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Receiver-Based Flow Control for Networks
in Overload

Chih-ping Li and Eytan Modiano, Fellow, IEEE

Abstract—We consider utility maximization in networks where
the sources do not employ flow control andmay consequently over-
load the network. In the absence of flow control at the sources, some
packets will inevitably have to be dropped when the network is in
overload. To that end, we first develop a distributed, threshold-
based packet-dropping policy that maximizes the weighted sum
throughput. Next, we consider utility maximization and develop
a receiver-based flow control scheme that, when combined with
threshold-based packet dropping, achieves the optimal utility. The
flow control scheme creates virtual queues at the receivers as a
push-back mechanism to optimize the amount of data delivered to
the destinations via back-pressure routing. A new feature of our
scheme is that a utility function can be assigned to a collection of
flows, generalizing the traditional approach of optimizing per-flow
utilities. Our control policies use finite-buffer queues and are in-
dependent of arrival statistics. Their near-optimal performance is
proved and further supported by simulation results.
Index Terms—Finite-buffer networks, flow control, network

overload, queueing analysis, robust control, stochastic networks,
utility maximization.

I. INTRODUCTION

F LOW control in data networks aims to provide fair allo-
cation of resources and regulate the source rates of traffic

flows in order to prevent network overload. In recent years,
network utility maximization problems have been studied to
optimize network performance through a combination of flow
control, routing, and scheduling, whose optimal operations are
revealed as the solution to the utility maximization problems
(e.g., see [1]–[9]). Most studies in network flow control focus on
source-based algorithms that require all sources to react prop-
erly to congestion signals such as packet loss or delay. How-
ever, in the presence of a greedy or malicious source that injects
excessive traffic into the network, the throughput of other data
flows may be adversely affected or even starved. In such sce-
narios, source-based flow control may be ineffective. We are
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Fig. 1. (a) Tree network with three classes of traffic. When the network is over-
loaded by exogenous traffic, nodes form a defense perimeter and
perform rate throttling by dropping packets to optimize network performance.
(b) Resulting network topology when node in Fig. 1(a) is misconfigured so
that it forwards everything it receives. The control policy developed in this paper
performs packet dropping at all intermediate nodes and seamlessly establishes a
new defense perimeter without any changes in network operations.

thus motivated to study optimal control policies in overloaded
networks where the sources are uncooperative.
We consider the problem of maximizing throughput utilities

in a network, assuming that all traffic flows do not employ flow
control and may overload the network. Flows are categorized
into classes so that flows in a class have a shared destination.
A class may simply be a flow specified by a source–destination
pair, or corresponds to a subset of flows that communicate with
a commonWeb site. A utility function is assigned to each traffic
class, and the sum of the class-based utilities is maximized as a
means to control the aggregate throughput of flows in each class.
The use of class-based utility functions is partly motivated by
the need of mitigating network congestion caused by a collec-
tion of data flows whose aggregate throughput needs to be con-
trolled [13]. Without flow control at the sources, some packets
will be dropped when the network is overloaded. To provide dif-
ferentiated services to multiple traffic classes, we consider the
scenario where the destinations can perform flow control to reg-
ulate the received throughput of each traffic class. The question
we seek to answer is how to design in-network packet dropping
and receiver-based flow control strategies to maximize the sum
of class-based utilities and stabilize the network.
In-network packet dropping and receiver-based flow control

enhance the robustness of network operations. For example,
consider the tree network in Fig. 1(a) that serves three
classes of traffic. When the network is overloaded, an optimal
packet-dropping policy implemented at all network nodes
guarantees that the receiver is protected from excessive
traffic, and the throughput of all traffic classes is optimized
via receiver-end flow control. Now, suppose that node in
Fig. 1(a) is misconfigured and forwards everything it receives;
effectively, node becomes a greedy user. In this scenario,
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since all nodes perform packet dropping, we have a new con-
trolled network domain in Fig. 1(b) in which the receiver
remains protected and the throughput of all traffic classes is
reoptimized without any changes in network operations. In con-
trast, under source-based flow control that relies on end-users
or bordering nodes to regulate traffic, if a user becomes greedy
or a bordering node is misconfigured, then all downstream
nodes are overloaded.
In this paper, we develop such receiver-based flow con-

trol policies using tools from stochastic network optimiza-
tion [14], [15]. Our main contributions are threefold. First, we
formulate a utility maximization problem that assigns a utility
function to a class of flows, of which the usual per-flow-based
utility maximization is a special case. Second, given an arbi-
trary arrival rate matrix (possibly outside the network's stability
region), we characterize the set of achievable throughput vec-
tors in terms of queue overflow rates. Third, using a simple
decomposition of the utility functions, we design a network
control policy consisting of: 1) a set of flow controllers at the
receivers; 2) a packet-dropping mechanism at internal nodes;
and 3) back-pressure routing between intermediate nodes. The
receiver-based flow controllers adjust throughput by modifying
the differential backlogs between the receivers and their neigh-
boring nodes—a small (or negative) differential backlog is
regarded as a push-backmechanism to slow down data delivery
to the receivers. To deal with undeliverable data due to net-
work overload, we design a threshold-based packet-dropping
mechanism that discards data whenever queues grow be-
yond certain thresholds. The threshold-based packet-dropping
policy, without the use of flow control, suffices to maximize
the weighted sum throughput. Moreover, the combined flow
control and packet-dropping mechanism has the following
properties.
1) It is distributed and only requires information exchange

between neighboring nodes.
2) It uses finite-size buffers.
3) It is nearly utility-optimal (throughput-optimal as a special

case), and the performance gap from the optimal utility
goes to zero as buffer sizes increase.

