate the
properties of minimum-cost solutions for two-node net-
works in order to gain insight on solutions for general
networks. These insights are then extended to develop a
time-efficient algorithm for general mesh networks in
Subsection IV.C.

A two-node network is defined as having a source and
destination node with N links between them. Each link
has a fixed cost of use, ¢;. We first note that a solution that
uses no spare allocation is not necessarily a minimum-cost
allocation when unequal link costs are considered. Con-
sider the example in Fig. 7 and let g = % Allocating a capac-
ity of 1 onto each link does not use any spare capacity and
has a total cost of %(1 + 2 4 6) = 3. In contrast, consider
using the two lowest-cost links with the addition of spare

21t is possible that the shortest path is also one of the shortest pairs of
disjoint paths.
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Fig. 7. Two-node network with link costs.

capacity, with each link having an allocation of Z The pro-
tection requirement is met, and the total cost is reduced to
2(1+ 2) = 2, which is less than the cost of the allocation
that uses zero spare capacity.

For two-node networks, we order the edges such that
¢1 £ ¢g < -+ < cy. Define x; as the allocation on the ith edge.
We note that if M < N edges are used for a minimum-cost
allocation satisfying requirements in a two-node network,
then the M lowest-cost edges are the ones that are used
(otherwise, the edge allocations could always be rear-
ranged to produce a lower-cost solution). From our analy-
sis, we are able to define a value K, which will be important
for evaluating two-node networks: K = argmaxg_s n
(cxk <7252°%,c;) (demonstrated in the proof for Lemma
4). K is the maximum number of links such that the incre-
mental cost of using an additional link would not improve
the solution. We now present the minimum-cost capacity
allocation for a two-node network. All proofs for this section
are provided in Appendix B.

We develop results on the condition in which spare
capacity is needed, which edges are active (i.e., have non-
zero allocation) in the minimum-cost solution, and what
the capacity allocation is across that set of active edges.
Recall that spare capacity is the capacity that is allocated
in addition to the capacity needed to route the primary
demand.

Lemma 3. A minimum-cost allocation for a two-node
. . . . K-1
network uses spare capacity allocation if and only if ¢ > %z~

When spare capacity is needed for a minimum-cost
solution (i.e., ¢ > I%), exactly the K lowest-cost edges will
be active, which is demonstrated in Lemma 4.

Lemma 4. When spare allocation is needed, the
minimum-cost solution for a two-node network uses
exactly the K lowest-cost edges, where K = argmaxg_o
(cxk <255 ).

An interesting result that can be seen from Lemma 4 is
that the number of edges used in an optimal solution when
spare allocation is needed has no dependence on the partial
protection requirement g. This is stated formally in
Corollary 1.

Corollary 1. The set of K edges that are used in a
minimum-cost solution when spare capacity is needed is
independent of the partial protection requirement q.

Next, we demonstrate in Lemma 5 that when spare
capacity is needed, an even allocation across the K
lowest-cost edges is optimal.

Lemma 5. A minimume-cost allocation when spare capac-
ity is needed will be an even allocation of q ﬁ on the K
lowest-cost edges, and no allocation on the remaining edges.
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Lemmas 4 and 5 both assume that spare allocation is
needed for a minimum-cost solution to meet demand and
protection requirements. We now show that when a solu-
tion does not use spare allocation, at most the K lowest-cost
edges will be used, where the K edges are those used in a
solution for when spare allocation is required.

Lemma 6. When spare allocation is not needed, a
minimum-cost solution will use at most the K lowest-cost
edges, where K is the number of edges used when spare
allocation is needed.

When q > I%, spare capacity is needed, and an even dis-
tribution across K edges meeting the above conditions is
the optimal minimum-cost solution. When spare allocation
is not needed, an even capacity allocation across the edges
is no longer necessarily the optimal solution. When g < %,
the optimal solution is given by Theorem 1. We now present
the optimal solution for when } < g < I% , which is the case
in which no spare capacity is needed.

