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Scheduling in Networks With Time-Varying Channels
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Abstract—We consider the optimal control problem for net-
works subjected to time-varying channels, reconfiguration delays,
and interference constraints. We show that the simultaneous
presence of time-varying channels and reconfiguration delays
significantly reduces the system stability region and changes the
structure of optimal policies.We first considermemoryless channel
processes and characterize the stability region in closed form. We
prove that a frame-based Max-Weight scheduling algorithm that
sets frame durations dynamically, as a function of the current
queue lengths and average channel gains, is throughput-optimal.
Next, we consider arbitrary Markov-modulated channel processes
and show that memory in the channel processes can be exploited to
improve the stability region. We develop a novel approach to char-
acterizing the stability region of such systems using state-action
frequencies, which are stationary solutions to a Markov Decision
Process (MDP) formulation. Moreover, we develop a dynamic
control policy using the state-action frequencies and variable
frames whose lengths are functions of queue sizes and show that it
is throughput-optimal. The frame-based dynamic control (FBDC)
policy is applicable to a broad class of network control systems,
with or without reconfiguration delays, and provides a new frame-
work for developing throughput-optimal network control policies
using state-action frequencies. Finally, we propose Myopic policies
that are easy to implement and have better delay properties as
compared to the FBDC policy.

Index Terms—Markov decision process, queueing, reconfigura-
tion delay, scheduling, switching delay, time-varying channels.

I. INTRODUCTION

S CHEDULING in wireless networks subject to interference
constraints has been studied extensively over the past

two decades [13], [14], [17], [30], [31], [34], [39], [40], [45].
However, to the best of our knowledge, the effects of recon-
figuration delays have not been considered in the context of
networks subject to interference constraints and time-varying
channel conditions. Reconfiguration delay is a widespread phe-
nomenon that is observed in many practical telecommunication
systems [3], [6], [27], [46]. In satellite networks where multiple
mechanically steered antennas are providing service to ground
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Fig. 1. System model. A single-hop wireless network with interference con-
straints, time-varying channels, and reconfiguration delays.

stations, the time to switch from one station to another can be
around 10 ms [6], [41]. Similarly, in optical communication sys-
tems, laser tuning delay for transceivers and optical switching
delay can take significant time ranging from microseconds
to tens of milliseconds depending on technology [8], [27].
In wireless networks, delays for electronic beamforming or
channel switching that occurs in phased-lock loops in oscilla-
tors can be more than 200 s [3], [6], [41], [46]. Worse yet,
such small delay is often impossible to achieve due to delays
incurred during different processing tasks such as channel
estimation, signal-to-interference ratio, transmit diversity and
power control calculations in the physical layer [3], [18],
and stopping and restarting the interrupt service routines of
various drivers in upper layers [3], [33]. Moreover, in various
real-time implementations, channel switching delays from a
few hundreds of microseconds to a few milliseconds have been
observed [33], [42], [46].
We consider an optimal control problem for single-hop net-

works given by a graph structure of nodes
and links , subject to reconfiguration delays, time-varying
channels, and arbitrary interference constraints. For the time-
varying channel states, we consider both independent and iden-
tically distributed (i.i.d.) or Markov modulated processes for
which the structure of the stability region and the optimal poli-
cies differ significantly. Our system model can be used to ab-
stract single-hop wireless networks as shown in Fig. 1, satellite
networks with multiple satellite servers and ground stations as
shown in Fig. 2, and optical switched networks [8], [34]. The
network controller is to dynamically decide to stay with the cur-
rent schedule of activations or to reconfigure to another schedule
based on the channel process and the queue length information,
where each decision to reconfigure leaves the network idle for
an arbitrary but finite amount of time, corresponding to the re-
configuration delay. Note that in many networks, some nodes
in the network may continue to function, while others are being
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Fig. 2. Example 4 3 satellite network. Ground stations are subject to time-
varying channels , , , , and the servers are subject to slot recon-
figuration (switchover) delay. Server 2 is forced to be idle due to interference
constraints.

reconfigured. Hence, assuming that all links are idle during net-
work reconfiguration is a pessimistic assumption that may hold
in some systems, such as optical switches, satellite transmitters,
etc. However, in other cases, this assumption may be restrictive
and provides a lower bound on performance. Our goal is to study
the impact of reconfiguration delays on system stability and op-
timal algorithms.We show that, as compared to systems without
reconfiguration delays [30], [31], [39], [40], the stability region
can be significantly reduced, and that optimal policies take on a
different structure.
We first consider the case of memoryless (i.i.d.) channel pro-

cesses where we characterize the stability region in closed form
as the convex hull of feasible activation vectors weighted by
the average channel gain of each link. This result shows that in
the presence of reconfiguration delays, it is not possible to op-
portunistically take advantage of the diversity in time-varying
channels because the i.i.d. channel processes refresh during each
reconfiguration interval. Moreover, we show that a class of Vari-
able-size Frame-based Max-Weight (VFMW) algorithms that
make scheduling decisions based on time-average channel gains
and queue lengths stabilize the system by keeping the current
schedule over a frame of duration that is a function of the queue
lengths.
Next, we consider Markov modulated channel processes with

memory and develop a novel methodology to characterize the
stability region of the system using state-action frequencies, the
steady-state solutions to a Markov Decision Process (MDP) for-
mulation for the corresponding saturated system. We show that
the stability region enlarges with the memory in the channel pro-
cesses, which is in contrast to the case of no reconfiguration de-
lays [17], [30], [40]. Furthermore, we develop a novel frame-
based dynamic control (FBDC) policy based on the state-ac-
tion frequencies that achieves the full stability region. To our
knowledge, this is the first throughout-optimal scheduling algo-
rithm for wireless networks with time-varying channels and re-
configuration delays. The state-action frequency approach and
the FBDC policy are applicable to many network control sys-
tems as they provide a general framework that reduces stability
region characterization and throughput-optimal algorithm de-
velopment to solving linear programs (LPs). Finally, we con-
sider Myopic policies that do not require the solution of an LP.
Simulation results in Section IV-D suggest that theMyopic poli-
cies may in fact achieve the full stability region while providing

better delay performance than the FBDC policy for most arrival
rates.
Scheduling in communication networks has been a very