4) It does not need the knowledge of arrival rates and thus is
robust to time-varying arrival rates that can go far beyond
the network's stability region.

5) This policyworks seamlessly without the need of explicitly
deciding whether a network enters or leaves an overload
period.

6) The policy can be implemented in parts of a network that
include the receivers, treating the rest of the network as
exogenous data sources (see Fig. 2).

There has been a significant amount of research in the general
area of stochastic network control. Utility-optimal policies that
combine source-end flow control with back-pressure routing
have been studied in [6]–[9] (and references therein). These
policies optimize per-flow utilities and require infinite-capacity
buffers. However, they are not robust in the face of uncooper-
ative users who may not adhere to the flow control scheme. A
closely related problem to that studied in this paper is that of
characterizing the queue overflow rates in networks under over-
load. In a single-commodity network, a back-pressure policy is

Fig. 2. Our receiver-based policy can be implemented in the whole network on
the left, or implemented only at nodes , , and on the right, where is the
only receiver. The rest of the network on the right may be controlled by another
network operator or follow a different network control scheme.

shown to achieve the most balanced queue overflow rates [16],
and controlling queue growth rates using the max-weight policy
is discussed in [17]. The queue growth rates in networks under
max-weight and -fairness policies are analyzed in [18] and
[19].We finally note that the importance of controlling an aggre-
gate of data flows has been addressed in [13], and rate-limiting
mechanisms in front of a Web server to achieve some notion of
max-min fairness against distributed denial-of-service (DDoS)
attacks have been proposed in [20]–[22].
The outline of the paper is as follows. The network model

is given in Section II. We formulate the utility maximization
problem and characterize the set of achievable throughput
vectors in terms of queue overflow rates in Section III.
Section IV introduces a threshold-based packet-dropping policy
that maximizes the weighted sum throughput without the use of
flow control. Section V presents a receiver-based flow control
and packet-dropping policy that solves the utility maximization
problems. Simulation results that demonstrate the near-optimal
performance of our policies are given in Sections IV and V.

II. NETWORK MODEL

We consider a network with nodes and
directed links . Assume time is
slotted. In every slot, packets randomly arrive at the network
and are categorized into a collection of classes. The defini-
tion of a data class is flexible except that we assume packets in
a class have the same destination . For example, each
class can be a flow specified by a source–destination pair. In-
ternet service providers may assign business users to one class
and residential users to another. Media streaming applications
may categorize users into classes according to different levels
of subscription. While classification of users/flows in various
contexts is a subject of significant importance, in this paper we
assume for simplicity that the class to which a packet belongs
can be ascertained from information contained in the packet
(e.g., source/destination address, tag, priority field, etc.). Let

be the number of exogenous class
packets arriving at node in slot , where is a finite con-
stant. Let for all . We assume are indepen-
dent across classes and nodes , and are i.i.d. over slots
with mean . We assume that the arrival rates

are unknown in the network.
Packets are relayed toward the destinations according to dy-

namic routing and link rate allocation decisions. For simplicity,
we assume that there are no prespecified paths for each traffic
class; our results can be easily generalized to the case where
each class is given a collection of paths in advance. Each link
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transmits data from node to node and
has a fixed capacity (in units of packets/slot).1 Under a
given control policy, let be the service rate allocated to
class data on link in slot . The service rates must satisfy
the link capacity constraints for all and
all links . Class packets that arrive at a node but are
yet forwarded are stored in a queue . Let be the
queue backlog of class packets at node at time 2; assume
initially for all and . Destinations do not buffer
packets, and we have for all and . For now, we
assume every queue has an infinite-capacity buffer; we
show later that our control policy needs only finite-size buffers.
To resolve potential network congestion due to traffic overload,
a queue , after forwarding data to neighboring nodes in
slot , discards packets from the remaining backlog at
the end of the slot. Packets discarded from the queue are
removed from the network immediately. The drop rate
depends on the control policy and takes values in for
some finite . Let be the set of incoming links of
node , and be the set of outgoing links of node . The
queue backlog process evolves over slots according to

(1)

where . The inequality in (1) is due to the fact
that endogenous arrivals may be strictly less than the allocated
incoming link rates when neighboring nodes
do not have sufficient packets to send.
For convenience, we define the maximum transmission rate

into and out of a node by

Throughout the paper, we use the following assumption.
Assumption 1: We assume .
Equation (1) shows that is the largest amount of

data that can arrive at a node in a slot and is an upper bound on
the maximum queue overflow rate at any node. Assumption 1
ensures that the maximum packet-dropping rate is no less
than the maximum queue overflow rate, so that we can always
choose packet-dropping rates to stabilize the network.

III. PROBLEM FORMULATION

We assign to each class a utility function . Given
an (unknown) arrival rate matrix , let be the set
of all achievable throughput vectors , where is the
aggregate throughput of class data received by the destination

1We focus on wireline networks in this paper for the ease of exposition. Our
results and analysis can be generalized to wireless and switched networks in
which link rate allocations are subject to fading and interference constraints.

2With a slight abuse of notation, we use to denote the queue, the
packets in the queue, and the number of packets in the queue.

. Note that is a function of . We seek to design a control
policy that solves the global utility maximization problem

maximize (2)

subject to (3)

where the region is presented later in Lemma 1. We assume
all functions are concave, increasing, continuously differen-
tiable, and have bounded derivatives with
for all and all classes .