Theorem 2. The minimum-cost allocation when 1 < q <

I% will be nonzero allocation on edges 1 to J, where J is the

integer satisfying ﬁ <q< % Moreover, the minimum-
cost allocation when q < I% isx;=(1-q),Vi=1,...,(J-1);
xy=EJ-1Dg-(J-2);x;,=0,Vi=(J +1),....,N.

C. Time-Efficient Heuristic Algorithm

Consider a mesh network with N disjoint paths between
the source and destination, and let p; be the cost of the ith
path. By treating these N disjoint paths as a two-node net-
work with N links, the results from Subsection IV.B can be
applied to develop a time-efficient algorithm for general
mesh networks for the case of ¢ > 1. Recall that for ¢ <3,
the optimal minimum-cost solution for general mesh net-
works was derived in Subsection IV.A.

The algorithm is based on finding the k-shortest edge-
disjoint paths for £ = 2 to £ = N, where N is the maximum
number of edge-disjoint paths and the length of each path
is its cost. The set of shortest disjoint paths can be found
using Suurballe and Tarjan’s algorithm [21]. For each set of
k disjoint paths, we look to see if spare allocation is needed,
ie., q > %, and use the minimum-cost allocation given by
Lemma 5 and Theorem 2. From the different possible dis-
joint path routings (from 2 = 2 to £ = N disjoint paths,
where N is the maximum number of disjoint paths avail-
able), the allocation of minimum cost is chosen. We call this
algorithm the partial protection disjoint path routing algo-
rithm (PP-DPRA). Theorem 3 gives a bound on PP-DPRA’s
performance.

Theorem 3. PP-DPRA produces a routing meeting
demand and protection requirements with a cost that is
at most twice the optimal minimum cost.

Proof. The cost to allocate capacity for ¢ = 1 is given by
Theorem 1 as %(pl + p3), where p; and p, are the costs of
each of the shortest pairs of disjoint paths. Doubling the
allocation on each of the shortest pairs of disjoint paths will
strictly double the total cost. We note that this allocation is
sufficient to provide protection for all ¢ < 1; so the cost for
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Fig. 8. Algorithm comparison: cost versus q.

protecting all ¢ < 1 using a pair of disjoint paths is at most
double that of ¢ = % The minimum cost to provide protec-
tion is monotonically nondecreasing with respect to the
value of the partial protection requirement g; this can be
clearly seen because if there existed a solution for a de-
mand for some g, that has a lower cost than that of some
q1, where q5 > q1, then the solution for g, would be used to
protect for g; as well. Since the optimal solution is mono-
tonically nondecreasing with respect to g, we know that
routing % unit of flow onto each of the shortest pairs of dis-
joint paths is a lower bound, and routing one unit of flow
onto each of the disjoint paths will be an upper bound.
Hence, routing onto the shortest pair of disjoint paths is
at most twice the cost of the optimal solution for any
q > . Using more disjoint paths, if possible, can only lower
the total cost needed to meet demand and protection
requirements. u

To assess PP-DPRA’s performance, PP-DPRA is com-
pared to 1:1, 1:q, and LPpp. The simulation is similar to
the one run in Subsection II1.B for the case in which backup
capacity sharing is not possible. PP-DPRA is implemented
in C. The average costs to meet demand and protection re-
quirements over all random graphs are plotted in Fig. 8.
Simulation results show that for ¢ < %, as anticipated, the
routing given by Theorem 1 matches the optimal routing
produced by LPpp. Forq > %, the average cost is greater than
the minimum-cost solution by 1.4% on average. Addition-
ally, on average, the running time for routing a demand with
PP-DPRA was 1072 s, while with the linear program LPpp it
was 22 s. This reduction in running time of four orders of
magnitude makes the algorithm suitable for networks that
require rapid setup times for incoming demands.

V. Sorutions WitH Backur CAPACITY SHARING

In Section III, a linear program that finds the minimum-
cost solution for the partial protection problem utilizing
backup capacity sharing was presented. A linear program
is often not an efficient method for finding a solution, and
in Section IV, an efficient algorithm was presented for the
case without backup capacity sharing. These results offer a
fundamental understanding of the partial protection prob-
lem and are useful for networks that do not allow backup
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capacity sharing. But often, networks do utilize backup
sharing, and significant savings can often be achieved.
In this section, a time-efficient algorithm for partial protec-
tion in general mesh networks using backup capacity
sharing is presented.