active research topic over the past two decades (e.g., [13], [15],
[17], [24], [28], [30], [31], [36], [39], [40], [44], and [45]). In
the seminal paper [39], Tassiulas and Ephremides characterized
the stability region of wireless networks and proposed the
throughput-optimal Max-Weight scheduling algorithm. The
same authors considered a parallel queuing system with ran-
domly varying connectivity in [40], where they characterized
the stability region of the system explicitly and proved the
throughput-optimality of the Longest-Connected-Queue sched-
uling policy. Later, these results were extended to joint power
allocation and routing in wireless networks in [30] and [31],
and optimal scheduling for switches in [26], [34], and [36].
Suboptimal distributed scheduling algorithms with throughput
guarantees have been studied more recently in [10], [22], [24],
and [44], while [15] and [28] developed distributed algorithms
that achieve throughput optimality (for a detailed review, see
[17] and [29]). Networks with delayed channel state informa-
tion were considered in [21], [35] and [45], which showed that
the stability region is reduced and that a policy similar to the
Max-Weight algorithm is throughput-optimal. Dynamic server
allocation over parallel queues with time-varying channels and
limited channel sensing was considered in [1], [23], and [47].
These papers studied saturated system models, and the opti-
mality of myopic policies was established for a single server
and two channels in [47], for arbitrary number of channels in
[1], and for arbitrary number of channels and servers in [2].
Switching delay has been considered in Polling models in the

Queuing Theory literature for single-server systems (e.g., [4]
and [43]). However, time-varying channels were not considered
since they do not typically arise in classical Polling applications.
A detailed survey of the works in this field can be found in [43].
Scheduling in optical or manufacturing networks under recon-
figuration delay was considered in [8], [9], [14], and [37], again
in the absence of time-varying channels. In [13], we consid-
ered a simple queuing system of two queues and a single-server
subject to ON/OFF channels and a single-slot switchover delay,
where we developed the state-action frequency approach and
the throughput optimality of a frame-based policy. Here, we
generalize this model to arbitrary single-hop networks.
The main contribution of this paper is in solving the sched-

uling problem in single-hop networks under arbitrary recon-
figuration delays, time-varying channels, and interference con-
straints for the first time. We introduce the system model in de-
tail in Section II. For systems with memoryless channel pro-
cesses, we characterize the stability region and propose the class
of throughput-optimal VFMW policies in Section III. We de-
velop the state-action frequency approach and characterize the
stability region for systems with Markov modulated channels in
Section IV-A.We develop the throughput-optimal FBDC policy
in Section IV-B and present simulation results in Section IV-D.

II. MODEL

Consider a single-hop wireless network given by a graph
structure of nodes and links ,
where . Data packets arriving at each link are to be
transmitted to their single-hop destinations, where we refer to
the packets waiting for service at link as queue . We consider
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Fig. 3. Markov modulated ON/OFF channel process. The case of
provides positive correlation.

a discrete-time (slotted) system where an integer number of data
packets can arrive at or depart from the corresponding queue at
each link during each time-slot. Let the i.i.d. stochastic process

with arrival rate denote the number of packets arriving
to the source node of link at time-slot , where

, for all links . Let
denote the queue sizes at the links at the beginning of time-
slot . Each link is subject to a time-varying channel
process denoted by that takes values in a discrete set

with , where corre-
sponds to the number of packets that can be served from queue
at time . We consider both memoryless channel processes and
Markovian channels with memory as defined below.
Definition 1 (Memoryless Channels): For each link ,

the channel process takes i.i.d. values from the
set at each time-slot , according to a probability distribution
for link , .
A simple example of a memoryless channel process is the

Bernoulli process with two-state i.i.d. ON/OFF channels.
Definition 2 (Channels With Memory): The channel process

forms a -state irreducible and aperiodic
Markov chain over the set , according to a transition proba-
bility distribution .
The basic example of a Markovian channel process with

memory is the commonly used Gilbert–Elliot channel model
shown in Fig. 3. We let denote the time-average channel
gain of link defined by

(1)

The limit exists both for memoryless and Markovian channel
processes and is equal to the corresponding ensemble (steady
state) average with probability (w.p.) 1 due to the Strong Law
of Large Numbers (SLLN) [16]. We assume that all the arrival
and channel processes, , , are independent of each
other and across different links.
Let denote the system reconfiguration delay, namely, it

takes time-slots for the system to change a schedule, during
which all the servers are necessarily idle.1 The set of all sched-
ules in the system, , is given by the set of feasible binary acti-
vation vectors . If the activation
vector is used at time-slot , then
packets depart from queue . We include the vectors dominated
by the feasible activation vectors, as well as the zero vector

in , where the activation vector is equal to for all
time-slots at which the system is undergoing reconfiguration. A
policy is a mapping from the set of all possible queue length,

1Note that in a slotted system, even a minimal reconfiguration delay will lead
to a loss of a slot due to synchronization issues.

channel process, and action histories to the set of all probability
distributions on .
The feasibility of a schedule is determined by the interfer-

ence constraints in the system, which are assumed to be arbi-
trary. For instance, in a wireless mesh network as shown in
Fig. 1, the set can be determined according to the well-studied
-hop interference model [17], or signal-to-interference-plus-

noise ratio (SINR) interference model [22]. Alternatively, for a
satellite network of queues and servers where there are
a possible links as shown in Fig. 2, the set can
be the set of all binary vectors of dimension with at most

nonzero elements such that no two active servers interfere
with each other [14]. Finally, for an input-queued op-
tical switch, the set can be the set of all matchings [34].
We say that an activation vector is ready to be activated in

the current time-slot if the system does not need to reconfigure
in order to activate , i.e., in such a case the servers that will be
activated under are present at their corresponding links at the
beginning of the time-slot. Finally, we assume that the queues
are initially empty and that the arrivals take place after the depar-
tures in any given time-slot. Under this model, the queue sizes
evolve according to the following expression:

(2)
Definition 3 (Stability [29], [30]): The system is stable if

For the case of integer-valued arrival and departure processes,
as in this paper, this stability criterion implies the existence of a
long-run stationary distribution for the queue-sizeMarkov chain
with bounded first moments [29].
Definition 4 (Stability Region [29], [30]): The stability re-

gion is the closure of the set of all arrival rate vectors
such that there exists a control algorithm that sta-

bilizes the system.
A policy is said to be throughput-optimal if it stabilizes the

system for all input rates strictly inside . The -stripped sta-
bility region is defined for some as

Throughout the paper, we represent vectors, matrices, and
sets with bold letters, and we explicitly state when a variable
is a matrix. We use the following notation for the inner product
of two -dimensional vectors:

III. MEMORYLESS CHANNELS

A. Stability Region
We start by characterizing the system stability region for the

case of memoryless channels.
Theorem 1 (Stability Region —Memoryless Channels): The

stability region is given by

such that

(3)
The proof is omitted for brevity and can be found in [11]. The
sufficiency of Theorem 1 also follows from Theorem 2 and
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Corollary 1 in Section III-B, where we show that a variable
frame-based algorithm that keeps the current activation for a
duration of time based on the current queue lengths and average
channels gains is throughput-optimal. The basic intuition behind
Theorem 1 is that no policy can take advantage of the diversity
in time-varying memoryless channels and achieve a greater rate
than the average channel gain for each link. This is because in
the presence of reconfiguration delays, the system cannot switch
to another schedule instantly in order to opportunistically ex-
ploit better channel states, but can switch only after (at least) one
time-slot and observe an average channel gain upon switching.
This is in sharp contrast to the corresponding systems without
reconfiguration delay considered in [30], [31], and the refer-
ences therein, where throughput-optimal policies are able to
take advantage of the diversity in i.i.d. channels by instantly and
opportunistically switching schedules. As shown in the example
below, for a simple two-queue system, this negative impact of
the reconfiguration delay reduces the stability region consider-
ably as compared to systems without reconfiguration delays in
[30] and [40].
Theorem 1 also establishes that, as long as , the dura-

tion of the reconfiguration interval has no effect on the stability
region of the system with memoryless channel processes. This
is because for memoryless channels, giving infrequent reconfig-
uration decisions minimizes the fraction of time-slots lost to re-
configuration. In fact, this is the intuition behind the throughput-
optimal policy proposed in Section III-B, where the policy de-
lays the reconfiguration decisions as a function of the queue
lengths and the channel gains.
1) Example: Two Queues and a Single Server: Consider i.i.d.

ON/OFF channels with probability of ON channel state equal to
0.5 for both queues for all time-slots, and 1 slot switchover delay
for the server. The stability region of this system can be obtained
from (3), and it takes a simple structure

(4)

The stability region of the corresponding system with no
switchover delay was established in [40]: and

. As depicted in Fig. 4, even 1-slot switchover
delay reduces the stability region of the system considerably.
Note that for systems in which channels are always connected,
the stability conditions are given by
and is not affected by the switchover delay [43]. Therefore, it is
the combination of switchover delay and time-varying channels
that results in fundamental changes in system stability. As we
show in Section IV, and as displayed in Fig. 4, the memory in
the channel processes can be exploited to improve the system
stability region when the reconfiguration delay is nonzero.

B. Variable Frame-Based Max-Weight (VFMW) Algorithm
In this section, we propose a throughput-optimal algorithm

based on the following intuition: Given that no policy can
take advantage of the diversity in channel processes, making
infrequent reconfiguration decisions minimizes throughput lost
to reconfiguration. For networks with nonzero reconfiguration
delays, in the absence of randomly varying connectivity, we
proved in [14] that a variable-size frame-based Max-Weight
algorithm that keeps the same schedule over a frame of du-
ration based on the queue lengths is throughput-optimal. We
show here that an adaptation of the algorithm in [14] that

Fig. 4. Stability region under memoryless (i.i.d.) channels and channels with
memory (Markovian with ) with and without switchover delay.

Algorithm 1: VFMW Algorithm With Frame Length

1: Find the Max-Weight schedule at time , , w.r.t.
weighted by the average channel gains

2: For the next slots, if , then invoke
reconfiguration, otherwise apply .

3: Apply for an interval of duration
slots where is a monotonically increasing
sublinear function, i.e., .

4: Repeat above for the next frame starting at .

also takes into account the average channel gains of the
time-varying links is throughput-optimal for systems with
memoryless channel processes. Specifically, let be the first
slot of the th frame, let be the queue lengths at ,
and let . The VFMW policy calcu-
lates the Max-Weight schedule with respect to and

and applies this schedule during the frame
as defined in detail in Algorithm 1.
The VFMW algorithm sets the frame length as a suitably

increasing sublinear function of the queue lengths, which dy-
namically adapts the frame duration to the stochastic arrivals.
For instance, with satisfies
the criteria for the frame duration. Under the VFMW policy,
the frequency of service reconfiguration is small when the
queue lengths are large, limiting the fraction of time spent on
switching. Note that this frequency should not be too small,
otherwise the system becomes unstable as it is subjected to a
bad schedule for an extended period of time. When the queue
lengths are small, the VFMW policy makes frequent reconfig-
uration decisions, becoming more adaptive and providing good
delay performance2.
Theorem 2: The VFMW policy is throughput-optimal. An

immediate corollary to this theorem is as follows.
Corollary 1: The conditions in (3) are sufficient for stability.

The proof of Theorem 2 is given in Appendix A and is presented
using the frame length function
for a fixed for ease of exposition. It estab-
lishes the fact that the drift over the switching epochs, i.e.,

2Note that a similar policy was considered in [38] to stabilize a very different
system, i.e., a system without reconfiguration delays but with asynchronous
transmission opportunities.
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Fig. 5. Average queue length versus throughput under the VFMW, LVFMW,
MW, and the FFMW policies.

, is negative using the
quadratic Lyapunov function, . The
basic intuition behind the proof is that if the queue sizes are
large, the VFMW policy accumulates sufficient negative drift
during the frame, which overcomes the cost (i.e., arrivals)
accumulated during reconfiguration. Moreover, for large queue
lengths, since the policy keeps the same schedule during the
resulting long frames, we obtain the time-average channel gains
in the system, as seen in the stability condition in (3). Note that
choosing the frame length as a sublinear function of the queue
sizes is critical. This is because the VFMW algorithm uses the
Max-Weight schedule corresponding to the beginning of the
frame, which “loses weight” as the frame goes on. Therefore,
one needs to make sure that the system is not subjected to
this “lightweight” schedule for too long. While frame lengths
that are sublinear in the queue size are provably stable using
standard Lyapunov techniques, frame lengths that are linear in
the queue size may not be stable. In fact, simulation results in
Fig. 5 show that the VFMW policy implemented using frame
lengths that are linear in sum-queue lengths fails to stabilize
the system for all arrival rates in the stability region.
Note that the standard Max-Weight scheduling algorithm or

its variants are not throughput optimal for systems with nonzero
reconfiguration delays. This is proved in [14, Lemma 1] for
systems without time-varying channels. Since the case of no
time variation in channel gain is a special case of our model

, Max-Weight scheduling algorithm is not
throughput-optimal the system considered here. The reason be-
hind this is that these policies switch the current schedule too
often, independent of the reconfiguration delay, wasting a sig-
nificant fraction of throughput during switching. This can be
seen in simulation in Fig. 5 where the Max-Weight policy be-
comes unstable much before VFMW policy as the arrival rates
are increased. It is interesting to note that the VFMW policy re-
quires the knowledge of average channel gains as
opposed to ordinaryMax-Weight or its variations, which require
instantaneous channel state information for
all time-slots. This is an important advantage for the VFMW
policy over Max-Weight as instantaneous channel-state knowl-
edge may not be available in all time-slots, or it may be costly
to obtain.
In Section IV, we show that for channel processes with

memory, delaying the reconfiguration decisions as in the

VFMW algorithm does not work, and more sophisticated algo-
rithms are necessary in order to exploit the channel memory.