A. Simple Example
Consider the tree network in Fig. 1(a) that serves three classes

of traffic destined for node . Class 1 data originates from two
different sources and and may represent the collection of
users located in different parts of the network communicating
with . If class-1 traffic is congestion-insensitive and overloads
the network, without proper flow control, classes 2 and 3 will
be starved due to the presence of class 1. The class-based utility
maximization over the tree network is

maximize (4)
subject to feasible (5)

where denotes the throughput of class-1 data originating
from , and , , and are defined similarly. This utility
maximization (4)–(5) provides fair resource allocation over ag-
gregates of flows.
We remark that the class-based utility maximization problem

(4)–(5) [or (2)–(3) in the general form] can potentially be
solved by source-based admission control policies. However,
such policies would require coordinations among the sources
to optimize their aggregate admitted data rate and are infea-
sible in large-scale networks. In this paper, we develop a fully
distributed control policy that solves (2)–(3) with information
exchange only between neighboring nodes.

B. Achievable Throughput
The next lemma characterizes the set of all achievable

throughput vectors in (3).
Lemma 1: Under i.i.d. arrival processes with an arrival rate

matrix , let be the closure of the set of all achiev-
able throughput vectors . Then, if and
only if there exist flow variables and
queue overflow variables such that

(6)

(7)

(8)

In other words

(6)(7)(8) hold with
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Proof of Lemma 1: See Appendix A.
In Lemma 1, (6) is the flow conservation constraint stating

that the total flow rate of a class into a node is equal to the flow
rate out of the node plus the queue overflow rate. Equation (7)
is the link capacity constraint. The equality in (8) shows that the
throughput of a class is equal to the sum of exogenous arrival
rates less the queue overflow rates. Lemma 1 is closely related
to the network capacity region defined in terms of admissible
arrival rates (see Definition 1); their relationship is shown in the
next corollary.
Definition 1 ([23, Theorem 1]): The capacity region of the

network is the set of all arrival rate matrices for which
there exist flow variables such that

(9)

(10)

Corollary 1: An arrival rate matrix lies in the network
capacity region if and only if there exist flow variables
such that flow conservation constraints (6) and link capacity

constraints (7) hold with for all and .
We remark that the solution to the utility maximization

(2)–(3) activates the linear constraints (8); thus, the problem
(2)–(3) is equivalent to

maximize (11)

subject to (12)

(6) and (7) hold (13)
(14)

Let be the optimal throughput vector that solves (11)–(14).
If the arrival rate matrix is in the network capacity region
, the optimal throughput is for class

data from Corollary 1. Otherwise, we have
, where is the optimal queue overflow rate.

C. Decomposition of the Network Control Problem
Our control policy that solves (11)–(14) has two main fea-

tures. First, we have a packet-dropping mechanism discarding
data from the network when queues build up. An observation
is that, in order to optimize throughput and keep the network
stable, we should drive the packet-dropping rate to be equal to
the optimal queue overflow rate. Second, we need a flow con-
troller driving the throughput vector toward the utility-optimal
point. To convert the control objective (11) into these two con-
trol features, we define, for each class , a utility function
related to as

(15)

where are control parameters that will be chosen in the
control policy. Using (12), we have

(16)

Since are unknown constants, maximizing is the
same as maximizing

(17)

This equivalent objective (17) is optimized by jointly maxi-
mizing the new utility at the receivers and mini-
mizing the weighted queue overflow rates (i.e., the weighted
packet-dropping rates) at each node .
Optimizing the throughput vector at the receivers

is nontrivial because it depends on the rates at which
packets are dropped across the network, and exogenous arrival
rates are unknown. To develop a distributed control policy,
we use the Lyapunov-drift-plus-penalty algorithm [15, Ch. 4]
that allows us to transform the network utility maximization
problem into an optimal queue control problem as follows
(the Lyapunov-drift algorithm can be viewed as implementing
the primal-dual method to solve optimization problems in sto-
chastic networks [14, Sec. 4.10]). First, it is useful to introduce
auxiliary control variables and and consider
an equivalent optimization problem to (11)–(14)

maximize (18)

subject to (19)
(20)

(12)–(14) hold (21)

The equivalence of the two problems is easy to show after we re-
place (11) with (16). Second, we solve the problem (18)–(21) by
designing a distributed network control policy with three tasks.
1) Each intermediate node minimizes in (18) and

achieves the packet-dropping constraint for all
classes in (20).

2) A receiver maximizes the utility in (18) and
achieves the throughput constraint in (19).

3) The flow conservation and link capacity constraints (21)
are naturally satisfied under feasible network control deci-
sions in every slot.

For the first task, we will construct a virtual queue of
which the quantities and are the long-term arrival and
service rate, respectively. Stabilizing the virtual queue
achieves the constraint as a necessary condition
for queue stability. Consequently, the first task is done by sta-
bilizing virtual queues while minimizing the weighted
service rates of the queues . Similarly, the second
task can be transformed into an optimal queue control problem
that aims to equalize the arrival rate and the service rate
of a virtual queue and maximize the utility function .
These two optimal queue control problems are solved by the
Lyapunov-drift-plus-penalty algorithm, which gives rise to the
network control policy. See Sections IV and V for details.

IV. MAXIMIZING THE WEIGHTED SUM THROUGHPUT
For the ease of exposition, we first consider the special case

of maximizing the weighted sum throughput in the network.