If two primary flows for two different demands are edge-
disjoint from one another, then under a single-link failure
model, at most one can be disrupted at any given point in
time. Since at most one demand will need to be restored
after a failure, two failure-disjoint flows can share backup
capacity.

Determining how much backup capacity can be shared
for 1:1 guaranteed protection was investigated in [7,8,22].
Because of the difficulty of jointly optimizing all demands
when backup capacity can be shared, they consider the case
of routing the demands one at a time upon their arrival. We
use a similar model for the development of our algorithm.

Conflict sets are used to determine how much backup
capacity can be shared by each incoming demand [7,8].
A conflict set indicates how much backup sharing is pos-
sible on an edge by examining how much backup capacity
it already has to protect against any particular edge fail-
ure. If some edge has more backup capacity already
assigned to it than is needed to protect against a particular
edge failure, then those resources can be used at no addi-
tional cost. For example, let some edge {i, j} have one unit of
backup capacity allocated to it to protect against the failure
of {&,1}, and with edge {i,j} not being scheduled to protect
against any other link failures. Now consider some new
connection with a primary flow that uses some other edge
{u,v}. Edges {k,l} and {u,v} can never fail simultaneously
under a single-link failure model; thus, the new connection
can use the backup capacity allocated to {i,j} for protecting
against the failure of {x,v} without incurring additional
cost. Further details of protection routing using conflict
sets can be found in [7,8]. This model can be extended to
partial protection by guaranteeing that any particular de-
mand has its partial flow requirement met after a failure.

For the case of one-at-a-time routing, previous works of-
fer heuristics to jointly optimize the primary and backup
paths for each incoming demand, as was done in [7,8,22].
We instead choose a simple strategy of using the shortest
path for the primary route. Our simulations show that us-
ing the shortest path for the primary route in fact performs
better than jointly optimizing the primary and backup
paths for each incoming demand. We call our algorithm dy-
namic shared partial protection (DSPP).

We compare, via simulation, DSPP to 1:1, 1:q, and the
nonpreemptive LP (LPpp), each of which jointly optimizes
the primary and backup paths for each incoming demand
(a “greedy optimal” approach). Demands are served one at
a time in the order of their arrival. Once a connection is
established, it will remain active for the length of the sim-
ulation. The performance of the strategies is compared us-
ing the NSFNET topology (Fig. 5) with 100 random unit
demands. The protection requirement, g, for each demand
has a truncated normal distribution with a standard
deviation ¢ = % The mean of g is varied between 0 and 1
for each iteration.
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Fig. 9. Sharing algorithm comparison: cost versus q.

The costs to route the demand and protection capacity
are plotted in Fig. 9 as a function of the expected value
of g. It is seen that when demands are routed one at a time
with a greedy optimal approach (i.e., an optimal solution is
found with respect to the incoming demand), the partial
protection scheme offers significant savings over 1:1 rout-
ing over a wide range of ¢, with LPpp achieving even
greater gains than 1:q protection because of its use of flow
bifurcation. With routing a demand one at a time upon its
arrival, we find that DSPP performs better than the greedy
schemes that jointly optimize the primary and backup
paths for each incoming demand. The greedy optimal ap-
proach of jointly optimizing the primary and backup routes
will often take a longer primary path for an incoming de-
mand in order to take advantage of backup sharing. The
longer primary path makes it more difficult for future de-
mands to find disjoint primary routes, thus lowering their
ability to share protection resources. A similar result has
been previously observed in [22].