C. Simulation Results—Memoryless Channels

We performed simulation experiments that determine av-
erage queue occupancy values for the VFMW policy, the
version of the VFMW policy implemented using frame lengths
linear in queue lengths (termed LVFMW policy), the ordinary
Max-Weight (MW) policy and the Max-Weight policy with
fixed frame sizes (FFMW). The MW policy “chooses” the
schedule , and the FFMW policy
applies the same activation vector as the VFMW policy over
frames of constant duration. The average total queue occupancy
over slots is defined by ,
and the frame lengths for the two implementations of the
VFMW policy are chosen as and

. Through Little's law, the average
packet delay in the system is equal to the average queue size
divided by the total arrival rate into the system. We considered
a network of four links and three servers as shown in Fig. 2,
where servers 1 and 3 are dedicated to links (queues) 1 and 4,
respectively, and server 2 is shared between queues 2 and 3.
This system can also model an appropriate single-hop wireless
network as in Fig. 1. Due to interference constraints, no two
links that are “adjacent” to each other can be activated simul-
taneously, namely, the set of feasible activations are given by

, , and . For each data point,
the simulation length was 100 000 slots, and the arrival and the
channel processes were i.i.d. Bernoulli, with arrival rate , and
probability of ON channel state equal to 0.5, respectively.
We simulated total average queue length as a function

of sum-throughput for along the line between the
origin and the maximum sum-throughput point given by

, where from (3), can be calculated
to be with . Note that the
maximum sum-throughput for the corresponding system with
zero reconfiguration delay is about 1.44 [17], which shows the
significant reduction in throughput due to the reconfiguration
delay. Fig. 5 presents the delay as a function of sum-throughput
for the VFMW, MW, and the FFMW (with frame sizes

and ) policies, for slot reconfiguration
delay.Fig. 5 confirms that as the arrival rates are increased,
the system quickly becomes unstable under the MW policy
around . We also observe that the VFMW policy
provides stability for all sum-rates less than 1. The FFMW
policy has larger stability region than that of the MW policy,
and increasing the frame length of the FFMW policy improves
it's stability region at the expense of delay performance. The
VFMW policy implemented using frame lengths linear in the
queue lengths failed to stabilize the system for sum-throughputs
larger than about 0.76.
In order to demonstrate the stability of the VFMW policy for

a case where all other policies are unstable, for the same system
and policies as in Fig. 5, we plot total queue length as a func-
tion of time for in Fig. 6. This figure
shows that the MW, FFMW, and LVFMW policies have a linear
growth trend in queue lengths over time, therefore they are un-
stable. On the other hand, under the VFMW policy with frame
length , the system is stable, and
it reaches steady state, where the total queue length fluctuates
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Fig. 6. Total queue length versus time for a fixed arrival rate
under the VFMW, LVFMW, MW, and the FFMW

policies.

around a fixed value, and does not appear to grow. The VFMW
policy provides a good balance by dynamically adapting the
frame length based on the queue sizes and stabilizes the system
whenever possible, while providing a delay performance that is
similar to that of a FFMW policy with a small frame length for
small arrival rates.

IV. CHANNELS WITH MEMORY

In this section, we consider systems that have time-varying
channels with memory. We establish the stability region for
such systems and propose a throughput-optimal dynamic con-
trol policy. We generalize the novel framework we introduced
in [13] that characterizes the stability region in terms of state-ac-
tion frequencies to wireless networks with reconfiguration
delays, time-varying channels, and interference constraints.
The state-action frequency approach is a general and unifying
framework in that, in the absence of reconfiguration delays,
this approach simplifies to stability region characterizations
introduced in the literature [31], [34], [40].
We show that the stability region expands with memory

in the channel processes; in particular, it lies between the
stability region for the case of i.i.d. channels and the sta-
bility region in the absence of reconfiguration delay. For the
traditional network control models without reconfiguration
delays such as the models considered in [30], [31], and [40],
the memory in the channel processes does not affect the sta-
bility region [17]. Therefore, scheduling under reconfiguration
delays and time-varying channels calls for novel control algo-
rithms that take advantage of the channel memory to improve
performance.

A. Stability Region
We start by analyzing the corresponding system with satu-

rated queues, i.e., all queues always have a packet to send. Let
denote the set of all time average expected departure rate

vectors that can be obtained in the saturated
system under all possible policies that are possibly history-de-
pendent, randomized, or nonstationary. We will show that the
stability region satisfies . We prove the necessary
stability conditions in the following lemma and establish suffi-
ciency in Section IV-B.
Lemma 1: We have that

Proof: Given a policy for the dynamic queueing system,
consider the saturated system with the same sample path of
channel gains for and the same set of actions
as policy at each time-slot . Given a queue
, let be the total number of departures by time from
queue in the dynamic queueing system under policy , and let

be the corresponding quantity for the saturated system.
Since some of the nonzero channel gains are wasted in the orig-
inal system due to empty queues, we have

(5)