620 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 2, APRIL 2015

Define the linear utility function for each
class , where . We present a threshold-based
packet-dropping policy that maximizes . Surpris-
ingly, flow control at the receivers is not needed here because
maximizing the weighted sum throughput is equivalent to min-
imizing the weighted packet-dropping rate. Indeed, choosing

in (15) yields for all . From (17),
maximizing is equivalent to minimizing .
In Section V, we combine the threshold-based packet-dropping
policy with receiver-end flow control to solve the general utility
maximization problem (2)–(3).

A. Control Policy

Maximizing the weighted sum throughput requires each
intermediate network node to achieve the packet-dropping
constraint and minimize for all
classes , according to the discussions in Section III-C. We
define a virtual queue associated with each physical
queue . The queue evolves over slots according
to

(22)

where is the service allocation of the queue
in slot , and is the number of packets discarded

from the queue in slot . From (1), we have

(23)
which is strictly less than the allocated dropping rate if

has insufficient data. Assume
for all and , where is a control parameter.3 Con-
sider the queueing dynamics (22) and the constraint .
The quantity represents the average packet-dropping rate at
queue , i.e., the average arrival rate of the virtual queue

. Let be the time average of service allocations
at queue . From queueing theory, stabilizing the

virtual queue achieves . Minimizing
at node for class packets can be achieved by minimizing
the weighted service allocation at queue in
every slot. In this way, the task of an intermediate node is con-
verted into one that stabilizes the virtual queue while
minimizing its weighted service allocation in every
slot. This is solved by the Lyapunov-drift-plus-penalty algo-
rithm (see details in Appendix C), according to which we pro-
pose the following policy.

Overload Resilient Algorithm

Parameter Selection: Choose for all classes ,
where . Choose a parameter .

3It suffices to assume to be finite. Our choice of
avoids unnecessary packet dropping in the initial phase of the system.

Backpressure Routing: Over each link , let
be the subset of classes that have access to link . Compute

the differential backlog for each
class , where at the receiver . Define

Let the transmission rate of class packets over link be
, where is an indicator function

satisfying if event is true, and 0 otherwise. Let
for all classes over link .

Packet Dropping: At queue , allocate the
packet-dropping rate

(24)

where is a constant chosen to satisfy Assumption 1.
At the virtual queue , allocate its service rate

(25)

Queue Update: Update queues and virtual queues
according to (1) and (22), (23) in every slot,

respectively.

The packet-dropping subroutine in this policy is threshold-
based. The choice of in (24) is a back-pressure operation
between the two queues and . The bang-bang
choice of in (25) results from the aforementioned op-
timal queue control problem that has two conflicting goals: Sta-
bilizing the virtual queue needs large service alloca-
tions , but minimizing the weighted average service rate

requires small values of . As it turns out, the
policy chooses the maximum value if
grows beyond a threshold for queue stability, and
otherwise. It is notable that the policy needs only local

information exchange between neighboring nodes and does not
require the knowledge of exogenous arrival rates. Thus, network
overload is autonomously resolved by each node making local
decisions of routing, scheduling, and packet dropping.

B. Performance of the Policy
Lemma 2 (Deterministic Bound for Queues): For each class

, define the constants

(26)

In the policy, queues and are determinis-
tically bounded by

for all and

where for all classes . In addition, we have
for all , , and .

Proof: See Appendix B.
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In Lemma 2, the term is the finite buffer size sufficient
at queue and is chosen proportional to the coefficients

in the linear objective function—the policy gives
a larger buffer to a traffic class that produces better rewards to
avoid packet dropping in that class. The next theorem shows
that the performance of the policy approaches optimality
as the buffer sizes increase.
Theorem 1: Define the long-term throughput of class as

(27)

where denotes the number of class packets received
by the destination over link . The policy yields the
limiting weighted sum throughput satisfying

(28)

where is the optimal throughput vector that solves
(11)–(14) under the linear objective function , and
is a finite constant defined as

where denotes the cardinality of a set .
We omit the proof of Theorem 1 because it is similar to that

of Theorem 2 presented later in the general case of utility max-
imization. From (28), the policy yields near-optimal per-
formance by choosing the parameter sufficiently large, where
a large value of implies a large buffer size of

. Moreover, as shown in Corollary 1, if the arrival rate
matrix lies in the network capacity region , then the op-
timal throughput for class is and (28) reduces
to . That we can choose
arbitrarily large leads to the next corollary.
Corollary 2: The policy is (close to) throughput-

optimal.

C. Simplified Policy

Lemma 2 shows that the backlog of the virtual queue
takes values in the finite interval for
all under the policy. This property of allows us
to simplify the policy by using the imperfect queue-length
information for all and . This simpli-
fication eliminates the use of virtual queues . Because
the error in the queue-length information is
bounded by a finite constant , the performance of the sim-
plified policy remains optimal (as goes to infinity).4 The
resulting policy is presented as follows.

4The optimality of the simplified policy can be shown by plugging the
inequality

(29)

into the right-hand side of the (48) and following the rest of the Lyapunov-drift
analysis. Equation (29) is easily derived using the property that ,

, and take values in .

Fig. 3. Three-node network with three classes of traffic.

A Simplified Policy

• Same as the policy except that: (i) the virtual queues
are not used; (ii) we choose the packet-dropping

rate at queue .

It is not difficult to show that both the deterministic bound
and Theorem 1 hold under the simplified

policy, except that a different finite constant in (28) is used.
The quantity (or ) is the threshold for dropping class
packets in the queue . In order to maximize the weighted
sum throughput, it makes sense to have a higher threshold for
a traffic class that is “more important,” so that packet drop-
ping happens less likely in that class. Interestingly, it suffices to
choose the threshold for class traffic, where the thresholds
are proportional to the weights in the linear utility function.