VI. CoNCLUSION

In this paper we developed a mathematical model to
provide an alternative form of guaranteed protection in
networks: partial protection, which guarantees that a frac-
tion g of a demand remains after a network failure. A linear
program was formulated to find a minimum-cost solution
for both the cases with and without backup capacity shar-
ing. Simulations show that this LP offers significant sav-
ings over the most common protection schemes used
today. For the case with backup sharing, both a preemptive
and a nonpreemptive scheme are developed, with the pre-
emptive scheme able to offer protection for a wide range of
partial protection requirements without the use of any ad-
ditional resources beyond all the demands’ shortest path
routings. Algorithms for both the cases with and without
backup capacity sharing were developed. Without backup
capacity sharing, simulation results show that the algo-
rithm comes within 1.4% of optimal on average and runs
four orders of magnitude faster than the linear program.
For the case with backup capacity sharing, the algorithm
developed actually performs better than jointly optimizing
the primary and backup paths for each incoming demand.
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APPENDIX A: PROOFS FOR SUBSECTION [V.A

Proof of Lemma 1: First we show that if there is no spare
capacity on any link, i.e., s;; =0, V{i,j} € E, and all flow
and protection requirements are satisfied, then it must
be the case that x; <(1-¢q), V{i.j} € E. Assume all re-
quirements are satisfied, and that there exists an edge
{k.l} such that x;; > (1-q) with s;; =0, V{i,j} € E. After
the failure of {k,l}, less than g of the flow will remain
between the source and destination, which is below the par-
tial protection requirement of q. This implies spare alloca-
tion on some edge will be needed to meet all requirements,
which contradicts our original assumption.

We now consider the other direction: if x; < (1-gq),
V{i,j} € E, then the required spare capacity is zero on
all edges: s; =0, V{i.j} € E. This is straightforward to
see since after the failure of any edge, at most (1 — g) of flow
between the source and destination is disrupted, leaving at
least q, which meets partial protection requirements. =

Proof of Lemma 2: For some g < 1, assume there exists a
minimum-cost solution with an edge {i.j} that has s;; > 0.
Since a minimum-cost solution has an edge with spare
capacity allocated to it, according to Lemma 1, there must
exist some edge {k,l} with primary capacity allocation
greater than (1-q),ie,xy; =1-q+¢, > 0.

To meet protection requirements, after the failure of
edge {&,[}, the remaining flows between s and ¢ must have
a total capacity of g. The amount of primary flow remaining
after the failure of the edge carrying (1-q +¢) is (g —¢),
which means that at least ¢ flow of spare allocation will
be necessary along some of the protection paths. If this
spare allocation was instead used as primary traffic, the
primary flow on {k,l} would decrease from 1-gq + ¢ to
1 - g, which by Lemma 1 implies that no spare allocation
is necessary. This maintains the total flow from s to ¢ at 1;
hence, the primary demand and protection requirements
are met. Clearly, the total cost of the allocation without
spare capacity is less than the cost with spare since the pri-
mary capacity on {k,!} is reduced and the spare allocation
on edge {i,j} can be removed. n

Proof of Theorem 1: The modified linear program LP,_ 5
seeks to find a minimum-cost routing with capacitated
edges. This is recognized to be a minimum-cost flow formu-
lation, which is defined as finding a flow of lowest cost be-
tween a source and destination in a network that has both
edge costs and edge capacities [23]. Algorithms exist for
finding optimal solutions to minimum-cost flow problems.
One such algorithm is the successive shortest paths (SSP),
which successively finds the shortest path and routes the
maximum flow possible on that path [23]. This is repeat-
edly done until the desired flow between the source and
destination is routed. After SSP terminates, a set of edge
allocations representing the minimum-cost flow will be re-
turned. The paths that these edges represent, and those
paths’ respective flows, can be found by using the path
decomposition algorithm [23].

Before we specify the details of SSP, we first define a
residual graph, which is commonly used in maximum flow
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algorithms [23]. If edge {i,j} has a capacity and cost of
(u;j. ¢;;) in a graph G with a flow of x;; < u;; on it, then the
residual graph G” will have two edges {i,j}" and {j,i}" with
respective costs and capacities (u; - x;;, ¢;;), and (x;;, —c;).
Any flow in a residual graph preserves all node conserva-
tion constraints in the original graph [23].