Therefore, the time average expectation of is also
less than or equal to the time average expectation of . This
completes the proof since (5) holds under any policy for the
original system.
We establish the region by formulating the system dy-

namics as an MDP.
1) MDP Formulation for Saturated System: For ease of ex-

position, we present the analysis for the case of a single-slot
reconfiguration delay, i.e., . For , let

denote the system state at time , where
is the activation vector in use at time-slot (i.e., the current set
of locations of the servers), is the vector of channel gains
at each link at time-slot , and is the set of all states. Also, let

denote the action taken at time-slot , which determines
the activation vector that will be available at the beginning of the
next time-slot, namely the next set of locations for the servers.
For the state would have one more variable that counts
the number of time-slots left until the end of the current recon-
figuration. Namely, for , we have
where denotes the number of remaining
time-slots until the end of the reconfiguration interval. The ac-
tion is as before for the case of , however takes
a single value for the case , say , corresponding
to the case of no action, and decreases by 1.
Let denote the full history of

the system until time , and let denote the set of all prob-
ability distributions on the set of all actions . For the satu-
rated system, a policy is a mapping from the set of all possible
channel state and action histories to [25], [32]. Namely,
a policy prescribes the probability of any particular action for
every given system history. A policy is said to be stationary if,
given a particular state, it applies the same decision rule in all
stages, and under a stationary policy the process
forms a Markov chain.
In each time-slot , the server observes the current state and

chooses an action . Then, the next state is realized according
to the transition probabilities , which depend on the
random channel processes. Let be 1 if link is active under
the activation vector , and 0 otherwise. We define the reward
for link as a function of the state as follows:

if and (6)

and otherwise. That is, a reward of is ob-
tained if the controller decides to stay with the current schedule
and if link is active under the current schedule. We are in-
terested in the set of all possible time average expected depar-
ture rates. Therefore, given some , , we define
the system reward at time by the weighted sum-throughput



ÇELIK AND MODIANO: SCHEDULING IN NETWORKS WITH TIME-VARYING CHANNELS AND RECONFIGURATION DELAY 105

. The average reward of policy
is defined by

(7)

Given weights , we are interested in the policy
that achieves the maximum time average expected reward

. This optimization problem is a discrete-time MDP
characterized by the state transition probabilities with

states and actions per state, where is the number
of channel states. Furthermore, any given pair of states are ac-
cessible from each other (i.e., there is a positive probability path
between the states) under some stationary deterministic policy.
Therefore, this MDP belongs to the class of Weakly Communi-
catingMDPs [32], for which there exists a stationary determin-
istic optimal policy independent of the initial state [32].
2) State-Action Frequency Approach: For Weakly Commu-

nicating MDPs with finite state and action spaces and bounded
rewards, there exists an optimal stationary-deterministic
policy, given as a solution to the standard Bellman's equation,
with optimal average reward independent of the initial state
[32, Theorem 8.4.5]. This is because if a stationary policy
has a nonconstant gain over initial states, one can construct
another stationary policy with constant gain that dominates the
former policy, which is possible since there exists a positive
probability path between any two (recurrent) states under some
stationary policy [25]. The state-action frequency approach, or
the Dual LP approach, given as follows provides a systematic
and intuitive framework to solve such average cost MDPs, and
it can be derived using Bellman's equation and the monotonicity
property of Dynamic Programs [32, Sec. 8.8]:

(8)

subject to the balance equations

(9)

the normalization condition

(10)

and the nonnegativity constraints

for (11)

Note that the effect of the reconfiguration delay on (8)–(11) is
through the system state. Namely, if the reconfiguration delay
is zero, the system state does not have to include , the location
information of the servers. The feasible region of this LP [i.e.,
(9), (10), and (11)] constitutes a polytope called the state-action
polytope , and the elements of this polytope are called
the state-action frequency vectors. A component of a state-ac-
tion frequency vector, , corresponds to the probability
that the system is at state and action is taken under the fol-
lowing stationary randomized policy: Take action at state
w.p.

(12)

where is the set of recurrent states, i.e., is the set of
states that have positive probability of occupancy in steady
state [25], [32]

If there is a transient state , i.e., , then an action that
leads the system to the set is chosen at . It can be shown
that is convex, bounded, and closed [25].
Next, we argue that the empirical state-action frequencies

corresponding to any given policy (possibly randomized,
history-dependent, nonstationary, or non-Markovian) lie in
the state-action polytope . This ensures us that the optimal
solution to the dual LP in (8) is over possibly nonstationary
and history-dependent policies. In the following, we give the
precise definition and the properties of the set of empirical
state-action frequencies. We define the empirical state-action
frequencies as

(13)

where is the indicator function of an event , i.e.,
if occurs, and otherwise. Given a policy , let be
the state-transition probabilities under , and let be
an initial state distribution with . We let
be the expected empirical state-action frequencies under policy
and initial state distribution

We let (as in [25] and [32]) be the limiting
expected state-action frequency vector, if it exists, starting
from an initial state distribution , under a general policy
(possibly randomized, history-dependent, nonstationary, or
non-Markovian):

(14)

Let the set of all limit points be defined by

there exists a policy
the limit in (14) exists and (15)

Similarly let denote the set of all limit points of a partic-
ular class of policies , starting from an initial state distribu-
tion . We let denote the set of all stationary-deterministic
policies, and we let denote the closed convex
hull of set . The following theorem establishes the
equivalency between the set of all achievable limiting state-ac-
tion frequencies and the state-action polytope:
Theorem 3 [32, Theorem 8.9.3], [25, Theorem 3.1]: For any

initial state distribution

We have since the convex combina-
tion of the vectors in corresponds to limiting ex-
pected state-action frequencies for stationary-randomized
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policies, which can also be obtained by time-sharing be-
tween stationary-deterministic policies. The inverse relation

holds since for weakly communicating
state structures, there exists a stationary-deterministic optimal
policy independent of the initial state distribution. Next, for any
stationary-deterministic policy, the underlying Markov chain
is stationary, and therefore the limits exist and satisfy the
constraints (9)–(11) of the polytope . Using
and the convexity of establishes . Furthermore,
via (12), every corresponds to a stationary-randomized
policy for which the limits exist, establishing .
Letting denote the set of extreme (corner) points of
, an immediate corollary to Theorem 3 is as follows.
Corollary 2 [25], [32]: For any initial state distribution

The intuition behind this corollary is that if is a corner point
of , it cannot be expressed as a convex combination of any
two other elements in , therefore, for each state , only one
action has a nonzero probability. Thus, corner points of have
a one-to-one correspondence with the stationary-deterministic
policies.
Finally, we have that, under any policy, the probability of a

large distance between the empirical expected state-action fre-
quency vectors and the state-action polytope decays expo-
nentially fast in time. This result is similar to the mixing time of
an underlying Markov chain to its steady state, and we utilize
such convergence results within the Lyapunov drift analysis for
the dynamic queuing system in Section IV-B.
3) Rate Polytope : Using the theory of state-action

polytopes in Section IV-A.2, we characterize , the set of all
achievable time-average expected rates in the saturated system.
The following linear transformation of the state-action polytope

defines the -dimensional rate polytope [25]:

(16)

where is the reward function for link defined in (6). This
polytope is the set of all time average expected departure rate
vectors that can be obtained in the saturated system, i.e., it is
the rate region . Furthermore, is a linear transformation
of . This is because the reward functions, in (16),
are linear combinations of . To see this, given a link , the
coefficient of the linear combination is equal to if the
action is the same as the current schedule in the state and if
the th component of is 1 [see (6)]. Therefore, corner points
of are also achieved by stationary deterministic policies. An
explicit way of characterizing is given in Algorithm 2.
We will establish in the next section that the rate region is

in fact achievable in the dynamic queueing system, which will
imply that .
Note that rate region can be obtained by solving the fol-

lowing LP for some :

subject to (17)

Algorithm 2: Stability Region Characterization

1: Given a stationary deterministic policy , find the
corresponding basic feasible solution of the LP in (8)
(namely, the corresponding corner point of ) by solving
(9)–(11).