D. Simulation of the Policy
We conduct simulations for the policy in the network

shown in Fig. 3. The directed links and have
the capacity of 1 packet/slot. There are three classes of traffic
to be served. For example, class 1 data arrives at node and
is destined for node . Classes 1 and 2 compete for service
over , and classes 2 and 3 compete over . Each
simulation below is run over 10 slots.
1) Fixed Arrival Rates: In each class, we assume a Bernoulli

arrival process whereby 20 packets arrive to the network in a
slot with probability 0.1, and no packets arrive otherwise. The
arrival rate of each class is 2 packets/slot, which clearly over-
loads the network.
Let be the throughput of class . Consider the objective of

maximizing the weighted sum throughput ; the
weights are rewards obtained by serving a packet in a class. The
optimal solution is: 1) Always serve class 1 at node because
it yields better rewards than serving class 2. 2) Always serve
class 3 at node —although class 2 has better rewards than
class 3, it does not make sense to serve class 2 at only to be
dropped later at . The optimal throughput vector is therefore
(1, 0, 1). Consider another objective of maximizing
. Here, class 2 has a reward that is better than the sum of

rewards of the other two classes. Thus, both nodes and
should always serve class 2; the optimal throughput vector is
(0, 1, 0). Table I shows the near-optimal performance of the

policy in both cases as increases; see Fig. 4 for the
running average throughput under the policy.
2) Time-Varying Arrival Rates: We show that the

policy is robust to time-varying arrival rates. Suppose classes 1
and 3 have a fixed arrival rate of 0.8 packets/slot. The arrival rate
of class 2 is 2 packets/slot in the interval ,
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Fig. 4. Running average throughput of the three classes of flows in the line
network in Fig. 3, with the objective of maximizing . (a)

. (b) . (c) . (d) .

TABLE I
THROUGHPUT PERFORMANCE OF THE POLICY UNDER FIXED ARRIVAL
RATES. (a) MAXIMIZING . (b) MAXIMIZING

TABLE II
THROUGHPUT PERFORMANCE OF THE POLICY UNDER TIME-VARYING

ARRIVAL RATES

and is 0.1 packets/slot elsewhere. We consider the objective
of maximizing . The network is temporarily
overloaded in the interval , and the optimal throughput in

is (0, 1, 0) as explained in the above case. The network is
underloaded in the interval , in which the optimal
throughput is (0.8, 0.1, 0.8).
We use the following parameters: , ,

, and .
Table II shows the near-optimal throughput performance of the

policy. Fig. 5 shows the sample paths of the queue pro-
cesses , , , and in the simulation.
The queue backlogs suddenly build up when the network enters
the overload interval , but are kept close to the upper bound

without growing unbounded.

V. UTILITY-OPTIMAL CONTROL
We solve the general utility maximization problem (2)–(3)

with a network control policy similar to the policy except
for an additional flow control mechanism.

Fig. 5. Queue processes under the policy with time-varying arrival rates
that temporarily overload the network. (a) Queue . (b) Queue .
(c) Queue . (d) Queue .

A. Virtue Queue
In Section III-C, we explained that solving the equivalent

utility maximization problem (18)–(21) needs each receiver
to maximize the new utility function subject to ,
where is an auxiliary control variable and is the throughput
of class packets. We transform this task into an optimal queue
control problem as follows. Let be the number of class
packets received by the destination over link in
slot , i.e., , . De-
fine a virtual queue that is located at the receiver and
evolves over slots according to

(30)

where is the service allocation in slot . Observe that the
throughput of class packets is the average “data arrival rate”
of the virtual queue . Let be the time average of
in (30). Then, the task of a receiver is done by equalizing the
arrival rate and the service rate of the virtual queue
while maximizing . This optimal queue control problem
is solved by the Lyapunov-drift-plus-penalty algorithm with a
carefully chosen Lyapunov function. Specifically, it is known
that if queue is stable, then . However, we are
interested in the stronger relationship that stabilizing leads
to . It suffices to guarantee that the queues do not
waste service opportunities, for which we need two conditions.
1) The queues usually have more than enough (virtual)

data to serve and are stable.
2) When does not have sufficient data, the allocated

service rate .
To attain the first condition, we use an exponential Lyapunov
function that forces the virtual backlog processes away
from zero and centers them around a parameter ; the
widely used quadratic Lyapunov function does not work in
this case. The second condition is attained by choosing the
parameters to define the utility functions ; see
Section V-C for details.
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B. Control Policy
The following policy, constructed in Appendixes C and D as

an application to the Lyapunov-drift-plus-penalty algorithm,
solves the general utility maximization problem (2)–(3).

Utility-Optimal Overload-Resilient Algorithm

Parameter Selection: Choose positive parameters ,
, , , and to be discussed in Section V-C.

Define for all and , for all , and
for all .

Packet Dropping: Same as the policy.
Backpressure Routing: Same as the policy, except

that the differential backlog over each link
connected to a receiver is modified as

(31)

where we abuse the notation by redefining

if
if

(32)

for all classes . The exponential form of is a result
of using exponential Lyapunov functions. We emphasize that
here has nothing to do with real data buffered at the
receivers (which must be zero); it is just a function of the
virtual queue backlog that induces the “desired force”
in the form of differential backlog in (31) to pull or push
back data in the network. Thus, unlike standard back-pressure
routing that has , here we use as part of the
receiver-based flow control mechanism.
Receiver-Based Flow Control: At a destination , choose

the virtual service rate of queue as the solution to

maximize (33)
subject to (34)

where .
Queue Update: Update queues , , and

according to (1), (22), and (30), respectively, in every slot.