The SSP algorithm is as follows: for a total demand of d
needing to be routed from node s to ¢, first find the shortest
path and route flow equal to the lowest capacity edge in
that path. If the limiting edge has capacity u* then d -
u* remains to be routed (assuming that d > u*). Next, a
residual graph is created from the allocation routed on
the shortest path. To route the remaining d — u* of flow,
the shortest path in the newly formed residual graph is
found. If d — u* is less than the lowest capacity edge in that
path, the algorithm is completed by routing the remaining
d - u* flow from s to ¢. Otherwise, flow equal to the lowest
capacity edge in the shortest path from s to ¢ is routed, the
residual graph is updated, and the process is repeated until
all of the required d flow has been routed.

In our original network G, every edge has capacity
(1 -¢q); hence, the lowest capacity edge in any path is
(1 - q). We find the shortest path in G, with a set of edges
E, and having a total cost pg; (1 — q) of flow is routed on the
set of edges Ey. In the residual graph, each edge {i.j} € E,
no longer has capacity and is removed, and a new set of
edges Ej, = {{j,i}":{i.j} € E¢} is added, with each edge hav-
ing capacity (1 — q). All other edges that were not part of the
shortest path remain in the residual graph with a capacity
of (1 -gq). Since (1 - q) was routed on the shortest path, a
flow of ¢ remains to be routed from s to ¢ in the residual
graph. All of the edges in the residual graph have a capac-
ity of (1 -¢q), and since we assume g < %, we know that
g < (1-q). Hence, the next shortest path from s to ¢ in
the residual graph, with the set of edges E; and having
a total cost of p;, has sufficient capacity to satisfy the ¢
amount of remaining flow that needs to be routed.

Two cases are possible: 1) if the second path does not use
edges created in the residual graph by the initial shortest
path, i.e., E1 N Ej = &, and 2) if the second path does use
those edges, i.e., By N Ej # @.

For case 1, the first and second paths do not overlap, and
hence happen to be the shortest pairs of disjoint paths in
the network between s and ¢. Since (1 — g) was routed onto
the first shortest path, and ¢ was routed onto the next
shortest disjoint path, we have the same flow as if routing
(1 - 2q) onto the shortest path, and ¢ onto each of the short-
est pairs of disjoint paths. This yields a total allocation cost
of po(1-q) + p1g.

For case 2, the set of edges {j,i}" € E1 N Ej, are those
edges where the second shortest path in the residual graph
overlaps with the initial shortest path that was found in
the original graph. Any allocation on {j,i}" € E1 N Ej “can-
cels” the original flow allocated on edge {i,;} from the first
shortest path found; i.e., if one unit of flow is routed on edge
{i.j} in the original graph, and 1 unit of flow is allocated on
{j.i}" in the residual graph, then the flow in the original
graph on edge {i,j} is % The flow on the edges where
the two paths overlapped is x; = (1-q)-q = (1-2q),
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V{j,i} € E; N E}, which is nonnegative since ¢ < (1 -q).
The remaining edges that did not overlap maintain their
original flow values: if {i,j} belonged to E, then its value
is x;; = (1 -q), and if {i,j} belonged to E;, then its value
is x; = q.

To recover the paths, we use flow decomposition [23],
which is to repeatedly find a path from source to destina-
tion, and subtract the flow equivalent to the minimum edge
capacity until all flow from the network has been assigned
to some path (almost a SSP in reverse). We first find the
edges of the shortest path, which now has a maximum flow
of (1 - 2q). After removing this flow from the network, we
are left with two disjoint paths of ¢ flow each, and costs of
p1 and ps, respectively. These disjoint paths are by defini-
tion the minimum-cost pair of disjoint paths: if there ex-
isted a lower-cost pair of disjoint paths, then we could
produce a lower-cost flow by routing (1 — 2q) onto the short-
est path and g onto each of the lower-cost pairs of disjoint
paths, which is a feasible flow and would give a lower-cost
routing, which is not possible since the SSP algorithm
found the minimum-cost solution. Hence, we are left with
a minimum-cost solution having a cost of (1-2q)po+
q(p1 + p2). "

ArPENDIX B: ProOFs oF SusecTioN IV.B

The following is used throughout all proofs in this
section: Ay is the N x N matrix of 1’s with the identity
matrix subtracted from it (an all 1’s matrix with a diagonal
of zeros), ¢y and xy are the cost and edge allocation row
vectors for N edges, respectively, and ey is a column vector
of N 1’s. The expression C = [AB] denotes a concatenation
of matrices A and B. Throughout these proofs, results from
optimization theory are used, with pertinent details being
found in [24].