2: Find the corresponding rate vector using the
linear transformation in (16).

3: Repeat the above steps for all possible corners of the
polytope . Note that there are stationary
deterministic policies.

4: Take the convex combination of the resulting rate vectors.

The fundamental theorem of Linear Programming guarantees
the existence of an optimal solution to (17) at a corner point
of the polytope and hence of [7]. By enumerating the
weights , it is possible to obtain the corner points
of , and thus . While exact enumeration of all possible
weight vectors, corresponding to corner points of , may be
prohibitive, this approach may be useful to numerically approx-
imate the stability region.
We note that our characterization of the stability region

does not scale with the number of nodes. This is also true for
networks without reconfiguration delays. In fact, for a fixed
channel state, the stability region of the corresponding system
without any reconfiguration delay is the convex-hull of the
possible activations. Typically, the number of activations is
exponential in the number of nodes. In fact, the stability region
characterization is NP-hard. For example, it is generally NP
hard to compute the maximum achievable rate between a pair
of nodes [19]. Nonetheless, the stability region characterization
is useful for some special cases (such as bipartite graphs)
and for establishing the existence of a stationary randomized
policy. Such properties are also true for our characterization
of the stability region for systems with reconfiguration delay.
While our approach allows us to find points in the stability
region numerically, in some very special cases it leads to
the full characterization of the stability region. For instance,
for the two-queue and single-server system introduced in
Section III-A.1, the LP in (17) can be solved explicitly to derive
the rate region , which is displayed in Fig. 7. As expected,
the stability region is improved for channels with memory as
compared to the stability region for the case of i.i.d. channels
shown in Fig. 4. Moreover, the region is significantly re-
duced as compared to the stability region for the corresponding
system with zero reconfiguration delays shown with dashed
lines in Fig. 7.

B. Frame-Based Dynamic Control Policy
We propose an FBDC policy inspired by the state-action fre-

quency approach and prove that it is throughput-optimal. The
motivation behind the FBDC policy is that a policy that
achieves the maximum in (17) for given weights for
the saturated system should achieve a good performance in the
original system when the queue lengths are used as weights.
This is because, first, the policy will lead to similar av-
erage departure rates in both systems for sufficiently large queue
lengths and, second, the usage of queue lengths as weights cre-
ates self-adjusting policies that dynamically capture the changes
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Fig. 7. Stability region for the simple system with and without switchover time
for Gilbert–Elliot channel model with .

Algorithm 3: Frame-Based Dynamic Control Policy With
Frame Length

1: Find the policy that optimally solves the following LP:

subject to (18)

2: Apply for an interval of duration slots
where is a monotonically increasing sublinear
function, i.e., .

due to stochastic arrivals. The FBDC algorithm is a variable
frame-based algorithm similar to the VFMW algorithm pro-
posed for the case of i.i.d. channel processes, where the frame
lengths are sublinear functions of the queue lengths. Let
denote the queue lengths at the beginning of the th frame. We
find the stationary deterministic policy that optimally solves
(17) when are used as weights and then
apply this policy throughout the frame in the dynamic queueing
system. The FBDC policy is described in detail in Algorithm 3,
where denotes the sum of queue lengths.
The LP in (18) can be restated as

subject to . There exists an optimal solution of this
LP, corresponding to the optimal solution of (18), that is a
corner point of and hence of [7]. Moreover, the policy
that corresponds to this corner point is a stationary deterministic
policy by Corollary 2.
Theorem 4: The FBDC policy is throughput-optimal.
The proof of this theorem is given in Appendix B. This the-

orem implies that . The proof performs a drift analysis
using the standard quadratic Lyapunov function over variable
frames whose lengths are functions of the queue lengths. How-
ever, it is novel in utilizing the state-action frequency approach
of MDP theory within the Lyapunov drift framework. The basic
idea is that for sufficiently large queue lengths, when the optimal
policy solving (18), , is applied over a sufficiently long frame
of slots, the average output rates of both the actual system
and the corresponding saturated system converge to . For the

saturated system, the probability of a large difference between
the empirical and the steady-state rates decreases exponentially
fast in time [25], similar to the convergence of a positive recur-
rent Markov chain to its steady state. Therefore, for sufficiently
large queue lengths, the difference between the empirical rates
in the actual system and also decreases with . This ul-
timately results in a negative drift for sufficiently large queue
lengths since is the solution to , ,
which leads to

for all in .
Remark 1: The FBDC policy provides a new framework for

developing throughput-optimal policies for network control.
Namely, given any queuing system whose corresponding satu-
rated system is Markovian with finite state and action spaces,
throughput optimality is achieved by solving an LP in order
to find the stationary MDP solution for the corresponding
saturated system and applying this solution over frames in the
actual system. The FBDC policy can also be used to achieve
throughput optimality for classical network control systems
[31], [40], optical switches [34], or systems with delayed
channel state information [20], [45].
In the absence of time-varying channels, or for systems with

i.i.d. channel processes as in Section III, variable-size frame-
based generalizations of the Max-Weight policy are throughput-
optimal [14]. However, under the simultaneous presence of re-
configuration delays and time-varying channels with memory,
the FBDC policy is the only policy to achieve throughput op-
timality, and it has a significantly different structure from the
Max-Weight policy.
We note that the FBDC policy can also be implemented

without frames by setting the frame length to 1, namely, by
solving the LP in Algorithm 3 in each time-slot. The simulation
results in Section IV-D suggest that such an implementation
has a similar throughput performance to the original FBDC
policy. This is because the optimal solution of the LP in (18)
depends on the ratio of the queue lengths that are used as
weights. Therefore, the policy solving the LP optimally
stays as the solution for long periods of time when the queue
lengths are large. Note that when the policy is implemented
without frames, it becomes more adaptive to dynamic changes
in the queue lengths, which results in better delay performance
as compared to the frame-based implementations.
In Section IV-C, we consider simple Myopic policies that do

not require the solution of an LP. Simulation results presented
in Section IV-D suggest that the stability region achieved by the
Myopic policies is close to the full stability region, while their
delay performance is similar to that of the FBDC policy.