The maximization problem (33)–(34) comes from the
Lyapunov-drift-plus-penalty algorithm; see Appendix C. Intu-
itively, maximizing the first term of (33) in every slot is useful
to maximize the long-term utility . Maximizing the
second term in (33) captures the need of stabilizing the virtual
queue while keeping its backlog around . Specifically,
if the queue backlog is large so that , then the
second term of (33) is used to allocate a large service rate
to reduce the value of for queue stability. If
and , then the solution to (33)–(34) chooses

provided that ; the queue backlog
is allowed to increase. In the latter case, choosing
conflicts with the job of maximizing ; the parameter in
(33) is used to control the relative importance of the two jobs.
We can apply the simplified policy described in

Section IV-C to the policy to simplify the packet-drop-
ping mechanism, in which case the virtual queues are

not needed. Such simplification does not affect the performance
of the policy.

C. Choice of Parameters
We briefly discuss how the parameters in the policy

are chosen. Let be a small constant that affects the perfor-
mance of the policy [cf. (36)]. In (33)–(34), we need the
parameter to satisfy , where is
solution to the utility maximization (2)–(3) for a given exoge-
nous arrival rate vector . This choice of ensures that
the virtual queue can be stabilized when its arrival rate
is the optimal throughput . One feasible choice of is the
sum of capacities of all links connected to the receivers plus .
Due to technical reasons, we define
and choose the parameter in (32). The
parameter in (32) is used to bound the queues away
from zero and center them around ; for technical reasons,
we need . The parameters are chosen to satisfy

for all . Any satisfying
is a feasible choice because

This value of ensures that the service rate of the vir-
tual queue , as the solution to (33)–(34), is zero whenever

. This enforces the second condition described in
Section V-A to equalize the arrival rate and the service rate of
the queue (see Lemma 6 in Appendix F for details). The
parameter captures the tradeoff between utility and buffer
sizes presented in Section V-D and is chosen sufficiently large;
for technical reasons, we need to satisfy .

D. Performance Analysis
Lemma 3: In the policy, queues , , and

are deterministically bounded by

where and are defined in (26) and

(35)

Proof of Lemma 3: See Appendix E.
Theorem 2: The policy yields the limiting utility that

satisfies

(36)

where is defined in (27), is the throughput vector that
solves the utility maximization problem (2)–(3), and is a
finite constant [defined in (82)].

Proof: See Appendix F.
Theorem 2 shows that the performance gap from the optimal

utility can be made arbitrarily small by choosing a large and
a small . The performance tradeoff of choosing a large is
again on the required finite buffer size .

E. Simulation of the Policy
We conduct two sets of simulations.
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TABLE III
THROUGHPUT PERFORMANCE OF THE POLICY IN THE

THREE-NODE NETWORK

TABLE IV
MAXIMUM BACKLOG IN QUEUES UNDER THE POLICY IN THE

THREE-NODE NETWORK

1) On the Three-Node Network in Fig. 3: The goal is to pro-
vide proportional fairness to the three classes of traffic; equiva-
lently, we maximize the objective function

. Each directed link and has the capacity
of one packet per slot. The arrival process for each class is that,
in every slot, 20 packets arrive to the network with probability
0.1, and zero packets arrive otherwise. The arrival rate vector
is (2, 2, 2), which overloads the network. In this setting, due to
symmetry, the optimal throughput for class 1 is equal to that of
class 3, which is the solution to

maximize: subject to:

The optimal throughput vector is (2/3, 1/3, 2/3), and the optimal
utility is 1.91.
As explained in Section V-C, we choose the parameters

of the policy as follows. Let and
for all classes . By definition, . The optimal
throughput vector satisfies for the given ar-
rival rate vector (2, 2, 2), and we choose (any
value of greater than works).
By definition, . In the arrival
processes, we have . By Assumption 1, we choose

. Let .
We simulate the policy for different values of

(i.e., different buffer sizes). The simulation time is 10 slots.
Table III demonstrates the near-optimal performance of the

policy. Table IV shows the maximum backlog in each
queue during the simulation. Consistent with Lemma
3, the maximum backlog at queue is bounded by

.
2) On the Tree Network in Fig. 1(a): Consider providing

max-min fairness to the three classes of traffic in Fig. 1(a). Each
link has the capacity of one packet per slot. In each of the four
arrival processes, 20 packets arrive in a slot with probability
0.1, and zero packets arrive otherwise. The arrival rates are
(2, 2, 2, 2), which overload the network. The optimal throughput
for the three classes is easily seen to be (2/3, 2/3, 2/3), where
each flow of class 1 contributes equally in that class.

TABLE V
THROUGHPUT PERFORMANCE OF THE POLICY IN THE TREE NETWORK

We approximate max-min fairness by using the -fairness
functions with a large value of .
The utility maximization becomes

maximize

subject to feasible in Fig. 1(a)

where is the throughput of class-1 flow originating from
node ; the other variables are similarly defined.
According to Section V-C, we choose the parameters of the

policy as follows. Let for all classes .
The optimal throughput vector satisfies for the
given arrival rate vector (2, 2, 2, 2), achieved when the network
always serves class 1. We choose (any value of
greater than works). We observe from
Fig. 1(a) that and .
Choose in the arrival processes and

by Assumption 1. Let . We simulate the
policy for different values of , and each simulation

takes 10 slots. The near-optimal performance of the
policy is given in Table V.