We note that the proofs for Lemmas 4, 5, and 6 are given
before the proof for Lemma 3.

Proof of Lemma 4: For a given set of edges E with the ith
edge having a cost of ¢;, the linear program for a two-node
network needing to route a unit demand with a partial pro-
tection requirement of ¢ can be written as follows:

LP,: min xyex, (B1)

s.t. in >1, (B2)
icE

ANXN > gey, (B3)

%20, Viek. (B4)

Constraint (B2) specifies that at least one unit of flow
must be routed across the set of links, and constraint (B3)
indicates that after any particular link fails, at least g flow
must remain across the remaining set of links.

Since we assume that spare allocation is needed, the
total allocation across the set of edges is strictly greater
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than 1. Hence, constraint (B2), which indicates that flow
must be at least 1, is not tight, and can be disregarded.

When solving the primal, LPy, we know generally that
some K <N edges are active, and N — K edges are not;
i.e., if edge i is active, then x; > 0, and vise versa. We note
again that the solution will clearly use the K lowest-cost
edges; otherwise capacity can be shifted from higher- to
lower-cost edges, yielding a lower-cost solution. With the
K lowest-cost variables being active, and the N -K
highest-cost variables being zero, constraints K + 1
through N all have the form } X | x; > g. Summing the first
K constraints, we find > X | x; = q%; constraints K + 1
through N are all clearly no longer active (and they also
no longer linearly independent), and they can be disre-
garded. By removing the constraints from LP, that are
not tight, we are left with K variables and K constraints.
To solve for K variables, all K constraints must be used and
can be set to equality. The primal is rewritten as
follows:

LPyk: min xgeg, (B5)
s.t. AKXK = geg, (B6)
x>0, Vi=1,... K. B7)

This solution is straightforward to find, and is an even dis-
tribution of x; = ¢4, Vi=1....K.

We now use an inductive approach to show that all
edges that satisfy the requirement ¢; < 15X | ¢; are in
fact part of the minimum-cost solution, where K =
argmaxg_p n(cx < 25 Y K ¢;). Assume that a minimum-
cost solution uses the J — 1 lowest-cost edges, and that the
Jth edge has cost ¢; < ﬁZ{:l c;. If J — 1 edges are used,
then as shown above, the solution will be an even distribu-
tion across those J -1 edges of x; = qJ—}2, vi=1,...,
(J = 1). The total cost of the assumed optimal solution is
q 75> 7=} ¢;. We now consider the solution that uses edge
J, which was previously excluded. With J edges being used,
each edge will have an even allocation of x; = qJ—fl.
Vi=1,...,J, and the total cost across the J edges will
be g 7537 ;¢;. Using some algebraic manipulation, we
see that the solution using J edges will have higher cost
only if ¢; > 437 ; ¢;, but we assumed otherwise. Hence,
a lower-cost solution can be obtained if all J edges are used.
Inductively, we see that this approach can be continued
until we find the K lowest-cost edges such that
K = argmaxg_y  n(ck < ghg Y 1eq Ci)- .

Proof of Corollary 1: The set of K edges that are active in
a minimum-cost solution when spare capacity is needed is
given by the result in Lemma 4: K = argmaxg_s N
(CKI% ZLK: 1¢i), which does not depend on q. m

Proof of Lemma 5: In the proof for Lemma 4, a solution
that optimally solved the two-node network was found for
the primal formulation LPyg, which uses K edges, by set-
ting the constraints to equality. This solution was an even
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distribution of x; = qﬁ, Vi=1,...,K. We can perform an
additional check that our solution is optimal by verifying
complementary slackness conditions (not done here for
brevity). n

Proof of Lemma 6: When spare allocation is not needed,
the total allocation across all of the edges is 1:

LP,: min cyxy, (B8)
s.t. Anxy > qey. (B9)

N
da=1. (B10)

i=1
x>0, ViekE. (B11)

The corresponding dual is as follows:
LPy;: max » | qp; + Py (B12)
i=1,...N

st pyiilAnen] < ey (B13)
p;i=0, Vi=1.. IOV+1). (B14)

We note that the dual variable, py 1, corresponding to the
primal constraint Y ,_; yx; =1, is no longer necessarily
NX; > 1.