C. Myopic Control Policies

We investigate the performance of simple Myopic policies
that make scheduling/switching decisions according to weight
functions that are products of the queue lengths and the channel
gain predictions for a small number of slots into the future. We
refer to a Myopic policy considering future time-slots as the
-Lookahead Myopic policy. Specifically, in the One-Looka-

head Myopic policy, assuming that the system is employing
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Algorithm 4: One-Lookahead Myopic Policy

1: Assuming that schedule is currently being used at
time-slot , calculate the following weights:

(19)

2: If , then stay with
schedule . Otherwise, switch to a schedule with the
maximum weight .

schedule at some time-slot , , the weight of , is ob-
tained as follows: If link is active under , the contribution
of link to is the product of and the sum of
the expectations of in the current and the next time-slot.
The weight of other schedules are calculated similarly, except
that we consider the expectation of channel processes only at
time-slot because the system will idle at time-slot in
order to switch to other schedules. We describe the One-Looka-
head Myopic (OLM) policy in Algorithm 4.
We investigated the performance of the OLM policy through

simulations. The simulation results in Section IV-D suggest that
the OLM policy may achieve the full stability region while pro-
viding a better delay performance as compared to the FBDC
policy.
The -Lookahead Myopic policy is a generalization

of the OLM policy in that the following weight func-
tions are used for scheduling decisions: Assuming that the
system is currently employing schedule at time-slot ,

and
.

These policies have low complexity, and they are simpler to
implement as compared to the FBDC policy.

D. Simulation Results—Channels With Memory
Weperformed simulation experiments that determine average

queue occupancy values for the FBDC, OLM, andMWpolicies.
The frame length for the th frame of the FBDC policy is chosen
to be as for the case of memory-
less channels. We consider the same system and the simulation
model as in Section III-C, except that we use the Gilbert–Elliot
channel model in Fig. 3 and that the switching delay is taken
to be 1 slot.
We utilized three sets of transition probabilities, for

; , , and . As for the case of i.i.d.
channels considered in Section III-C, the steady-state proba-
bility of ON channel state for each queue is 0.5 in each of these
cases. By numerically solving the LP in (17), the maximum
sum-throughput can be calculated to be 1.11 for , 1.14
for , and 1.29 for as shown in Table I.
While these values are significantly larger than the maximum
sum-throughput of 1 for the case of i.i.d. channels, they are less
than the sum-throughput of 1.44 for the corresponding system
with zero reconfiguration delay, as expected. The enlargement
in the stability region with channel memory is in sharp contrast

Fig. 8. Total average queue size versus the sum-throughput under the FBDC
policy, the OLM, and the MW policies, for (top) and for
(bottom) .

TABLE I
MAXIMUM SUM-THROUGHPUT UNDER DIFFERENT VALUES OF CHANNEL

MEMORY AND RECONFIGURATION DELAY

to systems with zero reconfiguration delays for which the sta-
bility region only depends on the steady-state behavior of the
channel processes [17].
Fig. 8 (top) presents delay as a function of sum-throughput

along the line between the origin and the maximum
sum-throughput point for the FBDC, the OLM, and the MW
policies for . This figure shows that the
system becomes unstable around the sum-throughput value of
0.9 under the MW policy. Moreover, the FBDC policy and the
OLM policy have large queue lengths only for sum-throughput
values outside the stability region. Furthermore, the OLM
policy provides a similar delay performance to the FBDC
policy in Fig. 8. Fig. 8 (bottom) shows delay as a function of
sum-throughput for these policies for . While
confirming similar results to Fig. 8 (top), Fig. 8 (bottom) also
shows that the stability region becomes larger with increasing
channel memory.
Fig. 9 presents total average queue length as a function

of sum-throughput along the line between the origin and the
maximum sum-throughput point for the FBDC policy imple-
mented without frames, the OLM, and the MW policies for

. This figure shows that the system becomes
unstable around the sum-throughput value of 0.84 under the
MW policy. Moreover, the FBDC and the OLM policies have
large queue lengths only for sum-throughputs greater than
the value of 1.11. This figures suggests that the no-frame
implementations of the FBDC policy and the OLM policy
provide a good throughput-delay performance. Furthermore,
we observe that the difference in delay between the FBDC and
the Max-Weight policies is wider for the no-frame implemen-
tation of the FBDC policy in Fig. 9, as compared to Fig. 8.
This suggests that as the frame length is decreased, the delay
performance of the FBDC policy improves.
Fig. 10 presents the total average queue length under a version

of the FBDC policy implemented using a fixed frame of length



ÇELIK AND MODIANO: SCHEDULING IN NETWORKS WITH TIME-VARYING CHANNELS AND RECONFIGURATION DELAY 109

Fig. 9. Total average queue size versus the sum-throughput under the FBDC
policy implemented without frames, the OLM, and the MW policies for

.

Fig. 10. Total average queue size for the FBDC policy for .

25 slots for for the simple two-queue system
introduced in Section III-A.1. The boundary of the stability re-
gion is shown by (red) lines on the two-dimensional
plane. We observe that the average queue lengths are small for
all , and the big jumps in queue lengths occur
for points outside . Finally, the stability region is much larger
than the stability region for the corresponding system with i.i.d.
channel processes with the same steady state, which is repre-
sented by the diagonal line segment between the points
and .