VI. CONCLUSION
We developed a receiver-based flow control and threshold-

based packet-dropping policy to cope with network overload
and achieve optimal utility. Our scheme is robust to uncoop-
erative users who do not employ source-end flow control and to
malicious users that intentionally overload the network. A novel
feature of our policy is a receiver-based backpressure/push-back
mechanism that regulates data flows at the granularity of traffic
classes, where packets can be classified based on their types.
This is in contrast to source-based schemes that can only dif-
ferentiate between source–destination pairs. Our control policy
may be useful to handle different types of service requests in In-
ternet application servers under overload conditions, or manage
multicommodity flows in finite-buffer networks with perfor-
mance guarantees.
The receiver-based flow control scheme has a wide range

of potential applications, including preventing denial-of-service
attacks in Web servers, mitigating overload conditions that may
arise when the network is experiencing significant degradation
due to a disaster or attack, and even regulating traffic flows in
the Internet. This framework also gives rise to a number of fu-
ture research directions, such as accounting for the “cost” of
packet dropping (e.g., due to the need to retransmit the dropped
packets). A closely related problem involves the interaction be-
tween TCP-based flow control and the receiver-based flow con-
trol scheme, e.g., TCP's response to the packet-dropping mech-
anism. In this context, it would also be interesting to develop a



LI AND MODIANO: RECEIVER-BASED FLOW CONTROL FOR NETWORKS IN OVERLOAD 625

mathematical model to study optimal overload control in a net-
work serving TCP flows. Another interesting future research di-
rection is to use our framework to study traffic offloading prob-
lems in wireline and wireless networks, where traffic offloading
is analogous to “dropping” data from the overloaded network to
an alternative backup network.

APPENDIX A
PROOF OF LEMMA 1

First, we show (6)–(8) are necessary conditions. Given a con-
trol policy, let be the class packets transmitted over
link in the interval , and be the class packets
queued at node at time . From the fact that the difference be-
tween incoming and outgoing packets at a node in is equal
to the queue backlog at time , we have

(37)
which holds for all nodes for each class . Taking
expectation and time average of (37), we obtain

(38)

The link capacity constraints lead to

(39)

In (38), the sequence for each
pair is bounded because all links have finite capacity. Thus, all
sequences are bounded as well. There
is a subsequence such that limit points and exist
and satisfy, as

(40)

(41)

Applying (40)–(41) to (38), (39) yields (6) and (7). Define the
aggregate throughput of class as

(42)

The inequality in (8) follows from (42) and (40). The equality
in (8) results from summing (6) over .
To show the converse, it suffices to show that every interior

point of is achievable. Let be an interior point of ,
i.e., there exists such that . There
exist corresponding flow variables and such that

(43)

(44)

In this system of flows (43)–(44), by removing subflows that
contribute to queue overflows, we obtain new flow variables

and such that , ,
and

(45)

(46)

(47)

Define

From (47), we have and
. It is not difficult to check that , , and

. Combining them with (45) and (46) yields

These inequalities show that the rate matrix is an interior
point of the network capacity region in Definition 1, and there-
fore is achievable by a control policy, such as the back-pressure
policy [23]. As a result, the aggregate rate vector , where

, is also achievable.

APPENDIX B
PROOF OF LEMMA 2

We prove Lemma 2 by induction. First, we show is
deterministically bounded. Assume for some
, which holds at since we let . Consider
two cases.
1) If , then from (22) we obtain

where the second inequality uses (23).
2) If , then the policy selects

in the queue , and

where the last inequality uses the induction assumption.
We conclude that .
Next, we show is bounded. Assume

for some , which holds at because we let .
Consider two cases.
1) If , then from (1) we get

where the second inequality uses Assumption 1.
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2) If , the policy selects
at queue , resulting in

where the third inequality uses induction assumption.
We conclude that .
Finally, we show for all slots. Assume

this is true at some time ; this holds when because we
define . Consider two cases.
1) If , then the policy selects

in the queue , and we have
by induction assumption.

2) If , then the policy selects
, and we have

.
The proof is complete.

APPENDIX C

We construct a proper Lyapunov drift inequality that leads
to the policy. Let be
the vector of all physical and virtual queues in the network.
Using the parameters and given in the policy, we define
the Lyapunov function

The last sum is a Lyapunov function whose value grows expo-
nentially large whenever deviates in both directions from
. This exponential Lyapunov function [24] is useful for both

stabilizing and guaranteeing there is sufficient backlog in
. We define the Lyapunov drift

, where the expectation is with respect to all ran-
domness in the system in slot .
Define and , where
is an indicator function for the event . Let

. The next lemma is proved in Appendix D.
Lemma 4: The Lyapunov drift under any control policy

satisfies

(48)

where is a finite constant defined as

The conditional expectation in (48) is with respect to
the randomness of arrivals and the possibly random control
decisions in slot , given that the network state sum-
marizing the system history is observed. Equation (48) is
the Lyapunov-drift-plus-penalty inequality, which we seek to
minimize in every slot after observing . Intuitively, min-
imizing the Lyapunov drift helps to stabilize the physical
queues and the virtual queues and . In
order to maximize the objective function (18), it is useful to
minimize

(49)

in every slot; the expected time average of (49) is closely related
to the objective function in (18). Min-
imizing the Lyapunov drift and minimizing (49) in a slot,
however, conflict with each other; e.g., the former needs large

, and the latter desires small . It is natural to min-
imize a weighted sum of and (49) in every slot, which is
the left-hand side of (48) weighted by the parameter .
By isolating decision variables in (48), it is easy to verify that

the policy observes the current network state and
minimizes the right-hand side of (48) in every slot.