We initially find an optimal solution to the problem as if
it requires spare capacity, which assumes constraint (B10)
is not active. When constraint (B10) is set to equality, then
the current solution is still dual feasible if py,; is set to
zero. The solution with spare capacity (given in Lemma
5) uses an even distribution of g 15 on each of the K low-
est-cost edges, where K = argmaxg_s _ y(cx < 255> &1 Ci).
Since the K lowest-cost edges are used, the first K con-
straints will be active in the dual. Additionally, since the
first K constraints are tight in LP,, the first K dual vari-
ables will be used to solve for an optimal dual solution.
Hence, the solution to the dual will have p; >0, Vi =
1,...Kand p; =0,Vi=(K +1),...,N.

We now consider the case in which spare capacity is
not used. The solution for when spare capacity is used
remains dual feasible when the spare allocation is not
used if py 1 is initially set to 0. This solution, while being
feasible, is not necessarily optimal. We will use this ini-
tial dual feasible solution as our starting point. The
initial dual feasible solution has the first K constraints
tight (at equality); each of these constraints contain
the variables pg,; to py.1, which are all initially equal
to zero.

We wish to find a lower-cost solution to the primal, which
means finding a higher value for the objective of the dual.
Due to the structure of the problem’s linear program and its
subsequent dual, if any dual variable p;, i = 1,...,N, has
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value greater than zero, then the corresponding edge i
(primal variable x;) will be nonzero. We wish to show that
when a solution does not use spare capacity, at most the
K lowest-cost edges will be used, where the K edges are
those used for the minimum-cost allocation when spare al-
location is needed. Hence, we want to show that raising the
value of any dual variable px,; through py will not raise
the objective function. In the current dual feasible solution,
where py,1 is set to zero, all constraints 1 through K are
tight. To increase the value of any dual variable that is cur-
rently at zero (px 1 through py, 1), the sum of the dual var-
iables that currently have value must be decreased.

Assume we wish to raise px,; through py.; by some
amount 4§, i.e., Zfi 4}-{1“ p; = 6. Since the first K constraints
are tight, we must decrease p; to px by at least 5. Consider
the jth tight constraint for some j < K. The jth constraint

has the following form: p; +pg+---+0p; + -+ px+

N+1
=K+

it does not appear in the jth constraint. To raise Zf\i J;{IH i
by 8, the K — 1 dual variables that are greater than zero in
the jth constraint must each be reduced by x5 When we
consider all K tight constraints, it can be easily shown that
the only feasible solution to raise Z{i +1+1 p; by & 1is to lower
each dual variable p; through px by z%; & Hence, to achieve
the increase of § across the variables pg.; through py,1,
the total decrease across the first K dual variables is
1%5, which we note is greater than 6.

1Pi = ¢j, where p; is multiplied by zero to show that

Looking at the objective function [Eq. (B12)], it can be
seen that dual variables p; through py all have the same
cost of ¢. Any increase in the dual variables px ., through
py will result in a larger decrease of the dual variables p,
through pg, which will bring down the total value of the
objective. Hence, raising the value of pg,; through py will
not find a new maximum for the objective. The cost of the
dual variable py,; in the objective is 1, and ¢ < 1. So, it
may be possible to raise py_; while decreasing p; through
Pk, and also increase the objective function. The dual var-
iable py, 1 appears in each of the first K tight constraints.
Again, consider the jth tight constraint for some j < K, and
exclude the dual variables px; through py. The jth con-
straint has the following form: p; +po +---+0p; +--- +
Pk + bn+1 = ¢;. Raising py 4 will simply result in a strict
decrease across the first K dual variables. Furthermore,
since pk,, through py also appear in each of the first K
tight constraints, there is never a reason to raise some
pi, (K+1) <i <N, since a larger increase in the objective
can be achieved by shifting any allocation that would go
from p; to py 1 instead. Hence, if py; ; were raised, at most
the original dual variables p; through px will be nonzero,
which will yield a solution using at most the K lowest-
cost edges. n