V. CONCLUSION
We investigated the optimal scheduling problem for systems

with reconfiguration delays, time-varying channels, and inter-
ference constraints. We characterized the stability region of the
system in closed form for the case of i.i.d. channel processes
and proved that a variable-size frame-based Max-Weight al-
gorithm that makes scheduling decisions based on the queue
lengths and the average channel gains is throughput-optimal.
For the case of Markovian channels with memory, we charac-
terized the system stability region using state-action frequencies
that are stationary solutions to an MDP formulation. We devel-
oped the FBDC policy using state-action frequencies and vari-
able frames that are functions of queue lengths and proved that it
is throughput-optimal. Finally, we investigated the performance

of low-complexityMyopic algorithms that appear to have a sim-
ilar throughput-delay performance to that of the FBDC policy
in simulations.
The FBDC policy and state-action frequency approach pro-

vide a new framework for stability region characterization and
throughput-optimal policy development for general network
control systems, with or without reconfiguration delays. This
framework is a first attempt at developing throughput-op-
timal algorithms for systems with time-varying channels and
switching delays, and hopefully it will provide insight into
designing scalable algorithms that can stabilize such systems.
The Myopic control policies we considered constitute a first
step in this direction.
In the future, we intend to study the joint scheduling and

routing problem in multihop networks with time-varying chan-
nels and reconfiguration delays.

APPENDIX A
PROOF OF THEOREM 2

Consider the following -step queue evolution expression,
similar to the 1-step queue evolution in (2). where is the
length of the th frame length, fixed given :

(20)

To see this, note that if , the
total service opportunity given to link during the th frame,
is smaller than , then we have an equality. Otherwise,
the first term is 0 and we have an inequality. This is because
some of the arrivals during the frame might depart before the
end of the frame. Note that is not the actual number of
departures from queue , but it is the service opportunity given
to queue at time-slot under activation .
We first prove stability at the frame boundaries. Squaring both

sides, using , and
we have

(21)

Define the quadratic Lyapunov function

which represents a quadratic measure of the total load in the
system at time-slot . Define the -step conditional drift

where the conditional expectation is over the randomness in ar-
rivals, channel processes, and possibly the scheduling decisions.
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For the VFMW algorithm, scheduling decisions are determin-
istic given the queue lengths at the beginning of the frames.
Summing (21) over the links, taking conditional expectation,

using the assumption (which also im-
plies for
all and ), we have

(22)

where , and we used the fact that the arrival
processes are i.i.d. over time, independent of the queue lengths.
The VFMW policy makes scheduling decisions once per frame
based on the queue sizes at the beginning of the frame. There-
fore, given , the scheduling variables are de-
terministic and same for all , and
independent of , the value of the i.i.d. channel process at
time , for all time-slots . Using this and the fact that the system
is idle for the first slots of the frame due to reconfiguration,
namely, , we have

We have be-
cause the channel processes are i.i.d. independent of the queue
lengths for all time-slots. Therefore, we have

Now, we have
by definition of the VFMW policy in Algorithm 1. From
Theorem 1, we have that for any arrival rate vector strictly
inside , is dominated by
some rate vector in the convex hull of the activation vectors
, where is a diagonal matrix with elements .

Therefore, for any arrival rate vector that is strictly inside
, there exist real numbers such that

, for some and
[8]. Therefore, we have

where we used the fact that
by definition of the VFMW policy

in Algorithm 1. Changing the order of the summation in the
second term on the right-hand side and using ,
we have

If , then ,
where is a constant. Otherwise, there exists a small
such that . Hence, for ,
we have

where we also used the fact that
with . Therefore,

there exists a constant such that

(23)

where . Taking expectations with respect to
, writing a similar expression over the frame boundaries

, summing them, and telescoping these
expressions leads to

Using and , we have

This implies that

(24)

This establishes stability (as defined in Definition 4) at the
frame boundaries .
Now, we have for all frames

Taking conditional expectation, we have
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where we used the fact that arrival processes are i.i.d.
and independent of the queue lengths. Recalling

with , we have

Now, for any given large , let be the number of frames up
to and including . We have

Dividing both sides by , using for any , taking the
of both sides, using (24) and , we have

(25)

Therefore, the system is stable.

APPENDIX B
PROOF OF THEOREM 4

We utilize the same Lyapunov function and the -step drift
expression as in Appendix A, and the following expression fol-
lows similar to (22):

(26)

where and , Note
that is the total service opportunity given
to link during the th frame, i.e., it denotes the link depar-
tures that would happen in the corresponding saturated system
if we were to apply the same reconfiguration decisions over
time-slots in the saturated system. We first prove stability at the
frame boundaries. Recall the definition of the reward functions

in (6), and let be the reward function as-
sociated with applying policy given in the definition of the
FBDC policy in Algorithm 3 to the saturated system. Let
denote for notational simplicity, . Note that
is equal to since is the service opportunity given to
link at time-slot . Now let be the infinite horizon
average rate associated with policy . Let be the optimal
vector of state-action frequencies corresponding to . Define

3Note that all the norms used in this proof and the rest of the paper denote
the Euclidean norm, and denotes the absolute value.

the time-average empirical reward from queue in the saturated
system, , by

Similarly, define the time average empirical state-action fre-
quency vector

(27)

where is the indicator function of an event , i.e.,
if occurs, and otherwise. Using the definition of the
reward functions in (6), we have that

and . Similarly, we have

Now we utilize the following key MDP theory result
in [25, Lemma 4.1], which states that as increases,

converges to .
Lemma 2: For every choice of initial state distribution,

there exist constants and such that3

Furthermore, convergence of to is w.p. 1. This re-
sult applies in our system because every extreme point of
can be attained by a stationary and deterministic policy that

has a single irreducible recurrent class in its underlying Markov
chain [25], [32].4 Due to the linear mapping from the state-ac-
tion frequencies to the rewards, by Schwartz inequality, each
component of also converges to the corresponding com-
ponent of . Therefore, we have that for every choice of initial
state distribution, there exists constants and such that

(28)

Furthermore, convergence of to is w.p. 1. Now let
and .

We rewrite the drift expression

(29)

4Note that in general multiple stationary-deterministic policies can yield the
same optimal reward vector . Among these, we choose the one that forms a
Markov chain with a single recurrent class.
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Now we bound the last term. For all , we have

(30)

where we bound the first expectation by by using
, the second expectation by , and the

second probability by 1. By Schwartz inequality, we have

(31)

Using (28) and (31) in (30), we have that there exist constants
and such that

for all and . Hence, using ,
we bound (29) as

Therefore, calling , we have

Now for strictly inside the stability region , there exist a
small such that , for some . Utilizing
this and the fact that by definition of
the FBDC policy in Algorithm 3, we have

(32)

For and the frame length large enough, we have
where . Therefore, we have

(33)

Therefore, similar to (23), we have a negative drift for large
queue lengths if is a sublinear function of the sum-queue

lengths. For example, for , we have
that there exists a constant such that

(34)

The rest of the proof follows similar to the proof of VFMW
Algorithm in Appendix A.
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