APPENDIX D
We establish the Lyapunov drift inequality in (48). Ap-

plying to (1) the fact that
for nonnegative reals , , and , and using Lemma 7 in
Appendix G, we have

(50)
where is a finite
constant. Equations (22) and (23) lead to

. Similarly, we obtain for queue

(51)

where .
Lemma 5: Given fixed constants and , we define

(52)
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Then

(53)

(54)

Proof: Let and
; we have and .

Equation (30) yields

if
if .

Since , we have

(55)

because the first term is bounded by the second term if
, and is bounded by the third term oth-

erwise. Multiplying both sides by and using
, we have

(56)

where the last term follows the Taylor expansion of . If
we have

(57)

then plugging (57) into (56) leads to (53). Indeed, by definition
of in (52), we get

which uses .
Also, (30) leads to

Define the event : If for all ,
i.e., all upstream nodes of the receiver have sufficient data to
transmit, which yields for all .
It follows

if event happens
otherwise (58)

where the second case follows that queue is always non-
negative. Similar to (55), using (58) and the Taylor expansion
of we obtain

(59)

Bounding the last term of (59) by (57) and multiplying the in-
equality by yields (54).

Next, by the definitions and
, for any real number we have

(60)

Similarly, we have

(61)

Plugging into (60) and
into (61), inequalities (53) and (54) lead to

(62)

(63)

Summing (50) and (51) over for each , summing
(62) and (63) over , and taking conditional expectation,
we have

(64)

where is a finite constant defined as

(65)

The constants and are defined right after (50) and (51),
respectively. Adding to both sides of (64)

yields (48).

APPENDIX E
PROOF OF LEMMA 3

The boundedness of the queues and follows
the proof of Lemma 2. We show the queues are determin-
istically bounded by induction. Suppose , which
holds at because we let . Consider two cases.
1) If , then by (30) we have

.
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2) If , then from (35) we obtain

(66)
where the last inequality follows our choice of satisfying

in Section V-C. As a result, in (32) we
have

where the inequality follows in (66). Since all queues
for are deterministically bounded by ,

we obtain for all nodes such that
. Consequently, the policy does not

transmit any class packets over the links , and the
virtual queue has no arrivals. Therefore,

.
We conclude that . The proof is complete.

APPENDIX F
PROOF OF THEOREM 2

Let the throughput vector and the flow variables
be the optimal solution to the utility maximization

problem (11)–(14); this optimal solution exists, but is unknown.
Consider a “genie” stationary policy that observes the
network state and chooses deterministically in slot .
1) and for all .
2) for all .
3) whenever , and

otherwise.
The control variables and take values in

, which includes the interval
by Assumption 1. The optimal queue overflow rate
is at most and thus is a feasible choice for

and . The choice of is feasible be-
cause satisfy the link capacity constraints (7). The
choices of are feasible because we assume

.
Under the stationary policy , the equalities in (8) and (12)

yield in every slot. For all network
states that satisfy , we have

For all network states satisfying , we have

Define as the right-hand side of (48) in slot
evaluated under policy . Since the policy min-

imizes the right-hand side of (48) in every slot, we have

for all and all network states
. Thus, the inequality (48) under the policy satisfies

(67)

where we define

(68)

and is given in (65). In (67), the inequality (a) uses that

and the equality (b) is because the flow variables and
satisfy the flow conservation constraints (6).
The utility functions are assumed to have bounded deriva-

tives with for all . Thus, the utility func-
tions have bounded derivatives with
for all . From , we can show

(69)

Indeed, if , then (69) holds. If , then
by mean-value theorem there exists such that

Using (69) in (67) yields

(70)

where the last equality uses and
in (12). The next lemma is useful.

Lemma 6: Define as the virtual
data departing the queue in slot . If and

, then for all under the policy.
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Proof of Lemma 6: The value of is the solution to the
convex program (33)–(34). If , then we have

and . If , the
problem (33)–(34) reduces to

maximize (71)
subject to (72)

Since the function is decreasing due to
, the optimal solution to (33)–(34) is .

Since , we have .
From Lemma 6, we use in (70) and

rearrange terms to get

(73)

Define the time average . Define
, , and similarly. Taking expectation and

time average over in (73), dividing by ,
rearranging terms, and applying Jensen's inequality to the func-
tions , we get

(74)

Adding and subtracting at the left-hand side of (74)
and using the definition of , we get

(75)
From (22) and (30), we have

Taking expectation and time average yields

(76)

(77)

By the law of flow conservation, the sum of exogenous arrival
rates is equal to the sum of delivered throughput, time averages
of dropped packets, and queue growth rates. In other words, we
have for each class and for all slots

(78)

Combining (76)–(78) yields

(79)
Using the boundedness of queues , , and in
Lemma 3 and the continuity of , we obtain from (77) and (79)
that

(80)

(81)

where the last equality of (80) uses the definition in (27). Taking
a limit of (75) as and using (80) and (81), we obtain

where the constant , defined in (68), is

(82)

The proof is complete.

APPENDIX G
Lemma 7: If a queue process satisfies

(83)

where and are nonnegative bounded random variables
with and , then there exists a pos-
itive constant such that

.
Proof of Lemma 7: Squaring both sides of (83) yields

where is a finite constant satisfying .
Dividing the above by two and defining complete
the proof.
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