Proof of Lemma 3: First, assume there exists a
minimum-cost solution that uses spare capacity when
g < I% Since we assume that spare capacity is used for
a minimum-cost solution, we know that the results from
Lemmas 4 and 5 hold. The total capacity allocated for a
minimum-cost solution across the K links is q%. Since

we assumed that g sl%, the total allocation across all
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of the links is g &; <£ K =1, which means that the
total allocation either uses no spare allocation or is insuffi-
cient to meet the primary demand. Hence, we have a
contradiction.

Next, assume there exists a minimum-cost solution us-
ing no spare capacity if ¢ > £21. Continuing the proof from
Lemma 5, we consider the objective function of the dual,
max) ;_;  nqP; +Pny+1- If the dual variable py,q is
greater than zero, then its corresponding primal constraint
[constraint (B10)] must be tight (by way of complementary
slackness). If constraint (B10) is tight, then no spare allo-
cation is used. In the proof for Lemma 5, a dual feasible
solution was considered, and the conditions for increasing
the objective were found. To increase the dual variable
Pn.1 by 6 the first K dual variables must be decreased
by a total of 655 K . The cost of each of the first K dual var-
iablesis g, Whlle the cost of ppr, 1 is 1. The dual objective can
only be raised if the decrease in cost from lowering the first
K dual variables is offset by an even larger increase in the
objective by raising py, 1. A § increase in py, ; increases the
objective by 6, but decreases the first K dual variables by
Wthh lowers the objective by g6 % %-7 We assume that

K 1’
q > K L The decrease in the obJectlve from the first K dual
variables is q(SK > 5E-1 K K i > 6. Hence, when q > Kl, a

better solution can be found by having py 1 be greater than
zero, which means that no spare allocation is used, thus
contradicting our original assumption. L]

Proof of Theorem 2: We continue the proof from Lemma
3. As was shown, when q < %=1, the objective of the dual
function can be raised by i 1ncreas1ng Pn41- The initial dual
feasible solution when g < Kl has p - N + 1 set to zero.
Solving for the dual variables in the set of linear equations
of our initial solution (while py,.; is at 0), we get
pj =Y K ¢; - 23 ¢;. By definition, ¢; <cp < -+ < cy, so the
solutions to the dual variables are px <pg_1 <--- <p;. To
increase Pn.1 by some value 6, pl to px each decrease by

K 1, for a total decrease of 6

We now increase § by 1ncrernents, until one of the dual
variables goes to zero. Since each dual variable decreases
by the same amount § ﬁ, the dual variable with the lowest
value will go to zero first. The dual variable px will be the
first to go to zero, and the corresponding Kth constraint is
no longer active, giving a solution in which the Kth edge
has zero allocation; this was the most expensive edge that
was in use, so it matches intuition that it would be the first
to go to zero. Currently, p; to px_; are greater than zero,
and py,1 is also greater than zero. We wish to see whether
we can further increase py,; and continue raising the ob-
jective value. Without pg, which is now zero, we have the
following objective function: max Zl 1 qp; +pn41- Usinga
similar process as above, we get the condition that we will
increase 6 (which is py 1) only if ¢ < % This process can
be repeated until raising the value of py, ; further does not
increase the objective. Inductively, we stop increasing
PN+1 When we have J active dual variables such that
J 1<qg< J 7, where J is an integer. By complementary
slackness, there are JJ active constraints in the primal,
which yields a solution using ¢/ variables, which will be the
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J lowest-cost edges. We get the following set of ¢/ indepen-
dent equations: xj[A;_;e;] = [ge;1]. We can solve this set of
linear equations, and obtain the results in Theorem 2. =
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